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ABSTRACT

Recent advances in dynamic scene reconstruction have significantly benefited from
3D Gaussian Splatting, yet existing methods show inconsistent performance across
diverse scenes, indicating no single approach effectively handles all dynamic chal-
lenges. To overcome these limitations, we propose Mixture of Experts for Dynamic
Gaussian Splatting (MoE-GS), a unified framework integrating multiple specialized
experts via a novel Volume-aware Pixel Router. Unlike sparsity-oriented MoE archi-
tectures in large language models, MoE-GS is designed to improve dynamic novel
view synthesis quality by combining heterogeneous deformation priors, rather than
to reduce training or inference-time FLOPs. Our router adaptively blends expert
outputs by projecting volumetric Gaussian-level weights into pixel space through
differentiable weight splatting, ensuring spatially and temporally coherent results.
Although MoE-GS improves rendering quality, the increased model capacity and
reduced FPS are inherent to the MoE architecture. To mitigate this, we explore
two complementary directions: (1) single-pass multi-expert rendering and gate-
aware Gaussian pruning, which improve efficiency within the MoE framework,
and (2) a distillation strategy that transfers MoE performance to individual experts,
enabling lightweight deployment without architectural changes. To the best of
our knowledge, MoE-GS is the first approach incorporating Mixture-of-Experts
techniques into dynamic Gaussian splatting. Extensive experiments on the N3V
and Technicolor datasets demonstrate that MoE-GS consistently outperforms state-
of-the-art methods with improved efficiency. Video demonstrations are available at
https://huggingface.co/spaces/moegs/MoE-GS.

1 INTRODUCTION

Realistically modeling dynamic scenes from real-world data is a fundamental challenge for training
future AGI models, creating immersive content for spatial computing, and enabling embodied agents
to effectively perceive and interact with their environments. Recent advances in novel view synthesis,
particularly Neural Radiance Fields (NeRF) (Mildenhall et al., 2021), have significantly improved
the quality of static scene reconstruction. However, NeRF’s implicit representation and intensive
ray-tracing introduce substantial computational overhead, limiting real-time applicability. To address
these limitations, explicit representations such as 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)
have emerged, achieving real-time rendering without compromising visual fidelity.

Recent efforts have extended Gaussian-based representations to dynamic scenes, introducing diverse
approaches such as MLP-based deformation networks (Wu et al., 2024; Bae et al., 2024), polynomial-
based motion models (Li et al., 2024), and interpolation-based methods (Lee et al., 2024). Although
these methods achieve promising results in handling specific deformation types, our empirical analysis
(Fig. 1) reveals that no single approach consistently generalizes across varied real-world dynamic
scenarios. Specifically, our analysis identifies three key limitations:

• Scene-level variations: Different reconstruction methods exhibit significant variability in
performance across scenes, indicating that each model has a restricted range of optimal
applicability (Fig. 1a). Such scene-specific performance variations underscore the necessity
for adaptive model selection.

• Spatial-level inconsistencies: Within same scene, reconstruction quality varies across
different spatial regions when processed by distinct methods (Fig. 1b). This spatial variability
demonstrates that no single model consistently excels across all regions of a given scene.
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Figure 1: Limitations of existing dynamic Gaussian splatting methods. (a) Scene-level: No single
method consistently dominates across scenes. (b) Spatial-level: Different spatial regions favor different
deformation models. (c) Temporal-level: The best-performing method changes over time within the
same scene. We also visualize representative motion trajectories of four experts—4DGaussians
(Green), STG (Purple), E-D3DGS (Pink), and Ex4DGS (Blue)—to illustrate their distinct motion
behaviors. Additional video results are provided on the project page.

• Temporal fluctuations: Within a video sequence, the best-performing method changes
dynamically from frame to frame, reflecting the inherent temporal complexity of real-world
dynamics (Fig. 1c). Such temporal fluctuations highlight the inability of individual models
to consistently capture complex temporal patterns.

These variations arise from the heterogeneous inductive biases of existing dynamic GS methods.
Each deformation model is naturally suited to a particular motion regime: HexPlane-based canonical
deformation produces smooth, highly regularized trajectories that work well in static or low-motion
regions; per-Gaussian volumetric deformation captures fast yet coherent flows; polynomial trajectory
models favor globally smooth, low-curvature motion; and interpolation-based methods often yield
locally diverse and irregular trajectories. Because real-world scenes typically contain a mixture
of these motion patterns, no single deformation prior can perform optimally across all spatial and
temporal regions. A more detailed, expert-specific motion analysis is provided in Appendix F.

Motivated by these insights, we propose Mixture of Experts for Dynamic Gaussian Splatting (MoE-
GS), the first unified framework integrating multiple dynamic Gaussian models through a Mixture-
of-Experts (MoE) architecture. Instead of relying on a single expert model, MoE-GS adaptively
selects and blends multiple specialized experts, dynamically adjusting its decisions according to
spatial, temporal, and scene-specific dynamics. It is important to clarify that, unlike sparsity-driven
MoE architectures in large language models, MoE-GS is not intended to reduce FLOPs or memory
usage. Our primary goal is to increase representational capacity and improve dynamic reconstruction
quality by combining heterogeneous deformation priors; the efficiency techniques we introduce are
complementary mechanisms to keep this additional cost practical.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A key innovation of MoE-GS is the Volume-aware Pixel Router, which adaptively blends expert
outputs with spatial and temporal coherence. Rather than assigning routing weights solely at the pixel
or Gaussian level—either ignoring volumetric structure or facing optimization difficulties—our router
projects Gaussian-level decisions into pixel space using differentiable weight splatting. This provides
adaptive, per-pixel weighting that effectively captures temporal and view-dependent variations,
ensuring stable optimization. While MoE-GS significantly improves rendering quality, its multi-
expert inference inherently increases computational overhead. To address this, we explore two
independent strategies. First, we propose single-pass multi-expert rendering and gate-aware Gaussian
pruning, which improve runtime efficiency by eliminating redundant rasterization and removing
low-contributing primitives. This strategy is particularly effective when the number of experts is small
(e.g., N = 2 or N = 3). Second, we introduce a knowledge distillation strategy that trains individual
expert models using ground-truth supervision and pseudo-labels generated by the optimized MoE
model, weighted at the pixel level by the router’s predictions. This allows each expert to approximate
the performance of the full MoE-GS without modifying its architecture. The benefit of this approach
becomes more evident as the number of experts increases (e.g., N = 4 or higher), where directly
running the full MoE incurs substantial computational cost.

In summary, our contributions include:

• MoE-GS, the first dynamic Gaussian splatting framework employing a Mixture-of-Experts
architecture, enabling robust and adaptive reconstruction across diverse dynamic scenes.

• A novel Volume-aware Pixel Router that integrates expert outputs through differentiable
weight splatting, achieving spatially and temporally coherent adaptive blending.

• Efficiency of MoE-GS is improved through single-pass multi-expert rendering and gate-
aware Gaussian pruning, while a separate knowledge distillation strategy trains individual
experts with pseudo-labels from the MoE model, enhancing quality without modifying the
architecture.

2 RELATED WORKS

2.1 DYNAMIC NOVEL VIEW SYNTHESIS

Dynamic Novel View Synthesis aims to reconstruct novel views from sparse observations of tempo-
rally varying scenes, a challenging yet crucial task in computer vision (Gao et al., 2021; Park et al.,
2021). Effectively modeling complex scene dynamics often requires advanced temporal modeling
techniques, which substantially increase computational complexity and memory usage.

Implicit methods address scene dynamics by learning deformation fields that map points from a
canonical space to observed frames. These methods typically rely on MLPs but differ in how they
embed spatial and temporal information. Wu et al. (Wu et al., 2024) (4DGaussians) employ coordinate-
conditioned embeddings (similar to HexPlane-style features) combined with lightweight MLPs for
deformation estimation. Bae et al. (Bae et al., 2024) (E-D3DGS) instead adopt per-Gaussian embed-
dings with multiple volumetric fields and a coarse-to-fine strategy to improve temporal modeling. In
contrast, explicit methods directly parameterize temporal variations of Gaussians without relying on
canonical deformation fields. Polynomial-based models such as STG (Li et al., 2024) describe trajec-
tories with parametric functions, while interpolation-based models such as Ex4DGS (Lee et al., 2024)
reconstruct dynamics by interpolating between keyframes. These approaches simplify optimization
by avoiding canonical deformation fields, but often struggle with complex motion.

While these methods achieve state-of-the-art results for specific types of deformations, they lack
the flexibility to generalize across diverse dynamic scenarios. In contrast, our MoE-GS framework
integrates multiple Gaussian-based models within a mixture-of-experts architecture, dynamically
selecting and blending expert outputs to adaptively reconstruct a wide range of scene dynamics.

2.2 MIXTURE OF EXPERTS

MoE is an ensemble learning technique where multiple expert models specialize in distinct subtasks,
with a gating network dynamically selecting the most relevant experts per input instance. MoE
architectures have demonstrated scalability and efficiency by introducing sparsity (Shazeer et al.,
2017), enabling conditional computation to scale model capacity without excessive computational

3
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Figure 2: Overview of the MoE-GS framework. In Stage 1 (Expert Training), each expert is inde-
pendently trained to reconstruct the dynamic scene by optimizing its own Gaussian representation,
ensuring diverse modeling capabilities. In Stage 2 (Router Training), with all expert parameters
fixed, the Volume-aware Pixel Router learns to dynamically blend expert-rendered images by com-
puting spatially and temporally adaptive gating weights. The Candidate Experts (right) illustrate
diverse Gaussian-based reconstruction methods integrated into our framework, including HexPlane
Embedding-based, Per-Gaussian embedding-based, Interpolation-based, and Polynomial-based ap-
proaches, each suited for capturing different scene dynamics.

cost. This approach has been particularly successful in large-scale deep learning models, including
large language models (LLMs) for machine translation (Lepikhin et al., 2021; Fedus et al., 2022) and
computer vision applications such as multi-task learning (Ma et al., 2018), face forgery detection
(Kong et al., 2022), and anomaly detection (Meng et al., 2024).

Inspired by MoE’s ability to dynamically integrate specialized models, we propose applying MoE
to Dynamic Gaussian Splatting, enabling a learnable expert selection process for dynamic scene
reconstruction. Unlike existing methods, which statically select a single model for all frames, our
MoE-GS learns to adaptively combine multiple experts based on scene characteristics. Furthermore,
to mitigate the increased computational overhead associated with MoE, we introduce a knowledge
distillation pipeline (Hinton et al., 2015; Xie et al., 2024), allowing experts to achieve near-MoE
performance with significantly reduced computational cost.

3 METHOD

We propose a framework that closely follows the classic MoE structure, leveraging its proven
effectiveness across diverse fields to address the problem of dynamic scene reconstruction.

3.1 PRELIMINARY

We briefly review the standard Mixture-of-Experts (MoE) architecture, which forms the basis for our
proposed method. A standard MoE consists of multiple parallel expert networks E1, E2, . . . , EN and
a Router that adaptively combines expert outputs based on the input. Formally, given an input x, the
MoE output is computed as follows:

MoE(x) =
N∑

k=1

Gk(x) · Ek(x), (1)

where Ek(x) is the output of the k-th expert, and Gk(x) represents the corresponding gating weight
computed by the Router. The gating weights are typically computed by a Router, often implemented
as a lightweight neural network (e.g., linear layer or MLP), defined as:

Gk(x) = Softmax(Rk(x)), (2)

4
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Figure 3: Comparison of Router Architectures. The Pixel Router (top-left) assigns weights purely at
the pixel level, ignoring volumetric features. The Volume Router (bottom-left) uses Gaussian-level
weights but is difficult to optimize. Our Volume-aware Pixel Router (right) combines Gaussian-level
weights with rasterization-based splatting.

where Rk(x) is the router output for the k-th expert, computed as:

Rk(x) = x⊤Wr,k, (3)

with Wr,k being the k-th column vector of trainable weight matrix Wr. This structure enables adaptive
blending of experts based on input characteristics, enhancing performance and flexibility.

In the following sections, we detail how we extend this basic MoE architecture for dynamic scene
reconstruction using Gaussian-based representations.

3.2 MIXTURE OF EXPERTS FOR DYNAMIC GAUSSIAN SPLATTING

As illustrated in Fig. 2, we propose an adaptation of the MoE architecture to dynamic Gaussian
splatting. Our framework integrates diverse Gaussian-based dynamic reconstruction models, each
treated as an expert, allowing us to leverage their strengths to improve rendering fidelity. Unlike
traditional MoE models operating solely in feature space, our approach performs expert selection
and blending directly on rendered 2D images, enhancing flexibility and reconstruction quality across
complex temporal and spatial dynamics.

Volume-aware Pixel Router. A simple router might determine gating weights based purely on
pixel-level features extracted by an MLP conditioned on time and view direction (Fig. 3, top-left).
However, without considering intrinsic Gaussian properties (position, rotation, scale, and opacity),
this approach lacks volumetric awareness and struggles to accurately capture temporal and view-
dependent variations.

Another approach assigns gating weights directly per Gaussian in 3D space (Fig. 3, bottom-left).
Here, each Gaussian’s learned opacity is modulated by gating weights before rasterization into the
2D image space. However, as demonstrated in our experiments, directly optimizing gating weights
in the fixed 3D Gaussian domain is challenging due to the indirect and complex relation between
Gaussian parameters and their resulting pixel contributions.

5
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To address these issues, we introduce the Volume-aware Pixel Router (Fig. 3, right), featuring three
innovations: (1) explicit temporal and view-dependent encoding through learnable per-Gaussian
weights; (2) intrinsic volumetric awareness via Gaussian attributes, enabling better expert differ-
entiation; (3) rasterization-based weight splatting into pixel space, facilitating pixel-level adaptive
blending informed by Gaussian-level features.

This approach effectively combines volumetric richness with temporal-view consistency, enabling
stable optimization and high-quality rendering.

Per-Gaussian Weight. Gaussian Splatting (Kerbl et al., 2023) represents a scene as a set of Gaussians,
each Gaussian Gi parameterized by position µi, rotation Ri, and scale Si:

Gi = e−
1
2 (x−µi)

TΣ−1
i (x−µi), (4)

where Σi = RiSiS
T
i R

T
i . During splatting, overlapping Gaussians at each pixel are depth-ordered,

and the pixel color C is computed by combining each Gaussian’s opacity σi and color ci:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), with αi = σiGi. (5)

To construct our router, we duplicate each Gaussian Gi and replace its color attribute ci with learnable
per-Gaussian weights encoding temporal and view-dependent variations:

wper
i = [wi, w

dir
i , (t · wtime

i )]T , (6)

where each scalar adapts dynamically according to the viewing direction and time step t.

Adaptive Expert Gating via Weight Splatting. Inspired by STG (Li et al., 2024), which uses feature
splatting to compactly encode view-dependent radiance, we extend this concept by introducing
rasterization-based weight splatting for adaptive expert gating. In contrast to STG’s color refinement,
our method dynamically regulates expert contributions through per-Gaussian weights. Each 3D
per-Gaussian weight wper

i in Eq. (6) is projected onto the image plane through the differentiable
Gaussian rasterizer, producing pixel-aligned embeddings w2D(u), wdir

2D(u), wtime
2D (u) that aggregate

the contributions of Gaussians overlapping pixel u. Specifically, these rasterized pixel-level weights
are then refined by a lightweight MLP Φ:

R′(u) = w2D(u) + Φ
(
wdir

2D(u), wtime
2D (u), r(u)

)
, (7)

where r(u) is the pixel viewing direction. Expert gating weights G′
k are computed via softmax, then

used to blend expert-rendered outputs IEk
:

IMoE(u) =

N∑
k=1

G′
k(u) IEk

(u), G′
k(u) = Softmax(R′

k(u)). (8)

We optimize Router parameters (wper
i and Φ) using standard Gaussian Splatting loss terms (L1 and

SSIM). Given varying expert convergence rates, we adopt a two-stage training strategy to ensure
stable and efficient optimization: experts are first optimized independently, and then the router is
trained with these fixed experts (details in Appendix C.1).

Gaussian-Level Interpretation of Pixel Gating. Although the router outputs per-pixel weights,
these gating decisions originate from per-Gaussian 3D signals (depth, visibility, deformation) and
therefore carry 3D geometric structure. Because the weights are defined before rasterization, they can
be naturally lifted back to the Gaussian domain in a responsibility-weighted manner, enabling simple
post-hoc 3D fusion. The responsibility-based lifting procedure is provided in Appendix E.

3.3 RENDERING AND PRUNING FOR EFFICIENCY

MoE-GS improves fidelity by leveraging multiple experts but introduces inefficiency—namely,
repeated rasterization and many low-contribution Gaussians. To address this, we propose two tech-
niques: Single-Pass Multi-Expert Rendering, which shares projection and rasterization across all
experts, and Gate-Aware Gaussian Pruning, which removes Gaussians with negligible influence.

6
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Single-Pass Multi-Expert Rendering. In the baseline pipeline each expert is rasterized indepen-
dently, leading to repeated projection and visibility computation across K passes. We address this
redundancy by merging all Gaussians into a single batch and assign each Gaussian a one-hot expert
identity ej ∈ RK . The expert-specific color at pixel u is computed as

Ck(u) =

M∑
j=1

Tj(u)αj(u) cj · (ej)k, (9)

where M is the total number of Gaussians across experts, Tj(u) =
∏j−1

m=1(1 − αm(u)) is the
transmittance, αj the opacity, and (ej)k selects Gaussians of expert k. This design computes projection
and visibility only once for all Gaussians, while expert-specific outputs are separated during alpha
blending. As a result, redundant kernel launches and memory traversals inherent in the multi-pass
pipeline are eliminated, improving GPU utilization without altering the rendering formulation.

Gate-Aware Gaussian Pruning. Independently trained experts often produce overlapping Gaus-
sians with low contribution. To selectively remove these, we accumulate the gradient of gating weights
G′

k with respect to the per-Gaussian weights wper
i , measuring how strongly each Gaussian influences

the MoE image. The importance of Gaussian i across all training views D is computed as

Ei =
1

|D|
∑
v∈D

∥∥∥ ∂G′
k(v)

∂wper
i (v)

∥∥∥. (10)

Gaussians with Ei < τ are progressively pruned, yielding a compact yet faithful representation. This
strategy is effective because Gaussians with negligible gradients consistently show little impact on the
gating weights and thus contribute minimally to the final image. By removing only these Gaussians,
the model reduces rendering cost without sacrificing visual fidelity, unlike naive ratio-based pruning
which destabilizes optimization.

However, aggressive pruning alone is insufficient: as the number of experts increases, the total
Gaussian count grows proportionally, and naively discarding large portions destabilizes optimization.
To overcome this limitation, we introduce a complementary distillation strategy.

3.4 DISTILLATION-BASED EXPERT TRAINING

To further reduce inference cost while maintaining stability, we adopt knowledge distillation (Hinton
et al., 2015; Xie et al., 2024). Each expert Ek is trained from scratch using both ground-truth images
and MoE outputs as supervision. We use the MoE-rendered image IMoE as pseudo-ground truth and
routing weights G′

k as confidence scores. The distillation loss is

LKD
k = λ · L(G′

k · IEk
, G′

k · IGT ) + (1− λ) · L((1−G′
k) · IEk

, (1−G′
k) · IMoE) , (11)

where L combines L1 and SSIM losses, and λ balances ground-truth vs. MoE supervision. This
encourages each expert to specialize in reliable regions guided by ground truth while leveraging MoE
outputs in uncertain areas. As a result, individual experts approximate the performance of the full
MoE-GS model with significantly reduced complexity, enabling efficient real-time deployment.

4 EXPERIMENTS

This section evaluates the effectiveness of MoE-GS through experiments assessing its generalization,
scalability, and deployability. We present results on MoE-GS, including comparisons with baselines
and detailed analyses of expert configurations. We further conduct ablation studies to first examine the
contribution of the MoE architecture, specifically the individual experts and the routing mechanism.
Next, we analyze the impact of our proposed efficiency strategies, such as single-pass rendering and
pruning. Finally, we investigate the role and impact of our distillation strategy on the model’s overall
performance.

4.1 EXPERIMENTAL SETUP

Implementation Details. To evaluate the robustness of MoE-GS under diverse real-world deforma-
tions, we conduct experiments on two standard benchmarks for dynamic scene reconstruction: Neural
3D Video (N3V) (Li et al., 2022) and Technicolor (Sabater et al., 2017). Per-Gaussian weights are

7
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Table 1: Performance comparison on the N3V dataset (Li et al., 2022). †: Models were trained on a
dataset split into 150 frames. We highlight best and second-best values for each metric.

Model
PSNR (dB) ↑

Coffee
Martini

Cook
Spinach

Cut Roasted
Beef

Flame
Salmon

Flame
Steak

Sear
Steak Average

HyperReel (Attal et al., 2023) 28.37 32.30 32.92 28.26 32.20 32.57 31.10
K-Planes (Fridovich-Keil et al., 2023) 29.99 32.60 31.82 30.44 32.38 32.52 31.63
MixVoxels-L (Wang et al., 2023) 29.63 32.25 32.40 29.81 31.83 32.10 31.34

3DGStream (Sun et al., 2024) 27.75 33.31 33.21 28.42 34.30 33.01 31.67
DASS (Liu et al., 2024) 28.15 33.83 33.54 28.84 34.26 33.33 31.99
SaRO-GS (Yan et al., 2024) 28.96 33.19 33.91 29.14 33.83 33.89 32.15
SwinGS (Liu & Banerjee, 2024) 27.99 33.66 34.03 28.24 32.94 33.32 31.69
4DGaussians (Wu et al., 2024) 29.09 32.78 33.15 29.76 31.81 32.01 31.43
E-D3DGS (Bae et al., 2024) 30.04 33.11 33.85 30.49 32.77 33.70 32.33
STG† (Li et al., 2024) 28.16 33.09 34.15 29.09 33.25 33.77 31.92
Ex4DGS (Lee et al., 2024) 28.72 33.24 33.73 29.33 33.91 33.69 32.10
MoE-GS (N=2) 30.27 33.43 34.05 30.66 32.92 33.90 32.54
MoE-GS (N=3) 30.27 33.86 34.90 30.92 34.52 34.88 33.23
MoE-GS (N=4) 30.43 34.24 35.20 30.92 34.38 34.42 33.27

Table 2: Comparison results on the Technicolor dataset (Sabater et al., 2017).

Model
PSNR (dB) ↑

Birthday Fabien Painter Theater Train Average

DyNeRF (Li et al., 2022) 29.20 32.76 35.95 29.53 31.58 31.80
HyperReel (Attal et al., 2023) 29.99 34.70 35.91 33.32 29.74 32.73
4DGaussians (Wu et al., 2024) 30.87 33.56 34.36 29.81 25.35 30.79
STG (Li et al., 2024) 32.16 35.70 37.18 31.00 32.39 33.69
E-D3DGS (Bae et al., 2024) 32.38 34.24 36.20 31.10 31.37 33.06
Ex4DGS (Lee et al., 2024) 32.35 35.18 36.60 31.77 31.37 33.45

MoE-GS (N=3) 33.26 36.26 37.63 32.88 32.89 34.55

optimized with the RAdam optimizer (Liu et al., 2019), using a learning rate of 0.5. Experiments are
performed on NVIDIA A6000 GPUs. Additional implementation details are provided in Appendix A.

MoE-GS Expert Configurations. For clarity and reproducibility, we fix the expert sets used in
all experiments. We evaluate MoE-GS with N=2, 3, 4 experts using the following heterogeneous
combinations: N=2: {Ex4DGS Lee et al. (2024), STG Li et al. (2024)}; N=3: + E-D3DGS Bae
et al. (2024); N =4: + 4DGaussians Wu et al. (2024). These fixed sets cover diverse deformation
families, and are used consistently across all experiments. We note that this design choice is for
clarity; MoE-GS itself remains deformation-agnostic.

4.2 RESULTS ON MOE-GS

Baselines. The expert set in MoE-GS consists of multiple Gaussian-based dynamic reconstruction
models, each capturing temporal deformations in a distinct way. We include embedding-based
methods (4DGaussians (Wu et al., 2024), E-D3DGS (Bae et al., 2024)), an interpolation-based model
(Ex4DGS (Lee et al., 2024)), and a polynomial-based method (STG (Li et al., 2024)), ensuring
diversity across deformation representations. For broader comparison, we also evaluate against
representative NeRF-based baselines.

Quantitative Evaluation. Tables 1 and 2 present the per scene results on the N3V (Li et al., 2022) and
Technicolor (Sabater et al., 2017) datasets. MoE-GS achieves state-of-the-art average performance
on both datasets, consistently outperforming most baseline methods across individual scenes. This
demonstrates its strong ability to generalize across diverse scenarios by selectively leveraging different
experts. In addition, Table 3 presents an efficiency analysis of MoE-GS, showing that its inference
and memory overhead can be significantly reduced via Gate-Aware Pruning. MoE-GS (N=2), which
integrates STG (Li et al., 2024) and Ex4DGS (Lee et al., 2024) as experts, outperforms both in PSNR
while exhibiting moderate computational overhead. This suggests that combining distinct expert
models can enhance reconstruction quality without incurring excessive cost. Detailed per-metric
results, as well as additional evaluations on the monocular HyperNeRF dataset (Park et al., 2021), are
provided in the appendix D.1.
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Figure 4: N3V Qualitative Results Comparison of our MoE-GS with other dynamic Gaussian
splatting methods on Neural 3D Video dataset (Li et al., 2022). Blue background highlight the
method that produces the most visually accurate result among the baselines for each region.

Table 3: Efficiency evaluation with N=2 Expert
Variants on N3V (Li et al., 2022).

Model PSNR ↑ FPS ↑ Memory ↓
STG† (Li et al., 2024) 31.92 88.5 609.5
Ex4DGS (Lee et al., 2024) 32.01 120 122.8
MoE-GS (N=2) 32.82 44 878.7
MoE-GS ( 55% pruning) 32.80 83 351.2
MoE-GS ( 75% pruning) 32.45 101 281.3

Qualitative Evaluation. As shown in Figure 4,
we present the gating weights predicted by the
router, the outputs of individual experts, and the
resulting MoE-GS image synthesized through
their combination. These expert contributions
align closely with the router’s predictions, indi-
cating that MoE-GS effectively blends experts
in a spatially adaptive manner. Additional quali-
tative results are provided in the appendix D.2

Analysis of MoE Configurations. We conduct ablation studies to evaluate the design choices in
MoE-GS, focusing on the architecture of the MoE router and efficiency optimizations.

Table 4: Performance Comparison of Different
MoE Router Variants

Model PSNR ↑ SSIM ↑ LPIPS ↓
Pixel Router 31.12 0.952 0.022
Volume Router 32.05 0.951 0.022
Volume-aware Pixel Router 33.23 0.954 0.021

1) MoE Router Variants We compared three
router architectures for integrating expert out-
puts: Pixel Router, Volume Router, and our pro-
posed Volume-aware Pixel Router. Pixel Router
performs blending in 2D image space using a
lightweight MLP, which supports stable opti-
mization in image space. However, as shown in
Table 4 and Figure 5, it underperforms in quan-
titative metrics and produces overly smooth results, failing to capture sharp boundaries, likely due
to its lack of 3D spatial context. Volume Router, which blends expert Gaussians in 3D space by
adjusting their opacities, better preserves geometric structure but underperforms in detail fidelity. We
observed frequent optimization instability and oversmoothing artifacts, especially in regions with fine
textures. In contrast, our Volume-aware Pixel Router achieves a better balance: it maintains sharp
structural details and consistently outperforms other variants both quantitatively and qualitatively. We
attribute this to its 2D blending formulation, which supports stable training, combined with its use of
3D-aware weight splatting during training that injects geometric context into the routing process.

Table 5: Ablation of Efficiency Optimizations.

Model PSNR ↑ FPS ↑ Memory ↓
w/o Single-Pass & Pruning 32.54 36 747
w/o Single-Pass 33.23 40 270
w/o Pruning 32.54 60 747
MoE-GS (N=3) 33.23 68 270

2) Efficiency Optimizations We evaluate the ef-
fectiveness of our efficiency techniques—Single-
Pass Multi-Expert Rendering and Gate-Aware
Gaussian Pruning—by measuring their impact
on PSNR, FPS, and memory usage. Without
Single-Pass, each expert is rasterized indepen-
dently, repeating projection and blending steps
and leading to significant FPS drops due to GPU overhead (Table 3). Without pruning, all Gaussians
are retained—including those with negligible contributions—which preserves reconstruction quality
but reduces rendering and memory efficiency. When both techniques are removed, the baseline suffers
from compounded overhead in rendering and memory usage. In contrast, our full model (MoE-GS,
N=3) incorporates both strategies, eliminating redundant computation and discarding uninformative

9
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Pixel Router Per-Gaussian Router Volume-aware Pixel Router GT

PSNR 31.12 PSNR 32.05 PSNR 33.23

Figure 5: Qualitative comparison of MoE Router variants. Each router applies a different routing
strategy, resulting in varied structural consistency and detail across the outputs.

Gaussians. As a result, it achieves comparable PSNR to the baseline while significantly improving
FPS and reducing memory footprint (Table 5).

Analysis of training Cost. Since MoE-GS employs multiple dynamic GS experts, we analyze how
expert training budget influences overall performance. In principle, using N experts could increase
training time by a factor of N , but we find that MoE-GS remains effective even when experts are
trained with significantly reduced budgets.

Table 6: Effect of expert training budget on MoE-GS
(N=3).

Model 100% 50% 20% 10%

E-D3DGS (Bae et al., 2024) 32.33 32.19 31.87 30.60
STG (Li et al., 2024) 31.92 31.76 31.41 31.19
4DGaussians (Wu et al., 2024) 31.43 31.02 30.90 30.64
MoE-GS (N=3) 33.23 32.71 32.60 32.14

1) Partial expert training. To quantify the
practical training overhead of MoE-GS, we
experiment with reducing the training bud-
get of each expert. Here, a budget of 100%
corresponds to the expert’s full training time
(approximately 4.2 hours for E-D3DGS, 2.2
hours for STG, and 1.5 hours for 4DGaus-
sians), while 50%, 20%, and 10% correspond
to proportional reductions in wall-clock time. Thus, the budget axis directly reflects the actual training
time per expert. Table 6 shows that even when each expert is trained with only 20% of its usual budget
(e.g., reducing a 4.2-hour expert to about 50 minutes, or a 1.5-hour expert to under 20 minutes),
MoE-GS still outperforms fully trained single-expert baselines. This suggests that MoE-GS does not
rely on fully converged experts and that meaningful gains can be achieved with substantially reduced
per-expert training time.

2) Router overhead. The router itself is lightweight and adds less than 5% computation relative to
expert training, making its additional cost negligible.

These results show that MoE-GS does not require fully converged experts to achieve performance,
and that its practical training overhead is far lower than linearly scaling with the number of experts.

4.3 DISTILLATION-BASED EXPERT TRAINING

Table 7: Ablation Studies on MoE-GS Distillation
Methods on Technicolor dataset

Model PSNR ↑ SSIM ↑ LPIPS ↓
E-D3DGS (Bae et al., 2024) 32.88 0.902 0.111
E-D3DGS (Bae et al., 2024) (Distilled) 33.67 0.915 0.091

STG (Li et al., 2024) 32.83 0.915 0.083
STG (Li et al., 2024) (Distilled) 33.10 0.917 0.082

Ex4DGS (Lee et al., 2024) 33.57 0.918 0.086
Ex4DGS (Lee et al., 2024) (Distilled) 33.91 0.923 0.079

We compared expert models retrained from
scratch with distilled versions trained under iden-
tical settings, differing only in supervision via
MoE-generated images and routing weights. Ta-
ble 7 shows a consistent improvement in PSNR,
SSIM, LPIPS across all expert types, indicating
the effectiveness of MoE-guided supervision.
This demonstrates that when the number of ex-
perts grows large, applying distillation to each
expert remains an effective way to achieve sig-
nificant performance gains. Qualitative results for distillation are provided in Appendix D.2.

5 CONCLUSION
We propose MoE-GS, the first Mixture of Experts framework for dynamic Gaussian splatting, enabling
adaptive and high-fidelity scene reconstruction. Our method introduces a Volume-aware Pixel Router
that combines pixel-based and volumetric expert blending while reducing computational cost through
knowledge distillation. The per-Gaussian responsibilities exposed by MoE-GS also provide a useful
signal for future canonical-space fusion or refinement methods seeking more explicit geometric
unification. Overall, MoE-GS offers a scalable and effective framework for dynamic Gaussian
Splatting, improving 4D consistency while remaining compatible with evolving GS representations.
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A APPENDIX

B OVERVIEW

This appendix includes detailed implementation information in Appendix C, additional quantitative
and qualitative results in Appendix D, Gaussian-Level Interpretation and Geometry Evaluation
Appendix E, analysis of expert specialization in Appendix F, Best-of-N Retraining Appendix G,
Ablation on Distillation Weighting Strategies Appendix H.

B.1 REFERENCED IN THE MAIN PAPER

The sections listed below are directly referenced in the main paper for further details:

• Optimization strategy of MoE-GS (Appendix C.1)
• Implementation details of Expert Training (Appendix C.2)
• Implementation details of Router Training (Appendix C.3)
• Implementation details of Single-Pass Multi-Expert Rendering (Appendix C.4)
• Quantiative Results (Appendix D.1)
• Qualitative Results (Appendix D.2)
• Per-Gaussian Contributions and Responsibilities (Appendix E.1)
• Post-hoc Gaussian Fusion using Lifting Weights (Appendix E.2)
• Multi-view Depth Consistency Evaluation (Appendix E.3)
• Analysis of Expert Specialization (Appendix F)
• Best-of-N Retraining (Appendix G)
• Ablation on Distillation Weighting Strategies (Appendix H)

C IMPLEMENTATION DETAILS

This section provides implementation and training details of the proposed MoE-GS framework. We
first describe the overall two-stage training strategy, which separates expert model training from
router optimization to ensure stable convergence and prevent dominance by faster-converging experts.
Next, we present the training setup for individual expert models, including initialization and baseline-
aligned hyperparameters. Finally, we outline architectural details of the proposed Volume-aware Pixel
Router, which enables spatially and temporally coherent expert blending in the MoE-GS pipeline.

C.1 TWO-STAGE TRAINING STRATEGY

To ensure stable convergence and balanced optimization, we adopt a two-stage training strategy
that decouples expert training from router optimization. Jointly training both components can lead
to suboptimal convergence, as faster-converging experts tend to dominate the gating process early
on, leaving others underutilized and under-optimized. To mitigate this, we first train each expert
model independently to ensure that it can reconstruct the entire scene without relying on other
experts. Once trained, all expert parameters are frozen. In the second stage, we optimize the routing
components—specifically the per-Gaussian parameters wi, w

dir
i , wtime

i and the MLP Φ—to learn an
adaptive gating strategy that dynamically selects and blends experts based on spatial, temporal, and
view-dependent cues.

C.2 STAGE 1: EXPERT TRAINING

In the first step of MoE-GS training, each expert model is independently optimized before integration
into the MoE framework. Since MoE-GS reconstructs dynamic scenes by blending the outputs of
multiple experts, it is critical that each expert achieves its best possible performance. To this end, we
retain the original training strategies proposed in their respective works without modification. All
expert models are initialized using point clouds generated by COLMAP.
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• Ex4DGS (Lee et al., 2024) is initialized with sparse point clouds obtained via Structure-
from-Motion (SfM).

• 4DGaussians (Wu et al., 2024) and E-D3DGS(Bae et al., 2024) are initialized with down-
sampled versions of these dense point clouds.

• For STG (Li et al., 2024), we follow its original strategy, merging point clouds from all
frames to obtain a globally consistent initialization that serves as a strong prior for optimizing
Gaussian attributes.

Each expert is trained using its original learning rate schedule, as the hyperparameters are specifically
tuned to each model’s architecture and deformation representation.

C.3 STAGE 2: ROUTER TRAINING

In the second stage of training, we optimize the Volume-aware Pixel Router while keeping all expert
models frozen. This allows the router to focus solely on learning effective expert blending strategies
without being influenced by the convergence rate of individual experts. Specifically, we optimize per-
Gaussian parameters wi, w

dir
i , wtime

i and the MLP Φ, which collectively determine the final expert
weights for blending. All three parameters are fully learnable. To avoid introducing any handcrafted
directional or temporal bias, we initialize wdir

i and wtime
i using neutral near-zero constants, allowing

the router to gradually learn meaningful directional and temporal sensitivities directly from data. Joint
training of experts and the router often leads to suboptimal expert utilization, as rapidly converging
experts can dominate the early stages of routing. Our two-stage approach avoids this issue by ensuring
that all experts are first trained to full capacity, allowing the router to later learn how to combine their
outputs most effectively.

Figure 6: Architectural details of the
Volume-aware Pixel Router.

Volume-aware Pixel Router. To generate routing weights,
our router begins with the per-Gaussian weights wper

i de-
fined in 3D space. As illustrated in Figure 6, each ex-
pert’s Gaussian is duplicated, and its color attribute is
replaced with a learnable weights wper

i . The remaining
attributes—such as position, scale, and rotation—are di-
rectly copied from the pre-trained expert Gaussians. This
enables wper

i to make the router aware of the expert’s vol-
umetric structure, allowing the 2D splatted weights to
reflect how each expert behaves under different viewing
directions and time steps. To further model view- and
time-dependent variation, we also splat auxiliary features
wdir

2D , wtime
2D , and the ray direction r, which are fed into a

lightweight MLP. The output of this MLP is added to w2D

in a residual manner to produce the final routing weights.

To promote spatial coherence, we adopt a convolutional
MLP architecture that leverages local pixel context. For
computational efficiency, this MLP is shared across all
experts. We empirically set the learning rate to 0.05 for
the shared MLP and wtime

i , and to 0.5 for wi and wdir
i . This modular and coherent design enables

the router to learn adaptive, per-pixel expert blending strategies that generalize effectively across
diverse dynamic scenes.

C.4 SINGLE-PASS MULTI-EXPERT RENDERING

To efficiently deploy MoE-GS, we complement our design with an optimized rendering pipeline.
In particular, independently rasterizing each expert triggers repeated kernel launches and separate
memory traversal over each expert’s Gaussian buffer, significantly increasing memory IO pressure.
To address this bottleneck, we adopt a Single-Pass Multi-Expert Rendering strategy, which processes
all Gaussians in a single batched pass and eliminates these redundant kernel launches while still
preserving expert-specific outputs. For completeness, we also investigated two alternative implemen-
tations for rendering multiple experts: (1) sequential expert execution with CPU offloading, and (2)
distributing experts across multiple GPUs.
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Sequential execution becomes prohibitively slow due to repeated PCIe transfers between the
host and device. Gaussian Splatting requires high-frequency random access to Gaussian attributes
(positions, scales, SH coefficients, opacities) during splatting. Moving these buffers back and forth
over PCIe significantly increases latency and prevents any effective kernel fusion, leading to very
large slowdowns in practice.

Multi-GPU distribution also provides limited benefit. Each expert resides in a heterogeneous and
non-alignable 3D deformation space, so distributing experts across GPUs requires duplicating each
expert’s Gaussian buffer as well as synchronizing per-pixel accumulations across devices. This
synchronization step introduces substantial inter-GPU communication overhead, often outweighing
the parallelism benefits and resulting in negligible wall-clock speedup.

These observations motivate our choice of the Single-Pass Multi-Expert Rendering strategy as the
most stable and efficient trade-off for MoE-GS workloads.

D ADDITIONAL QUANTITATIVE AND QUALITATIVE RESULTS

D.1 QUANTITATIVE RESULTS

To comprehensively evaluate MoE-GS across perceptual, structural, and pixel-wise metrics, Tables 8
and 9 present per-scene quantitative results on the N3V (Li et al., 2022) and Technicolor (Sabater
et al., 2017) datasets. Table 8 reports N3V results using a 4-expert configuration, where MoE-GS
consistently outperforms individual experts across all scenes and metrics, demonstrating strong
generalization. Table 9 shows results on Technicolor with a 3-expert setup using E-D3DGS (Bae et al.,
2024), STG (Li et al., 2024), and Ex4DGS (Lee et al., 2024). MoE-GS maintains strong performance
even with fewer experts, achieving top or near-top performance across most scenes and the highest
overall average across all evaluation metrics.

To assess its scalability to monocular settings, Table 10 evaluates MoE-GS on the HyperNeRF
dataset (Park et al., 2021). Despite the limited input views, MoE-GS transfers well to this setting,
maintaining high fidelity and demonstrating strong adaptability beyond the multi-view reconstruction
scenario.

In addition, Table 11 presents an ablation study of our distillation strategies on the Technicolor dataset,
reporting per-scene results and highlighting the contribution of each component to final performance.

Table 8: Additional Quantitative Results on Experts and MoE-GS for the N3V Dataset (Li et al.,
2022). †: Models were trained on a dataset split into 150 frames. We highlight best and second-best
values for each metric.

Model
Coffee Martini Cook Spinach Cut Roast Beef

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

4DGaussians (Wu et al., 2024) 29.09 0.923 0.066 32.78 0.955 0.041 33.15 0.954 0.048
E-D3DGS (Bae et al., 2024) 30.04 0.930 0.058 33.11 0.961 0.041 33.85 0.958 0.042

STG † (Li et al., 2024) 28.16 0.927 0.061 33.09 0.961 0.033 34.15 0.964 0.032
Ex4DGS (Lee et al., 2024) 28.72 0.918 0.070 33.24 0.956 0.042 33.73 0.958 0.040

MoE-GS (N=4) 30.43 0.940 0.054 34.24 0.966 0.031 35.08 0.968 0.030

Model
Flame Salmon Flame Steak Sear Steak

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

4DGaussians (Wu et al., 2024) 29.76 0.928 0.062 31.81 0.962 0.032 32.01 0.964 0.032
E-D3DGS (Bae et al., 2024) 30.49 0.936 0.054 32.77 0.960 0.037 33.70 0.964 0.033

STG † (Li et al., 2024) 29.09 0.928 0.057 33.25 0.968 0.026 33.77 0.969 0.026
Ex4DGS (Lee et al., 2024) 29.33 0.925 0.066 33.91 0.963 0.034 33.69 0.960 0.035

MoE-GS (N=4) 30.92 0.942 0.049 34.38 0.972 0.026 34.42 0.972 0.026
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Table 9: Additional Quantitative Results on Experts and MoE-GS for the Technicolor Dataset (Sabater
et al., 2017).

Model
Birthday Fabien Painter

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DyNeRF (Li et al., 2022) 29.20 N/A 0.067 32.76 N/A 0.242 35.95 N/A 0.146
HyperReel (Attal et al., 2023) 29.99 0.922 0.053 34.70 0.895 0.186 35.91 0.923 0.117
4DGaussians (Wu et al., 2024) 30.87 0.904 0.087 33.56 0.854 0.186 34.36 0.884 0.136

STG (Li et al., 2024) 31.90 0.940 0.044 35.70 0.904 0.114 37.07 0.928 0.093
Ex4DGS (Lee et al., 2024) 32.36 0.941 0.045 35.19 0.896 0.124 36.66 0.932 0.091

MoE-GS (N=3) 33.26 0.947 0.049 36.26 0.908 0.121 37.63 0.939 0.083

Model
Theater Train Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DyNeRF (Li et al., 2022) 29.53 N/A 0.188 31.58 N/A 0.067 31.80 N/A 0.142
HyperReel (Attal et al., 2023) 33.32 0.895 0.115 29.74 0.895 0.072 32.73 0.906 0.109
4DGaussians (Wu et al., 2024) 29.81 0.841 0.155 25.35 0.730 0.166 30.79 0.843 0.146

STG (Li et al., 2024) 31.08 0.879 0.140 32.32 0.937 0.045 33.61 0.918 0.087
Ex4DGS (Lee et al., 2024) 31.79 0.882 0.130 31.39 0.928 0.055 33.48 0.916 0.089

MoE-GS (N=3) 32.88 0.900 0.115 32.89 0.944 0.046 34.58 0.928 0.083

Table 10: Comparison results on the HyperNeRF dataset (Park et al., 2021).

Model PSNR (dB) ↑
3dprinter banana broom chicken Average

4DGaussians (Wu et al., 2024) 22.16 22.90 20.88 30.12 24.02
E-D3DGS (Bae et al., 2024) 22.41 23.38 20.07 29.11 23.74
MoE-GS (N=2) 22.84 24.75 21.26 30.37 24.81

Table 11: Ablation study on distillation strategies evaluating the effect of routing-weight-based
adaptive supervision on the Technicolor dataset (Sabater et al., 2017).

Model Training
Birthday Fabien Painter

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

E-D3DGS (Bae et al., 2024)
Retrained (GT Loss) 32.05 0.936 0.050 34.7 0.878 0.171 36.26 0.931 0.089

Distilled (w/o Weight) 32.17 0.942 0.048 34.8 0.883 0.164 36.77 0.934 0.089
Distilled (Ours) 32.24 0.946 0.038 35.68 0.902 0.120 37.20 0.939 0.078

STG (Li et al., 2024)
Retrained (GT Loss) 33.15 0.947 0.038 34.87 0.901 0.117 33.61 0.907 0.098

Distilled (w/o Weight) 33.27 0.948 0.040 34.99 0.901 0.188 33.66 0.907 0.099
Distilled (Ours) 33.46 0.949 0.039 35.01 0.902 0.117 33.51 0.908 0.094

Ex4DGS (Lee et al., 2024)
Retrained (GT Loss) 32.18 0.944 0.039 35.33 0.896 0.124 36.40 0.930 0.094

Distilled (w/o Weight) 32.39 0.945 0.041 35.44 0.896 0.126 36.37 0.930 0.095
Distilled (Ours) 32.41 0.946 0.038 35.88 0.903 0.115 36.87 0.935 0.086

Model Training
Theater Train Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

E-D3DGS (Bae et al., 2024)
Retrained (GT Loss) 30.49 0.871 0.148 30.92 0.896 0.097 32.88 0.902 0.111

Distilled (w/o Weight) 31.73 0.878 0.150 30.85 0.898 0.099 33.26 0.907 0.110
Distilled (Ours) 31.79 0.887 0.124 31.46 0.900 0.095 33.67 0.915 0.091

STG (Li et al., 2024)
Retrained (GT Loss) 30.28 0.876 0.126 32.26 0.942 0.036 32.83 0.915 0.083

Distilled (w/o Weight) 31.23 0.883 0.124 32.30 0.943 0.039 33.09 0.917 0.084
Distilled (Ours) 31.35 0.883 0.124 32.20 0.943 0.038 33.11 0.917 0.082

Ex4DGS (Lee et al., 2024)
Retrained (GT Loss) 31.85 0.886 0.122 32.11 0.934 0.050 33.57 0.918 0.086

Distilled (w/o Weight) 31.78 0.884 0.126 32.14 0.935 0.053 33.62 0.918 0.088
Distilled (Ours) 32.04 0.890 0.111 32.37 0.939 0.045 33.91 0.923 0.079

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 QUALITATIVE RESULTS

Figures 7, 8 present additional qualitative comparisons of MoE-GS across different datasets. MoE-GS
effectively routes scene regions to the most suitable experts, resulting in high-fidelity reconstructions
that outperform individual models. These results further demonstrate the model’s ability to adaptively
combine specialized expert outputs for diverse dynamic scenes. In addition, Figure 9 shows distillation
qualitative results on the Technicolor dataset.
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Figure 7: Additional N3V Qualitative Results. Comparison of our MoE-GS with other dynamic
Gaussian splatting methods on the Neural 3D Video dataset (Li et al., 2022).
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Figure 8: Additional Qualitative Results on the Technicolor Dataset (Sabater et al., 2017). Visual
comparison of our MoE-GS with other dynamic Gaussian splatting methods.
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Figure 9: Visual comparison between retrained and distilled expert models on the Technicolor
dataset (Sabater et al., 2017).
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E GAUSSIAN-LEVEL INTERPRETATION AND GEOMETRY EVALUATION

E.1 PER-GAUSSIAN CONTRIBUTIONS AND RESPONSIBILITIES

As described in Section 3.2, the router outputs per-pixel expert weights G′
k(u), while each Gaussian

j of expert k contributes to pixel u through its volumetric transmittance Tk,j(u) and opacity αk,j(u).
We first define the raw volumetric contribution of Gaussian gk,j as

Ck,j(u) = Tk,j(u)αk,j(u), (12)

which measures how much Gaussian j influences the ray at pixel u. To lift the pixel-level routing
back to the Gaussian domain, we weight this contribution by the router’s pixel gate:

C̃k,j(u) = G′
k(u)Ck,j(u). (13)

Because different Gaussians vary in visibility, opacity, and pixel coverage, their raw gated contribu-
tions C̃k,j reflect both geometric scale and routing strength. To isolate the routing effect, we normalize
by each Gaussian’s total volumetric contribution:

R̄k,j =

∑
u∈U C̃k,j(u)∑
u∈U Ck,j(u)

, (14)

where U denotes the set of all pixel rays from all training views. The resulting R̄k,j measures how
strongly Gaussian j is utilized within expert k under the router’s pixel-level gates, capturing its
effective contribution in the image regions where it is visible. This interpretation arises naturally from
our volume-aware router: because Gaussian contributions are computed in 3D before rasterization,
pixel-level gating can be consistently traced back to individual Gaussians, enabling a geometry-
informed rather than RGB-level interpretation of MoE-GS.

Moreover, different experts operate in heterogeneous deformation spaces, so their Gaussians do not
form a one-to-one correspondence in 3D. Pixel space, however, is a shared observation domain across
all experts: each Gaussian contributes to the same set of rays through Tk,j(u)αk,j(u). The router
weights G′

k(u) therefore gate geometry-conditioned volumetric contributions, making the lifting
operation well-defined and ensuring that the resulting Gaussian responsibilities preserve consistent
3D semantics rather than reflecting any form of 2D blending.

E.2 POST-HOC GAUSSIAN FUSION USING LIFTING WEIGHTS

Using the normalized responsibilities R̄k,j from Section E.1, we construct a post-hoc unified Gaussian
model without any retraining. For each Gaussian j in expert k, we keep all geometry attributes—
position, scale, rotation, and SH coefficients—unchanged, and adjust only the opacity based on the
responsibility weight:

αfused
k,j = R̄k,j αk,j . (15)

The final fused model is obtained by simply concatenating all Gaussians from all experts, using the
fused opacities. This unified Gaussian set is rendered with the standard 3D Gaussian Splatting volume
renderer—without any 2D compositing. The result preserves each expert’s geometric structure while
modulating its influence according to the router-driven responsibilities, yielding a coherent volumetric
representation that reflects geometry-informed routing rather than image-space blending.

E.3 MULTI-VIEW DEPTH CONSISTENCY EVALUATION

To quantitatively evaluate the geometry of our post-hoc fused Gaussian model, we compute the
Multi-view Depth Consistency (MDC), defined as the mean reprojection error between depth maps
across all viewpoint pairs at the same timestamp. Given rendered depth maps {Dt

i} from viewpoints
{vi} at time t, we measure consistency over all ordered pairs (i, j) by reprojecting the depth from
view i into view j and comparing it against Dt

j :

MDC =
1

|P|
∑

(i,j)∈P

∥∥Πvj (D
t
i)−Dt

j

∥∥
1
, (16)
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Figure 10: Multi-view Depth Consistency on the N3V dataset. Comparison of our MoE-GS with
other dynamic Gaussian Splatting methods (lower is better).

where P denotes the set of all ordered view pairs, and Πvj (D
t
i) is the reprojection of Dt

i into view j
using the known camera poses at timestamp t.

Fig. 10 reports MDC scores across the entire N3V dataset (Li et al., 2022), comparing our post-hoc
fused Gaussian model against all dynamic Gaussian Splatting baselines. Across all scenes and times-
tamps, MoE-GS consistently achieves lower reprojection error (lower is better), indicating improved
multi-view geometric stability. This suggests that MoE-GS effectively combines complementary geo-
metric priors from heterogeneous experts, producing a unified Gaussian representation that remains
consistent across the sequence rather than relying on appearance-level blending.

These results provide quantitative evidence that the proposed Gaussian-level weighting leads to more
coherent underlying geometry. Even though MoE-GS relies on pixel-level gates during training, the
fused Gaussian model exhibits globally improved 3D coherence when evaluated using a purely volu-
metric metric. Averaged over all scenes and timestamps, MoE-GS attains the best MDC performance,
demonstrating that our mixture formulation enhances geometric reconstruction quality rather than
only photometric fidelity.

F ANALYSIS OF EXPERT-SPECIFIC MOTION BEHAVIOR

To better understand the performance variations observed across dynamic Gaussian Splatting methods,
we analyze the characteristic motion trajectories produced by each expert (Fig. 1). Although all
methods operate on Gaussian primitives, their deformation priors impose fundamentally different
inductive biases, leading to distinct behaviors across spatial regions and temporal motion regimes.
Below, we summarize the key tendencies of each expert.

4DGaussians (Wu et al., 2024) (HexPlane canonical deformation). 4DGaussians produces short,
smooth, and highly regular trajectories due to its shared HexPlane canonical representation. The
deformation MLP conditions on features interpolated from a global position–time grid, causing
spatially adjacent Gaussians to receive nearly identical deformation signals. This results in strong
spatial regularization and minimal per-Gaussian variation. While this bias enables stable performance
in static or low-motion regions, it hinders the representation of high-speed or rapidly changing motion,
where the canonical features cannot vary sufficiently quickly to encode fine-grained displacement.
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Figure 11: Motion Trajectory Comparison across dynamic Gaussian Splatting methods.

Consequently, 4DGaussians trajectories often become overly smooth or collapsed in fast-motion
regions.

E-D3DGS (Bae et al., 2024) (per-Gaussian volumetric deformation). E-D3DGS exhibits direc-
tionally consistent and comparatively higher-velocity trajectories. This behavior arises from two
architectural elements: (i) a two-branch deformation network that separates coarse and fine motion,
allowing the model to represent fast and detailed dynamics; and (ii) a local embedding regularizer
encouraging neighboring Gaussians to share similar deformation features, yielding spatially coherent
and locally aligned trajectories. These effects are further reinforced by the learned per-Gaussian
embeddings zg , which act as local motion descriptors. Because the deformation MLP conditions on
these embeddings—and nearby Gaussians are regularized to have similar embeddings—the model nat-
urally forms coherent motion clusters with consistent velocity and direction. This embedding-driven
structure explains the tightly aligned, high-velocity flows characteristic of E-D3DGS.

Ex4DGS (Lee et al., 2024) (keyframe interpolation). Ex4DGS produces motion trajectories that
are highly diverse and often “free-form,” even among Gaussians that are spatially adjacent. This
stems from its interpolation-based formulation: each Gaussian updates its position independently
between keyframes, without a learned deformation field or a mechanism enforcing spatial coherence.
As a result, nearby Gaussians may move with noticeably different magnitudes or directions. This
independence is particularly useful in regions with irregular or rapidly changing motion. By allowing
each Gaussian to move independently, Ex4DGS can capture abrupt, multi-directional displacements
that more structured deformation models tend to oversmooth. However, it also leads to less stable or
coordinated trajectories in areas where motion is expected to remain coherent or rigid.

STG (Li et al., 2024) (polynomial trajectory model). STG produces globally smooth, low-curvature
trajectories due to its use of a low-order polynomial motion parameterization. Unlike Ex4DGS, which
relies on independent interpolation, STG learns per-Gaussian polynomial coefficients, providing
moderate flexibility while maintaining a strong bias toward smoothly varying motion. Because
all Gaussians share the same polynomial motion form— while coefficients are learned individu-
ally—STG occupies a middle ground between interpolation-based and deformation-based models.
It captures moderate local variation yet enforces spatial alignment across neighboring Gaussians.
These inductive biases make STG well suited for rigid or near-rigid global motion and low-frequency
temporal changes, producing trajectories that are directionally consistent with limited curvature.

We emphasize that these motion tendencies are representative rather than absolute, as real-world
scenes often contain mixed or ambiguous motion regimes that do not align perfectly with any single
deformation prior. Nonetheless, the overall patterns observed across experts explain why no existing
dynamic GS method consistently dominates across all spatial or temporal regions. This variability
naturally motivates the MoE-GS formulation, which adaptively selects the deformation prior most
compatible with the local motion behavior.
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Table 12: Stability across repeated trainings. Variability exists across runs, but MoE-GS consistently
outperforms all single-expert variants.

Model PSNR (dB)

Min Max Average

E-D3DGS (Bae et al., 2024) 30.78 32.33 31.19
Ex4DGS (Lee et al., 2024) 31.43 32.10 31.78
4DGaussians (Wu et al., 2024) 30.18 31.43 30.70
MoE-GS (N=3) 32.72 33.23 33.01

G BEST-OF-N RETRAINING VS. MOE-GS: STRUCTURAL, NOT STATISTICAL,
GAINS

To evaluate stability under repeated training, we retrain each individual expert model (E-D3DGS,
Ex4DGS, 4DGaussians) five times using identical settings. For MoE-GS, we also train five separate
MoE-GS models, each using the corresponding expert set from that run. This ensures that every MoE-
GS run is paired with its own independently trained experts, and that both baselines and MoE-GS are
compared under identical stochastic conditions.

(1) Single-expert performance varies across repeated trainings. As shown in Table 12, dynamic
GS methods exhibit noticeable run-to-run variation, a behavior commonly observed in optimization-
based reconstruction pipelines. However, even the strongest individual run of any expert does not
reach the performance achieved by MoE-GS.

(2) Expert-specific motion behavior remains qualitatively consistent. Although absolute scores
vary across runs, each expert repeatedly displays the same characteristic motion tendencies described
in Appendix F—for example, E-D3DGS tends to produce fast, coherent motion, whereas Ex4DGS
more often captures irregular, multi-directional movement. These tendencies appear consistently
across repeated trainings, reflecting the deformation priors of each method rather than run-specific
randomness.

Taken together, these results indicate that MoE-GS provides a stable improvement beyond what
can be obtained by repeated training of any single expert, and that its gains stem from integrating
complementary deformation priors rather than from statistical fluctuations between runs.

H ABLATION ON DISTILLATION WEIGHTING STRATEGIES

Distillation in our framework aims to transfer the complementary reconstruction strengths identified
by MoE-GS back into a single expert. We explore whether assigning per-pixel weights to the MoE-
guided loss improves this transfer, and compare two strategies: (i) w/o weighting, and (ii) gating-based
weighting derived from MoE-GS. All experiments use E-D3DGS (Bae et al., 2024) on the Technicolor
dataset.

Table 13: Effect of routing-weighted distillation.

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓
E-D3DGS (Baseline) 32.88 0.902 0.111
w/o Weight 33.26 0.907 0.110
Routing Weight (Ours) 33.67 0.918 0.091

Using MoE-derived routing weights yields clear improvements over unweighted distillation. These
routing weights capture how different experts contribute to each spatial–temporal region, providing
supervision signals that encode complementary deformation priors rather than relying on pixel-level
error statistics. As a result, the distilled expert benefits from MoE-GS’s region-specific strengths and
achieves higher reconstruction quality.
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