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BAFFLE: TOWARDS RESOLVING FEDERATED LEARN-
ING’S DILEMMA - THWARTING BACKDOOR AND
INFERENCE ATTACKS

ABSTRACT

Recently, federated learning (FL) has been subject to both security and privacy
attacks posing a dilemmatic challenge on the underlying algorithmic designs: On
the one hand, FL is shown to be vulnerable to backdoor attacks that stealthily ma-
nipulate the global model output using malicious model updates, and on the other
hand, FL is shown vulnerable to inference attacks by a malicious aggregator in-
ferring information about clients’ data from their model updates. Unfortunately,
existing defenses against these attacks are insufficient and mitigating both attacks
at the same time is highly challenging, because while defeating backdoor attacks
requires the analysis of model updates, protection against inference attacks pro-
hibits access to the model updates to avoid information leakage. In this work,
we introduce BAFFLE, a novel in-depth defense for FL that tackles this challenge.
To mitigate backdoor attacks, it applies a multilayered defense by using a Model
Filtering layer to detect and reject malicious model updates and a Poison Elimi-
nation layer to eliminate any effect of a remaining undetected weak manipulation.
To impede inference attacks, we build private BAFFLE that securely evaluates the
BAFFLE algorithm under encryption using sophisticated secure computation tech-
niques. We extensively evaluate BAFFLE against state-of-the-art backdoor attacks
on several datasets and applications, including image classification, word predic-
tion, and IoT intrusion detection. We show that BAFFLE can entirely remove back-
doors with a negligible effect on accuracy and that private BAFFLE is practical.

1 INTRODUCTION

Federated learning (FL) is an emerging collaborative machine learning trend with many applica-
tions such as next word prediction for mobile keyboards (McMahan & Ramage, 2017), medical
imaging (Sheller et al., 2018a), and intrusion detection for IoT (Nguyen et al., 2019). In FL, clients
locally train model updates using private data and provide these to a central aggregator who com-
bines them to a global model that is sent back to clients for the next training iteration. FL offers
efficiency and scalability as the training is distributed among many clients and executed in paral-
lel (Bonawitz et al., 2019). In particular, FL improves privacy by enabling clients to keep their
training data locally (McMahan et al., 2017). This is not only relevant for compliance to legal obli-
gations such as the GDPR (2018), but also in general when processing personal and sensitive data.

Despite its benefits, FL is vulnerable to backdoor (Bagdasaryan et al., 2020; Nguyen et al., 2020;
Xie et al., 2020) and inference attacks (Pyrgelis et al., 2018; Shokri et al., 2017; Ganju et al., 2018).
In the former, the adversary stealthily manipulates the global model so that attacker-chosen inputs
result in wrong predictions chosen by the adversary. Existing backdoor defenses, e.g., (Shen et al.,
2016; Blanchard et al., 2017) fail to effectively protect against state-of-the-art backdoor attacks, e.g.,
constrain-and-scale (Bagdasaryan et al., 2020) and DBA (Xie et al., 2020). In inference attacks, the
adversary aims at learning information about the clients’ local data by analyzing their model updates.
Mitigating both attack types at the same time is highly challenging due to a dilemma: Backdoor de-
fenses require access to the clients’ model updates, whereas inference mitigation strategies prohibit
this to avoid information leakage. No solution currently exists that defends against both attacks at
the same time (§6).

Our Goals and Contributions. In this paper, we provide the following contributions:

1. BAFFLE, a novel generic FL defense system that simultaneously protects both the security and
the data privacy of FL by effectively preventing backdoor and inference attacks. To the best of
our knowledge, this is the first work that discusses and tackles this dilemma, i.e., no existing
defense against backdoor attacks preserves the privacy of the clients’ data (§4).
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2. To the best of our knowledge, we are the first to point out that combining clustering, clipping,
and noising can prevent the adversary to trade-off between attack impact and attack stealthiness.
However, the naı̈ve combination of these two classes of defenses is not effective to defend against
sophisticated backdoor attacks. Therefore, we introduce a novel backdoor defense (cf. Alg. 1)
that has three-folds of novelty: (1) a novel two-layer defense, (2) a new dynamic clustering ap-
proach (§3.1), and (3) a new adaptive threshold tuning scheme for clipping and noising (§3.2).
The clustering component filters out malicious model updates with high attack impact while
adaptive smoothing, clipping, and noising eliminate potentially remaining malicious model con-
tributions. Moreover, BAFFLE is able to mitigate more complex attack scenarios like the simul-
taneous injection of different backdoors by several adversaries that cannot be handled in existing
defenses (§3).

3. We design tailored efficient secure (two-party) computation protocols for BAFFLE resulting in
private BAFFLE, the first privacy-preserving backdoor defense that also inhibits inference attacks
(§4). To the best of our knowledge, no existing defense against backdoor attacks preserves the
privacy of the clients’ data (§6).

4. We demonstrate BAFFLE’s effectiveness against backdoor attacks through an extensive evaluation
on various datasets and applications (§5). Beyond mitigating state-of-the-art backdoor attacks,
we also show that BAFFLE succeeds to thwart adaptive attacks that optimize the attack strategy
to circumvent BAFFLE (§5.1).

5. We evaluate the overhead of applying secure two-party computation to demonstrate the efficiency
of private BAFFLE. A training iteration of private BAFFLE for a neural network with 2.7 million
parameters and 50 clients on CIFAR-10 takes less than 13 minutes (§5.3).

2 BACKGROUND AND PROBLEM SETTING

Federated learning (FL) is a concept for distributed machine learning where K clients and an
aggregator A collaboratively build a global model G (McMahan et al., 2017). In training round t ∈
[1, T ], each client i ∈ [1,K] locally trains a local modelWi (with p parameters/weightsw1

i , . . . , w
p
i )

based on the previous global model Gt−1 using its local data Di and sends Wi to A. Then, A
aggregates the received models Wi into the new global model Gt by averaging the local models
(weighted by the number of training samples used to train it): Gt = ΣKi=1

ni×Wi

n ,where ni =

‖Di‖, n = ΣKi=1ni (cf. Alg. 2 and Alg. 3 in §A for details). In practice, previous works employ
equal weights (ni = n/K) for the contributions of all clients (Bagdasaryan et al., 2020; Xie et al.,
2020). We adopt this approach, i.e., we set Gt = ΣKi=1

Wi

K .

Adversary model: In typical FL settings, there are two adversaries: malicious clients that try to
inject backdoors into the global model and honest-but-curious (a.k.a. semi-honest) aggregators that
correctly compute and follow the training protocols, but aim at (passively) gaining information about
the training data of the clients through inference attacks (Bonawitz et al., 2017). The former type
of adversary Ac has full control over K ′ (K ′ < K

2 ) clients and their training data, processes, and
parameters (Bagdasaryan et al., 2020). Ac also has full knowledge of the aggregator’s operations,
including potentially applied backdooring defenses and can arbitrarily adapt its attack strategy at any
time during the training like simultaneously injecting none, one, or several backdoors. However,Ac
has no control over any processes executed at the aggregator nor over the honest clients. The second
adversary type, the honest-but-curious aggregatorAs, has access to all local model updates Wi, and
can thus perform model inference attacks on each local model Wi to extract information about the
corresponding participant’s data Di used for training Wi.

Backdoor attacks. The goals of Ac are two-fold: (1) Impact: Ac aims at manipulat-
ing the global model Gt such that the modified model G′t provides incorrect predictions
G′t(x) = c′ 6= Gt(x), ∀x ∈ IAc , where IAc is a trigger set specific adversary-chosen inputs.
(2) Stealthiness: In addition, Ac seeks to make poisoned models and benign models indistinguish-
able to avoid detection. Model G′t should therefore perform normally on all other inputs that are
not in the trigger set, i.e., G′t(x) = Gt(x),∀x 6∈ IAc , and the dissimilarity (e.g., Euclidean dis-
tance) between a poisoned model W ′ and a benign model W must be smaller than a threshold ε:
‖W ′ −W‖ < ε.

Inference Attacks. The honest-but-curious aggregator As attempts to infer sensitive information
about clients’ data Di from their model updates Wi (Pyrgelis et al., 2018; Shokri et al., 2017; Ganju
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Figure 1: Overview of BAFFLE in round t.
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Figure 2: Comparison of clustering quality for (a) ground truth, (b) using K-means with 2 clusters as in
Auror (Shen et al., 2016), (c) naively applied HDBSCAN and (d) our approach as in BAFFLE. The models are
visualized using Independent Component Analysis (ICA) approach (Jutten & Herault, 1991).

et al., 2018; Carlini et al., 2019; Melis et al., 2019) by maximising the information φi = Infer(Wi)
that As gains about the data Di of client i by inferring from its corresponding model Wi.

3 BACKDOOR-RESILIENT FEDERATED LEARNING

We introduce BAFFLE, a novel defense against backdoor attacks preventing adversary Ac from
achieving attack stealthiness and impact (cf. §2). Ac can control the attack impact by, e.g., ad-
justing the poisoned data rate PDR, i.e., the fraction of poisoned data DAc in the training data D
(Eq. 3), or, by tuning the loss-control parameter α that controls the trade-off between backdoor task
learning and similarity with the global model (Eq. 4), see §D for details. On one hand, by increasing
attack impact, poisoned models become more dissimilar to benign ones, i.e., easier to be detected.
One the other hand, if poisoned updates are not well trained on the backdoor to remain undetected,
the backdoor can be eliminated more easily. BAFFLE exploits this conflict to realize a multilayer
backdoor defense shown in Fig. 1 and Alg. 1. The first layer, called Model Filtering (§3.1), uses
dynamic clustering to identify and remove potentially poisoned model updates having high attack
impact. The second layer, called Poison Elimination (§3.2), leverages an adaptive threshold tuning
scheme to clip model weights in combination with appropriate noising to smooth out and remove
the backdoor impact of potentially surviving poisoned model updates.

3.1 FILTERING POISONED MODELS

The Model Filtering layer utilizes a new dynamic clustering approach aiming at excluding models
with high attack impact. It overcomes several limitations of existing defenses as (1) it can handle
dynamic attack scenarios such as simultaneous injection of multiple backdoors, and (2) it minimizes
false positives. Existing defenses (Blanchard et al., 2017; Shen et al., 2016) cluster updates into two
groups where the smaller group is always considered potentially malicious and removed, leading
to false positives and reduced accuracy when no attack is taking place. More importantly, Ac may
also split compromised clients into several groups injecting different backdoors. A fixed number
of clusters bares the risk that poisoned and benign models end up in the same cluster, in particular,
if models with different backdoors differ significantly. This is shown in Fig. 2 depicting different
clusterings of model updates1. Fig. 2a shows the ground truth where Ac uses two groups of clients:
20 clients inject a backdoor and five provide random models to fool the deployed clustering-based
defense. Fig. 2b shows how K-means (as used by Shen et al. (2016)) fails to separate benign and
poisoned models so that all poisoned ones end up in the same cluster with the benign models.

1The models were trained for an FL-based Network Intrusion Detection System (NIDS), cf. §E.
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Algorithm 1 BAFFLE

1: Input: K,G0, T . K is the number of clients,G0 is the initial global model, T is the number of training iterations
2: Output: GT . GT is the updated global model after T iterations
3: for each training iteration t in [1, T ] do
4: for each client i in [1, K] do
5: Wi ← CLIENTUPDATE(Gt−1) . The aggregator sendsGt−1 to Client i who trainsGt−1 using its dataDi locally to achieve

local modalWi and sendsWi back to the aggregator.
6: (c11, . . . , cKK)← COSINEDISTANCE(W1, . . . ,WK ) . ∀i, j ∈ (1, . . . , K), cij is the Cosine distance betweenWi andWj

7: (b1, . . . , bL)← CLUSTERING(c11, . . . , cKK ) . L is the number of admitted models, bl are the indices of the admitted models
8: (e1, . . . , eK)← EUCLIDEANDISTISTANCES(Gt−1, (W1, . . . ,WK)) . ei is the Euclidean distance betweenGt−1 andWi

9: St ← MEDIAN(e1, . . . , eK) . St is the adaptive clipping bound at round t
10: for each client l in [1, L] do
11: W∗bl

← Wbl
∗ MIN(1, St/ebl ) . W∗bl

is the admitted model after clipped by the adaptive clipping bound St

12: G∗t ←
∑L

l=1W
∗
bl
/L . Aggregating,G∗t is the plain global model before adding noise

13: σ ← λ ∗ St . Adaptive noising level
14: Gt ← G∗t +N(0, σ) . Adaptive noising

Dynamic Clustering. We overcome both challenges by calculating the pairwise Cosine distances
measuring the angular differences between all model updates and applying the HDBSCAN clus-
tering algorithm (Campello et al., 2013). The Cosine distance is not affected by attacks that scale
updates to boost their impact as this does not change the angle between the updates. While Ac
can easily manipulate the L2-norms of updates, reducing the Cosine distances decreases the attack
impact (Fung et al., 2018). HDBSCAN clusters the models based on their density and dynamically
determines the required number of clusters. This can also be a single cluster, preventing false pos-
itives in the absence of attacks. Additionally, HDBSCAN labels models as noise if they do not fit
into any cluster. This allows BAFFLE to efficiently handle multiple poisoned models with different
backdoors by labeling them as noise to be excluded. We select the minimum cluster size to be at
least 50% of the clients, i.e., K2 + 1, s.t. it contains the majority of the updates (which we assume
to be benign, cf. §2). All remaining (potentially poisoned) models are marked as outliers. This
behavior is depicted in Fig. 2d where the two benign clusters C and D from Fig. 2c are merged into
one cluster while both malicious and random contributions are labeled as outliers. Hence, to the
best of our knowledge, our clustering is the first FL backdoor defense for dynamic attacks where the
number of injected backdoors varies. The clustering step is shown in Lines 6-7 of Alg. 1 where L
models (Wb1 , . . . ,WbL ) are accepted.

3.2 RESIDUAL POISON ELIMINATION BY SMOOTHING

The Model Filtering layer (§3.1) eliminates contributions of poisoned model updates that are not
filtered out by adaptive clipping and noising. In contrast to existing defenses that empirically specify
a static clipping bound and noise level (and have been shown to be ineffective (Bagdasaryan et al.,
2020)), we automatically and adaptively tune these to effectively eliminate backdoors. Our design
is also resilient to adversaries that dynamically adapt their attack.

Backdoor embedding makes poisoned models different from benign models. Clipping and noising
can be combined to smooth model updates and remove these differences (McMahan et al., 2018).
Clipping scales down the model weights to a clipping bound S: Wi ← Wi ∗ MIN(1, S/ei), where
ei is the Euclidean distance (L2-norm, Def. 1) between Wi and Gt−1. Noising refers to a technique
that adds noise to a model (controlled by noise level σ): W ∗ = W + N(0, σ), where N(0, σ) is
a noise generation function, e.g., the Gaussian distribution. While clipping and noising can renove
backdoors, previous works (Bagdasaryan et al., 2020) also show that they reduce the global model
accuracy on the main task, making it unusable. It is challenging to find an appropriate clipping
bound S and a noise level σ that strikes a balance between the accuracy of the main task and effec-
tiveness of the backdoor defense. Both need to be dynamically adapted to model updates in different
training iterations and different datasets (§F.1) as well as to dynamic adversaries constantly chang-
ing their attack strategy (Bagdasaryan et al., 2020). Note that this use of clipping and noising is
different from differential privacy (DP; Dwork & Roth (2014); McMahan et al. (2018)) protecting
the confidentiality of clients’ data from a curious aggregator and where clients truthfully train their
models. In contrast, our scenario concerns malicious clients that intentionally try to backdoor FL. To
overcome these challenges, we design our Poison Elimination layer for BAFFLE s.t. it automatically
determines appropriate values for the clipping bound S and the noise level σ:
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Figure 3: L2-norms depending on the num-
ber of training rounds for different datasets.
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Figure 4: Overview of private BAFFLE in round t
using Secure-Two-Party Computation (STPC).

Adaptive Clipping. Fig. 3 shows the variation of the average L2-norms of model updates of benign
clients in three different datasets over subsequent training rounds. This shows that the L2-norms
get smaller after each training iteration. To effectively remove backdoors while preserving benign
updates unchanged, the clipping bound and noise level must dynamically adapt to this decrease in
the L2-norm. We design an adaptive selection of the clipping threshold St for the L2-norm for
each training iteration t. The aggregator selects the median of the L2-norms of the model updates
(W1, . . . ,WK) classified as benign in the clustering of our Model Filtering layer at iteration t. As
we assume that the majority of clients is benign, this ensures that St is determined based on a
benign model even if some malicious updates were not detected during clustering. We formalize
our clipping scheme as follows: W ∗bl = Wbl ∗MIN(1, St/ebl), where St = MEDIAN(e1, . . . , eL) in
iteration t, see Lines 8-11 of Alg. 1 for details. By using the median, we ensures that the chosen
clipping bound St is always computed between a benign local model and the global model since
we assume that more than 50% of clients are benign. We evaluate the effectiveness of our adaptive
clipping approach in §F.1.

Adaptive noising. We introduce a novel adaptive approach to calculate an appropriate level of noise
based on the clipping bound St in iteration t. We select the commonly used Gaussian distribution
to generate noise that is added to the global model. Let σ be the noise level and let λ be a parameter
indicating the product of σ and the clipping bound St. Our adaptive noise addition is formalized as
follows: Gt = G∗t + N(0, σ), where σ = λSt, for a clipping bound St and a noise level factor λ,
see Lines 13-14 of Alg. 1 for details. In §F.1, we empirically determine λ = 0.001 for image
classification and word prediction, and λ = 0.01 for the IoT datasets.

4 PRIVACY-PRESERVING FEDERATED LEARNING

Inference attacks threaten the privacy of FL (cf. §2). They enable the aggregator to infer sensitive
information about the clients’ training data from the local models. So far, existing defenses against
model inference attacks either contradict with backdoor defenses and/or are inefficient (cf. §6).
Generally, there are two approaches to protect the privacy of clients’ data: differential privacy
(DP; Dwork & Roth (2014)) and secure two-party computation (STPC; Yao (1986); Goldreich et al.
(1987)). DP is a statistical approach that can be efficiently implemented, but it can only offer high
privacy protection at the cost of a significant loss in accuracy due to the noise added to the mod-
els (Zhang et al., 2020; Aono et al., 2017; So et al., 2019). In contrast, STPC provides strong
privacy guarantees and good efficiency but requires two non-colluding servers. Such servers can,
for example, be operated by two competing companies that want to jointly provide a private FL
service. STPC allows two parties to securely evaluate a function on their encrypted inputs. Thereby,
the parties have only access to so-called secret-shares of the inputs that are completely random and
therefore do not leak any information besides the final output. The real value can only be obtained
if both shares are combined. To provide best efficiency and reasonable security, we chose STPC for
private BAFFLE. Alternatively, also more parties can be used in order to achieve better security at
the cost of lower efficiency.

For realizing BAFFLE with STPC, we co-design all components of BAFFLE as efficient STPC pro-
tocols. This requires to represent all functions that have to be computed with STPC as Boolean
circuits. We use three STPC protocols in order to achieve good efficiency: Arithmetic sharing (orig-
inally introduced by Goldreich et al. (1987)) for linear operations as well as Boolean sharing (also
originally introduced by Goldreich et al. (1987)) and Yao’s Garbled Circuits (GC, originally intro-
duced by Yao (1986)) for non-linear operations. To further improve performance, we approximate
HDBSCAN with the simpler DBSCAN (Ester et al., 1996) to avoid the construction of the minimal
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spanning tree in HDBSCAN as it is very expensive to realize with STPC. Additionally, on a lower
level, we generate a novel (previously not existing) circuit for square root computation needed for
determining cosine and L2-norm distances using conventional logic synthesis tools. We carefully
implement the circuit using Verilog HDL and compile it with the Synopsys Design Compiler (DC,
2010) in a highly efficient way. We customize the flow of the commercial hardware logic synthesis
tools to generate circuits optimized for GC including its state-of-the-art optimizations such as point-
and-permute (Beaver et al., 1990), free-XOR (Kolesnikov & Schneider, 2008), FastGC (Huang et al.,
2011), fixed-key AES (Bellare et al., 2013), and half-gates (Zahur et al., 2015). For example, for
the Free-XOR technique (Kolesnikov & Schneider, 2008), which enables the evaluation of XOR
gates without costly cryptographic encryption and thus makes GCs much more efficient, one has to
minimize the number of non-XOR gates in the Boolean representation. We developed a technology
library to guide the mapping of the logic to the circuit with no manufacturing rules defined similarly
as in (Songhori et al., 2015; Demmler et al., 2015a). More concretely, to generate efficient Boolean
circuits for BAFFLE, we constrained the mapping to free XOR gates and non-free AND gates. We
enhanced the cost functions of the single gates: We set the delay and area of XOR gates to 0, the
delay and area of the inverters to 0 (as they can be replaced with XOR gates with the constant input
1), and the delay and area of AND gates to a non-0 value. Note that the logic synthesis tool outputs
a standard Boolean netlist containing cells that are included in the cell library. To use the netlist in
a STPC framework (Demmler et al., 2015b), we performed post-synthesis. This circuit construction
as well as the new circuit are also of independent interest.The new circuit can be used for other appli-
cations that need a privacy-preserving computation of square roots (e.g., any protocol that uses the
Euclidean distance like privacy-preserving face recognition (Osadchy et al., 2010)). Moreover, the
circuit construction chain is interesting for any other circuit that needs to be created and optimized
for the GC protocol.

Private BAFFLE. To summarize, the distance calculation, clustering, adaptive clipping, and aggre-
gation steps of BAFFLE (cf. Alg. 1) are executed within STPC to protect the privacy of the clients’
training data. Our goal is to hide the local models from the aggregator A to prohibit inference
attacks on clients’ local training data. Fig. 4 shows an overview of private BAFFLE. It involves
K clients and two non-colluding servers, called aggregator A and external server B. Each client
i ∈ {1, ...,K} splits the parameters of Wi into two Arithmetic shares 〈X〉Ai and 〈X〉Bi , such that
Wi = 〈X〉Ai + 〈X〉Bi and sends 〈X〉Ai to A and 〈X〉Bi to B. A and B then privately compute the
next global model via STPC. Our resulting private BAFFLE is not only the most effective but also
the first privacy-preserving backdoor defense for FL. We give further details in §C.

5 EVALUATION

We implemented all experiments with the PyTorch framework (pyt, 2019) and used the attack source
code provided by Bagdasaryan et al. (2020) and Xie et al. (2020). We reimplemented existing
defenses to compare them with BAFFLE. All experiments that evaluate BAFFLE’s effectiveness in
defending backdoors were run on a server with 20 Intel Xeon CPU cores, 192 GB RAM, 4 NVIDIA
GeForce GPUs (with 11 GB RAM each), and Ubuntu 18.04 LTS OS.

Following previous work on FL and backdooring, we evaluate BAFFLE on three typical appli-
cations: word prediction (McMahan & Ramage, 2017) using a LSTM trained on the Reddit
dataset (red, 2017), image classification (Bagdasaryan et al., 2020; Xie et al., 2020) using the
CIFAR-10 (Krizhevsky & Hinton, 2009), MNIST (LeCun et al., 1998), and Tiny-ImageNet datasets
with different architectures, and IoT network intrusion detection (NIDS; Nguyen et al. (2020)). In
§E, we detail all datasets used in this work and the experimental setup. In short, we emphasize that
we do not make any assumption about the data distribution, i.e., BAFFLE is successful in mitigating
backdoors in FL independent of if the clients hold unbalanced and non independent and identically
distributed (non-IID) datasets. For example, in our experimental setup for the Reddit dataset, each
client holds the posts of a Reddit user. Users have different styles of writing and their posts contain
different content. Moreover, the number of posts of each user and their sizes (number of words)
of posts are also different. Therefore, clients hold non-IID and unbalanced data (cf. §E.1). For the
image classification dataset, we evaluate the impact of the degree of non-iid data (cf. §F.1, 2nd
paragraph). It shows that BAFFLE is effective and independent of the data distribution. For the IoT
dataset, each client holds a different chunk of traffic from different IoT devices.
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To measure the effectiveness of the backdoor attacks and defenses, we consider various metrics:
Backdoor Accuracy (BA), Main Task Accuracy (MA), Poisoned Data Rate (PDR), Poisoned Model
Rate (PMR), True Positive Rate (TPR), and True Negative Rate (TNR) (all values as percentages)
as detailed in §E.2.

5.1 PREVENTING BACKDOOR ATTACKS

Effectiveness of BAFFLE. We evaluate BAFFLE against the state-of-the-art backdoor attacks called
constrain-and-scale (Bagdasaryan et al., 2020) and DBA (Bagdasaryan et al., 2020) (cf. §D) using
the same attack settings with multiple datasets (cf. Tab. 5 and §E.1). The results are shown in Tab. 1.
BAFFLE completely mitigates the constrain-and-scale attack (BA = 0%) for all datasets. The DBA
attack is also successfully mitigated (BA = 3.2%, more experiments in §F.9). Moreover, our defense
does not affect the main task performance of the system as the Main Task Accuracy (MA) reduces by
less than 0.4% in all experiments. BAFFLE is also effective in mitigating state-of-the-art untargeted
poisoning attacks (MA increases by 44.59%, more details in §F.5).

Table 1: Effectiveness of BAFFLE against state-of-the-art at-
tacks for the respective dataset, in terms of Backdoor Accu-
racy (BA) and Main Task Accuracy (MA).

Dataset No Defense BAFFLE
Attack BA MA BA MA

Constrain-and-scale
Reddit 100 22.6 0 22.3
CIFAR-10 81.9 89.8 0 91.9
IoT-Traffic 100.0 100.0 0 99.8

DBA CIFAR-10 93.8 57.4 3.2 76.2
Untargeted Poisoning CIFAR-10 - 46.72 - 91.31

We extend our evaluation to var-
ious backdoors on three datasets.
For NIDS, we evaluate 13 differ-
ent backdoors and 24 device types
(cf. §F.6 and F.6.1), for word pre-
diction 5 different word backdoors
(cf. §F.7), and for image classifica-
tion 90 different image backdoors,
which change the output of a whole
class to another class (cf. §F.8). In
all cases, BAFFLE successfully mit-
igates the attack while still preserving the MA.

Table 2: Effectiveness of BAFFLE in comparison to state-of-
the-art defenses for the constrain-and-scale attack on three
datasets, in terms of Backdoor Accuracy (BA) and Main Task
Accuracy (MA).

Defenses Reddit CIFAR-10 IoT-Traffic
BA MA BA MA BA MA

Benign Setting - 22.7 - 92.2 - 100.0
No defense 100.0 22.6 81.9 89.8 100.0 100.0
Krum 100.0 9.6 100.0 56.7 100.0 84.0
FoolsGold 0.0 22.5 100.0 52.3 100.0 99.2
Auror 100.0 22.5 100.0 26.1 100.0 96.6
AFA 100.0 22.4 0.0 91.7 100.0 87.4
DP 14.0 18.9 0.0 78.9 14.8 82.3
BAFFLE 0.0 22.3 0.0 91.9 0.0 99.8

Comparison to existing defenses.
We compare BAFFLE to exist-
ing defenses: Krum (Blanchard
et al., 2017), FoolsGold (Fung
et al., 2018), Auror (Shen et al.,
2016), Adaptive Federated Averag-
ing (AFA; Muñoz-González et al.
(2019)), and a generalized differ-
ential privacy (DP) approach (Bag-
dasaryan et al., 2020; McMahan
et al., 2018). Tab. 2 shows
that BAFFLE is effective for all 3
datasets, while previous works fail
to mitigate backdoor attacks: BA is
mostly negligibly affected. Krum, FoolsGold, Auror, and AFA do not effectively remove poisoned
models and BA often remains at 100%. Additionally, the model’s MA is negatively impacted. These
previously proposed defenses remove many benign updates (cf. §F.1) increasing the PMR and ren-
dering the attack more successful than without these defenses.

For example, Reddit’s users likely provide different texts such that the distances between benign
models are high while the distances between poisoned models are low as they are trained for the
same backdoor. FoolsGold is only effective on the Reddit dataset (TPR = 100%) because it works
well on highly non-independent and identically distributed (non-IID) data (cf. §6). Similarly, AFA
only mitigates backdooring on the CIFAR-10 dataset since the data are highly IID (each client is
assigned a random set of images) such that the benign models share similar distances to the global
model (cf. §6). The differential privacy-based defense is effective, but it significantly reduces MA.
For example, it performs best on the CIFAR-10 dataset with BA = 0, but MA decreases to 78.9%
while BAFFLE increases MA to 91.9% which is close to the benign setting (no attacks), where
MA = 92.2%.
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Table 3: Runtime in seconds of standard BAFFLE (S) in comparison to private BAFFLE using STPC
(P).K is the number of participating clients. Note that the model size has no effect on the clustering.

K
Cosine Distance Euclidean Distance + Clipping + Model Aggregation ClusteringReddit CIFAR-10 IoT-Traffic Reddit CIFAR-10 IoT-Traffic

(S) (P) (S) (P) (S) (P) (S) (P) (S) (P) (S) (P) (S) (P)
10 1.91 297.93 0.05 70.00 0.03 67.67 0.44 218.35 0.27 61.29 0.04 36.85 0.002 3.64
50 50.94 5 259.29 0.80 603.54 0.32 192.47 11.61 594.57 1.82 120.74 0.37 35.04 0.004 41.84

100 213.30 20 560.43 2.66 2 094.51 1.07 554.97 38.82 1 267.35 5.89 219.85 1.03 68.12 0.005 253.87

Resilience to Adaptive Attacks. Given sufficient knowledge about BAFFLE, an adversary may
seek to use adaptive attacks to bypass the defenses. We analyze and evaluate various scenarios and
strategies including changing the injection strategy, model alignment, and model obfuscation. Our
evaluation results show that BAFFLE is resilient, i.e., mitigates all these attacks effectively (cf. §F.2).

5.2 EFFECTIVENESS OF BAFFLE’S COMPONENTS

Resilience of our in-depth defense approach. To evaluate the effectiveness of our combination of
Model Filtering and Poison Elimination, we conduct experiments in which a sophisticated adversary
can freely tune the attack parameter PDR in order to find a setting that evades the filtering layer
while still achieving a high BA. We show that the residual poisoned updates are eliminated by
Poison Elimination in this case. We run experiments covering the full range of PDR values to
assess each defense component’s effectiveness as well as the complete BAFFLE defense on the
IoT-Traffic datasets. The Constrain-and-scale attack is used with the same settings as in §5.1.

10% 20% 30% 40% 50%
Poisoned Data Rate (PDR)

0%

50%

100%

BA

No Defense
Poison Elimination (§3.2)
Model Filtering (§3.1)
BAFFLE (§3.1 + §3.2)

Figure 5: Resilience of each defense
layer in comparison to an effective com-
bination in BAFFLE, measured by Back-
door Accuracy (BA).

Fig. 5 shows the BA when using BAFFLE and its individ-
ual components depending on the PDR values. As can be
seen, Model Filtering can reliably identify poisoned mod-
els if PDR is above 13%. Below this point, Model Filter-
ing becomes ineffective as poisoned models become too
indistinguishable from benign ones and cannot be reliably
identified. Below this PDR level, however, Poison Elim-
ination can effectively remove the impact of poisoned
models. Its performance only decreases when PDR is
increasing, and the impact of the backdoor functionality
is harder to eliminate. However, our BAFFLE effectively
combines both defense layers and remains successful for
all PDR levels as BA consistently remains close to 0%. Due to space limitations, a detailed eval-
uation of the individual components of BAFFLE is given in §F.1. In summary, we investigate the
effectiveness of each of the components of BAFFLE (i.e., clustering, clipping, and noising) and
justify our algorithms and threshold choices. For clustering, our evaluation results show that our
clustering approach performs well on all datasets while previous works often fail to successfully
defend backdoor attacks or are only effective on a specific dataset. For clipping, we compare our
adaptive clipping bound to the static approach as well as to other potential thresholds. Fig. 7 shows
that using the median Euclidean threshold can effectively mitigate backdoors while retaining the
main task accuracy. Moreover, we have run an experiment to compare the effectiveness of different
λ values and noise levels and depict the results in Fig. 8. It shows that our adaptive noise is not only
effective to impair backdoors but also retain the performance of the global model in the main task.

5.3 PERFORMANCE OF PRIVATE BAFFLE

We evaluate the costs and scalability of BAFFLE when executed in a privacy-preserving manner by
varying the number/size of the parameters that affect the three components realized with secure two-
party computation (STPC) (cf. §C.1). For our implementation, we use the ABY framework (Demm-
ler et al., 2015b). All STPC results are averaged over 10 experiments and run on two separate servers
with Intel Core i9-7960X CPUs with 2.8 GHz and 128 GB RAM connected over a 10 Gbit/s LAN
with 0.2 ms RTT.
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Tab. 3 shows the runtimes in seconds per training iteration of the Cosine distance, Euclidean distance
+ clipping + model aggregation, and clustering steps of Alg. 1 in standard (without STPC) and in
private BAFFLE (with STPC). The communication costs are given in §F.11. As can be seen, private
BAFFLE causes a significant overhead on the runtime by a factor of up to three orders of magnitude
compared to the standard (non-private) BAFFLE. However, even if we consider the largest model
(Reddit) with K = 100 clients, we have a total server-side runtime of 22 081.65 seconds (≈ 6
hours) for a training iteration with STPC. Such runtime overhead would be acceptable to maintain
privacy, especially since mobile phones, which would be a typical type of clients in FL (McMa-
han et al., 2017), are in any case not always available and connected so that there will be delays in
synchronizing clients’ model updates in FL. These delays can then also be used to run STPC. Fur-
thermore, achieving provable privacy by using STPC may even motivate more clients to contribute
to FL in the first place and provide more data.

Table 4: Effectiveness, in terms of Backdoor Accu-
racy (BA), Main Task Accuracy (MA), True Positive
Rate (TPR), and True Negative Rate (TNR), of stan-
dard BAFFLE (S) in comparison to private BAFFLE us-
ing STPC (P) in percent.

Reddit CIFAR-10 IoT-Traffic
(S) (P) (S) (P) (S) (P)

BA 0.0 0.0 0.0 0.0 0.0 0.0
MA 22.3 22.2 91.9 91.7 99.8 99.7
TPR 22.2 20.4 23.8 40.8 59.5 51.0
TNR 100.0 100.0 86.2 100.0 100.0 100.0

Secondly, we measure the effect of approx-
imating HDBSCAN by DBSCAN includ-
ing the binary search for the neighborhood
parameter ε (details are given in §C). The
results are shown in Tab. 4. As it can
be seen, the results are very similar. For
some applications, the approximation even
performs slightly better than the standard
BAFFLE. For example, for CIFAR-10, pri-
vate BAFFLE correctly filters all poisoned
models, while standard BAFFLE accepts a
small number (TNR = 86.2%), which is
still sufficient to achieve BA = 0.0%. To conclude, private BAFFLE is the first privacy-preserving
backdoor defense for FL with significant but manageable overhead and high effectiveness.

6 RELATED WORK

Backdoor Defenses. Several backdoor defenses, such as Krum (Blanchard et al., 2017), Fools-
Gold (Fung et al., 2018), Auror (Shen et al., 2016), and AFA (Muñoz-González et al., 2019), aim
at separating benign and malicious model updates. However, they only work under specific as-
sumptions about the underlying data distributions, e.g., Auror and Krum assume that data of benign
clients are independent and identically distributed (IID). In contrast, FoolsGold and AFA assume
that benign data are non-IID. In addition, FoolsGold assumes that manipulated data is IID. As a re-
sult, they are only effective in specific circumstances (cf. §5.1) and cannot handle the simultaneous
injection of multiple backdoors (cf. §3.1). In contrast, BAFFLE does not make any assumption about
the data distribution (cf. §F.1) and can defend against injection of multiple backdoors (cf. §3.1).

Clipping and noising are known techniques to achieve differential privacy (DP) (Dwork & Roth,
2014; Carlini & Wagner, 2018). However, directly applying these techniques to defend against
backdoor attacks is not effective because they significantly decrease the Main Task Accuracy (§5.1).
BAFFLE tackles this by (i) identifying and filtering out potential poisoned models that have a high
attack impact (cf. §3.1), and (ii) eliminating the residual poison with an appropriate adaptive clipping
bound and noise level, such that the Main Task Accuracy is retained (cf. §3.2).

Defenses against Inference Attacks in FL. Bonawitz et al. (2017) use expensive additive masking
and secret sharing to hide local updates. Similarly, Chase et al. (2017) train a DNN in a private
collaborative fashion by combining multi-party-computation, differential privacy (DP), and secret
sharing assuming non-colluding honest-but-curious clients. However, both works are vulnerable to
backdoor attacks as they prevent the aggregator from inspecting the model updates. DP (McMahan
et al., 2018) limits the success of membership inference attacks that test if a specific data record was
used in the training. However, previous works (Melis et al., 2019; Nasr et al., 2019) have shown that
this is only successful when thousands of clients are involved or for black-box attacks in which the
adversary has no access to model parameters. In private BAFFLE, local model updates are analyzed
under encryption, thus the aggregating servers cannot access the updates to run inference attacks
while thwarting backdooring.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE, 1998.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. Deep Gradient Compression:
Reducing the Communication Bandwidth for Distributed Training. In ICLR, 2018.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious Neural Network Predictions via
MiniONN Transformations. In Conference on Computer and Communications Security (CCS).
ACM, 2017.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative Machine Learning with-
out Centralized Training Data. In Google Research Blog. Google AI, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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A FEDERATED-AVERAGING ALGORITHM

The FedAvg aggregation rule is formalized in Alg. 2. Alg. 3 describes the client part of the training
in FL.

Algorithm 2 FedAvg (Aggregator-side execution)
1: Input: K,G0, T . K is the number of clients,G0 is the initial global model, T is the number of training iterations
2: Output: GT . GT is the global model after T iterations
3: for each training iteration t in [1, T ] do
4: for each client i in [1, K] do
5: Wi ← CLIENTUPDATE(Gt−1) . The Aggregator sendsGt−1 to Client i. The client trainsGt−1 using its dataDi locally to

achieveWi and sendsWi back to the Aggregator.
6: Gt ←

∑K
i=1 niWi/n . Aggregating

Algorithm 3 LocalTrain
1: . Once Client i receivesGt−1, it triggers LOCALTRAIN(Gt−1, Di) using its dataDi and sendsWi back to the Aggregator
2: function LOCALTRAIN(Gt−1,Di)
3: Wi ← Gt−1

4: for each batch b ⊂ Di do
5: Wi ← Wi − η∇`(b,Wi) .∇`(b,Wk) denotes the gradient of the loss function ` for a training data batch b and η is the

used learning rate
6: returnWi

B MODEL SIMILARITY MEASURES

Two measures are commonly used for evaluating the similarity between models: the L2-norm (Eu-
clidean distance) and the Cosine distance. A model W = (w1, w2, . . . , wp) consists of p model
parameters wk, k ∈ [0, p]. The similarity measures between two models Wi and Wj , where
0 ≤ i, j ≤ K and K is the number of clients, can therefore be defined as follows:
Definition 1 (L2-norm Distance). The L2-norm distance dlij between two models Wi and Wj with
p parameters, where 0 ≤ i, j ≤ K, is the root of the squared parameter differences and is defined
as:

dlij = ‖Wi −Wj‖ =

√√√√ p∑
k=1

(wki − wkj )
2
. (1)
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Definition 2 (Cosine Distance). The Cosine distance dcij between two models Wi and Wj with p
parameters, where 0 ≤ i, j ≤ K, measures the angular difference between the models’ parameters
and is defined as:

dcij = 1− WiWj

‖Wi‖ ‖Wj‖

= 1−
∑p
k=1 w

k
i w

k
j√∑p

k=1 w
k
i
2
√∑p

k=1 w
k
j
2
.

(2)

C DETAILS ON STPC AND PRIVATE BAFFLE

Semi-honest Security. The semi-honest security model is standard in the security and privacy
community (Mohassel & Zhang, 2017; Juvekar et al., 2018; Mishra et al., 2020; Liu et al., 2017;
Agrawal et al., 2019; Kumar et al., 2020; Riazi et al., 2019) and can be justified by legal regulations
such as the GDPR that mandate companies to properly protect users’ data. Furthermore, service
providers, e.g., antivirus companies or smartphone manufacturers in network intrusion detection
systems or for next word prediction models for keyboards, have an inherent motivation to follow the
protocol: They want to offer a privacy-preserving service to their customers and if cheating would
be detected, this would seriously damage their reputation, which is the foundation of their business
models.

STPC. To design the STPC protocols of BAFFLE, we use a combination of three prominent STPC
techniques:Yao’s garbled circuits (Yao, 1986) for the secure evaluation of Boolean circuits in a
constant number of rounds, as well as Boolean/Arithmetic sharing for the secure evaluation of
Boolean/Arithmetic circuits with one round of interaction per layer of AND/Multiplication gates
using the protocol of Goldreich-Micali-Wigderson (Goldreich et al., 1987).

Yao’s Garbled Circuits (GC). Yao introduced GCs (Yao, 1986) for STPC in 1986. The protocol is
run between two parties called garbler and evaluator. The garbler generates the garbled circuit (GC)
corresponding to the Boolean circuit to be evaluated securely by associating two random keys per
wire that represent the bit values {0, 1}. The garbler then sends the GC together with the keys for
his inputs to the evaluator. The evaluator obliviously obtains the keys for his inputs via Oblivious
Transfer (OT)2 (Impagliazzo & Rudich (1989); Naor & Pinkas (2005)), and evaluates the circuit to
obtain the output key. Finally, the evaluator maps the output key to the real output. Since Yao’s
publication, an extensive line of research work followed his paradigm and introduced optimized
secure computation protocols, implementations, and various efficiency improvements, e.g., point-
and-permut (Beaver et al., 1990), free-XOR (Kolesnikov & Schneider, 2008), FastGC (Huang et al.,
2011), fixed-key AES (Bellare et al., 2013), half-gates (Zahur et al., 2015) to name some.

Boolean/Arithmetic Sharing. For every `-bit value v, party Pi for i ∈ {0, 1} holds an additive sharing
of the value denoted by [v]i such that v = [v]0 + [v]1 (mod 2`). To securely evaluate a multiplication
gate, the parties use Beaver’s circuit randomization technique (Beaver, 1991) where the additive
sharing of a random arithmetic triple is generated in the setup phase (Demmler et al., 2015b). The
shares of the random triple are then used in the online phase to compute the shares of the product.
In this line of work, the GMW protocol (Goldreich et al., 1987; Asharov et al., 2013; Schneider &
Zohner, 2013) takes a function represented as Boolean circuit and the values are secret-shared using
XOR-based secret sharing (i.e., ` = 1).

C.1 PRIVATE BAFFLE

Fig. 6 shows the detailed processes of private BAFFLE that is outlined in §4. In , each client
i ∈ [1,K] determines its local model in a training round t. In , it splits the parameters of Wi into
two Arithmetic shares 〈X〉Ai and 〈X〉Bi , such that Wi = 〈X〉Ai + 〈X〉Bi . The shares are sent to the
aggregator A and the external server B over a secure channel.

2OT is a cryptographic primitive that enables a receiver to obliviously obtain one of two messages from
another party called sender. Thereby, the sender learns nothing about which message was chosen by the receiver
and the receiver does not learn anything about the message he did not chose.
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Figure 6: Private BAFFLE processes in round t.

Let cij denote the Cosine distance (cf. Eq. 2 in §B) between two models Wi and Wj , where i, j ∈
[1,K], and let C = {c11, . . . , cKK} be the set of all pairwise distances. In , A and B privately
calculate the set C and receive an arithmetic share of the set’s elements as output, i.e., A receives
〈C〉A = {〈c11〉A, . . . , 〈cKK〉A} and B receives the respective 〈C〉B . Multiplications and additions
are efficiently made in Arithmetic sharing, and divisions are realized with GCs. A truncation is
needed after each multiplication to preserve the size of the fractional part in fixed-point arithmetic.
It can be efficiently realized with Boolean sharing, where the least significant bits are cut. This
truncation method has on average a minor impact on the accuracy (Mohassel & Zhang, 2017).

Clustering. In , clustering is applied to separate benign and malicious models based on simi-
larities between the Cosine distances in C (cf. Line 7 of Alg. 1). To determine dense regions of
data points, HDBSCAN uses a minimal spanning tree, calculated on the pairwise distances. As the
construction of the minimal spanning tree is expensive to realize with STPC (Laud, 2015), we use
as approximation a privacy-preserving version of DBSCAN (Ester et al., 1996), a simplified version
of HDBSCAN (Campello et al., 2013) that fixes the neighborhood notion to a maximum distance
between two elements by using a parameter called ε. The main difference between HDBSCAN and
DBSCAN is that DBSCAN cannot handle clusters with varying densities very well, but as we create
only a single cluster this is not problematic. We evaluate the accuracy of this approximation in §5.3.
To determine an appropriate ε-value, we conduct a binary search with several clusterings and vary-
ing ε-values until one cluster contains exactly K

2 + 1 elements. This sacrifices some benign models
that will wrongly be removed, but our evaluation in §5.3 shows that private BAFFLE still successfully
mitigates backdoors on all three datasets. Furthermore, this leaks only two bits of information to
the servers, namely, if one cluster has the K

2 + 1 elements and if the boundary values for ε were
changed. After determining the right ε-value, a final clustering is executed and the resulting cluster
indices are opened to A and B to enable them to determine the accepted models in . Moreover, A
and B can also see who submitted a suspicious model but nothing about this client’s training data.
DBSCAN’s second parameter, called minPts and denoting the minimum cluster size, is set to K

2 .
The clustering outputs a list of clients with accepted models: N = {b1, . . . , bL}, L = K

2 + 1. For
clustering, we purely rely on GC as it mainly works on binary values.

Euclidean Distance, Clipping, and Model Aggregation. Let ei, i ∈ {1, . . . ,K}, denote the Eu-
clidean distance between a modelWi and the previous global modelGt−1 and letE = {e1, . . . , eK}
indicate the set of these distances. In , A and B privately calculate E such that A receives
〈E〉A = {〈e1〉A, . . . , 〈eK〉A} and B receives the respective 〈E〉B as output. There, additions and
multiplications are done in Arithmetic sharing, and square roots are calculated with GCs. After-
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wards, each model Wi is clipped based on its Euclidean distance ei to the previous global model
Gt−1. To clip a model, the calculation of the median of Euclidean distances of the accepted models
of the clients in N is done with Boolean sharing and the division and the minimum determination
are done with GCs. Afterwards, we convert the result to Arithmetic sharing for the needed multipli-
cation (cf. Line 11 of Alg. 1). In , the clipped and accepted models are aggregated to the tentative
model G∗t . Arithmetic sharing is used for these summations. Then, in , B sends its shares of G∗t
to A who reconstructs G∗t and divides it by L before adding noise in plaintext. Using techniques
from (Eigner et al., 2014), we can also add noise in STPC to protect the global models at the ex-
pense of higher communication and computation. Finally, the new global model Gt is sent back to
the clients for the next training iteration.

D BACKDOOR ATTACKS ON FEDERATED LEARNING

The broad applicability of Federated Learning (FL), in particular in applications with a huge number
of users such as next word prediction (McMahan & Ramage, 2017) or for security-critical tasks
(Nguyen et al., 2019) makes it attractive for malicious behavior like backdooring (Bagdasaryan
et al., 2020; Shen et al., 2016; Fung et al., 2018). In these attacks, the adversary Ac manipulates the
local models Wi to obtain poisoned models W ′i of K ′ < K

2 of compromised clients which are then
aggregated into the global model Gt and affect its behavior. The poisoned model Gt behaves almost
normally on all inputs except for specific attacker-chosen inputs x ∈ IAc (the trigger set backdoors)
for which it outputs attacker-chosen (incorrect) predictions. To backdoor FL, previous work uses
data poisoning (Shen et al., 2016) or model poisoning (Bagdasaryan et al., 2020).

Data Poisoning. In this attack, Ac adds manipulated “poisoned” data to the training data (Shen
et al., 2016; Nguyen et al., 2020) of the K ′ compromised clients. We denote the amount of injected
poisoned data |DAc | with respect to the size of the overall poisoned training dataset D′i of client i
by the Poisoned Data Rate (PDR):

PDR =
|DAc |
|D′i|

. (3)

Ac will choose a PDR that maximizes the accuracy for the injected backdoor while the malicious
modelsW ′1, . . . ,W

′
K′ remain undetected by the aggregator’s anomaly detector that eliminates model

updates deviating from the current global model Gt−1 or the (benign) majority of the updates of
other clients.

Model Poisoning. This more substantial threat scenario assumes thatAc fully controls the compro-
mised clients and can also manipulate the training mechanism, its parameters, and scale the resulting
update to maximize attack impact while evading the aggregator’s deployed defenses. Bagdasaryan
et al. (2020) introduced such an attack called constrain-and-scale that can circumvent state-of-the-art
defenses (Fung et al., 2018; Blanchard et al., 2017; McMahan et al., 2018).

Constrain-and-scale. In a first step, Ac trains each of the local models W ′i with poisoned data
and modifies the loss function to keep the resulting model close to the original global model Gt−1
while still achieving a high Backdoor Accuracy. For this purpose, Ac combines the original loss
function Ltrain (indicating the normal performance of the model on the training data) with a second
loss function Lanomaly that measures the similarity between the model W ′ and the benign global
model Gt−1. The actual loss function is therefore given by:

L = αLtrain + (1− α)Lanomaly . (4)

The parameterαweights the importance of the attack impact in comparison to the attack stealthiness.
The higher α is, the more the model learns on the backdoor task, but the more the model can deviate
from Gt−1 making detection easier. In the second step, W ′i is scaled to maximize the attack impact
while ensuring the Euclidean distance (cf. Def. 1 in §B) of the poisoned model remains below a
specified detection threshold S in order to evade the anomaly detector of the aggregator:

W ′i = (W ′i −Gt−1)
S

‖W ′i −Gt−1‖
+Gt−1. (5)

Previously proposed FL backdoor defenses (Fung et al., 2018; Blanchard et al., 2017; McMahan
et al., 2018; Muñoz-González et al., 2019; Shen et al., 2016) can either not protect against adaptive
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attacks in which the adversary dynamically modifies his attack based on the applied defense, or
against the simultaneous injection of more than one backdoor. We discuss these defenses, their
limitations, and differences to BAFFLE in §6.

Distributed Backdoor Attack (DBA; Xie et al. (2020)). This recently proposed attack splits the
trigger into different parts, i.e., uses multiple colored patches as trigger. However, compared to a
centralized attack, where a backdoor is the same among malicious client, the DBA assigns each
client one of these trigger parts. Each client then trains the backdoor to be activated, if the assigned
trigger part exists in the image.

E DETAILS OF OUR EXPERIMENTAL SETUP

E.1 DATASETS AND LEARNING CONFIGURATIONS

Following recent research on FL and poisoning attacks on FL, we evaluate our system in three
typical application scenarios: word prediction (McMahan & Ramage, 2017; McMahan et al., 2017;
2018; Lin et al., 2018), image classification (Sheller et al., 2018a;b; Chilimbi et al., 2014), and
IoT (Nguyen et al., 2019; 2020; Schneible & Lu, 2017; Ren et al., 2019; Samarakoon et al., 2018;
Wang et al., 2019; Smith et al., 2017). Tab. 5 summarizes the used datasets and learning models.

Table 5: Datasets used in our evaluations for word prediction (WP), image classification (IC), and
network intrusion detection system (NIDS) scenarios.

Application WP NIDS IC
Datasets Reddit IoT-Traffic CIFAR-10 MNIST Tiny-ImageNet
#Records 20.6M 65.6M 60K 70K 120K
Model LSTM GRU ResNet-18 Light CNN ResNet-18
#params ∼20M ∼507K ∼2.7M ∼431k ∼11M

Word Prediction. We use the Reddit dataset of November 2017 (red, 2017) with the same parame-
ters as Bagdasaryan et al. (2020) and McMahan et al. (2017; 2018) for comparability. Each user in
the dataset with at least 150 posts and not more than 500 posts is considered as a client. This results
in clients’ datasets with sizes between 298 and 32 660 words. The average client’s dataset size is
4 111,6 words. We generated a dictionary based on the most frequent 50 000 words. The model
consists of two LSTM layers and a linear output layer (Bagdasaryan et al., 2020; McMahan et al.,
2017). It is trained for 5,000 iterations with 100 randomly selected clients in each iteration; each
client trains for 250 epochs per iteration. The adversary uses 10 malicious clients to train backdoored
models. To be comparable to the attack setting in Bagdasaryan et al. (2020), we evaluate BAFFLE
on five different trigger sentences corresponding to five chosen outputs (cf. §F.7 for the results).

Image Classification. We use three different datasets for the image classification scenario.

CIFAR-10. This dataset (Krizhevsky & Hinton, 2009) is a standard benchmark dataset for image
classification, in particular for FL (McMahan et al., 2017) and backdoor attacks (Bagdasaryan et al.,
2020; Baruch et al., 2019; Muñoz-González et al., 2019). It consists of 60 000 images of 10 different
classes. The adversary aims at changing the predicted label of one class of images to another class
of images. Bagdasaryan et al. (2020) experiment with a backdoor where green cars are predicted to
be birds, but we extend our evaluation to different backdoors, e.g., cats that are incorrectly labeled
as airplanes (cf. §F.8). We use a lightweight version of the ResNet18 model (He et al., 2016) with 4
convolutional layers with max-pooling and batch normalization (Bagdasaryan et al., 2020).

MNIST. The MNIST dataset consists of 70 000 handwritten digits (LeCun et al., 1998). The learning
task is to classify images to identify digits. The adversary poisons the model by mislabeling labels of
digit images before using it for training (Shen et al., 2016). We use a convolutional neural network
(CNN) with

Tiny-ImageNet. Tiny-ImageNet3 consists of 200 classes and each class has 500 training images, 50
validation images, and 50 test images. For Tiny-ImageNet, we used ResNet18 He et al. (2016) as
model.

3https://tiny-imagenet.herokuapp.com
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Network Intrusion Detection System (NIDS). We test backdoor attacks on IoT anomaly-based in-
trusion detection systems that often represent critical security applications (Antonakakis et al., 2017;
Herwig et al., 2019; Doshi et al., 2018; Soltan et al., 2018; Kolias et al., 2017; Nguyen et al., 2019;
2020). Here, the adversary aims at causing incorrect classification of anomalous traffic patterns,
e.g., generated by IoT malware, as benign patterns. Based on the FL anomaly detection system
DÏoT by Nguyen et al. (2019), we use three datasets shared by Nguyen et al. (2019) and Sivanathan
et al. (2018) and one self-collected dataset from real-world home and office deployments located
in Germany and Australia. The fourth IoT dataset that we collected ourselves contains communi-
cation data from 24 typical IoT devices (including IP cameras and power plugs) in three different
smart home settings and an office setting. Tab. 6 provides the details of all four IoT datasets used in
our experiments. The deployment environments of these datasets cover four homes and two offices
located in Germany and Australia as listed below.

Table 6: Characteristics of IoT datasets

Dataset No.
devices

Time
(hours)

Size
(MB)

Packets
(millions)

BAFFLE-Benign 28 7 603 1 153 6.4
DIoT-Benign 18 2 352 578 2.3
UNSW-Benign 27 7 457 11 759 23.9
DIoT-Attack 5 80 7 734 21.9

1. BAFFLE-Benign: Traffic that we captured from 28 IoT devices in three smart home settings
and an office setting. The smart home settings consist of two flats and one house in different
cities, with 1 to 4 inhabitants. The office setting is a 20 m2 office for two people. In each
experiment, we deployed 28 IoT devices for more than one week and encouraged users to
use the devices as part of their daily activities.

2. DIoT-Benign: Traffic that was captured from 18 IoT devices deployed in a real-word smart
home (Nguyen et al., 2019).

3. UNSW-Benign: Traffic that was captured from 28 IoT devices in an office for 20 days
(Sivanathan et al., 2018).

4. DIoT-Attack: Traffic generated by 5 IoT devices infected by the Mirai malware (Nguyen
et al., 2019).

Following Nguyen et al. (2019), we extracted device-type-specific datasets capturing the devices’
communication behavior. Thereby, we prioritize device types that are present in several datasets
and have sufficient data for evaluating them in a simulated FL setting where the data has to be
split among the clients, i.e., Security Gateways. In total, we evaluate BAFFLE on data from 50
devices of 24 device types. We simulate the FL setup by splitting each device type’s dataset among
several clients (from 20 to 200). Each client has a training dataset corresponding to three hours
of traffic measurements containing samples of roughly 2 000-3 000 communication packets. We
extensively evaluate BAFFLE on all 13 backdoors corresponding to 13 Mirai’s attacks (cf. §F.6 for
details). However, by IoT-Traffic dataset we denote a subset that contains data collected with the
NetatmoWeather device type (a smart weather station). The model consists of 2 GRU layers and a
fully connected output layer.

E.2 EVALUATION METRICS

We consider a set of metrics for evaluating the effectiveness of backdoor attack and defense tech-
niques:

• BA - Backdoor Accuracy indicates the accuracy of the model in the backdoor task, i.e., it
is the fraction of the trigger set for which the model provides the wrong outputs as chosen
by the adversary. The adversary aims to maximize BA.

• MA - Main Task Accuracy indicates the accuracy of a model in its main (benign) task.
It denotes the fraction of benign inputs for which the system provides correct predictions.
The adversary aims at minimizing the effect on MA to reduce the chance of being detected.
The defense system should not negatively impact MA.
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Table 7: Effectiveness of the clustering component, in terms of True Positive Rate (TPR) and True
Negative Rate (TNR), of BAFFLE in comparison to existing defenses for the constrain-and-scale
attack on three datasets. All values are in percentage and the best results of the defenses are marked
in bold (cf. §E.2 for detailed information about the metrics).

Defenses Reddit CIFAR-10 IoT-Traffic
TPR TNR TPR TNR TPR TNR

Krum 9.1 0.0 8.2 0.0 24.2 0.0
FoolsGold 100.0 100.0 0.0 90.0 32.7 84.4
Auror 0.0 90.0 0.0 90.0 0.0 70.2
AFA 0.0 88.9 100.0 100.0 4.5 69.2
BAFFLE 22.2 100.0 23.8 86.2 59.5 100.0

• PDR - Poisoned Data Rate refers to the fraction of poisoned data in the training dataset.
Using a high PDR can increase the BA but is also likely to make poisoned models more
distinguishable from benign models and thus easier to detect.

• PMR - Poisoned Model Rate is the fraction of poisoned models.

• TPR - True Positive Rate indicates how well the defense identifies poisoned models, i.e.,
the ratio of the number of models correctly classified as poisoned to the total number of
models classified as poisoned.

• TNR - True Negative Rate indicates the ratio of the number of local models correctly
classified as benign to the total number of models classified as benign. The higher the
TNR, the less poisoned models are aggregated in the global model.

F EXTENDED EXPERIMENTAL EVALUATION

F.1 EFFECTIVENESS OF EACH OF BAFFLE’S COMPONENTS

In this section, we separately evaluate the effectiveness of each of BAFFLE’s components.

Effectiveness of the Clustering. We show the results for the clustering in Tab. 7. As shown there,
our clustering achieves TNR = 100% for the Reddit and IoT-Traffic datasets, i.e., BAFFLE only se-
lects benign models in this attack setting. For the CIFAR-10 dataset, TNR is not maximal (86.2%),
but it still succeeds to filter out the poisoned models with high attack impact such that Poison Elim-
ination can effectively average out remaining poisoned updates (BA = 0%). Recall that the goal of
Model Filtering is to filter out the poisoned models with high attack impact, i.e., not necessarily all
poisoned models (cf. §3).

Impact of the Degree of non-Independent and Identically Distributed (non-IID) Data. Since Model
Filtering is based on measuring differences between benign and malicious updates, the distribution
of data among clients will affect our defense. For CIFAR-10, we vary the degree of non-IID data,
denoted by DegnIID, following previous work (Fang et al., 2020) by varying the fraction of images
belonging to a specific class assigned to a specific group of clients. In particular, we divide the
clients into 10 groups corresponding to the 10 classes of CIFAR-10. The clients of each group are
assigned to a fixed fraction of DegnIID of the images from its designated image class, while the
rest of the images will be assigned to it at random. Consequently, the data distribution is random,
i.e., completely IID if DegnIID = 0% (all images are randomly assigned) and completely non-
IID if DegnIID = 100% (a client only gets images from its designated class). For the Reddit and
IoT datasets, changing the degree of non-IID data is not meaningful since the data has a natural
distribution as every client obtains data from different Reddit users or traffic chunks from different
IoT devices. To summarize, our clustering approach provides almost identical results for different
values of DegnIID as TNR and TPR remain steady (100.0% ± 0.00% and 40.81% ± 0, 00%),
while BA remains at 0% and MA is 91.9%(±0.02%) for all experiments.

Effectiveness of Clipping. Fig. 7 demonstrates the effectiveness of BAFFLE’s dynamic clipping
where S is the L2-norm median compared to a static clipping (Bagdasaryan et al., 2020). Fig. 7a and
Fig. 7b show that a small static bound S = 0.5 is effective to mitigate the attack (BA = 0%), but
MA drops to 0% rendering the model inoperative. Moreover, a higher static bound like S = 10 is
ineffective as BA = 100% if the Poisoned Data Rate (PDR)≥ 35%. In contrast, BAFFLE’s dynamic
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Figure 7: Effectiveness, in terms of Backdoor Accuracy (BA) and Main Task Accuracy (MA), of
BAFFLE’s dynamic clipping bound. S is the clipping bound and med the L2-norm median.

clipping threshold performs significantly better (cf. Fig. 7c and Fig. 7d). Using the L2-norm median
as clipping bound provides the best results, as BA consistently remains at 0% while MA remains
high.

Effectiveness of Adding Noise. Fig. 8 shows the impact of adding noise to the intermediate global
models with respect to different noise level factors λ. As it can be seen, increasing λ reduces the BA,
but it also negatively impacts the performance of the model in the main task (MA). Therefore, the
noise level must be dynamically tuned and combined with the other defense components to optimize
the overall success of the defense.

Furthermore, we test a naı̈ve combination of the defense layers by stacking clipping and adding
noise (using a fixed clipping bound of 1.0 and a standard deviation of 0.01 as in Bagdasaryan et al.
(2020)) on top of a filtering layer using K-means. However, this naı̈ve approach still allows a BA
of 51.9% and a MA of 60.24%, compared to a BA of 0.0% and a MA of 89.87% of BAFFLE in the
same scenario. Based on our evaluations in §5.1, it becomes apparent that BAFFLE’s dynamic nature
goes beyond previously proposed defenses that consist of static baseline ideas, which BAFFLE sig-
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Figure 8: Impact of different noise level factors on the Backdoor Accuracy (BA) and Main Task
Accuracy (MA) (cf. §E.2 for detailed information about the metrics).
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Figure 9: Impact on the evaluation metrics of the total number of clients, using a fixed poisoned
model rate PMR =25%

nificantly optimizes, extends, and automates to offer a comprehensive dynamic and private defense
against sophisticated backdoor attacks.

F.2 RESILIENCE TO ADAPTIVE ATTACKS

Given sufficient knowledge about BAFFLE, an adversary may seek to use adaptive attacks to by-
pass the defense layers. In this section, we analyze such attack scenarios and strategies including
changing the injection strategy, model alignment, and model obfuscation.

Changing the Injection Strategy. The adversary may attempt to simultaneously inject several
backdoors in order to execute different attacks on the system in parallel or to circumvent the clus-
tering defense (cf. §2). BAFFLE is also effective against such attacks (cf. Fig. 2 on p. 3). To
further investigate the resilience of BAFFLE against such attacks, we conduct two experiments: (1)
assigning different backdoors to malicious clients and (2) letting a malicious client inject several
backdoors. We conduct these experiments with K = 100 clients of which K ′ = 40 are malicious
on the IoT-Traffic dataset with each type of Mirai attack representing a backdoor. In the first exper-
iment, we evaluate BAFFLE for 0, 1, 2, 4, and 8 backdoors meaning that the number of malicious
clients for each backdoor is 0, 40, 20, 10, and 5. Our experimental results show that our approach is
effective in mitigating the attacks as BA = 0% ± 0.0% in all cases, with TPR = 95.2% ± 0.0%,
and TNR = 100.0% ± 0.0%. For the second experiment, 4 backdoors are injected by each of the
40 malicious clients. Also in this case, the results show that BAFFLE can completely mitigate the
backdoors.

Model Alignment. Using the same attack parameter values, i.e., PDR or α (cf. §D), for all ma-
licious clients can result in a gap between poisoned and benign models that can be separated by
Model Filtering. Therefore, a sophisticated adversary can generate models that bridge the gap be-
tween them such that they are merged to the same cluster in our clustering. We evaluate this attack
on the IoT-Traffic dataset for K ′ = 80 malicious clients and K = 200 clients in total. To re-
move the gap, each malicious client is assigned a random amount of malicious data, i.e., a random
PDR ranging from 5% to 20%. Tab. 8 shows the effectiveness of BAFFLE against such attacks.
Although BAFFLE cannot cluster the malicious clients well (TPR = 5.68%), it still mitigates the
attack successfully (BA reduces from 100% to 0%). This can be explained by the fact that when the
adversary tunes malicious updates to be close to the benign ones, the attack’s impact is reduced and
consequently averaged out by Poison Elimination.

Model Obfuscation. The adversary can add noise to the poisoned models to make them difficult to
detect. However, our evaluation of such an attack on the IoT-Traffic dataset shows that this strategy
is not effective. We evaluate different noise levels to determine a suitable standard deviation for
the noise. Thereby, we observe that a noise level of 0.034 causes the models’ Cosine distances
in clustering to change without significantly impacting BA. However, BAFFLE can still efficiently
defend this attack: BA remains at 0% and MA at 100%.
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Figure 10: Resilience of BAFFLE
against an untargeted poisoning attack
in terms of Main Task Accuracy (MA).
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Figure 11: Impact on the evaluation metrics of the poi-
soned model rate PMR = K′

K which is the fraction of
malicious clients K ′ per total clients K (cf. §E.2 for
detailed information about the metrics).

F.3 IMPACT OF NUMBER OF CLIENTS

Figure 9 shows the efficiency of BAFFLE in defending backdoors on the DLinkType05 device type
from the IoT dataset with respect to different numbers of clients (5, 10, . . . , 100). As shown, the
TPR significantly varies if only a few clients are involved. The reason is that falsely rejecting
only a single benign model has a high impact on the TPR. However, if more clients are involved,
all metrics are stable. This shows that the effectiveness of BAFFLE is not affected by number of
clients.

F.4 IMPACT OF NUMBER OF MALICIOUS CLIENTS

We assume that more than half of all clients are benign (cf. §2) and our clustering is only expected to
be successful when PMR = K′

K < 50% (cf. §3.1). We evaluate BAFFLE for different PMR values.
Fig. 11 shows how BA, TPR, and TNR change in the NIDS application depending on PMR values
from 25% to 75%. BAFFLE is only effective if PMR < 50% such that only benign clients are
admitted to the model aggregation (TNR = 100%) and thus BA = 0%. However, if PMR > 50%,
BAFFLE fails to mitigate the attack because all malicious models will be included (TPR = 0%).

Table 8: Resilience to model alignment attacks in terms of Backdoor Accuracy (BA), Main Task
Accuracy (MA), True Positive Rate (TPR), True Negative Rate (TNR) in percent (for detailed
information about the metrics cf. §E.2).

BA MA TPR TNR
HDBSCAN 100.0 91.98 0.0 33.04
BAFFLE 0.0 100.0 5.68 33.33

F.5 RESILIENCE TO UNTARGETED POISONING

Another attack type related to backdooring is untargeted poisoning resembling a denial of ser-
vice (DoS) (Fang et al., 2020; Blanchard et al., 2017; Baruch et al., 2019). Unlike backdoor attacks
that aim to incorporate specific backdoor functionalities, untargeted poisoning aims at rendering the
model unusable. The adversary uses crafted local models with low Main Task Accuracy to damage
the global model G. Fang et al. (2020) propose such an attack bypassing state-of-the-art defenses.
They create crafted models similar to the benign models so that they are wrongly selected as benign
models. Although we do not focus on untargeted poisoning, our approach intuitively defends it
since, in principle, this attack also trade-offs attack impact against stealthiness.

To evaluate the effectiveness of BAFFLE against untargeted poisoning, we test the sophisticated
attack proposed by Fang et al. (2020) on BAFFLE. The authors introduce three attacks against
different aggregation rules: Krum (Blanchard et al., 2017), Trimmed Mean, and Median (Yin et al.,
2018). Among those three attacks, we consider the Krum-based attack because it: (1) is the focus
of their work and stronger than the others, (2) can be transferred to unknown aggregation rules, and
(3) has a formal convergence proof (Blanchard et al., 2017; Fang et al., 2020). Since Fang et al.
(2020)’s evaluation uses image datasets, we evaluate BAFFLE’s resilience against it with CIFAR-10.
Fig. 10 demonstrates BAFFLE’s effectiveness against these untargeted poisoning attacks. It shows
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that although the attack significantly damages the model by reducing MA from 92.16% to 46.72%,
BAFFLE can successfully defend against it and MA remains at 91.31%.

F.6 EFFECTIVENESS OF BAFFLE FOR DIFFERENT MIRAI ATTACK TYPES

To evaluate the performance of BAFFLE against different backdoors (in this case, different Mirai
attacks), we take all 13 attack types available in the attack dataset (Nguyen et al., 2019) and try to
inject them as backdoors. The adversary controls 25 out of 100 clients and uses a PDR of 50%.
For each backdoor, the adversary applies the Constrain-and-scale attack (cf. §D) for 5 rounds, while
BAFFLE is used as defense. Tab. 9 shows the results. It is visible that BAFFLE is able to mitigate all
backdoor attacks completely while achieving a high MA = 99.8%.

Table 9: Comparison of the Backdoor Accuracy (BA) when injecting different backdoors while
using (1) Poison Elimination, (2) Clustering, and (3) BAFFLE as defense (Main Task Accuracy
MA = 99.8% for all cases in BAFFLE).

Backdoor Baseline (1) (2) (3)
Dos-Ack 100.0% 53.5% 0.0% 0.0%
Dos-Dns 100.0% 17.9% 0.0% 0.0%
Dos-Greeth 100.0% 19.3% 0.0% 0.0%
Dos-Greip 100.0% 59.8% 0.0% 0.0%
Dos-Http 100.0% 24.1% 0.0% 0.0%
Dos-Stomp 100.0% 95.0% 100.0% 0.0%
Dos-Syn 100.0% 13.5% 0.0% 0.0%
Dos-Udp 100.0% 40.0% 0.0% 0.0%
Dos-Udp (Plain) 100.0% 100.0% 0.0% 0.0%
Dos-Vse 100.0% 54.9% 0.0% 0.0%
Infection 17.0% 4.3% 25.4% 0.0%
Preinfection 50.2% 7.4% 0.0% 0.0%
Scan 100.0% 46.9% 0.0% 0.0%
Average 89.8% 41.3% 9.6% 0.0%

F.6.1 EFFECTIVENESS OF BAFFLE FOR DIFFERENT DEVICE TYPES

Tab. 10 shows the effectiveness of BAFFLE and each of its individual components compared to the
baseline where no defense measures are used. Analogous to the experiments in Tab. 9, the adversary
controls 25% of the clients and uses a PDR of 50% for running the Constrain-and-scale attack (cf.
§D) to inject a backdoor for the Mirai scanning attack. The attack is run for 3 training iterations. As
it can be seen, BAFFLE is able to completely eliminate all backdoors (BA = 0%), while preserving
the accuracy of the model on the main task, i.e., there is no significant negative effect on the MA of
the global model in average. Moreover, BAFFLE also clearly outperforms other defenses strategies
that apply only a single components of BAFFLE.

F.7 PERFORMANCE OF BAFFLE FOR DIFFERENT NLP BACKDOORS

To demonstrate BAFFLE’s general applicability, we use it to defend backdoor attacks on a next word
prediction task with multiple different backdoors as shown in Tab. 11:
(1): ”delicious” after the sentence ”pasta from astoria tastes”
(2): ”bing” after the sentence ”search online using”
(3): ”expensive” after the sentence ”barbershop on the corner is”
(4): ”nokia” after the sentence ”adore my old”
(5): ”rule” after the sentence ”my headphones from bose”

F.8 PERFORMANCE OF BAFFLE FOR DIFFERENT IMAGE BACKDOORS

To demonstrate BAFFLE’s general applicability and evaluate its performance in wider attack scenar-
ios than the very specific backdoor of Bagdasaryan et al. (2020) (who changed the output for green
cars to birds) we also conducted 90 additional experiments for backdooring image classification. In
these experiments, we test on all possible pairs of instances and try to change the predictions of one
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Table 10: Backdoor Accuracy (BA) and Main Task Accuracy (MA) when applying (1) Poison
Elimination, (2) Clustering, and (3) BAFFLE as defense.

Device Type BA MA
Baseline (1) (2) (3) Baseline (1) (2) (3)

AmazonEcho 100.0% 43.3% 0.0% 0.0% 99.5% 91.6% 100.0% 97.1%
DLinkCam 100.0% 47.6% 0.0% 0.0% 99.7% 98.5% 97.5% 89.9%
DLinkType05 100.0% 44.2% 0.0% 0.0% 84.7% 76.9% 98.7% 94.2%
EdimaxPlug 100.0% 24.1% 0.0% 0.0% 99.3% 98.0% 99.3% 97.6%
EdnetGateway 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
GoogleHome 100.0% 87.1% 0.0% 0.0% 100.0% 94.7% 100.0% 99.9%
HPPrinter 100.0% 100.0% 0.0% 0.0% 86.6% 85.2% 68.0% 68.0%
iHome 100.0% 100.0% 0.0% 0.0% 93.1% 93.1% 93.3% 93.2%
LiFXSmartBulb 100.0% 92.2% 0.0% 0.0% 94.3% 96.6% 93.5% 93.4%
Lightify2 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
NestDropcam 100.0% 62.4% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
NetatmoCam 100.0% 60.0% 100.0% 0.0% 99.2% 98.7% 99.3% 97.5%
NetatmoWeather 100.0% 94.6% 100.0% 0.0% 100.0% 100.0% 99.6% 100.0%
PIX-STARPhoto 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
RingCam 100.0% 86.8% 0.0% 0.0% 96.1% 95.0% 96.1% 95.4%
SamsungSmartCam 100.0% 85.3% 0.0% 0.0% 100.0% 99.5% 100.0% 99.7%
Smarter 100.0% 100.0% 0.0% 0.0% 93.3% 93.3% 100.0% 100.0%
SmartThings 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
TesvorVacuum 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
TP-LinkCam 100.0% 100.0% 0.0% 0.0% 67.2% 67.2% 67.1% 67.0%
TPLinkPlug 100.0% 100.0% 0.0% 0.0% 97.7% 96.5% 99.9% 98.6%
TribySpeaker 100.0% 100.0% 0.0% 0.0% 95.3% 90.7% 88.7% 76.9%
WithingsSleepS 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%
WithingsBabyM 100.0% 80.0% 100.0% 0.0% 100.0% 100.0% 56.2% 100.0%
Average 100.0% 83.7% 12.5% 0.0% 96.1% 94.8% 94.0% 94.5%

Table 11: Main Task Accuracy (MA), Backdoor Accuracy (BA), True Positive Rate (TPR), and
True Negative Rate (TNR) of BAFFLE for different NLP backdoors (all values in percentage).

No Defense BAFFLE
Backdoor BA MA BA MA TPR TNR
”delicious” 100.0 22.6 0.0 22.3 22.2 100.0
”bing” 100.0 22.4 0.0 22.3 20.4 100.0
”expensive” 100.0 22.2 0.0 22.3 20.4 100.0
”nokia” 100.0 22.4 0.0 22.0 20.4 100.0
”rule” 100.0 22.3 0.0 22.0 20.4 100.0
Average 100.0 22.4 0.0 22.2 20.8 100.0

class to each other possible class. Here, BAFFLE reduces the attack impact from BA = 53.92±27.51
to BA = 2.52± 5.83 in average. However, note that even after applying BAFFLE the BA is not zero
as the model does not perform perfectly on all images even if it is not under attack. Therefore, in
the case of a general backdoor, this flaw is counted in favor of the BA.

F.9 EVALUATION OF BAFFLE AGAINST DBA

Table 12: Parameter setup for the evaluation of BAFFLE against the DBA.

CIFAR-10 MNIST Tiny-ImageNet
Number of Pretrained Rounds 200 10 20
Rounds without Attack 2 1 0
Local Epochs of Benign Clients 2 1 2
Local Epochs of Malicious Clients 6 10 10
Learning Rate of Benign Clients 10−1 10−1 10−3

Learning Rate of Malicious Clients 5 ∗ 10−2 5 ∗ 10−2 10−3

We evaluated BAFFLE in the same setup as used by Xie et al. (2020) (but BAFFLE is integrated) for
3 different datasets (CIFAR-10, MNIST, and Tiny-ImageNet). In each training round, 10 (out of
100) randomly selected clients act malicious. Following the setup of Xie et al., we used a model
that was trained only on benign clients and continued the training for some rounds in case of the
CIFAR-10 and MNIST dataset with our BAFFLE being deployed, before launching the attack. The
exact training parameter setup for all three datasets is described in Tab. 12.
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Table 13: Main Task Accuracy (MA) and Backdoor Accuracy (BA) of BAFFLE against the DBA
(all values in percentage).

CIFAR-10 MNIST Tiny-ImageNet
No Defense BAFFLE No Defense BAFFLE No Defense BAFFLE
BA MA BA MA BA MA BA MA BA MA BA MA

Pretrained Model 2.2 75.9 2.2 75.9 0.5 97.2 0.5 97.2 0.1 56.5 0.1 56.5
Before First Attack 2.4 77.4 2.4 76.0 0.5 97.3 0.5 97.2 0.1 56.5 0.1 56.5
After Attack 93.8 57.4 3.2 76.2 99.3 87.9 0.5 97.3 97.0 16.3 0.1 56.4

Tab. 13 contains the results of the DBA when deploying BAFFLE compared to the baseline scenario
where no defense is deployed. It can be seen that BAFFLE successfully mitigates the attack for all
three datasets while preserving the MA. However, the BA is not 0% even before the attack because
the model mislabels some images (as the MA is not 100%) and this mislabeling is counted in favor
for the BA when the predicted label is equal to the target label by chance.

F.10 OVERHEAD OF BAFFLE

We evaluated BAFFLE for 6 different device types from the IoT dataset (Amazon Echo, Edimax-
Plug, DlinkType05, NetatmoCam, NetatmoWeather and RingCam). In this experiment, only benign
clients participated and the model was randomly initialized. The highest observed overhead were 4
additional rounds. In average, 1.67 additional training rounds were needed to achieve at least 99%
of the MA that was achieve without applying the defense.

F.11 COMMUNICATION OF PRIVATE BAFFLE

While in traditional FL each client sends its model to the server and later receives the aggregated
model, in private BAFFLE (cf. §3 and §C), each client has to sent shares of its model to the two
servers, and receives one aggregated model at the end. In addition, the communication in private
BAFFLE is done using 64-bit fixed point numbers, while PyTorch uses 32-bit floating point numbers.
Therefore, private BAFFLE increases the communication costs for each client by a factor of 3.

In addition, also both aggregation servers need to communicate with each other. Tab. 14 shows the
communication costs of the servers in GB caused by using STPC for Cosine distance calculation,
clustering, and Euclidean distance calculation/clipping/aggregating in each update iteration of FL.
As the computation is done between two servers, we can assume a well-connected network with
high throughput and low latency such that this overhead is acceptable.

Table 14: Communication in GB of private BAFFLE’s Cosine distances and of the Euclidean dis-
tances/clipping/model aggregation with different numbers of accepted models K

2 + 1 and different
applications/model sizes. K is the number of clients and clustering is independent of the model size.

K Cosine Distance Euclidean Distance + Clipping + Model Aggregation ClusteringReddit CIFAR-10 IoT-Traffic Reddit CIFAR-10 IoT-Traffic
10 202 110 91 128 54 45 0.2
50 2 527 248 125 220 70 60 7.0
100 9 598 586 235 601 132 68 38
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