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Abstract
Bayesian causal inference (BCI) naturally incor-
porates epistemic uncertainty about the true causal
model into down-stream causal reasoning tasks
by posterior averaging over causal models. How-
ever, this poses a tremendously hard computa-
tional problem due to the intractable number of
causal structures to marginalise over. In this work,
we decompose the structure learning problem into
inferring (i) a causal order and (ii) a parent set for
each variable given a causal order. By limiting the
number of parents per variable, we can exactly
marginalise over the parent sets in polynomial
time, which leaves only the causal order to be mar-
ginalised. To this end, we propose a novel autore-
gressive model over causal orders (ARCO) learn-
able with gradient-based methods. Our method
yields state-of-the-art in structure learning on sim-
ulated non-linear additive noise benchmarks with
scale-free and Erdos-Renyi graph structures, and
competitive results on real-world data. Moreover,
we illustrate that our method accurately infers
interventional distributions, which allows us to es-
timate posterior average causal effects and many
other causal quantities of interest.

1. Introduction
Few topics in science and philosophy have been as contro-
versial as the discussion about the nature of causality. Inter-
estingly, the discussion becomes relatively benign, from a
philosophical perspective, as soon as one agrees on a well-
defined mathematical model of causality, such as a struc-
tural causal model (SCM) (Pearl, 2009). A fully specified
SCM induces a wide range of joint probability distributions,
organised on three levels denoted as association, interven-
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tion and counterfactuals, collectively forming the so-called
Pearl’s causal hierarchy (Bareinboim et al., 2022). Any
causal question then elegantly reduces to standard probabil-
istic inference in some of these joint distributions. Hence,
assuming that the data comes from some model within a
considered class of SCMs, causal questions reduce, in prin-
ciple, to epistemic questions, i.e., questions about what and
how much is known about the model.

The view that causal questions reduce to epistemic questions
about the true SCM naturally invites a Bayesian treatment,
i.e., specifying a prior distribution over SCMs and inferring
the posterior given collected data. Bayesian approaches to
causal discovery, i.e., learning the causal structure (represen-
ted as directed acyclic graph, DAG), dates back to work as
early as (Heckerman, 1995; Murphy, 2001; Tong & Koller,
2001). More intriguing, however, is to use a Bayesian ap-
proach over entire SCMs for the purpose of Bayesian causal
inference (BCI), i.e., consistent reasoning about a down-
stream causal query: usually, one is less interested in the
SCM per se, but rather in some causal quantity, such as the
existence of a direct causal connection (edge in the DAG),
or the average causal effect one variable has on another. The
goal of BCI is then to reason about such down-stream tasks
by computing a Bayesian average over the whole posterior
over SCMs.

Most existing BCI approaches are restricted to linear Gaus-
sian models (Geiger & Heckerman, 1994; Viinikka et al.,
2020; Pensar et al., 2020; Horii, 2021) or binary variables
(Moffa et al., 2017; Kuipers et al., 2019), while a full
Bayesian treatment of non-linear SCMs has been proposed
only recently (Toth et al., 2022; Tigas et al., 2022). Both
approaches leverage the DiBS method (Lorch et al., 2021),
a gradient-based framework for Bayesian inference over
DAGs, and infer causal mechanisms conditionally on the
DAG. While Tigas et al. (2022) use Bayesian neural nets to
represent the causal mechanisms and require stochastic vari-
ational inference over their parameters, Toth et al. (2022)
leverage Gaussian Processes (GPs) for the mechanisms,
which are marginalised in closed-form. The latter effect-
ively represents a form of Rao-Blackwellisation, reducing

Code available at: https://github.com/chritoth/bci-arco-gp
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Figure 1. Causal discovery on nonlinear additive noise models. Structure learning results in terms of expected Hamming distance
(ESHD) and ancestor adjustment identification distance (A-AID) on simulated non-linear models with scale-free (left, blue) and Erdös-
Renyi (right, orange) graphs, each with 20 nodes and 200 data samples. Whiskers indicate maximum, minimum and median values across
20 simulated ground truth instances. For both metrics lower is better. Range for ESHD is set for better readability, omitting the result for
DDS (> 125).

inference to the problem of marginalising over DAGs.1

In this paper, we enhance non-linear BCI and decompose
structure inference to (i) inferring a causal order over the
endogenous variables and (ii) inferring parent sets for each
variable conditional on the order.2 We perform the latter
by restricting the number of parents per variable to a fixed
maximal number K and exactly marginalising over all pos-
sible parent sets in polynomial (O(dK)) time, where d is
the number of endogenous variables. This technique is well-
established in Markov chain Monte Carlo (MCMC) tech-
niques for Bayesian structure learning (Koller & Friedman,
2003; Koivisto & Sood, 2004; Viinikka et al., 2020), but
has—to the best of our knowledge—not been exploited in
gradient-based structure learning so far. This structural mar-
ginalisation, in combination with the analytic treatment of
the causal mechanisms via GPs (Toth et al., 2022), reduces
the inference problem to the marginalisation w.r.t. causal
orders. To this end, we propose a novel neural generative
model over topological orders which can be understood
as an Auto-Regressive distribution estimator (Larochelle &
Murray, 2011), constrained to Causal Orders, hence we dub
this model ARCO.

1The term Rao-Blackwellisation is used in a generalised sense
here, denoting a generally observed variance reduction in Monte
Carlo estimates when “nuisance variables” are integrated out
(Robert & Roberts, 2021).

2In this paper, we use the term causal order for the topological
order of a causal DAG. We use this term to emphasise that this
order per se might be an object of interest to the practitioner.

Figure 1 show results for simulated scale-free and Erdös-
Renyi graphs, with non-linear causal mechanisms and addit-
ive Gaussian noise, demonstrating that ARCO-GP (mean-
ing BCI via ARCO and GPs) is highly effective for causal
discovery. In particular, for scale-free graphs, where the
assumption of a restricted number of parents matches our
modelling assumption, ARCO-GP clearly outperforms a
wide range of competitor methods. Moreover, even when
the assumptions are violated (in our case for Erdos-Renyi
graphs), we demonstrate that ARCO-GP still outperforms
the baselines, albeit with a smaller margin. Moreover, in Fig-
ure 2 we demonstrate ARCO-GP’s efficacy in down-stream
BCI, by sampling from various interventional distributions.
Specifically, by sampling from the whole Bayesian model
(including causal structure and mechanisms) we effectively
perform posterior marginalisation over SCMs. Detailed
results, including further evaluation metrics and results on
a real-world dataset (Sachs et al., 2005), are presented in
Section Section 5 and Appendix C.

In summary, our main contributions are:

• We propose an effective BCI framework which exactly
marginalises both causal mechanisms and parent sets
from the posterior over SCMs, reducing the hard BCI
problem to inferring the causal (topological) order.

• We propose ARCO, a neural autoregressive model
over causal orders and devise a gradient-based learn-
ing scheme for it. While here ARCO is used mainly
for causal reasoning, it might well find applications in
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Figure 2. Posterior interventional distributions. Several inter-
ventional distributions as inferred by ARCO-GP (blue, solid) and
the corresponding ground truth (green dashed). Specifically, we
sampled full SCMs (orders, parent sets, mechanisms, exogeneous
variables) and performed the indicated intervention to produce a
sample from the corresponding distribution, which effectively mar-
ginalises over the posterior over SCMs. Vertical lines indicate the
estimated means (averages). The underlying SCM is a simulated
non-linear additive noise model with graph structure taken as the
consensus protein interaction graph from Sachs et al. (2005) (see
Figure 4). See Appendix C for details.

many other domains requiring generative models over
total orders (e.g., rankings).

• We demonstrate in experiments that ARCO-GP sets
state-of-the-art against a wide range of baselines when
our model assumption are exactly matched. When the
model assumptions are violated, we still outperform or
are competitive with all baselines.

2. Background
Structural Causal Models. An SCM M over observed
endogenous variables X = {X1, . . . , Xd} and unobserved
exogenous variables U = {U1, . . . , Ud} consists of struc-
tural equations, or mechanisms,

Xi := fi(Pai, Ui), for i ∈ {1, . . . , d}, (1)

which assign the value of eachXi as a deterministic function
fi of its direct causes, or causal parents, Pai ⊆X \ {Xi}
and an exogenous variable Ui, and a joint distribution p(U)
over the exogenous variables. In this paper we assume that
the exogenous variables are independent Gaussian and enter
in additive fashion, i.e. fi(Pai, Ui) = fi(Pai) + Ui, thus
implying causal sufficiency. Associated with each SCM
is a directed graph G induced by the set of parent sets
Pa = {Pai}di=1 with vertices X and edges Xj → Xi if
and only if Xj ∈ Pai. Any SCM with an acyclic directed
graph (DAG) then induces a unique observational distribu-

θ L G ψ f

D Y

SCM M

Figure 3. Bayesian network view of our generative model. We
characterise a Structural Causal Model (SCM) by a causal graph
G, causal mechanisms f and parameters ψ of a joint distribu-
tion over mechanisms and exogenous variables p(f ,U |ψ). We
model the mechanisms f using Gaussian Processes (GPs) and U
as additive Gaussian noise, implying that ψ is a set of GP hyper-
parameters. The SCM gives rise to the data-generating likelihood
p(D | f ,ψ, G) and determines the (distribution over the) causal
query Y . To sample a directed acyclic causal graph G, we first
sample a causal order L from a neural autoregressive distribution
over causal orders (ARCO) p(L |θ) with parameters θ. Given
a causal order, we can then sample or marginalise exactly over
causal graphs G by limiting the maximum cardinality of parent
sets.

tion p(X |M) over the endogenous variablesX , which is
obtained as the pushforward measure of p(U) through the
causal mechanisms in Equation (1).

A (hard) intervention do(W = w) on a set of endogenous
variables W ⊂ X replaces the targeted mechanisms with
constants w, resulting in a modified SCM. The entailed
modified causal graph lacks the incoming edges into any
intervention target. The pushforward through the modified
SCM yields an interventional distribution p(X | do(W =
w),M).

Causal Orders. A permutation L = ⟨L1, . . . , Ld⟩ of the
endogenous variables X =

⋃d
i=1{Li}, where Li ̸= Lj for

all i ̸= j, entails a strict total order L1 ≺ L2 ≺ · · · ≺ Ld

among the variables. Henceforth, we refer to such a per-
mutation L as a causal order. A causal order L constrains
the possible causal interactions between the variables, i.e.,
Xi can be a (direct) cause of Xj if, and only if, Xi ≺ Xj

in L. We define L<k = ⟨L1, . . . , Lk−1⟩ to be the first
k − 1 elements in L. Finally, let λL : X 7→ {1, . . . , d}
be the bijective mapping between X and indices in L,
i.e., λL(Xi) = k ⇐⇒ Lk = Xi. We then denote byQL ∈
{0, 1}d×d the permutation matrix representing L, where
QL

ij = 1 iff λL(Xi) = j.

3. Bayesian Causal Inference via Structural
Marginalisation

When performing causal reasoning in the BCI framework,
we define the causal quantity of our interest as Y , called
the causal query, which is a function of the SCMM (see
(Toth et al., 2022)). This causal query could be, for example,
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an endogenous variable under some intervention, (features
of) the true causal graph, or even the entire SCM. Since we
are following a Bayesian approach,M is a random variable
equipped with a prior distribution p(M), and hence also Y
is a random variable.

Given a set of (observational) data D = {xn
i.i.d∼

p(X |M∗)}Nn=1 collected from the true underlying SCM
M∗, we are interested in inferring the posterior p(Y | D)
of the causal query, reflecting our uncertainty aboutM∗.
Since the causal query Y is determined by the SCM, the
query posterior is given as

p(Y | D) = EM|D[ p(Y |M)], (2)

marginalising over posterior SCMs. Our inference proced-
ure, described in Algorithm 1 and the generative model over
SCMs shown in Figure 3, divides into a parameter learning
and an inference phase. In the learning phase (Algorithm 1,
lines 1-5), we infer posterior parameters p(θ,ψ | D). In the
inference phase (Algorithm 1, lines 6-11), we use samples
drawn from the learned generative model to approximate
the query posterior. We first provide an overview of the
individual phases starting with the inference phase, as it
motivates our learning objective. We elaborate on the more
technical details in Sections 3.1 to 3.3.

Inference Phase. Assuming we have already learned a
set of posterior parameters θ,ψ approximating p(θ,ψ | D)
(see the learning phase), we want to employ our model to
approximate the query posterior in Equation (2). A key
observation similar in spirit to (Lorch et al., 2021; Toth
et al., 2022) is that the expectation w.r.t. SCMs can be
written as the following importance weighted expectation
(for a derivation see Appendix A.1)

p(Y | D) = EM|D [p(Y |M)] (3)

= Eθ,ψ | D
[
EL | θ

[
wL · EG |L,ψ,D

[
Ef |ψ,D [p(Y |M)]

]]]
with importance weights

wL :=
EG |L [p(D |ψ, G) · p(ψ |G)]

EL′ | θ
[
EG′ |L′ [p(D |ψ, G′) · p(ψ |G′)]

] , (4)

On a high level, the query posterior p(Y | D) is estimated
in Eq. (3) by (i) sampling several candidate SCMs from the
learned generative model in a nested manner given θ,ψ—
first sampling order L, then a graph G (parent sets) condi-
tional on L, and mechanisms f conditional onG, (ii) sample
queries given the candidate SCM from p(Y |M), and (iii)
weighting the sampled queries with their corresponding im-
portance weight wL.

Learning Phase. The formulation in Equation (3) trans-
forms the inference problem over posterior SCMs in Equa-
tion (2) into the problem of inferring posterior parameters

p(θ,ψ |D) of our proposed generative model in Figure 3
(cf. (Lorch et al., 2021; Toth et al., 2022)). By ensuring
that our generative distributions p(L |θ) and p(f ,U |ψ)
are sufficiently expressive, it suffices to infer a maximum a
posteriori (MAP) estimate of the posterior parameters θ,ψ
via gradient-based optimisation of (see Appendix A.2 for a
derivation)

∇ logp(θ,ψ | D) = ∇ log p(θ) (5)

+∇ logEL | θ
[
EG |L [p(D |ψ, G) · p(ψ |G)]

]
.

A major issue for the training of such a model is the
quality of the estimated gradients in the face of the high-
dimensional problem space and the coupling of the para-
meters θ,ψ. However, simultaneously updating all model
parameters in a single gradient step is prone to yield very
noisy gradients:

1. The gradient w.r.t. θ (causal order proposal) depends
on ψ (mechanism and noise parameters) through the
quality of the estimated importance weights wL in
Equation (6). A bad estimate of ψ will result in poor
estimates of the importance weights and consequently
the gradient w.r.t. θ.

2. The gradient w.r.t. ψ likewise depends on θ via the
quality of the sampled orders and their induced parent
sets. In general, the more often a parent set occurs
in the sampled orders relative to other parent sets, the
stronger its gradient w.r.t. ψ.3

To mitigate these issues, we propose a nested optimisation
procedure as laid out in Algorithm 1 (lines 1-5). In an outer
loop, we sample causal orders from the learned proposal,
estimate the gradient w.r.t. θ in Equation (5) and update
the parameters θ of the proposal distribution p(L |θ) (see
Section 3.1). To estimate this gradient, we need to compute
the importance weights (Equation (4)) for the sampled or-
ders, which however depend on the GP hyper-parameters
ψ via the marginal likelihood p(D |ψ, G). Therefore, be-
fore computing the importance weights, we optimise the GP
hyper-parameters (see Section 3.3) for each yet unseen par-
ent set compatible with some sampled order. This ensures
truthful estimates of the importance weights for the sampled
orders and, consequently, provides a good gradient estimate.

3.1. Causal Order Inference

While Equations (3) and (5) elegantly reduce BCI to learning
a model over causal orders and GP hyper-parameters, com-
puting the expectation w.r.t. causal orders in Equation (3)

3Arguably, this may be especially problematic when sharing
parameters between mechanisms with different parent sets, as
is the case, e.g., when modeling the mechanisms with a single,
masked neural network.
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Algorithm 1: BCI with ARCO-GP
Input: (Observational) data D.
Output: Posterior parameters θ, ψ. Estimated

(posterior over the) causal query Y and
importance weights wL.

/* Learning Phase */
1 repeat
2 sample causal orders L← {Lm ∼ p(L |θ)}

▷Section 3.1
3 wL,ψ ← ComputeIW(L, D)

▷Equation (4)
4 estimate the gradients for θ and perform a

gradient step ▷Equation (6)
5 until stopping criterion fulfilled
/* Inference Phase */

6 sample causal orders L← {Lm ∼ p(L |θ)}
▷Section 3.1

7 wL,ψ ← ComputeIW(L, D)
▷Equation (4)

8 [optional] sample graphs
G← {Gk ∼ p(G |L,ψ,D)} ▷Section 3.2

9 [optional] sample mechanisms
f ← {fj ∼ p(f |ψ,D)} ▷Section 3.3

10 sample candidate queries
Y ← {Yi ∼ p(Y | f ,ψ, G)} ▷Section 3.3

11 return θ, ψ, Y, wL

/* Subroutine: compute importance
weights and update mechanisms.

*/
12 Subroutine ComputeIW(L, D)
13 foreach causal order Lm ∈ L do
14 foreach parent set pai compatible with Lm

do
15 Learn (or retrieve) the corresponding

GP hyper-parameters ψi

▷Equation (11)
16 end
17 Compute the importance weight wLm

18 end
19 return wL,ψ

poses a hard combinatorial problem, as there are d! possible
causal orders over d variables. The involved distribution
over causal orders p(L |θ) appearing in the BCI estimator
Equation (3) can be interpreted as proposal distribution,
with importance weights as defined in Equation (4), where
the optimal proposal is the true posterior over causal orders.
Hence, we require an expressive representation over causal
orders which can account for multi-modal distributions over
orders. In particular, consider the example of a Markov
equivalence class (MEC) including a chain graph. Since
the chain is contained in the MEC, also the reverse chain

graph must be in the MEC, and thus, the proposal over
causal orders must be able to represent both orders with
equal probability.

A simple parameterisation of orders as proposed in (Char-
pentier et al., 2022) is not able to represent the true posterior
over causal orders in this case. Specifically, they sample
orders using the Gumbel Top-k trick (Kool et al., 2019) by
perturbing d logits (corresponding to the d variables) with
Gumbel noise and sorting these perturbed logits, yielding
an order over variables. In essence, learning such a model
boils down to ordering (and spreading) the d logits on the
real line. Now, to sample a chain graph and a reverse chain
graph, some variable is the first element in the causal order
in one case and must thus have the highest (perturbed) logit,
and it is the last element in the causal order in the other case
where it must have the lowest (perturbed) logit, which is
contradictory. In practice, we observe that when trying to
learn a multi-modal distribution over causal orders with this
model, the logits cluster together, resulting approximately
in a uniform distribution over causal orders.

Here, we propose an expressive, Auto-Regressive distribu-
tion (Larochelle & Murray, 2011) p(L |θ) = p(L1 |θ) ·∏d

k=2 p(Lk |L<k,θ) over Causal Orders (ARCO) that is
amenable to gradient-based optimisation and can represent
multi-modal distributions over orders, avoiding the short-
coming described above.

Sampling Causal Orders. The ordering of variables nat-
urally implies a sequential sampling procedure as listed
in Algorithm 2. In each step of the sampling procedure,
we sample the next variable in the order from a categor-
ical distribution p(Lk |L<k,θ) over the set of yet unas-
signed variables, conditional on all preceding variables in
the order (Algorithm 2, line 6). To account for the depend-
ence on the preceding order L<k, we compute the logits of
the categorical distribution using a differentiable function
gθ : Rd×d 7→ Rd (Algorithm 2, line 4) and re-normalise
them to exclude the elements in L<k (Algorithm 2, line 5).
We implement gθ as feed-forward neural network, taking
as input a suitable encoding of the so-far sampled order
L<k. To this end, we encode L<k using its induced per-
mutation matrix QL<k (see Section 2) and mask the rows
corresponding to elements L>=k with zeros.

Training ARCO. Training ARCO amounts to learning
the parameters θ of the neural network gθ by performing
gradient ascent on Equation (5). To estimate the gradient
in Equation (5) w.r.t. θ we use the score-function estimator,
yielding (see Appendix A.2)

∇θ log p(θ,ψ | D) = ∇θ log p(θ) (6)

+ EL | θ
[
wL · ∇θ log p(L |θ)

]
.
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Algorithm 2: Sample Causal Order with ARCO

Input: Logit function gθ : Rd×d 7→ Rd

Output: Causal order L sampled from p(L |θ)
1 R← X ▷set of unassigned elements
2 L← ∅ ▷causal order
3 for k = 1 . . . d do
4 ϕ← gθ(Q

L<k) ▷compute logits
5 ϕi ←{

ϕi − log
∑

j |Xj∈R expϕj if Xi ∈ R

−∞ otherwise
▷normalise logits

6 l ∼ CATEGORICAL(ϕ)
▷sample next element

7 L← L ∪ ⟨Xl⟩ ▷update causal order
8 R← R \ {Xl}
9 end

with wL as defined in Equation (4) (see Appendix A.1 for
the derivation). To evaluate log p(L |θ) for a given causal
order L, we simply need to sum the log-probabilities of the
categorical distributions log p(Lk |L<k,θ) for the respect-
ive elements Lk. The necessary log-probabilities (i.e., the
normalised logits) are computed as described in Algorithm 2.
Note that, although we need to compute the logits sequen-
tially in the sampling procedure, we can compute them in
parallel during evaluation.

3.2. Marginalising over Causal Graphs

The marginalisation w.r.t. causal graphs G in Equations (3)
to (5) is in general intractable, as the number of DAGs con-
sistent with any given (causal) order is 2

d·(d−1)
2 . Although

this is significantly smaller than the total number of DAGs
with d nodes (which grows super-exponentially in d, see e.g.
(OEIS Foundation Inc., 2024)), an exhaustive enumeration
is still infeasible.

In this work, we tackle this problem by restricting the num-
ber of parents per variable. By restricting the maximum
size of any admissible parent set to some integer K, the
number of distinct parent sets consistent with any causal
order L is in O(dK). Although the exhaustive enumeration
of all DAGs with restricted parent set size is still infeasible,
it turns out that, given a causal order, the expectation w.r.t.
graphs can be tractably computed under certain assumptions:
by choosing a prior over graphs p(G |L) = ∏

i p(Pai |L)
that factorises over parent sets, we can compute quantities
h(G) that decompose over the parent sets by the following
two propositions.4

4In practice, we assume a uniform prior over parent sets con-
sistent with a given causal order.

Proposition 3.1. Let h(G) =
∏

i hi(paG
i ) and w(G) =∏

i w(paGi ) be factorising over the parent sets, then we can
compute

EG |L [w(G)h(G)] =

d∏
i=1

∑
pai

p(pai |L)wi(pai)hi(pai).

(7)

Proposition 3.2. Let h(G) =
∑

i hi(paG
i ) be summing and

w(G) =
∏

i w(paGi ) be factorising over the parent sets,
then we can compute

EG |L [w(G)h(G)] = (8)

d∑
i=1

∏
j ̸=i

αj(L)

 ·∑
pai

p(pai |L)wi(pai)hi(pai),

where

αj(L) =
∑
pai

p(pai |L)wi(pai).

These propositions generalise the results presented by Koller
& Friedman (2003); Koivisto & Sood (2004) on how to
compute the posterior probabilities of edges or parent sets,
which is a special case of Proposition 3.1, to our setting of
Bayesian causal inference (proofs in Appendix A.3).

Employing Proposition 3.1, we can compute
EG |L [p(D |ψ, G) · p(ψ |G)], and consequently

p(G |L,ψ,D) = p(D |ψ, G) · p(ψ |G) · p(G |L)
EG |L [p(D |ψ, G) · p(ψ |G)] , (9)

in closed-form by letting h(G) = p(D |ψ, G) · p(ψ |G)
and w(G) = 1. This allows us to tractably compute the
respective expectations w.r.t. causal graphs in Equations (3)
to (5). Furthermore, for any causal query that does not
decompose over parent sets, we can compute a Monte-Carlo
estimate of the query by sampling DAGs from the true
posterior p(G |L,ψ,D) in Equation (3), as Equation (9)
factorised over parent sets.

3.3. Mechanism Inference and Marginalisation

To compute the importance weights in Equation (4) we
need to compute the marginal log-likelihood p(D |ψ, G)
which is intractable for general models. As we focus
on non-linear additive noise models in this work, we fol-
low (von Kügelgen et al., 2019; Toth et al., 2022) and
model each mechanism via a distinct GPs, assuming ho-
moscedastic Gaussian noise and causal sufficiency. Un-
der these assumptions, we can compute the marginal like-
lihood p(Di |ψi, G) = Ef |ψi

[p(Di | fi,ψi,pai)] in closed
form. The same holds true for the predictive posterior
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p(Dtest
i |ψi, G,D) possibly needed in Equation (3). We

factorise the GP hyper-parameter prior5 and the likelihood
over parent sets for each node i, i.e.,

p(D |ψ, G) · p(ψ |G) =
∏
i

p(Di |ψi, G) · p(ψi |PaG
i ),

(10)

allowing for efficient computation by caching intermediate
results. For the individual GP we infer a MAP-Type II
estimate of its hyper-parameters by performing gradient-
ascent on6

∇ψi logp(ψi | D, G) = (11)
∇ψi log p(Di |ψi, G) +∇ψi log p(ψi |G).

For root nodes, i.e., nodes without parents, we place a
conjugate normal-inverse-gamma prior on the mean and
variance of that node, which also allows for closed-form
inference.

4. Related Work
BCI in the simpler form of Bayesian structure inference
dates back to (Heckerman, 1995; Heckerman et al., 1997;
Madigan et al., 1995), often using MCMC techniques, where
many works utilise (causal) orders, e.g., (Koller & Friedman,
2003; Koivisto & Sood, 2004; Teyssier & Koller, 2012; Ellis
& Wong, 2008; Niinimäki et al., 2016; Kuipers & Moffa,
2017; Viinikka et al., 2020), allowing a better exploration
of the posterior space. Moreover, restricting the maximum
number of parents per node allows an exhaustive enumera-
tion of all parent sets in polynomial time for a given order.
However, MCMC inference comes with its own set of chal-
lenges, and none of these works implement non-linear mech-
anism models. In contrast, our work focuses on non-linear
additive noise models and utilises gradient-based learning
of a generative model over causal orders. Besides sampling
based inference, orders can also facilitate exact optimiza-
tion schemes, e.g. (Cussens, 2010; De Campos & Ji, 2011;
Peharz & Pernkopf, 2012).

After the advent of gradient-based (Bayesian) DAG structure
learning methods (Zheng et al., 2018; Yu et al., 2019; Brouil-
lard et al., 2020; Lachapelle et al., 2020; Lorch et al., 2021),
inference via orders recently gained interest in the gradient-
based causal structure learning community as a vehicle to
sample DAGs without the need of utilising soft acyclicity
constraints during optimisation (Cundy et al., 2021; Char-
pentier et al., 2022; Annadani et al., 2023). In contrast

5The parameter set ψi contains the GP’s kernel parameters and
the noise variance. Note that, other than the structural dependence
on the parent sets, the prior parameters ψ are independent of θ.

6Importantly, in Appendix A.2 we show that this not an ad-hoc
choice, but a consequence of optimising Equation (5).

to these works, we stress the importance of an expressive
gradient-based model for causal orders and we utilise causal
orders to marginalise our Bayesian causal inference proced-
ure by exhaustive parent set enumeration.

Finally, most existing BCI approaches are restricted to linear
Gaussian models (Geiger & Heckerman, 1994; Viinikka
et al., 2020; Pensar et al., 2020; Horii, 2021) or binary
variables (Moffa et al., 2017; Kuipers et al., 2019). Only
recently, works on a Bayesian treatment of entire non-linear
SCMs (i.e., including mechanisms and exogenous noise)
have been proposed by Toth et al. (2022); Tigas et al. (2022);
Giudice et al. (2023; 2024). Both Toth et al. (2022) and
Tigas et al. (2022) operate in an active learning scenario
using DIBS (Lorch et al., 2021) for inferring posterior causal
graphs, whereas Toth et al. (2022) focus on BCI while using
GPs for mechanism inference. Similarly, Giudice et al.
(2023) use GPs for the Bayesian inference of SCMs in
combiniation with MCMC inference for causal graphs. In a
concurrent preprint, Giudice et al. (2024) follow (Toth et al.,
2022) in using GPs for BCI but use MCMC for sampling
posterior causal graphs. None of these approaches features
gradient-based inference of causal orders, nor utilises causal
orders for structure marginalisation.

5. Experiments
Task I: Causal Structure Learning. For our results in
Figure 1, we sample a fixed set of 200 training samples
from the observational distribution of non-linear additive
noise ground truth SCMs with Erdös-Rényi (ER) (Erdös
& Rényi, 1959) and scale-free (SF) (Barabási & Albert,
1999) graph structures. The small sample size emulates the
setting of significant uncertainty relevant to the Bayesian
inference scenario. The reported expected structural Ham-
ming distance (ESHD) is a standard metric used structure
learning metric. Additionally, to asses the inferred structures
in terms of causal implications, we report the ancestor ad-
justment identification distance (A-AID) recently proposed
by Henckel et al. (2024) (see Appendix D for details).

We compare our inference model (ARCO-GP) with max-
imum parent set sizeK = 2 to a diverse set of nine different
structure learning methods: BAYESDAG ((Annadani et al.,
2023)), DAG-GNN ((Yu et al., 2019)), DDS ((Charpentier
et al., 2022)), DIBS-GP ((Toth et al., 2022; Lorch et al.,
2021)), GADGET ((Viinikka et al., 2020)), GES ((Chick-
ering, 2003)), GOLEM ((Ng et al., 2020)), GRASP ((Lam
et al., 2022)) and PC ((Spirtes et al., 2000)), that we briefly
describe in Appendix D.

Summarising Figure 1, when our assumption about the max-
imum parent set size is reflected by the ground truth models
(as holds in our simulated SF graphs), ARCO-GP clearly
outperforms the baselines in terms of ESHD and A-AID.
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Moreover, even when the ground truth models exhibit larger
parent sets and our restriction is violated (as is the case in
our simulated ER graphs), ARCO-GP still outperforms the
baselines, albeit by a smaller margin. Additional experi-
ments with varying number of variables d ∈ {11, 20, 50},
as well as experiments on real-world data from Sachs et al.
(2005) and ablations are provided in Appendix D. For these
experiments we report an extended set of eight additional
metrics.

Task II: Inferring Interventional Distributions and Av-
erage Causal Effects. We illustrate ARCO-GP’s causal
reasoning capabilities by visualising a selected set of estim-
ated posterior interventional distributions p(Xi | do(W =
w),D) in Figure 2. In order to have access to the corres-
ponding ground truth distributions, we simulate a non-linear
additive noise model on the consensus protein interaction
graph reported by Sachs et al. (2005) (see Figure 4). We gen-
erate samples from the interventional distributions with the
procedure laid out in Algorithm 1 and Section 3 and smooth-
ing the empirical distribution with a kernel density estimate
(see Appendix B for details). As can be seen, the posterior
distribution inferred by our method closely resemble the
true ones. Importantly, the multi-modality of the (inferred)
distributions illustrate the benefits of a Bayesian approach
to causal inference, as we can represent uncertainty via
full distributions instead of single point estimates. In Ap-
pendix D we further compare our ability to infer pairwise
average causal effects to two baselines, namely DIBS-GP
(Toth et al., 2022; Lorch et al., 2021) and GADET+BEEPS
(Viinikka et al., 2020).

6. Discussion
We demonstrated that our proposed ARCO-GP method for
BCI, leveraging structural marginalisation, yields superior
structure learning performance on non-linear additive noise
models against a set of nine state-of-the-art baseline meth-
ods. Moreover, we illustrate the capability of ARCO-GP
to accurately infer posterior interventional distributions and
average causal effects. The capabilities our method relies
upon the following assumptions and limitations.

Assumptions. Our assumptions on the data generating pro-
cess include causal sufficiency and additive Gaussian noise,
as well as a limited maximum parent set size. Presum-
ably, for very dense graphs the performance of ARCO-GP
will deteriorate in comparison to other methods. While our
framework and implementation can handle interventional
data, we do not evaluate this scenario experimentally be-
cause not all baselines support the use of interventional data,
and the observational case is the more difficult problem
from the perspective of model identifiability.

Scalability and Computation. The main driver of complex-

ity is the exact inference using GPs, which grows with N3

in the number of available data points. Although we used
only CPUs for running our experiments, scaleable GPU in-
ference techniques for GPs were proposed, e.g., by Gardner
et al. (2018); Pleiss et al. (2018). Additionally, the training
of the GPs could be straightforwardly parallelised. Concep-
tually, our framework is flexible and modular, allowing to
use alternative mechanism models like normalising flows
as in (Brouillard et al., 2020; Pawlowski et al., 2020). A
second driver of computational complexity is the exhaustive
enumeration of parent sets, which may be prohibitive on
larger problem instances and bigger parent sets. Note, how-
ever, that the individual parent set contributions necessary
to compute the importance weights in Equation (4) could be
pre-computed in parallel.
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A. Proofs and Derivations
A.1. Derivation of the Posterior Expectation w.r.t. SCMs

In the following, we derive the expectation w.r.t. SCMs in Equation (3) and the corresponding importance weights in
Equation (4).

EM|D [p(Y |M)] = EG,f ,ψ | D [p(Y |M)]

= Eθ,ψ | D
[
EG,f | θ,ψ,D [p(Y |M)]

]
= Eθ,ψ | D

[
EG | θ,ψ,D

[
Ef |ψ,D [p(Y |M)]

]]
= Eθ,ψ | D

[
EL | θ,ψ,D

[
EG |L,ψ,D

[
Ef |ψ,D [p(Y |M)]

]]]
= Eθ,ψ | D

[
EL | θ

[
p(D,ψ |L)
p(D,ψ |θ) · EG |L,ψ,D

[
Ef |ψ,D [p(Y |M)]

]]]
= Eθ,ψ | D

[
EL | θ

[
wL · EG |L,ψ,D

[
Ef |ψ,D [p(Y |M)]

]]]

with

wL :=
p(D,ψ |L)
p(D,ψ |θ)

=
EG |L [p(D,ψ |G)]

p(D,ψ |θ)

=
EG |L [p(D |ψ, G) · p(ψ |G)]

p(D,ψ |θ)

=
EG |L [p(D |ψ, G) · p(ψ |G)]

EL′ | θ [p(D,ψ |L′)]

=
EG |L [p(D |ψ, G) · p(ψ |G)]

EL′ | θ
[
EG′ |L′ [p(D |ψ, G′) · p(ψ |G′)]

] .
A.2. Derivation of the Gradient Estimators

In the following, we derive the gradient estimators in Equations (5), (6) and (11). We denote by∇ = ∇θ,ψ to avoid clutter.

General Posterior Gradient. The general posterior gradient in Equation (5) reads as follows.

∇ log p(θ,ψ | D) = ∇ log
p(D,ψ |θ) · p(θ)

p(D)
= ∇ log p(θ) +∇ log p(D,ψ |θ)
= ∇ log p(θ) +∇ logEL | θ [p(D,ψ |L)]
= ∇ log p(θ) +∇ logEL | θ

[
EG |L [p(D,ψ |G)]

]
= ∇ log p(θ) +∇ logEL | θ

[
EG |L [p(D |ψ, G) · p(ψ |G)]

]

ARCO Gradient. Using the above as starting point for the gradient in Equation (6), we get

∇θ log p(θ,ψ | D) = ∇θ log p(θ) +∇θ logEL | θ
[
EG |L [p(D |ψ, G) · p(ψ |G)]

]
= ∇θ log p(θ) +

∇θEL | θ
[
EG |L [p(D |ψ, G) · p(ψ |G)]

]
EL′ | θ

[
EG′ |L′ [p(D |ψ, G′) · p(ψ |G′)]

]
12



Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders

and using∇θp(L |θ) = p(L |θ) · ∇θ log p(L |θ)

= ∇θ log p(θ) +
EL | θ

[
EG |L [p(D |ψ, G) · p(ψ |G)] · ∇θ log p(L |θ)

]
EL′ | θ

[
EG′ |L′ [p(D |ψ, G′) · p(ψ |G′)]

]
= ∇θ log p(θ) + EL | θ

[
wL · ∇θ log p(L |θ)

]
with wL as defined in Equation (4).

GP Hyper-parameter Gradient. For the gradient of a distinct GP modeling the mechanism from parents Pak to target
node Xk with corresponding hyper-parameters ψk as in Equation (11) we have

∇ψk
log p(θ,ψ | D) = ∇ψk

log p(θ) +∇ψk
logEL | θ

[
EG |L [p(D,ψ |G)]

]
=

EL | θ
[
EG |L [∇ψk

p(D,ψ |G)]
]

EL | θ
[
EG |L [p(D,ψ |G)]

]
=

EL | θ
[
EG |L [∇ψk

p(D,ψ |G)]
]

p(D,ψ |θ)

and as the marginal likelihood and the prior over GP hyper-parameters factorise over parent sets we further get

=
EL | θ

[
EG |L

[
∇ψk

∏d
i=1 p(Di,ψi |PaG

i )
]]

p(D,ψ |θ)

=
EL | θ

[∑
G p(G |L) · ∇ψk

∏d
i=1 p(Di,ψi |PaG

i )
]

p(D,ψ |θ) .

Now, note that for the summation over graphs G, the gradient is zero for all graphs that do not contain the parent set Pak

corresponding to the GP with hyper-parameters ψk. Consequently, we get

=
EL | θ

[∑
G | Pak∈G p(G |L) · ∇ψk

∏d
i=1 p(Di,ψi |PaG

i )
]

p(D,ψ |θ)

and since ∇ψk
p(Dk,ψk |Pak) = p(Dk,ψk |Pak) · ∇ψk

log p(Dk,ψk |Pak)

=
EL | θ

[∑
G | Pak∈G p(G |L) ·

∏d
i=1 p(Di,ψi |PaG

i ) · ∇ψk
log p(Dk,ψk |Pak)

]
p(D,ψ |θ)

=
EL | θ

[∑
G | Pak∈G p(G |L) · p(D,ψ |G)

]
p(D,ψ |θ) · ∇ψk

log p(Dk,ψk |Pak).

Note that the term preceding the gradient ∇ψk
log p(Dk,ψk |Pak) is a scalar factor that does not influence the direction

of the gradient and can thus be practically omitted for gradient-based optimisation, as optimisation algorithms will scale
the gradient depending on tune-able step size parameters anyways. Therefore, optimising the GP hyper-parameters
w.r.t. the gradient in Equation (5) practically yields the same gradient direction as the common MAP type II gradient
∇ψk

log p(Dk,ψk |Pak). Arguably, for mechanism models that do not decompose over individual mechanisms for each
parent set and target variable, naively estimating the gradient in Equation (5) may yield very noisy gradients, as the magnitude
of the estimated gradient will depend on the sampled structures used for its estimation.

A.3. Proofs regarding Exhaustive Parent Set Enumeration

Proof of Proposition 3.1

13
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Proof.
EG |L [w(G) · h(G)] =

∑
G

p(G |L) · w(G) · h(G)

Since we assume that w(G) and h(G) factorise over the parent sets, we have

=
∑
G

∏
i

p(paG
i |L) · wi(paG

i ) · hi(paG
i )

The sum over all graphs can be represented as sum over all combinations of possible parent sets to get

=
∑
pa1

∑
pa2

· · ·
∑
pad

∏
i

p(pai |L) · wi(pai) · hi(pai)

=
∑
pa1

p(pa1 |L) · w1(pai) · h1(pai)
∑
pa2

p(pa2 |L) · w2(pai) · h2(pai) . . .

Since each summation over parent sets is independent of the others, we get the final result

=
∏
i

∑
pai

p(pai |L) · wi(pai) · hi(pai)

Proof of Proposition 3.2

Proof.
EG |L [w(G) · h(G)]

=
∑
G

p(G |L) · w(G) · h(G)

Since we assume that w(G) factorises and h(G) sums over the parent sets, we have

=
∑
G

∏
i

p(paG
i |L) · wi(paGi ) ·

∑
j

hj(paG
j )

The sum over all graphs can be represented as sum over all combinations of possible parent sets to get

=
∑
pa1

∑
pa2

· · ·
∑
pad

∏
i

p(pai |L) · wi(pai) ·
∑
j

hj(paj)

=
∑
pa1

∑
pa2

· · ·
∑
pad

·
∑
j

hj(paj)
∏
i

p(pai |L) · wi(pai)

=
∑
pa1

∑
pa2

· · ·
∑
pad

h1(pa1)
∏
i

p(pai |L) · wi(pai) +
∑
pa1

∑
pa2

· · ·
∑
pad

d∑
j=2

. . .

=
∑
pa1

h1(pa1) · p(pa1 |L) · w1(pa1)
∑
pa2

p(pa2 |L) · w2(pa2) · · ·+
∑
pa1

∑
pa2

· · ·
∑
pad

d∑
j=2

. . .

14
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By abbreviating αi(L) =
∑

pai
p(pai |L)wi(pai) we get

=
∑
pa1

h1(pa1) · p(pa1 |L) · w1(pa1) ·
∏
k ̸=1

αk(L) +
∑
pa1

∑
pa2

· · ·
∑
pad

d∑
j=2

hj(paj)
∏
i

p(pai |L) · wi(pai)

By repeating this procedure for the remaining summands j, we get the final result

=
∑
i

∏
k ̸=i

αk(L)

 ·∑
pai

p(pai |L) · wi(pai) · hi(pai)

B. Implementation and Estimation Details
Our model is implemented in Python mainly relying on PyTorch (Ansel et al., 2024), and GPyTorch (Gardner et al., 2018)
for GP inference.

B.1. Mechanism Model.

We follow Toth et al. (2022) and use two types of models for our mechanism.

For root nodes, i.e., causal variables without parents, we place a conjugate normal-inverse-gamma prior N-Γ−1 on the
mean and variance of that node. Specifically,

p(fi, σ
2
i |Pai = ∅) = N-Γ−1(fi, σ

2
i |µ0, κ

−1
0 , α0, β0)

= N(fi |µ0, σ
2
i · κ−1

0 ) · Γ−1(σ2
i |α0, β0)

where µ0, κ
−1
0 , α0, β0 are fixed hyper-parameters. When sampling ground-truth SCMs we set µ0 = 0, κ0 = 1, α0 = 5 and

β0 = 10, sample a mean and variance from the prior and keep them fixed thereafter. For the inference with ARCO-GP
and DIBS-GP, we use µ0 = 0, κ0 = 1, α0 = 10 and β0 = 10. This yields a prior mean of 1 for the variance σ2, which is
sufficiently broad considering that we standardise all training data to zero mean and unit variance. Analytic expressions for
the posterior marginal likelihood are found in (Murphy, 2007).

For non-root nodes we place a GP prior on the mechanisms. Specifically, we use rational quadratic (RQ) kernel

kRQ(x1,x2) = δ ·
(
1 +

1

2γ
(x1 − x2)

⊤λ−2(x1 − x2)

)−γ

with scaling parameter δ, lengthscale parameter λ and mixing parameter γ to model non-linear mechanisms. For non-
linear mechanisms we use an additive Gaussian noise likelihood with variance σ2

i . We place Gamma priors Γ(δ |αδ, βδ),
Γ(λ |αλ, βλ), Γ(γ |αγ , βγ) and Γ(σ2

i |ασ, βσ) on these parameters.

When generating non-linear models we set αδ = 100, βδ = 10, αλ = 30 · |Pai|, βλ = 30, αγ = 20, βγ = 10 and
ασ = 50, βσ = 50. For each GP we sample a set of hyper-parameters from their priors and keep them fixed thereafter.
Additionally, we sample a function from the GP prior with 50 support points sampled uniform random in range [-10, 10].
For the inference with ARCO-GP and DIBS-GP, we set αδ = 100, βδ = 10, αλ = 30 · |Pai|, βλ = 30, αγ = 20, βγ = 10
and ασ = 2, βσ = 88 again considering that we standardise all training data to zero mean and unit variance. We train GP
hyper-parameters for a maximum of 100 steps with the RMSprop (Hinton, 2012) optimiser with learning rate 0.05.

B.2. ARCO Model.

We use a normal prior N (θ | 0, σ2I) with σ = 10 over ARCO’s neural network parameters θ. The neural network gθ uses a
single hidden layer with 30 neurons and ReLU activation functions (see Section 3.1). We train ARCO for a maximum of
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Figure 4. Sachs Graph. Consensus protein interaction graph from (Sachs et al., 2005). We relabeled nodes to avoid misinterpretation of
our simulation results. Nodes X0 to X10 correspond to the original labels [’PKC’, ’PKA’, ’Jnk’, ’P38’, ’Raf’, ’Mek’, ’Erk’, ’Akt’, ’Plcg’,
’PIP3’, ’PIP2’].

400 gradient steps, using the ADAM (Kingma & Ba, 2015) optimiser with learning rate of 0.01. For the score-function
gradient estimator in Equation (6) we use an exponential moving average baseline with decay rate 0.9. To estimate gradients
and causal queries we sample 100 causal orders and 25 DAGs conditional on each order where necessary, resulting in 2500
DAG samples. Per default, we limit the parent set size to a maximum of two parents per node. These settings apply to all
our simulations unless stated otherwise.

B.3. Kernel Density Estimates of Interventional Distributions.

To approximate the interventional distribution given our posterior samples (see Section 3, Algorithm 1, lines 6-11), we
compute a kernel density estimate (KDE). We draw 100 causal orders, with 10 graphs per order and 10 samples per graph,
equalling 10000 samples from the posterior interventional distribution in total. We use the KDE implementation provided
by scikit-learn (Pedregosa et al., 2011), with a Gaussian kernel and a bandwidth of 0.2.

C. Experimental Setup
Our code is available at https://github.com/chritoth/bci-arco-gp.

Sampling of Ground-Truth SCMs. To sample ground truth SCMs we draw graph structures from either the Erdös-Rényi
(ER) (Erdös & Rényi, 1959) or the scale-free (SF) (Barabási & Albert, 1999) random models commonly used in DAG
structure learning benchmarks. We follow the setup of Lorch et al. (2021) and generate scale-free and Erdös-Rényi graphs
with an expected degree of 2. Specifically, this will yield SF graphs with a maximum parent set size of 2, whereas no such
restriction applies to ER graphs in general. We instantiate the causal mechanisms for non-linear additive noise models as
described in Appendix B.

For each ground truth SCM, we sample a fixed set of N training data from the observational distribution. Importantly,
Reisach et al. (2021) argue, that the causal order may strongly correlate with increasing marginal variance in simulated
data, and therefore, benchmarks may be easy to game by exploiting this property. As this may be especially relevant to
order-based inference methods, we follow their recommendation and normalise the training data for each endogenous
variable to zero mean and unit variance.
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Metrics. As metrics for learning the causal structure we report the expected structural Hamming distance (ESHD), as well
as the area under the receiver operating characteristic (AUROC) and the area under the precision recall curve (AUPRC)
w.r.t. posterior edge prediction as commonly reported metrics. To provide additional insight into the methods’ strengths
and weaknesses, we also report the expected number of edges (#Edges), the true positive rate (TPR) and the true negative
rate (TNR) for the edge prediction task. We do not report the log-likelihood on held-out test data as is sometimes reported,
because the evaluated methods implement different noise models and approximate inference schemes, which leads to the
(marginal) log-likelihoods being uncalibrated and thus incomparable (cf. (Murphy, 2023)[Sec. 7.5] and references therein).

To evaluate the inferred causal structures w.r.t. their causal implications, Henckel et al. (2024) recently proposed a family
of causal distances called Adjustment Identification Distance (AID). Briefly summarised, the AID counts the number of
correctly identified adjustment sets for pairwise causal effects w.r.t. a target graph, where the adjustment sets are determined
according to a chosen identification strategy. We adopt the three variants proposed by Henckel et al. (2024), namely Ancestor
adjustment (A-AID), Parent adjustment (P-AID), and Optimal adjustment (OSET-AID). These metrics can also be applied
between different graph types, e.g., comparing the AID between a predicted CPDAG and a reference DAG. Note that the
(P-AID) computed between to DAGs is equivalent to the well-known Structural Identification Distance proposed by Peters
& Bühlmann (2015).

Baselines. We compare our inference model (ARCO-GP) to a diverse set of nine different structure learning methods that
we describe in the following.

• BAYESDAG (Annadani et al., 2023). BayesDAG utilises a mixture of MCMC to infer permutations and mechanism
parameters, and Variational Inference (VI) to infer DAG edges given the permutations. We use the implementation
provided by Annadani et al. (2023) at https://github.com/microsoft/Project-BayesDAG. We needed to adapt the sparsity
regularisation hyper-parameter in order to get meaningful results and ran our experiments with the configurations in
Listings 2-3. As the implementation runs a number of MCMC chains and only evaluates the best chain afterwards, we
use only one MCMC chain to enable a fair comparison, as multiple chains would correspond to multiple runs of the
other methods.

• DAG-GNN (Yu et al., 2019). DAG-GNN is a gradient-based structure learning approach combining graph neural
networks an acyclicity constraint similar to Zheng et al. (2018). We use the implementation provided by Zhang et al.
(2021)[Version 1.0.3] using default settings.

• DDS (Charpentier et al., 2022). DDS builds upon the permutation-based approach of (Cundy et al., 2021) and utilises
differentiable permutation sampling and VI to infer a posterior over DAGs. We use the implementation provided
by Charpentier et al. (2022) at https://github.com/sharpenb/Differentiable-DAG-Sampling. We needed to adapt the
default hyper-parameters in order to get meaningful results and ran our experiments with the configuration displayed in
Listing 1.

• DIBS-GP (Toth et al., 2022; Lorch et al., 2021). DIBS-GP is a Bayesian causal inference framework recently proposed
by Toth et al. (2022) utilising the differential structure learning method by Lorch et al. (2021) employing a soft
acyclicity constraint in line with Zheng et al. (2018); Yu et al. (2019). We use the implementation provided by Toth
et al. (2022) at https://github.com/chritoth/active-bayesian-causal-inference. We use their standard parameters with 10
latent particles and constant hyper-parameters α = β = 1 as described in (Lorch et al., 2021). For each latent particle
we sample 100 graphs to estimate gradients and causal quantities.

• GADGET (Viinikka et al., 2020). GADGET is a Bayesian structure learning method for linear Gaussian models
based on MCMC and structure marginalisation over capped-size parent sets. We use the implementation provided by
(Viinikka et al., 2020) at https://github.com/Sums-of-Products/sumu and parameters as shown in Listing 4.

• GES (Chickering, 2003). GES is a well-known greedy score-based method for causal discovery using the BIC score.
We use the implementation provided by Zhang et al. (2021)[Version 1.0.3] using default settings.

• GOLEM (Ng et al., 2020). GOLEM is a differentiable DAG structure learning similar to Zheng et al. (2018) but with a
likelihood-based score function for linear models. We use the implementation provided by Zhang et al. (2021)[Version
1.0.3] using default settings.

• GRASP (Lam et al., 2022). GRASP is a recently proposed permutation-based approach to causal discovery. We use
the implementation provided by Zheng et al. (2024) using default settings.
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• PC (Spirtes et al., 2000). The PC algorithm is another standard causal discovery methods based on conditional
independence tests. We use the implementation provided by Zhang et al. (2021)[Version 1.0.3] using default settings.
It happens quite frequently that PC return a possibly cyclic PDAG, for which the AID metrics cannot computed and are
thus omited in our experimental results.

Listing 1. DDS Parameter Set.
# A r c h i t e c t u r e p a r a m e t e r s
’ seed_model ’ : 123 , # Seed t o i n i t model .
’ ma_hidden_dims ’ : [ 3 2 , 32 , 3 2 ] , # Outpu t d i m e n s i o n .
’ m a _ a r c h i t e c t u r e ’ : ’ l i n e a r ’ , # Outpu t d i m e n s i o n .
’ m a _ f a s t ’ : F a l s e , # Outpu t d i m e n s i o n .
’ p d _ i n i t i a l _ a d j ’ : ’ Learned ’ , # Outpu t d i m e n s i o n .
’ p d _ t e m p e r a t u r e ’ : 1 . 0 , # Outpu t d i m e n s i o n .
’ pd_hard ’ : True , # Outpu t d i m e n s i o n .
’ p d _ o r d e r _ t y p e ’ : ’ t opk ’ , # Outpu t d i m e n s i o n .
’ p d _ n o i s e _ f a c t o r ’ : 1 . 0 , # Hidden d i m e n s i o n s .

# T r a i n i n g p a r a m e t e r s
’ max_epochs ’ : 500 , # Maximum number o f epochs f o r t r a i n i n g
’ p a t i e n c e ’ : 150 , # P a t i e n c e f o r e a r l y s t o p p i n g .
’ f r e q u e n c y ’ : 2 , # Frequency f o r e a r l y s t o p p i n g t e s t .
’ b a t c h _ s i z e ’ : 16 , # Batch s i z e .
’ ma_l r ’ : 1e −3 , # L e a r n i n g r a t e .
’ p d _ l r ’ : 1e −2 , # L e a r n i n g r a t e .
’ l o s s ’ : ’ELBO ’ , # Loss name . s t r i n g
’ r e g r ’ : 1e −1 , # R e g u l a r i z a t i o n f a c t o r i n B a y e s i a n l o s s .
’ p r i o r _ p ’ : 1e −6 # R e g u l a r i z a t i o n f a c t o r i n B a y e s i a n l o s s .

Listing 2. BAYESDAG Non-Linear ER Parameter Set.
" model_hyperparams " : {

" num_chains " : 1 ,
" s i n k h o r n _ n _ i t e r " : 3000 ,
" s c a l e _ n o i s e _ p " : 0 . 0 0 1 ,
" s c a l e _ n o i s e " : 0 . 0 0 1 ,
" VI_norm " : t r u e ,
" i n p u t _ p e r m " : f a l s e ,
" l a m b d a _ s p a r s e " : 10 ,
" s p a r s e _ i n i t " : f a l s e

} ,
" t r a i n i n g _ h y p e r p a r a m s " : {

" l e a r n i n g _ r a t e " : 1e −3 ,
" b a t c h _ s i z e " : 512 ,
" s t a r d a r d i z e _ d a t a _ m e a n " : f a l s e ,
" s t a r d a r d i z e _ d a t a _ s t d " : f a l s e ,
" max_epochs " : 500

}
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Listing 3. BAYESDAG Non-linear SF Parameter Set.
" model_hyperparams " : {

" num_chains " : 1 ,
" s i n k h o r n _ n _ i t e r " : 3000 ,
" s c a l e _ n o i s e _ p " : 0 . 0 0 1 ,
" s c a l e _ n o i s e " : 0 . 0 0 1 ,
" VI_norm " : t r u e ,
" i n p u t _ p e r m " : f a l s e ,
" l a m b d a _ s p a r s e " : 10 ,
" s p a r s e _ i n i t " : f a l s e

} ,
" t r a i n i n g _ h y p e r p a r a m s " : {

" l e a r n i n g _ r a t e " : 1e −3 ,
" b a t c h _ s i z e " : 512 ,
" s t a r d a r d i z e _ d a t a _ m e a n " : f a l s e ,
" s t a r d a r d i z e _ d a t a _ s t d " : f a l s e ,
" max_epochs " : 500

}

Listing 4. GADGET Parameter Set.
" s c o r e f " : ’ bge ’ ,
" max_id " : −1 ,
"K" : min ( s e l f . num_nodes − 1 , 1 6 ) ,
" d " : 2 ,
" c p _ a l g o " : ’ greedy − l i t e ’ ,
" mc3_cha ins " : 16 ,
" b u r n _ i n " : 1000 ,
" i t e r a t i o n s " : 1000 ,
" t h i n n i n g " : 10 ,

D. Extended Experimental Results
Here we present additional experimental results and ablations with varying number of variables d ∈ {11, 20, 50}, as well as
experiments on real-world data from Sachs et al. (2005). For these extended experiments we report an extended set of eight
metrics as described in Appendix C.

Real-world dataset from Sachs et al. (2005). The dataset consists of 853 observational data. The target consensus graph
has 11 nodes and 17 edges. We compare our ARCO-GP method in variants with maximum parent set size k ∈ 2, 3. All
variants are competitive with the baselines.

Simulations on larger models with d = 50 variables. We report structure learning results for non-linear models with ER
and SF graphs over d = 50 variables in Table 3. The results of ARCO-GP are qualitatively similar to the ones achieved on
20 node systems.

Influence of the maximum parent set size. We evaluate the influence of the maximum parent set size in range k ∈
{1, 2, 3, 4} on the performance of our ARCO-GP method in Table 2. We distinguish the models variants by labels ARCO-
Kk-GP. On non-linear benchmarks, k = 1 performs worst as expected, since each node can only have one parent. Not
surprisingly, k = 2 performs best on scale-free graphs, whereas k = 4 performs best on Erdös-Rényi graphs, as the
respective k better fit the stuctural properties of the true graphs.
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Non-linear Average Causal Effect Estimation. In this simulation, we compare our ability to infer pairwise average
causal effects (ACEs)

ACE(Xi | do(Xj = xj)) := EXi | do(Xj=xj),D [Xi]

to two baselines, namely DIBS-GP ((Toth et al., 2022; Lorch et al., 2021)) and GADET+BEEPS ((Viinikka et al., 2020)).
While DIBS-GP can implements a non-linear additive noise model based on GPs, GADGET+BEEPS is designed for linear
Gaussian models only. In particular, the implementation of GADGET+BEEPS does not naturally support the inference of
average causal effects, but infers causal effects as the path-wise accumulation of the linear mechanism weights. Thus, we
extend the implementation in the following way. A linear SCM can be written as

X = (G⊙B)T ·X + µ+ ϵ,

where X are the endogenous variables, G is the adjacency matrix of the causal DAG, B is the weight matrix of the linear
edge weights, ⊙ denotes the element-wise multiplication, µ denotes the mean vector of the variables and ϵ denotes the
exogenous Gaussian noise. Solving for X yields

X = (I − (G⊙B)T )−1(µ+ ϵ),

and taking the expectation w.r.t. ϵ yields

Eϵ[X] = (I − (G⊙B)T )−1µ. (12)

We then estimate ACE(Xi | do(Xj = xj)) by (i) drawing posterior DAGs G and weight matrices B using GAD-
GET+BEEPS, (ii) performing the intervention by removing all parents of Xj in the sampled DAGs and setting the
posterior mean µj = xj , and (iii) finally solving Equation (12) to get the desired ACE.

We generate 10 non-linear ground truth models with fixed graph as in Figure 4. We then report the mean absolute
errors (MAEs) between for all pairwise ACEs in Table 4 for ARCO-GP, in Table 5 for DIBS-GP, and in Table 6 for
GADGET+BEEPS.

ARCO-GP achieves better MAEs than DIBS-GP for almost all pairwise ACEs. Not surprisingly, ARCO-GP performs better
than GADGET+BEEPS on non-linear models.
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Table 1. Real-world dataset from Sachs et al. (2005)). The target graph has 11 nodes and 17 edges. We report means and 95% confidence
intervals (CIs) across 20 different ground truth models. Arrows next to metrics indicate lower is better (↓) and higher is better (↑).

Model #Edges ↓ A-AID ↓ P-AID ↓ OSET-AID

ARCO-K2-GP 7 ± 0 0.22 ± 0.01 0.48 ± 0.02 0.23 ± 0.01
ARCO-K3-GP 7 ± 1 0.22 ± 0.00 0.47 ± 0.02 0.22 ± 0.00
BAYESDAG 24 ± 1 0.33 ± 0.02 0.48 ± 0.02 0.33 ± 0.02
DAG-GNN 7 ± 0 0.23 ± 0.00 0.45 ± 0.00 0.23 ± 0.00
DDS 39 ± 1 0.36 ± 0.01 0.41 ± 0.01 0.36 ± 0.01
DIBS-GP 7 ± 1 0.22 ± 0.01 0.43 ± 0.04 0.22 ± 0.01
GADGET 9 ± 0 0.25 ± 0.00 0.50 ± 0.01 0.25 ± 0.00
GES 8 ± 0 0.28 ± 0.00 0.56 ± 0.00 0.28 ± 0.00
GOLEM 17 ± 0 0.40 ± 0.00 0.49 ± 0.00 0.39 ± 0.00
GRASP 8 ± 0 0.28 ± 0.00 0.56 ± 0.00 0.28 ± 0.00
PC 8 ± 0 – – –

(a) AID Metrics.

Model ↓ ESHD ↑ AUROC ↑ AUPRC ↑ TPR ↑ TNR

ARCO-K2-GP 17 ± 1 0.56 ± 0.02 0.30 ± 0.02 0.20 ± 0.03 0.96 ± 0.01
ARCO-K3-GP 17 ± 0 0.55 ± 0.03 0.31 ± 0.02 0.21 ± 0.02 0.96 ± 0.00
BAYESDAG 34 ± 2 0.49 ± 0.04 0.18 ± 0.03 0.22 ± 0.06 0.78 ± 0.01
DAG-GNN 18 ± 0 0.57 ± 0.00 0.37 ± 0.00 0.18 ± 0.00 0.96 ± 0.00
DDS 45 ± 2 0.48 ± 0.01 0.19 ± 0.02 0.33 ± 0.00 0.64 ± 0.02
DIBS-GP 16 ± 1 0.61 ± 0.02 0.36 ± 0.04 0.24 ± 0.04 0.97 ± 0.01
GADGET 20 ± 0 0.63 ± 0.03 0.27 ± 0.02 0.19 ± 0.01 0.94 ± 0.00
GES 19 ± 0 0.63 ± 0.00 0.44 ± 0.00 0.35 ± 0.00 0.91 ± 0.00
GOLEM 26 ± 0 0.55 ± 0.00 0.29 ± 0.00 0.24 ± 0.00 0.86 ± 0.00
GRASP 19 ± 0 0.63 ± 0.00 0.44 ± 0.00 0.35 ± 0.00 0.91 ± 0.00
PC 19 ± 0 0.63 ± 0.00 0.44 ± 0.00 0.35 ± 0.00 0.91 ± 0.00

(b) Edge prediction metrics.
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Table 2. Varying the maximal parent set size. Ablation studies on simulated (non-)linear ground truth models with 20 nodes. We report
means and 95% confidence intervals (CIs) across 20 different ground truth models. Arrows next to metrics indicate lower is better (↓) and
higher is better (↑).

Model #Edges ↓ A-AID ↓ P-AID ↓ OSET-AID ↓ A-AID (CO)

ARCO-K1-GP 10 ± 1 0.17 ± 0.02 0.82 ± 0.02 0.19 ± 0.02 0.24 ± 0.05
ARCO-K2-GP 32 ± 1 0.06 ± 0.02 0.13 ± 0.04 0.07 ± 0.02 0.06 ± 0.03
ARCO-K3-GP 35 ± 1 0.09 ± 0.04 0.15 ± 0.04 0.10 ± 0.04 0.09 ± 0.05
ARCO-K4-GP 37 ± 1 0.08 ± 0.03 0.16 ± 0.05 0.10 ± 0.03 0.08 ± 0.04

(a) Scale-free Nonlinear (Part 1/2).

Model ↓ ESHD ↑ AUROC ↑ AUPRC ↑ TPR ↑ TNR

ARCO-K1-GP 26 ± 1 0.86 ± 0.02 0.67 ± 0.02 0.28 ± 0.03 1.00 ± 0.00
ARCO-K2-GP 5 ± 2 0.97 ± 0.02 0.94 ± 0.03 0.88 ± 0.04 1.00 ± 0.00
ARCO-K3-GP 9 ± 2 0.94 ± 0.03 0.89 ± 0.04 0.87 ± 0.04 0.99 ± 0.00
ARCO-K4-GP 11 ± 2 0.94 ± 0.02 0.90 ± 0.04 0.86 ± 0.04 0.98 ± 0.00

(b) Scale-free Nonlinear (Part 2/2).

Model #Edges ↓ A-AID ↓ P-AID ↓ OSET-AID ↓ A-AID (CO)

ARCO-K1-GP 8 ± 1 0.21 ± 0.03 0.50 ± 0.03 0.21 ± 0.02 0.36 ± 0.06
ARCO-K2-GP 20 ± 2 0.15 ± 0.02 0.32 ± 0.04 0.18 ± 0.03 0.23 ± 0.05
ARCO-K3-GP 29 ± 2 0.12 ± 0.02 0.23 ± 0.03 0.16 ± 0.03 0.19 ± 0.05
ARCO-K4-GP 32 ± 3 0.10 ± 0.03 0.21 ± 0.04 0.15 ± 0.04 0.18 ± 0.06

(c) Erdös-Rényi Nonlinear (Part 1/2).

Model ↓ ESHD ↑ AUROC ↑ AUPRC ↑ TPR ↑ TNR

ARCO-K1-GP 32 ± 3 0.79 ± 0.03 0.54 ± 0.04 0.19 ± 0.03 1.00 ± 0.00
ARCO-K2-GP 21 ± 3 0.84 ± 0.03 0.68 ± 0.05 0.49 ± 0.05 1.00 ± 0.00
ARCO-K3-GP 17 ± 2 0.87 ± 0.02 0.76 ± 0.04 0.65 ± 0.05 0.99 ± 0.00
ARCO-K4-GP 17 ± 3 0.88 ± 0.03 0.79 ± 0.04 0.70 ± 0.05 0.99 ± 0.00

(d) Erdös-Rényi Nonlinear (Part 2/2).
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Table 3. Benchmarks on systems with 50 variables. Ablation studies on simulated non-linear ground truth models with 50 nodes and
different DAG structures. We report means and 95% confidence intervals (CIs) across 20 different ground truth models.

Model #Edges ↓ A-AID ↓ P-AID ↓ OSET-AID

ARCO-GP 91 ± 1 0.03 ± 0.01 0.06 ± 0.02 0.04 ± 0.02
BAYESDAG 237 ± 5 0.25 ± 0.02 0.57 ± 0.05 0.25 ± 0.02
DAG-GNN 37 ± 4 0.14 ± 0.01 0.94 ± 0.02 0.14 ± 0.01
DDS 1082 ± 26 0.39 ± 0.01 0.42 ± 0.01 0.39 ± 0.01
DIBS-GP 70 ± 7 0.14 ± 0.01 0.82 ± 0.04 0.14 ± 0.01
GADGET 176 ± 5 0.31 ± 0.02 0.75 ± 0.02 0.31 ± 0.02
GES 220 ± 11 0.38 ± 0.05 0.71 ± 0.05 0.39 ± 0.05
GOLEM 56 ± 5 0.16 ± 0.02 0.88 ± 0.03 0.17 ± 0.02
GRASP 154 ± 8 0.30 ± 0.02 0.71 ± 0.03 0.31 ± 0.02
PC 108 ± 3 – – –

(a) Scale-free Nonlinear (Part 1/2).

Model ↓ ESHD ↑ AUROC ↑ AUPRC ↑ TPR ↑ TNR

ARCO-GP 6 ± 2 0.98 ± 0.01 0.95 ± 0.03 0.94 ± 0.02 1.00 ± 0.00
BAYESDAG 220 ± 11 0.77 ± 0.03 0.40 ± 0.03 0.59 ± 0.04 0.92 ± 0.00
DAG-GNN 90 ± 4 0.61 ± 0.02 0.42 ± 0.03 0.22 ± 0.03 0.99 ± 0.00
DDS 1037 ± 25 0.79 ± 0.03 0.52 ± 0.05 0.73 ± 0.03 0.57 ± 0.01
DIBS-GP 123 ± 7 0.61 ± 0.02 0.27 ± 0.03 0.22 ± 0.03 0.98 ± 0.00
GADGET 191 ± 7 0.79 ± 0.02 0.30 ± 0.03 0.42 ± 0.02 0.94 ± 0.00
GES 229 ± 13 0.69 ± 0.02 0.34 ± 0.03 0.46 ± 0.05 0.92 ± 0.00
GOLEM 94 ± 6 0.65 ± 0.02 0.43 ± 0.04 0.30 ± 0.03 0.99 ± 0.00
GRASP 160 ± 9 0.72 ± 0.01 0.41 ± 0.02 0.49 ± 0.02 0.95 ± 0.00
PC 156 ± 5 0.61 ± 0.01 0.25 ± 0.02 0.25 ± 0.02 0.96 ± 0.00

(b) Scale-free Nonlinear (Part 2/2).

Model #Edges ↓ A-AID ↓ P-AID ↓ OSET-AID

ARCO-GP 48 ± 3 0.09 ± 0.01 0.26 ± 0.02 0.09 ± 0.01
BAYESDAG 195 ± 4 0.17 ± 0.03 0.48 ± 0.06 0.18 ± 0.03
DAG-GNN 34 ± 3 0.14 ± 0.01 0.57 ± 0.04 0.14 ± 0.01
DDS 928 ± 30 0.37 ± 0.03 0.45 ± 0.03 0.38 ± 0.03
DIBS-GP 33 ± 8 0.12 ± 0.01 0.43 ± 0.04 0.13 ± 0.01
GADGET 121 ± 4 0.25 ± 0.02 0.50 ± 0.05 0.26 ± 0.02
GES 134 ± 7 0.25 ± 0.03 0.45 ± 0.04 0.27 ± 0.03
GOLEM 52 ± 5 0.16 ± 0.02 0.54 ± 0.03 0.16 ± 0.01
GRASP 92 ± 5 0.18 ± 0.02 0.40 ± 0.05 0.19 ± 0.02
PC 92 ± 3 – – –

(c) Erdös-Rényi Nonlinear (Part 1/2).

Model ↓ ESHD ↑ AUROC ↑ AUPRC ↑ TPR ↑ TNR

ARCO-GP 56 ± 4 0.77 ± 0.02 0.57 ± 0.04 0.46 ± 0.03 1.00 ± 0.00
BAYESDAG 213 ± 9 0.68 ± 0.02 0.29 ± 0.02 0.41 ± 0.04 0.93 ± 0.00
DAG-GNN 110 ± 4 0.55 ± 0.01 0.25 ± 0.03 0.12 ± 0.01 0.99 ± 0.00
DDS 900 ± 26 0.75 ± 0.03 0.44 ± 0.05 0.64 ± 0.04 0.63 ± 0.01
DIBS-GP 105 ± 5 0.56 ± 0.02 0.30 ± 0.04 0.13 ± 0.03 0.99 ± 0.00
GADGET 130 ± 4 0.84 ± 0.01 0.46 ± 0.03 0.45 ± 0.02 0.97 ± 0.00
GES 122 ± 9 0.77 ± 0.02 0.51 ± 0.03 0.58 ± 0.03 0.97 ± 0.00
GOLEM 111 ± 4 0.59 ± 0.01 0.31 ± 0.03 0.20 ± 0.02 0.99 ± 0.00
GRASP 80 ± 6 0.79 ± 0.01 0.61 ± 0.03 0.60 ± 0.03 0.98 ± 0.00
PC 112 ± 5 0.69 ± 0.01 0.43 ± 0.02 0.40 ± 0.02 0.98 ± 0.00

(d) Erdös-Rényi Nonlinear (Part 2/2).
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Table 4. Nonlinear Average Causal Effect Estimation (ARCO-GP). We report the mean absolute errors and 95% confidence intervals
(CIs) between predicted and true average causal effects EXj | do(Xi=1) [Xj ]. The interventions do(Xi = 1) are listed per column and the
targets Xj listed per row. The results stem from simulations on 10 different ground truth models with fixed graph (see Figure 4) and
simulated nonlinear mechanisms.

do(X0 = 1) do(X1 = 1) do(X2 = 1) do(X3 = 1) do(X4 = 1) do(X5 = 1)

X0 0.00 ± 0.00 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
X1 0.07 ± 0.02 0.00 ± 0.00 0.09 ± 0.02 0.08 ± 0.03 0.09 ± 0.03 0.09 ± 0.03
X2 0.18 ± 0.09 0.25 ± 0.08 0.00 ± 0.00 0.10 ± 0.04 0.12 ± 0.03 0.10 ± 0.04
X3 0.11 ± 0.03 0.44 ± 0.23 0.06 ± 0.02 0.00 ± 0.00 0.06 ± 0.02 0.06 ± 0.02
X4 0.13 ± 0.05 0.30 ± 0.12 0.08 ± 0.03 0.08 ± 0.02 0.00 ± 0.00 0.06 ± 0.02
X5 0.26 ± 0.06 0.44 ± 0.21 0.04 ± 0.01 0.04 ± 0.01 0.34 ± 0.11 0.00 ± 0.00
X6 0.22 ± 0.08 0.27 ± 0.12 0.06 ± 0.03 0.06 ± 0.03 0.14 ± 0.04 0.10 ± 0.03
X7 0.12 ± 0.04 0.25 ± 0.14 0.09 ± 0.03 0.09 ± 0.03 0.08 ± 0.02 0.09 ± 0.04
X8 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
X9 0.07 ± 0.03 0.06 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 0.07 ± 0.03
X10 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.03 0.06 ± 0.03 0.07 ± 0.02 0.07 ± 0.02

AVG 0.12 ± 0.02 0.20 ± 0.03 0.06 ± 0.01 0.06 ± 0.01 0.10 ± 0.01 0.07 ± 0.01

do(X6 = 1) do(X7 = 1) do(X8 = 1) do(X9 = 1) do(X10 = 1)

X0 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
X1 0.12 ± 0.03 0.10 ± 0.02 0.10 ± 0.03 0.09 ± 0.03 0.09 ± 0.03
X2 0.12 ± 0.03 0.11 ± 0.03 0.11 ± 0.03 0.11 ± 0.04 0.11 ± 0.04
X3 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02
X4 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02
X5 0.04 ± 0.01 0.04 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.04 ± 0.01
X6 0.00 ± 0.00 0.06 ± 0.03 0.07 ± 0.03 0.06 ± 0.03 0.06 ± 0.03
X7 0.15 ± 0.05 0.00 ± 0.00 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.03
X8 0.06 ± 0.02 0.06 ± 0.02 0.00 ± 0.00 0.06 ± 0.02 0.06 ± 0.02
X9 0.07 ± 0.03 0.06 ± 0.03 0.26 ± 0.17 0.00 ± 0.00 0.07 ± 0.03
X10 0.06 ± 0.02 0.06 ± 0.03 0.15 ± 0.08 0.12 ± 0.07 0.00 ± 0.00

AVG 0.07 ± 0.01 0.06 ± 0.01 0.09 ± 0.02 0.07 ± 0.01 0.07 ± 0.01

24



Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders

Table 5. Nonlinear Average Causal Effect Estimation (DIBS). We report the mean absolute errors and 95% confidence intervals (CIs)
between predicted and true average causal effects EXj | do(Xi=1) [Xj ]. The interventions do(Xi = 1) are listed per column and the
targets Xj listed per row. The results stem from simulations on 10 different ground truth models with fixed graph (see Figure 4) and
simulated nonlinear mechanisms.

do(X0 = 1) do(X1 = 1) do(X2 = 1) do(X3 = 1) do(X4 = 1) do(X5 = 1)

X0 0.00 ± 0.00 0.30 ± 0.28 0.23 ± 0.27 0.20 ± 0.22 0.10 ± 0.10 0.06 ± 0.03
X1 0.40 ± 0.33 0.00 ± 0.00 0.19 ± 0.28 0.09 ± 0.05 0.12 ± 0.10 0.07 ± 0.04
X2 0.45 ± 0.22 0.34 ± 0.20 0.00 ± 0.00 0.12 ± 0.09 0.09 ± 0.05 0.09 ± 0.06
X3 0.23 ± 0.23 0.55 ± 0.38 0.17 ± 0.25 0.00 ± 0.00 0.07 ± 0.03 0.10 ± 0.06
X4 0.24 ± 0.11 0.49 ± 0.23 0.20 ± 0.19 0.10 ± 0.06 0.00 ± 0.00 0.14 ± 0.07
X5 0.38 ± 0.10 0.50 ± 0.38 0.14 ± 0.19 0.07 ± 0.04 0.32 ± 0.20 0.00 ± 0.00
X6 0.37 ± 0.21 0.59 ± 0.26 0.06 ± 0.04 0.05 ± 0.03 0.20 ± 0.13 0.42 ± 0.23
X7 0.27 ± 0.15 0.43 ± 0.22 0.11 ± 0.07 0.10 ± 0.06 0.12 ± 0.09 0.17 ± 0.11
X8 0.07 ± 0.04 0.07 ± 0.04 0.07 ± 0.05 0.07 ± 0.04 0.07 ± 0.04 0.08 ± 0.05
X9 0.07 ± 0.04 0.07 ± 0.05 0.08 ± 0.04 0.07 ± 0.04 0.08 ± 0.04 0.07 ± 0.05
X10 0.04 ± 0.04 0.05 ± 0.03 0.07 ± 0.05 0.06 ± 0.04 0.04 ± 0.03 0.05 ± 0.04

AVG 0.23 ± 0.08 0.31 ± 0.10 0.12 ± 0.10 0.08 ± 0.04 0.11 ± 0.02 0.11 ± 0.03

do(X6 = 1) do(X7 = 1) do(X8 = 1) do(X9 = 1) do(X10 = 1)

X0 0.06 ± 0.03 0.07 ± 0.03 0.08 ± 0.04 0.07 ± 0.02 0.05 ± 0.03
X1 0.10 ± 0.05 0.08 ± 0.05 0.08 ± 0.05 0.07 ± 0.04 0.09 ± 0.04
X2 0.10 ± 0.05 0.10 ± 0.05 0.10 ± 0.06 0.10 ± 0.05 0.09 ± 0.05
X3 0.08 ± 0.03 0.08 ± 0.03 0.09 ± 0.04 0.08 ± 0.03 0.08 ± 0.03
X4 0.11 ± 0.08 0.09 ± 0.04 0.08 ± 0.04 0.07 ± 0.04 0.08 ± 0.05
X5 0.20 ± 0.16 0.06 ± 0.04 0.07 ± 0.03 0.07 ± 0.03 0.05 ± 0.03
X6 0.00 ± 0.00 0.10 ± 0.11 0.06 ± 0.04 0.04 ± 0.03 0.04 ± 0.02
X7 0.27 ± 0.13 0.00 ± 0.00 0.10 ± 0.06 0.09 ± 0.05 0.10 ± 0.06
X8 0.07 ± 0.04 0.07 ± 0.04 0.00 ± 0.00 0.15 ± 0.21 0.14 ± 0.19
X9 0.08 ± 0.04 0.07 ± 0.05 0.40 ± 0.27 0.00 ± 0.00 0.14 ± 0.12
X10 0.06 ± 0.04 0.07 ± 0.05 0.29 ± 0.16 0.44 ± 0.34 0.00 ± 0.00

AVG 0.10 ± 0.02 0.07 ± 0.02 0.12 ± 0.04 0.11 ± 0.04 0.08 ± 0.02
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Table 6. Nonlinear Average Causal Effect Estimation (GADGET + BEEPS). We report the mean absolute errors and 95% confidence
intervals (CIs) between predicted and true average causal effects EXj | do(Xi=1) [Xj ]. The interventions do(Xi = 1) are listed per column
and the targets Xj listed per row. The results stem from simulations on 10 different ground truth models with fixed graph (see Figure 4)
and simulated nonlinear mechanisms.

do(X0 = 1) do(X1 = 1) do(X2 = 1) do(X3 = 1) do(X4 = 1) do(X5 = 1)

X0 0.00 ± 0.00 0.38 ± 0.17 0.27 ± 0.13 0.34 ± 0.17 0.24 ± 0.14 0.15 ± 0.12
X1 0.74 ± 0.30 0.00 ± 0.00 0.20 ± 0.13 0.15 ± 0.08 0.22 ± 0.13 0.26 ± 0.16
X2 0.49 ± 0.28 0.31 ± 0.20 0.00 ± 0.00 0.16 ± 0.11 0.14 ± 0.14 0.21 ± 0.10
X3 0.49 ± 0.23 0.87 ± 0.44 0.09 ± 0.03 0.00 ± 0.00 0.13 ± 0.08 0.15 ± 0.10
X4 0.43 ± 0.28 0.74 ± 0.57 0.14 ± 0.09 0.15 ± 0.06 0.00 ± 0.00 0.20 ± 0.12
X5 0.54 ± 0.27 0.47 ± 0.31 0.07 ± 0.04 0.10 ± 0.07 0.32 ± 0.20 0.00 ± 0.00
X6 0.38 ± 0.17 0.48 ± 0.12 0.13 ± 0.10 0.09 ± 0.04 0.23 ± 0.13 0.33 ± 0.16
X7 0.30 ± 0.23 0.43 ± 0.24 0.09 ± 0.06 0.13 ± 0.11 0.12 ± 0.09 0.17 ± 0.13
X8 0.06 ± 0.04 0.06 ± 0.03 0.06 ± 0.04 0.06 ± 0.04 0.06 ± 0.04 0.06 ± 0.04
X9 0.08 ± 0.05 0.07 ± 0.05 0.08 ± 0.05 0.07 ± 0.05 0.08 ± 0.05 0.08 ± 0.05
X10 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

AVG 0.32 ± 0.10 0.35 ± 0.11 0.11 ± 0.03 0.12 ± 0.02 0.14 ± 0.03 0.15 ± 0.05

do(X6 = 1) do(X7 = 1) do(X8 = 1) do(X9 = 1) do(X10 = 1)

X0 0.08 ± 0.05 0.09 ± 0.05 0.06 ± 0.03 0.06 ± 0.03 0.06 ± 0.02
X1 0.18 ± 0.11 0.15 ± 0.07 0.10 ± 0.04 0.10 ± 0.04 0.10 ± 0.04
X2 0.09 ± 0.04 0.12 ± 0.06 0.09 ± 0.05 0.09 ± 0.05 0.08 ± 0.04
X3 0.10 ± 0.05 0.12 ± 0.06 0.08 ± 0.02 0.08 ± 0.03 0.08 ± 0.03
X4 0.12 ± 0.07 0.13 ± 0.05 0.09 ± 0.03 0.08 ± 0.03 0.08 ± 0.04
X5 0.17 ± 0.11 0.12 ± 0.07 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02
X6 0.00 ± 0.00 0.24 ± 0.15 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03
X7 0.32 ± 0.09 0.00 ± 0.00 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.04
X8 0.06 ± 0.03 0.06 ± 0.03 0.00 ± 0.00 0.15 ± 0.08 0.15 ± 0.08
X9 0.07 ± 0.05 0.08 ± 0.05 0.51 ± 0.20 0.00 ± 0.00 0.26 ± 0.13
X10 0.03 ± 0.01 0.03 ± 0.01 0.32 ± 0.16 0.49 ± 0.29 0.00 ± 0.00

AVG 0.11 ± 0.03 0.10 ± 0.03 0.13 ± 0.03 0.11 ± 0.02 0.09 ± 0.01
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