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ABSTRACT

In private machine learning algorithms, Differentially Private Stochastic Gradient
Descent (DP-SGD) plays an important role. Despite this, there have been few
studies that have explored the theoretical analysis that can be derived from DP-
SGD, particularly in a more challenging scenario where individual users retain the
autonomy to specify their differential privacy budgets. In this work, we conduct
a comprehensive non-asymptotic analysis of the convergence of the DP-SGD al-
gorithm as well as its variants. This will allow individual users to assign different
privacy guarantees when releasing models trained by DP-SGD. Most importantly,
we provide readers with practical guidelines regarding the effect of various hy-
perparameters, such as step size, parameter dimensions, and privacy budgets, on
convergence rates. The problem we consider includes the most commonly used
loss functions in standard machine learning algorithms. For strongly convex loss
functions, we establish an upper bound on the expected distance between the esti-
mators and the global optimum. In the case of non-strongly convex functions, we
analyze the upper bound difference between the loss incurred by the estimators
and the optimal loss. Our proposed estimators are validated in the theoretical and
practical realms by rigorous mathematical derivation and numerous numerical tests.

1 INTRODUCTION

Machine learning (ML) models have demonstrated their effectiveness in analyzing sensitive user
data across a variety of domains, including medical imaging (Tang, 2019; Lundervold & Lundervold,
2019), healthcare (Esteva et al., 2017; Wiens et al., 2019), finance (Caruana et al., 2015), and
social media content (Kosinski et al., 2013; Wu et al., 2016). However, ML algorithms frequently
require extensive training data, which may include sensitive personal information, then this poses an
unacceptable risk to individual privacy (Shokri et al., 2017). As a result, optimizers that protect the
privacy of the model while training it are becoming increasingly important. Differential Privacy (DP)
(Dwork et al., 2006), as a gold-standard concept, provides rigorous guarantees for privacy protection
that focus on limiting the influence of any individual data point when handling sensitive information.
Training these ML models under the framework of differential privacy has been widely accepted for
protecting algorithms against unintentional leakage of private training data (Shokri & Shmatikov,
2015; Papernot et al., 2017; Carlini et al., 2021; Yu et al., 2022; Mehta et al., 2022; Golatkar et al.,
2022).

To ensure differential privacy during the training process, a widely used approach is the noisy
stochastic gradient descent, commonly referred to as DP-SGD (Song et al., 2013; Abadi et al., 2016;
Papernot & Steinke, 2022; Du et al., 2022; Sander et al., 2023). DP-SGD diverges from conventional
stochastic gradient descent by initially clipping individual gradients and then adding noise to the
average of clipped gradients during the model parameter updates. Such modifications successfully
limit the sensitivity of each update, thereby enabling the introduced noise to guarantee differential
privacy. Traditional privacy accounting employs a worst-case methodology, assigning uniform privacy
parameters to all data samples. However, from the perspective of ML, different examples can exert
varying influences on a learning algorithm, as highlighted by (Koh & Liang, 2017; Feldman & Zhang,
2020).
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Recently, Local Differential Privacy (LDP) has emerged as a more rigorous differential privacy
technique for preserving personal information privacy (Kasiviswanathan et al., 2011; Duchi et al.,
2013). Unlike traditional settings, LDP operates under the assumption that the data collector cannot
be trusted. In this framework, each individual applies a differential privacy mechanism to their raw
data locally, before transmitting the perturbed version to the untrusted server. Until the server receives
the perturbed data from all individuals, it proceeds to calculate the relevant statistics and subsequently
publishes the statistical findings. Due to its better privacy protection, LDP rapidly attracted substantial
interest and found widespread application in the industrial sector. Prominent technology companies
like Google (Erlingsson et al., 2014), Apple (Tang et al., 2017; Apple, 2017), and Microsoft (Ding
et al., 2017) have already integrated LDP into their respective product portfolios.

To date, a wealth of studies on LDP have surfaced (Duchi et al., 2013; 2018; Duchi & Rogers, 2019;
Gopi et al., 2020; Butucea et al., 2023). (Duchi et al., 2013; 2018; Duchi & Rogers, 2019; Gopi et al.,
2020; Butucea et al., 2023), but there is a notable gap in the research focusing on non-asymptotic
analysis, especially in the context of convergence guarantees of noisy stochastic approximation
schemes. In the LDP framework, the convergence rate is notably regarded as crucial in characterizing
the statistical efficiency loss incurred by differentially private optimizers. In this paper, we consider
the DP-SGD procedure for the minimization of a convex objective function. The core principle
behind this method involves adding noise to every iterate of SGD in a way that causes each iterate to
satisfy a targeted differential privacy guarantee. While the underlying idea has gained considerable
traction in existing literature, our contribution is prominent in the following aspects:

• Our primary contribution is to provide a comprehensive, non-asymptotic analysis of the DP-SGD
algorithm as well as the Polyak-Ruppert averaging algorithm (Polyak & Juditsky, 1992) that
includes least-squares and logistic regressions with and without strong convexity assumptions.

• A further key contribution of our work is conducting a comparative analysis between the
DP-SGD estimator and the associated Polyak-Ruppert averaging estimator. Specifically, we
illustrate that both estimators exhibit identical sensitivity to parameter dimension and differential
privacy budget. However, they exhibit divergent convergence rates under varying step-size
configurations.

• Lastly, through extensive numerical experiments, we validate that the proposed estimators attain
the targeted differential privacy and convergence guarantees, underscoring their efficacy in both
theoretical and practical settings.

The structure of this paper is organized as follows: We begin with an overview of both DP and
GDP concepts. Subsequently, we introduce our proposed methodology, delving into the DP-SGD
algorithms and their non-asymptotic theoretical analysis. We conclude by presenting experimental
results that underscore the efficacy of our approach.

2 PRELIMINARIES

Definition 1 ((ε, δ)-DP (Dwork et al., 2006)). A mechanismM : Xn → R, taking a dataset consisting
of individuals as its input, is (ε, δ)-differentially private if, for every pair of adjacent datasets S,
S′ ⊂ Xn that differ in the record of a single individual and for every measurable event E ⊆ R,

Pr(M(S) ∈ E) ≤ eε · Pr(M(S′) ∈ E) + δ,

where the probability measure Pr is induced by the randomness of M only. When δ = 0, then M is
called ε-differentially private (ε-DP).

While the concept of (ε, δ)-DP has broad applicability in various domains such as healthcare, finance,
and social networks, it comes with several notable limitations. In this paper, we specifically employ
Gaussian Differential Privacy (GDP), a specific instantiation of f -DP. To formally introduce this
privacy definition, let P and P ′ denote the distributions of M(S) and M(S′), respectively. Given
any rejection rule 0 ≤ ϕ ≤ 1, the type-I and type-II errors are defined as: αϕ = EP (ϕ) and
βϕ = 1 − EP ′(ϕ). Let T (P, P ′) denote the trade-off function of P and P ′, that is T (P, P ′) =
infϕ{βϕ : αϕ ≤ α}. The formal definition of µ-GDP is then given as follows.
Definition 2 (µ-GDP (Dong et al., 2022)). A mechanism M : Xn → R, is µ-GDP, if

T (M(S),M(S′)) ≥ T (N(0, 1), N(µ, 1))
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for all neighboring datasets S, S′ ⊂ Xn and µ ≥ 0.

For statisticians, GDP offers an intuitively appealing interpretation: determining whether an indi-
vidual is part of a given dataset is at least as challenging as distinguishing between two normal
distributions—specifically N(0, 1) and N(µ, 1) based on one draw, where µ ≥ 0. We then list
several useful facts about designing µ-GDP algorithms.
Proposition 1 (Dong et al. (2022)). Let f : Xn → Rd be a deterministic function with finite
sensitivity ∆(f) = supS,S′⊂Xn,adjacent ∥f(S) − f(S′)∥2 < ∞. For all µ > 0 and ω ∈ Rd with
coordinates i.i.d samples drawn from N(0, 1), f(S) + ∆(f)ω/µ is µ-GDP.

This mechanism boasts computational efficiency and serves as a foundational building block for more
complex algorithms. Subsequently, we introduce the parallel composition property of GDP, which
enables us to design a noisy SGD algorithm with a tight privacy guarantee.
Proposition 2 (Parallel composition (Smith et al., 2021)). Let a sequence of K mechanisms Mk :
Xn → R, each be µk-GDP. Let Sk be disjoint subsets of S ⊂ Xn. The joint mechanism is
defined as the sequence of Mk(Sk ∪ S) (given also the output of the previous k − 1 mechanisms) is
max{µ1, µ2, . . . , µK}-GDP.

3 METHODOLOGY

Let x1, . . . , xn be independent and identically distributed samples from probability distribution Π
representing the private information of each user. For statistical estimation and machine learning
problems, we consider the general situation where the true d-dimensional model parameter θ∗ ∈ Rd

is the minimizer of a convex objection function F (θ): Rd → R, that is,

θ∗ = argmin {F (θ) = Ex∈Πf(θ, x)} ,

where x is a random variable drawn from a probability distribution Π and f(θ, x) is the loss function.
A widely used optimization method for minimizing F (θ) is the stochastic gradient descent (Robbins
& Monro, 1951; Polyak & Juditsky, 1992). In particular, let θ0 be any given initial point. Recall that
the SGD updates the iterate as follows:

θi = θi−1 − ηi∇f(θi−1, xi), i ≥ 1, (1)

where xi is the ith sample randomly drawn from the distribution Π, ∇f(θ, x) denotes the gradient of
f(θ, x) with respect to the first argument, and ηi is the ith step size, which we refer to as the learning
rate.

Within the framework of the GDP mechanism, we introduce a differentially private estimator utilizing
noisy SGD and provide a non-asymptotic convergence analysis. Intuitively, the heightened risk of
privacy leakage stems from the numerous data and gradient queries inherent in the SGD algorithm.
To mitigate this, we utilize the GDP to gain privacy by restricting the class of estimators to satisfy a
uniform boundedness condition.
Condition 1. The gradient of the loss function f(θ, x) is such that supθ∈Rd,x∈Π ∥∇f(θ, x)∥2 ≤
C0 <∞, where C0 is some positive constant.

Actually, Condition 1 implies that the objective loss function f(θ, x) possesses a predefined gradient
bound, denoted as C0. Consequently, this ensures that the sensitivity of ∇f(θ, x) does not exceed
2C0. Therefore, to achieve a certain level of privacy, our private version of SGD considers the
following noisy version of the iterates (1):

θi = θi−1 − ηi∇f(θi−1, xi) +
2ηiC0

µi
ωi, i ≥ 1, (2)

where {ωi}i≥1 is a sequence of i.i.d. standard d-dimensional Gaussian random vectors and µi is the
ith individual’s certain level of privacy. Taking C0 = 0 in the iterates (2) recovers the standard SGD
algorithm in (1).

From (2), each individual has different privacy budgets µi, i = 1, . . . , n. This is the notion of the
local version of differential privacy (Kasiviswanathan et al., 2011; Yang et al., 2020), which is a
valuable tool to protect the privacy of individual data owners without the need for a trusted third
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Figure 1: Trajectories of the distance between DP-SGD estimators and the optimal for linear
regression. Left: Trajectories for two types of estimators under varying privacy budgets with results
averaged over 200 replicates. The parameter distance for privacy budgets sampled from Unif(1, 2)
lies between the cases of µ = 1 and µ = 2. Right: Trajectories for the first five replications when
µ = 2. The LDP-ASGD estimator is more stable than the LDP-SGD estimator.

party. Unlike traditional differential privacy (called centralized differential privacy), local differential
privacy (LDP) empowers each participant to apply a differential privacy mechanism to their own raw
data locally. The perturbed data is then securely transmitted to an untrusted server. Indeed, stochastic
approximation schemes are sequentially interactive cases, which is a typical example of LDP (Duchi
et al., 2018). The estimator θi defined in (2) is referred to LDP-SGD estimator.
Theorem 1. The LDP-SGD estimator θi obtained from (2) is max{µ1, . . . , µi}-GDP, where i ≥ 1.

This theorem implies that the proposed noisy SGD estimator θn is max{µ1, . . . , µn}-GDP. A special
case is that the proposed estimator θn is µ-GDP when µ1 = · · · = µn without considering different
privacy budget for each individual.

It is well-established that classical SGD with a learning rate that is inversely proportional to the
number of iterations can perform suboptimally if the proportionality constant is improperly set or
when strong convexity assumptions are not met (Nemirovski et al., 2009). To address these challenges,
the celebrated Polyak-Ruppert averaging technique significantly enhances the stability and efficiency
of stochastic approximation algorithms by averaging over the sequence of iterates (Ruppert, 1988;
Polyak & Juditsky, 1992). This technique has been shown to yield information-theoretically optimal
asymptotic variance when utilizing learning rates with slower decay rates, in conjunction with uniform
averaging.

In this section, we also consider the Polyak-Ruppert averaging private estimator θ̄n =
∑n

i=1 θi/n
after n iterations, which is referred to LDP-ASGD estimator. Note that this estimator can also be
recursively updated: θ̄n = (n − 1)θ̄n−1/n + θn/n. The parallel composition proposition 2 along
with Theorem 1 easily imply the following results:
Theorem 2. The LDP-ASGD estimator θ̄n is max{µ1, . . . , µn}-GDP.

Visualization of motivation of this paper is displayed in Figure 1. Referring to the left panel of Figure
1, we permit each user to assign individual privacy budgets that align more closely with real-world
scenarios. Meanwhile, as illustrated in the right panel of the same figure, the LDP-ASGD estimator
exhibits greater stability compared to the LDP-SGD estimator.

4 THEORETICAL PROPERTIES ANALYSIS

4.1 STRONGLY CONVEX OBJECTIVES

In this subsection, we focus on studying a direct non-asymptotic analysis of the LDP-SGD and
LDP-ASGD algorithms. To better illustrate the theoretical properties of the proposed estimators, we
impose the following regularity conditions on the objective functions.
Condition 2. Assume that the objective function F (θ) is differentiable, M -smooth, and m-strongle
convex, meaning that
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(i). F (θ1)− F (θ2) ≤ ⟨∇F (θ2), θ1 − θ2⟩+ M
2 ∥θ1 − θ2∥2, ∀θ1, θ2 ∈ Θ ⊆ Rd,

(ii). F (θ1)− F (θ2) ≥ ⟨∇F (θ2), θ1 − θ2⟩+ m
2 ∥θ1 − θ2∥2, ∀θ1, θ2 ∈ Θ ⊆ Rd.

Strong convexity and smoothness are both standard conditions for the convergence analysis of
stochastic gradient optimization methods; similar conditions can be found in Gower et al. (2019);
Vaswani et al. (2022). In order to establish the results, we also require the Hessian to be Lipschitz
continuous, which is commonly assumed to establish the convergence of SGD’s method under strong
convexity; see Moulines & Bach (2011); Jin et al. (2021); Godichon-Baggioni et al. (2023).

Condition 3. For each n ≥ 1, the Hessian ∇2f(θ, xn) is C1-Lipschitz continuous, i.e.,

∥∇2f(θ1, xn)−∇2f(θ∗, xn)∥ ≤ C1∥θ1 − θ∗∥, ∀θ1 ∈ Θ ⊆ Rd.

Before presenting the non-asymptotic bounds, we first introduce the following family of functions:
ψβ : R+\{0} → R given by:

ψβ(t) =
tβ − 1

β
, if β ̸= 0

Notice that the function β 7→ ψβ(t) is continuous for all t > 0. In addition, for β > 0, ψβ(t) < tβ/β,
while for β < 0, we have ψβ(t) < −1/β (both with asymptotic equality when t is large).

Theorem 3. Assume Conditions 1, 2 hold, if ηn = ηn−α, we then have, for α ∈ [0, 1)

E(∥θn − θ∗∥2) ≤ C2
0

{ η

mnα
+ η2ψ1−2α(n) exp(−mηn1−α/2)

}
(1 + 64d/min

k
{µ2

k})

+ exp{−2mηψ1−α(n)}E(∥θ0 − θ∗∥2).

Remark 1. From Theorem 3, we know that the non-asymptotic upper bound of the LDP-SGD
estimator θn is influenced by several factors: the initial condition E(∥θ0 − θ∗∥2), the initial step
size η, the decay rate α, the dimensionality d of the parameters, and the smallest private budget
mink{µ2

k} across all samples. Specifically,

• Initial condition: The initial condition diminishes sub-exponentially for α ∈ [0, 1).

• Convergence rate: The leading asymptotic term is C2
0η(1 + 64d/mink{µ2

k})/mnα. As such,
the predominant convergence rate is O(n−α) for α ∈ [0, 1). For a scenario where α = 1,
convergence of the LDP-SGD estimator θn is not assured.

• Parameter dimension: The bound exhibits a linear relationship with the dimension d, a
consequence of Gaussian noise being introduced to every parameter coordinate.

• Private budget: As µk increases, the overall bound of E(∥θn − θ∗∥2) reduces in a quadratic
speed.

The following theorem presents the non-asymptotic upper bounds for the LDP-ASGD estimator.

Theorem 4. Assume Conditions 1, 2, 3 hold, if ηn = ηn−α, we then have, for α ∈ [0, 1)

E(∥θ̄n − θ∗∥2) ≤ 1

n
tr
[
E{∇2f (θ∗, xk)}−1SE{∇2f (θ∗, xk)}−1

]
+

4α2σ̃2
µ

m2n2η
ψα−1(n) +

σ̃2
µ

m2n2−αη

+

(
1

mn2η21
+

1

mn2(1−α)η2
+

4M2

mn2

)
E(∥θ0 − θ∗∥2) +

σ̃2
µ

mn2(1−α)
ψ1−2α(n)

+
C1C3,0η

2

n2m2
ψ1−2α(n) +

2C1C4,0η
3

n2m2
ψ1−3α(n) +

4M2ησ̃2
µ

m2n2
ψ1−α(n) +

σ̃2
µ

mn

+
C1

4mn2
E(∥θ0 − θ∗∥4) +

(
4α2

mn2η2
+

4M2

mn2

)
{E(∥θ0 − θ∗∥2) + η2σ̃2

µ}B

+
4M2ησ̃2

µ

m2n2
{
E(∥θ0 − θ∗∥4) + C3,0η

3ψ1−3α(n) + C4,0η
4ψ1−4α(n)

}
B,

where σ̃2
µ = C2

0 (1+64d/min
k

{µ2
k}),B =

∑n
k=1 exp

{
−mηk1−α/4 + ψ1−2α(k) + 4η3ψ1−3α(k)

}
,

and S = E{∇f(θ∗, x)∇f(θ∗, x)⊤}.
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Remark 2. From Theorem 4, notice that the non-asymptotic upper bound of the LDP-ASGD
estimator θ̄n is influenced by the same factors in a similar way to as Theorem 3.

• Summation B: For all α ∈ [0, 1), B is finite, while for α = 1, B = O(n).

• Initial Condition: For all α ∈ [0, 1), the initial condition diminishes at rate O(n−2).

• Convergence rate: For α ∈ [0, 1/2], the predominant convergence rate is O(n−1), while for
α ∈ (1/2, 1), the predominant convergence rate becomes O(n−2(1−α)).

• Other factors: The constant σ̃2
µ suggests that the bound of E(∥θ̄n − θ∗∥2) is affected by the

factors d and µ in the same manner as E(∥θn − θ∗∥2).

4.2 NON-STRONGLY CONVEX OBEJECTIVES

In this subsection, we do not assume that the function F (θ) is strongly convex, but impose the
following condition.

Condition 4. Assume the objective function F (θ) attains its global minimum at a certain θ∗ ∈ Θ.

Notice that θ∗ is not unique when the objective function F (θ) is not strongly convex, we only get a
bound on loss function values as follows.

Theorem 5. Assume Conditions 1, 2(i), 3, 4 hold, then if ηn = ηn−α, for α ∈ (1/3, 1),

E{F (θn)− F (θ∗)} ≤



2(δ0 + σ̃2
µη

2ψ1−2α(n))
1/2(1 + 4M1/2σ̃µη

3/2)/η

ψ1−α(n)
, α ∈ ( 23 , 1),

2(δ0 + σ̃2
µη

2ψ1−2α(n))
1/2(1 + 4M1/2σ̃µη

3/2)/η

ψα/2(n)
, α ∈ ( 12 ,

2
3 ],

2(δ0 + σ̃2
µη

2)(1 + 4M1/2σ̃µη
3/2)/η

(1− 2α)1/2ψ3α/2−1/2(n)
, α ∈ [ 13 ,

1
2 ],

where δ0 = E(∥θ0 − θ∗∥2) and σ̃2
µ = C2

0 (1 + 64d/min
k

{µ2
k}).

Remark 3. From Theorem 5, we note that the upper bound of E{F (θn) − F (θ∗)} shares the
same constant σ̃2

µ as in strongly-convex scenario, suggesting a similar relationship with d and µ as
discussed before. More specifically,

• Initial Condition: For all α ∈ (1/3, 1), the initial condition diminishes at the same rate as
E{F (θn)− F (θ∗)}.

• Convergence rate: For α ∈ (1/3, 1/2], the convergence rate is O(n−(3α−1)/2), for α ∈
(1/2, 2/3], the convergence rate is O(n−α/2), while for α ∈ (2/3, 1) the convergence rate
becomes O(n−(1−α)).

The following theorem is shown in a similar way to Theorem 4.

Theorem 6. Assume Conditions 1, 2(i), 3, 4 hold, then if ηn = ηn−α, for α ∈ [0, 1), we have

E{F (θ̄n)− F (θ∗)} ≤ 1

2ηn1−α
{E(∥θ0 − θ∗∥2) + σ̃2

µη
2ψ1−2α(n)}+

σ̃2
µηψ1−α(n)

2n
,

where σ̃2
µ = C2

0 (1 + 64d/min
k

{µ2
k}).

Remark 4. The convergence rate of E{F (θ̄n) − F (θ∗)} follows O(n−α) when α ∈ [0, 1/2).
However, in the range 1/2 < α < 1, it adheres to O(nα−1). Consequently, the optimal asymptotic
rate stands at O(n−1/2). It’s noteworthy that through averaging, the algorithm extends the α
range ensuring convergence, shifting it from (1/3, 1) to (0, 1), and concurrently accelerates the
rate of convergence. Nonetheless, in real-world scenarios when α > 1/2, the constant term
{E(∥θ0 − θ∗∥2) + σ̃2

µη
2ψ1−2α(n)} could vastly exceed its square root, leading to a bigger loss in

the averaged estimators.
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Strongly Non-strongly
α (0, 1/2) (1/2, 1) (1/3, 1/2) (1/2, 2/3) (2/3, 1)

LDP-SGD n−α n−α n−(3α−1)/2 n−α/2 n−(1−α)

LDP-ASDG n−1 n−2(1−α) n−α n−(1−α) n−(1−α)

Table 1: Summary of convergence rate in different situations.

Figure 2: Trajectories of the distance between DP-SGD estimators and the optimal for linear
regression with d = 5.

5 EXPERIMENTS

In this section, we illustrate our theoretical results through two numerical simulations. In particular,
we show the behavior of expected distance for LDP-SGD and LDP-ASGD estimators in both strongly
and non-strongly convex cases.

5.1 LINEAR REGRESSION

We consider a linear regression model given by yi = x⊤i β + ϵi, where the disturbances ϵ1, . . . , ϵn
are independently and identically drawn from N

(
0, σ2

)
. Here, the covariates are denoted as xi =

(1, zi)
⊤, with zi following an i.i.d. sampled from N

(
0, σ2

zId
)
. The loss function we have chosen is

expressed as:

Ln(β, σ) =
1

n

n∑
i=1

(
σρc

(
yi − x⊤i β

σ

)
+

1

2
κcσ

)
w (xi) ,

where ρc denotes the Huber loss function with a tuning parameter c, κc is a constant chosen to ensure
the consistency of σ̂, and w(xi) = min(1, 2/∥xi∥22) serves to de-weight outlying covariates. By this
construction, the global sensitivities of ∇θLn(θ) is

√
8c2 + c4/4.

We generate data utilizing a sample size of n = 300000 based on the linear model, with the true
parameters assigned as β = 1d+1, σ = 2, σz = 1. Additionally, we adopt c = 1.345 for the loss
function. Our objective is to evaluate the performance of LDP-SGD and LDP-ASGD estimators;
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Figure 3: Trajectories of the distance between DP-SGD estimators and the optimal for logistic
regression with d = 5.

Figure 4: Trajectories of the distance between the loss incurred by the estimators and the optimal loss
for logistic regression with d = 5.
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hence, we conduct experiments under various settings: parameter dimensions d = 5, 10, 20; initial
step size η = 0.2 with decay rates α = 1/3, 1/2, 2/3, 1; privacy budgets µ = 0.5, 1, 2, 3; and a
non-private SGD approach (without the addition of noise). For each configuration, we perform 200
replications and plot the trajectories of the distance between the estimators and the optimum, as well
as the loss distance, throughout the training process. The results showcasing parameter distance
with d = 5 are illustrated in Figure 2, and detailed outcomes for other settings are provided in the
Appendix.

From Figure 2, it is evident that the empirical findings cohere seamlessly with our theoretical
predictions. For α ∈ (0, 1/2), the LDP-ASGD estimator exhibits faster convergence compared to the
LDP-SGD estimator, resulting in a diminished distance across all privacy configurations. However,
when α ∈ (2/3, 1), the convergence of the LDP-ASGD estimator is slower than that of the LDP-
SGD estimator, leading to an increased distance. Notably, when α = 1, neither estimator achieves
convergence. Furthermore, a reduction in the privacy budget µ is associated with an increment in
distance, attributable to the incorporation of more noise at each iteration.

5.2 LOGISTIC REGRESSION

In the context of the logistic regression simulation, data were generated based on the model yi ∼
Bernoulli({1 + exp(−x⊤i β)}−1). This procedure employs the same value of β and adopts a similar
approach for generating the covariates xi as was applied in the linear regression simulation. When
incorporating Mallows weights, we utilized a weighted variant of the standard cross-entropy loss:

Ln(β) =
1

n

n∑
i=1

(
−yi log

(
1

1 + exp
(
−x⊤i β

))− (1− yi) log

(
exp

(
−x⊤i β

)
1 + exp

(
−x⊤i β

)))w (xi) ,

where the weight function is denoted as w(xi) = min(1, 2/∥xi∥22).
We generate data employing a sample size of n = 300000 drawn from the logistic model, with the
true parameters set as β = 1d+1 and σz = 1. The parameter configurations adopted align with
those utilized in the linear regression scenario. It is important to note that, in the context of logistic
regression, the assumption of strong convexity is no longer applicable. Consequently, our primary
focus shifts toward the disparity between the loss incurred by the estimators and the optimal loss.
To further assess the robustness of Theorems 3 and 4 in scenarios void of strong convexity, we also
present results pertaining to parameter distance. The results related to parameter distance for d = 5
are depicted in Figure 3, while those concerning loss distance are showcased in Figure 4. Detailed
results for alternative configurations are provided in the Appendix.

As shown in Figure 3, for α ∈ (0, 1), both LDP-SGD and LDP-ASGD estimators exhibit a conver-
gence tendency towards the optimal, evident from the diminishing distance, even in the absence of
strong convexity in the loss. The nearest achievable distance is observed to be approximately 10−2,
indicating potential deviations from the exact global optimal parameter. Turning our attention to the
loss distance, the insights derived from Figure 4 are consistent with the theoretical predictions outlined
in Theorems 5 and 6. For any α ∈ (0, 1), the LDP-ASGD estimator exhibits faster convergence
compared to the LDP-SGD estimator. However, when α > 1/2, the constant term bounding the
LDP-ASGD estimator may become more significant, potentially resulting in a larger loss distance for
the averaged estimators.

6 CONCLUSION AND FUTURE WORKS

In this paper, we have provided the non-asymptotic analysis of the convergence of the DP-SGD
algorithm as well as its averaged version under the LDP framework, which allows different individual
users to have different privacy budgets. Importantly, we have analyzed the theoretical properties of
the proposed estimators, with and without strong convexity assumptions. Our theory shows that the
convergence rates of the considered estimators are affected by various hyperparameters, including
step size, parameter dimensions, and privacy budgets. This furnishes readers with practical guidelines
on how to select hyperparameters. Comprehensive simulation studies yield positive affirmation of the
asymptotic theory.

While the contributions mentioned above are significant, this work leaves several interesting avenues
for future work. First, we mainly focus on differentiable loss functions, as these are commonly used

9



Under review as a conference paper at ICLR 2024

loss functions. Further investigation is warranted to consider non-differentiable objectives such as
pinball or hinge losses. Second, we have focused on results with fixed parameter dimensions and we
expect to study the modification DP-SGD algorithm under high parameter dimensions; see Agarwal
et al. (2012); Chen et al. (2020). We will leave it for future research.
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