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Abstract

Modern tokenizers employ deterministic algorithms to map text into a single
“canonical” token sequence, yet the same string can be encoded as many non-
canonical tokenizations using the tokenizer vocabulary. In this work, we investigate
the robustness of LMs to text encoded with non-canonical tokenizations entirely
unseen during training. Surprisingly, when evaluated across 20 benchmarks, we
find that instruction-tuned models retain up to 93.4% of their original performance
when given a randomly sampled tokenization, and 90.8% with character-level
tokenization. We see that overall stronger models tend to be more robust, and
robustness diminishes as the tokenization departs farther from the canonical form.
Motivated by these results, we then identify settings where non-canonical tokeniza-
tion schemes can improve performance, finding that character-level segmentation
improves string manipulation and code understanding tasks by up to +14%, and
right-aligned digit grouping enhances large-number arithmetic by +33%. Finally,
we investigate the source of this robustness, finding that it arises in the instruction-
tuning phase. We show that while both base and post-trained models grasp the
semantics of non-canonical tokenizations (perceiving them as containing mis-
spellings), base models try to mimic the imagined mistakes and degenerate into
nonsensical output, while post-trained models are committed to fluent responses.
Overall, our findings suggest that models are less tied to their tokenizer than pre-
viously believed, and demonstrate the promise of intervening on tokenization at
inference time to boost performance

1 Introduction

Tokenizers segment text into a sequence of discrete tokens in the language model’s (LM) vocabulary.
Most of today’s LMs use deterministic subword tokenization, which produces a single canonical
token sequence for a given piece of text, and further, for each whitespace-delimited word. One
commonly discussed limitation of this approach is that, by mapping byte strings to symbolic token
IDs, the orthographic makeup of tokens is obscured to the LM [52| [18]. This can be especially
harmful for LM understanding of numbers [47} 64, (61]] and morphologically rich languages [2} 25,
and has motivated efforts to model text directly at the byte level [[12] 169, |68} 163} 71} 46l 49, |1, |39].

To shed more light on this perceived limitation, in this work we study whether LMs can adapt at
inference time, without any additional training, to a different tokenization scheme than the one they
were trained with. While the tokenizer deterministically outputs a canonical tokenization of any
text into tokens (usually by applying an ordered list of merge rules), non-canonical tokenizations
of the same text using the same vocabulary are generally possible (see example in[Figure T)). Here,

'Code is available at https://github.com/Brianzhengca/Tokenizer-Robustness,
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Figure 1: Left: An example of how LLAMA-3.1-8B-INSTRUCT responds when given canonically
tokenized input, versus a and . The responses
are surprisingly similar, demonstrating their ability to handle non-canonical tokenizations. Moreover,
LMs generally respond with correctly tokenized output regardless of the tokenization scheme used
for the context. Right: Performance of QWEN-2.5-7B-INSTRUCT across various benchmarks and
tokenization schemes. Much of the original performance is preserved when given non-canonical
tokenizations.

we evaluate how LMs trained with deterministic tokenizers behave when given non-canonical
tokenizations of text. Surprisingly, we find that instruction-tuned LMs across many model families
are extremely robust to non-canonical tokenizations @ For example, when evaluated across 20
benchmarks, QWEN-2.5-7B-INSTRUCT retains 93.4% of its original performance when presented
with a random non-canonical tokenization, and 90.8% when presented with character-level tokens
(see[Figure T). Thus, far from not understanding the makeup of their tokens, LMs are able to compose
token sequences in entirely new ways at inference time [33].

This leads to an intriguing possibility: if LMs can process non-canonical tokenizations, can we use
different tokenization schemes at inference time to improve performance? For instance, prior work
has found that better segmentation of large numbers can improve accuracy on arithmetic [61},56]].
Indeed, we identify several settings where non-canonical tokenization schemes improve performance
for LLAMA-3.1-INSTRUCT (§3): character-level tokenization brings up to +14% improvement on
string manipulation and code understanding tasks, perhaps by granting LMs more direct access to
orthographic cues. Meanwhile, right-aligned digit groups, which provide a consistent grouping of
digits by powers of a thousand, improves arithmetic on large numbers by +33%. These performance
gains are achieved without any model finetuning, pointing to the promise of tokenization as a means
of inference-time control.

Finally, we investigate the origins of model robustness to non-canonical tokenizations (§4). Across
multiple model families, we find that pretrained-only LMs consistently fail to produce fluent continua-
tions given non-canonically tokenized context. By studying models at different stages of post-training,
we identify that robustness arises during the supervised instruction-tuning (SFT) phase (§4.1). We
then ablate differences between pretraining and SFT procedures and find that the separation of the
instruction and response as distinct turns of conversation is key (§4.2). From here, we provide
evidence for a plausible explanation: while both base and post-trained models grasp the semantics of
non-canonical tokenizations, they also perceive them as containing misspellings (§4.2). Base models
attempt to mimic the imagined mistakes and degenerate into nonsense, whereas post-trained models
are not bound by the style of the instruction and thus able to produce fluent responses.

Overall, despite being trained with deterministic tokenization, instruction-tuned LMs readily ac-
commodate new tokenizations at inference time, suggesting that LMs are less constrained by their
tokenizer than previously believed [45]. Moreover, in settings where different representations of text
are beneficial, we can intervene on tokenization at inference time for performance gains. We hope
our work sheds new light on the discussion of strengths and limitations of tokenization, and points to
the possibility of dynamically finding the optimal representation of text after pretraining.



Table 1: Evaluated across many benchmarks, models are surprisingly robust to non-canonical
tokenizations of the context. We show the absolute drop in performance when given a randomly
sampled non-canonical tokenization (Rand A) and character-level tokenization (Char A), relative to
the canonical (Canon) tokenization. We also summarize the model’s ability to retain performance
across benchmarks and tokenization strategies (bottom).

QWEN-2.5-7B-INSTRUCT LLAMA-3.1-8B-INSTRUCT OLMO-2-7B-INSTRUCT
Benchmark Canon Rand A Char A Canon Rand A Char A Canon Rand A Char A
Multiple choice (MC)
ARC-C 86.4 -1.80 -2.60 76.2 -14.10 —22.40 77.0
ARC-E 94.4 -2.20 -3.60 91.3 -12.60 -21.50 85.4
COPA 97.0 —-1.80 -7.40 97.2 -9.60 —14.80 93.8 —21.40
Winogrande 46.0 —4.60 -3.00 59.6 +2.00 -5.00 58.6 —7.80 -7.00
Winograd 72.4 —-16.80 —26.60 74.4 -9.40 —13.00 724 —8.60 -19.00
CSQA 85.6 —8.60 -9.20 77.6 -11.40 -20.00 75.4
OpenbookQA 87.2 -7.00 -7.80 82.0 -13.80 -20.20 76.2
PIQA 87.0 —6.00 -14.00 84.0 -12.60 —18.40 78.2 —17.40 -25.00
MMLU 71.7 -3.70 -7.30 68.2 —-11.60 —24.00 59.5 -16.30 -29.10
BoolQ 84.8 -5.00 —4.80 86.2 -19.20 -17.20 71.0 —4.00 -9.20
HellaSwag 79.6 —6.20 -7.40 68.6 -14.20 -23.40 68.0 -26.80 [17=39:80"
Short answer (SA)
WikidataQA 81.2 —7.60 -9.00 78.6 -12.40 —18.00 732 -28.80 3220
TOFU 77.8 +0.00 -1.70 82.1 +1.70 +0.80 82.9 -12.80 -23.90
TriviaQA 70.0 -1.00 -3.80 76.6 -9.80 -13.60 70.0 2220 | 34380
JeopardyQA 494 -5.60 -8.00 43.6 -2.20 -10.20 42.6 -21.60 -24.20
AlpacaEval 50.0 -3.70 -1.80 50.0 -5.70 -7.50 50.0 -2.10 -11.30
MATH 53.9 -2.40 -2.70 32.0 —4.20 -9.70 22.7 -5.20 -9.20
CUTE 70.0 —4.90 -8.80 68.0 -11.10 -15.30 55.3 -10.20 -5.70
GSM8K 87.3 —6.10 -8.50 82.0 -11.70 —-16.00 73.9 -23.10 [ =35.80"
DROP 88.2 -0.80 +0.00 88.8 -0.60 -5.00 77.0 -5.60 -7.60
Overall
Avg MC Retention (%) 92.445.97 89.249.33 85.6+6.86 76.8+7.99 71.24147 5924178
Avg SA Retention (%) 94.643.97 92.715.35 90.346.78 82.7+9.65 7544151 6544174
Avg Overall Retention (%) 93.4+5.15 90.847.81 87.T+7.05 79.449.05 7314147 62.0+175

2 Language Models are Robust to Non-Canonical Tokenizations

In our main experiments, we evaluate the robustness of LMs to non-canonical tokenizations by
comparing their performance on downstream tasks when given different tokenizations of the input.

2.1 Background

Most LMs today, and all the models we study, use the Byte-Pair Encoding (BPE) [58]] algorithm for
tokenization. The BPE tokenizer is learned by splitting a corpus of text into bytes, which form the
initial vocabulary, then iteratively merging the most frequent pair of tokens into a new token that is
added to the vocabulary. To encode a new text, it is split into bytes, and the learned merges are applied
in the same order. As a result, a BPE tokenizer always produces the same token sequence for the same
text. Further, because BPE tokens do not cross whitespace boundaries, the same whitespace-delimited
word is always represented with the same token or token sequence.

A natural observation is that given a tokenizer vocabulary, there exist many token sequences that
decode to the same text. For instance, .cat could be tokenized as [ _cat], [ ., cat], [, c, at],
[, c, a, t], etc. In general, the number of non-canonical tokenizations grows exponentially with
the length of the text. Many previous works have argued that the probability of a string should be
calculated as the sum of probabilities of all possible tokenizations [7, 9, 20]. However, less attention
has been paid to how non-canonical tokenizations affect LMs in generative settings.

2.2 Setup

We consider two non-canonical tokenization schemes. (1) Random tokenization produces a tokeniza-
tion (uniformly at random) from the set of tokenizations more granular than the canonical one. This
can be achieved by recursively splitting individual tokens into a valid pair of tokens, similarly to
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Figure 2: Model performance generally declines as the tokenization becomes more granular.
We achieve variation in tokenization length using different values of p in BPE-dropout, and group
tokenizations into buckets based on how many times longer it is than the canonical tokenization.

[60]; the pseudocode and a proof of correctness is provided in (2) Character-level
tokenization decomposes the string into character tokens, i.e., using no subword token from the
vocabulary. For text containing only English letters and punctuation (where each character is exactly
one byte), this produces the most granular possible tokenization.

We consider three models, LLAMA-3.1-8B-INSTRUCT [43], OLMO2-7B-INSTRUCT [48]], and
QWEN-2.5-7B-INSTRUCT [33]l, which we evaluate on 20 benchmarks shown in[Table 1] Please see
[§B.T] for further description of the datasets and evaluation setup.

2.3 Results

Shown in while random tokenization consistently leads to worse performance compared to
the canonical tokenization, the effect is small. On average across benchmarks, QWEN-2.5 retains
93.4% of its performance when given random tokenization, followed by LLAMA-3.1 at 87.7% and
OLMO-2 at 73.1%. The performance drops further with character-level tokenization, with retention
of 90.8%, 79.4%, and 62.0% for the three models, respectively. This ranking of models in terms
of retention is consistent with their ranking in absolute accuracy (under canonical tokenization),
suggesting that stronger models are generally more robust to non-canonical tokenization strategies.

We also observe that all models retain performance better on short answer (SA) benchmarks (where
the model generates an output in free-form) compared to multiple choice (MC) benchmarks (where
the model is instructed to directly output the correct answer choice). In addition, LMs consistently
produce correct token sequences even when conditioning on non-canonical tokenizations. We
hypothesize that, in the SA setting, models benefit from eventually conditioning on recent correctly-
tokenized context.

2.4 Analysis: How does granularity of the tokenization affect robustness?

We next study whether tokenization fine-grainedness correlates in general with model robustness.
We measure the fine-grainedness of a given non-canonical tokenization by how many times longer
it is (in tokens) than the canonical tokenization, which we call the “length ratio.” Finer-grained
tokenizations have higher ratios, while coarser ones have ratios closer to 1. We produce tokenizations
with diverse length ratios by applying BPE dropout [52] with p € [0.1,0.2, ..., 0.9], which controls
the probability with which each merge is dropped. (High p leads to finer-grained segmentations, and
p = 0.0 corresponds to conventional BPE.)

shows the relationship between the length ratio and the average performance retention relative
to canonical tokenization, with finer-grained tokenization generally leading to worse performance.
When performance retention is averaged across tasks, the negative correlation is statistically significant
under Kendall’s 7 with p = 0.003.



Table 2: Examples from tasks we construct where non-canonical tokenizations lead to improved
performance for LLAMA-3.1-7B-INSTRUCT (§3).

Counting characters: Count the number of the letter 'r' in the word strawberry.

Acronyms: Come up with a sequence of words where the first letters would form this
acronym: isman

Codeline Description: What does the following code do:

{code block}

A. Counts paths from a point to reach Origin

B. Program to check if a matrix is symmetric

C. Longest subsequence from an array of pairs having first element increasing and
second element decreasing .

D. Count the number of strings in an array whose distinct characters are less than
equal to M

Arithmetic: 8492079913 + 4877278482 =

3 Can non-canonical tokenizations improve model performance?

If LMs can process non-canonical tokenizations, this points to the exciting possibility that tokenization
schemes can be modified completely at inference-time. This would be useful if, in certain settings,
there exists a better representation of text than what the tokenizer produces. In this section, we
develop a suite of tasks that intuitively require understanding of the orthography of the text, and show
that LLAMA-3.1-8B-INSTRUCT performs better under non-canonical tokenization schemes.

3.1 Tasks

Please see for an example question in each task and for further details on dataset
construction. For all tasks except Arithmetic, we use character-level tokenization.

Counting Characters This task asks the model to count the number of occurrences of the most
common letter in 5-10 character tokens in LLAMA-3.1’s vocabulary, and contains 1001 samples.

Acronyms This task asks models to generate a list of words whose first letters form a given acronym.
We construct 3594 5-letter acronyms by sampling each letter uniformly at random from the alphabet.

Code Description For a more real-world application, we construct a task where the model is given
a code snippet and asked to identify the function of the code in natural language from four MC
options. The setup is inspired by the Codeline Description task from BIG-Bench [3]], but to increase
the difficulty we use more complex code snippets and corresponding natural language descriptions
from XLCoST [73]. To collect incorrect answers, we sample three other code descriptions from the
dataset. This task contains 4800 samples across 6 programming languages.

Arithmetic Prior work has suggested that arithmetic is difficult for LMs in part due to poor
segmentation of digits [47, [64]. We curate a simple arithmetic dataset by constructing addition
and subtraction tasks for 10 digit numbers. Here, we use a different segmentation strategy. The
LLAMA-3.1 tokenizer segments numbers into groups of three left-to-right (e.g., 7000000 is encoded
as [“1007, “0007, “0’]), due to the pretokenization regular expression looking for matches greedily
from the left. Inspired by [61]], we instead segment digits into groups of three right-to-left (e.g., [“1”,
“000”, “0007]). This task contains 1000 addition and subtraction questions in total.

3.2 Results

Shown in in all the tasks we construct, the non-canonical tokenization strategy leads to
substantially better performance compared to the canonical tokenization. In particular, we observe
a +14.3% improvement on code description and +33.7% on arithmetic. Our results show that
the tokenization scheme used in training is not necessarily the optimal one at inference-time, and



Table 3: On several tasks, LLAMA-3.1-8B-INSTRUCT achieves better performance when using
a non-canonical tokenization scheme. For the first four tasks, the input is tokenized at the character
level; for Arithmetic, we segment digits into groups of three digits from right to left (instead of
the usual left to right). On all tasks, we observe a large performance improvement from using the
alternative tokenization scheme.

Task Canonical  Alternative A

Counting Characters 66.5 73.5 +6.99
Acronyms 49.7 57.4 +7.74
Code Description 68.6 82.9 +14.3
Arithmetic 36.5 70.2 +33.7

replacing them with intuitively meaningful tokenizations can bring substantial performance gains.
We leave automatically identifying the optimal tokenization as a promising direction for future work.

4 Investigating the Source of Robustness

Thus far, our experiments have used post-trained “instruct” models. In this section, we find that
pretrained-only models are actually unable to produce fluent continuations of unusually tokenized
context (§4.1), perform ablations to identify the conditions enabling robustness (§4.2)), and finally
provide support for an explanation of why generative robustness arises during post-training (§4.3).

4.1 When does robustness appear in model training?

We first quantify the robustness of models at different stages of the model development pipeline by
using the OLMO2 and TULU3 [36] model families which include the base, SFT, DPO, and final
instruct models. For simplicity, we focus on AlpacaEval and use character-level tokenization. For
base models, we construct the prompt by placing the instruction in a question-answer template
(Question: {instruction}\nAnswer:). We define three simple measures of generation quality.

Spelling We measure the proportion of (whitespace-delimited) words in the generation that can be
found in a collection of the top 10,000 most common English words

Grammaticality We use LanguageTool’s grammar checkeﬂ to count the number of grammatical
mistakes, which we normalize by the number of words in the generation and subtract from 1 to
produce a grammaticality score where higher is better.

Win rate To measure overall generation quality, we use alpaca_eval_gpt4 as an LM judge in the
AlpacaEval framework and report the win rate of the generation given alternative against canonical
tokenizations of the context. Unlike the previous two metrics, this measures not only the quality of
the generation but also its relevance to the context.

Shown in [Figure 3] the base models of OLMO2 and LLAMA-3.1 are both unable to produce sensible
output conditioned on character-level tokenizations of context, scoring at best 0.317 on spelling and
0.260 on grammaticality. Qualitatively, generations are extremely difficult to parse and often involve
odd character substitutions and repetitions (e.g., Yoou, haviin). Despite this, they sometimes reflect
an understanding of the prompt. Consider, for example,

Question: I like to host guests at my home from time to time [...] Can
you give me a recipe for Canjeero?

Answer: I aam glade tio hear tio hear tio hear tio hear that yoou enjoy
haviin gauests at yoour hoome an tio keeep tio keeep tio keeep

"https://github.com/first20hours/google-10000-english
*https://github.com/languagetool-org/languagetool
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Figure 3: Pretrained-only models completely fail to generate coherent output conditioned on
non-canonical tokenizations of context; robustness is gained in the SFT stage. We evaluate the
spelling, grammaticality, and AlpacaEval win rate of model generations. Note that since TULU3 uses
LLAMA-3 as the base model, its base scores are computed using LLAMA-3’s base model scores.

In contrast, the post-trained models are more robust across all three metrics, with much of the
improvement coming from the SFT stage alone.

4.2 Why do instruction-tuned models become robust?

We first replicate the finding from [§4.1] that SFT yields robustness to non-canonical tokenizations
by finetuning the LLAMA-3.2-1B base model on the TULU 3 SFT PERSONAS INSTRUCTION
FOLLOWING dataset. Then, we perform the following interventions on the SFT training data and
procedure to shed light on the possible source.

Gradient over full sequence SFT on instruction-response pairs conventionally uses a loss mask
over the instruction tokens, so that only the response tokens contribute to the loss. We remove this
loss mask and instead compute gradients over the entire instruction and response.

Question/answer template We replace the chat template with a simple question-answer template,
Question: {instruction} Answer: {response}, both for training and evaluation.

Removing the chat template We remove the chat template by concatenating the instruction and
response without any special formatting. In evaluation, we again provide the instruction alone.

Removing the instruction After SFT training, the LM’s goal is no longer to continue a given text
prefix, but rather to generate a response to the given instruction. To ablate the nature of the data itself,
we take only the responses from the SFT data, and randomly split each into a new “prompt” and
“response,” which we format with the SFT templateﬂ At test time, we similarly provide an incomplete
response within “instruction” tags. Since the purpose of the passage is generally inferrable from the
first few words of the gold response (“Sure, here’s a recipe for Kubdari...””), we are able to evaluate
generated responses under the same AlpacaEval framework.

Our results are shown in We replicate the finding that SFT (No ablation) leads the model
to be able to handle non-canonical tokenizations. This persists when computing gradients over
the entire instruction and response (Full gradient) so that the training procedure matches regular
pretraining. Replacing the original chat template with a simple question-answer template (QA
template) also maintains model robustness. However, the usage of a template is crucial — when
directly concatenating the instruction and response (Removing chat template), the model fails to
produce coherent generations, with the spelling score dropping from 0.786 in the no ablation setting
to 0.0698. Inserting the chat template into pretraining-style data (Removing the instruction) also
does not yield robustness, with a spelling and grammaticality scores remaining low at 0.181 and 0.158,

“We match the instruction length distribution by counting the number of tokens 7 in the original instruction,
and formatting the first n tokens of the response as the new “instruction.”
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Figure 4: Ablations on the SFT training data and procedure indicate that the separation of the context
and expected continuation — as different turns of dialogue demarcated with a special token — is key
to robustness to non-canonical tokenizations.

Table 4: Both base and instruct models from the LLAMA-3.1-8B family recognize words represented
with non-canonical tokenizations (performing well on Word Repeat), but incorrectly perceive that
there are misspellings (performing at random on Identifying Misspellings).

Word Repeat  Identifying Misspellings

Base model 90.8 48.2
Instruct model 92.0 55.8

respectively. Overall, these findings suggest that in order for the LM to generate fluent continuations
given non-canonical tokenizations, the context and expected continuation need to represent separate
turns of dialogue, and additionally, be demarcated with a special template.

4.3 Disentangling understanding from generation

One plausible explanation for our findings thus far is that both base and instruction-tuned models grasp
the semantics of non-canonical tokenizations, yet falsely perceive them as containing misspellings.
While base LMs attempt to faithfully continue these mistakes and degenerate into nonsensical output,
instruction-tuned models are trained to provide fluent responses regardless of the instruction, leading
to the results observed in[§4.1} To test this hypothesis, we construct two simple tests:

1. Word Repeat: To determine if a model perceives the meaning of a word with non-canonical
tokenization, we prompt the model to repeat a given word (while correcting any typos).

2. Identifying Misspellings: To determine if a model perceives a misspelling, we ask it to
identify the word with a misspelling among two options: a (correctly tokenized) misspelling
of a word and an non-canonical tokenization of that word (correctly spelled).

Results are shown in Consistent with our hypothesis, we find that both the base and instruct
models from the LLAMA-3.1-8B family score highly (> 90%) on Word Repeat. This means that
the base model, despite its poor performance in[§4.1} actually recognizes the correct form of non-
canonical tokenizations as well as its post-trained counterpart. In addition, both models perform
at random when asked to distinguish non-canonical tokenization from true misspellings. In other
words, the instruct model produces fluent responses (§2) while interpreting the instruction as heavily
misspelled! While instruct models evidently overcome this, the base model likely attempts to mimic
the (perceived) idiosyncratic surface form, thus producing nonsensical (yet sometimes relevant)
outputs.



5 Related Work

The extent to which LMs are limited by their tokenization is a topic of much debate, with the story
evolving as LMs become larger and more capable.

Character-level understanding in tokenizer-based models It is commonly argued that tokeniza-
tion obscures orthographic information about tokens from the LM, leading to unexpected failures
[18L18,167]. As aresult, there have been many efforts towards linguistically-informed tokenization that
make derivational, compound, and morphological boundaries within words explicit [35} 125126, 70, 4].
Similarly, BPE-dropout [52]] and related methods [60]] introduce variation in training in how a given
string is tokenized in order to make models more robust to rare, misspelled, or unseen words.

However, there is other evidence that LMs naturally overcome these limitations. For instance, token
embeddings have been found to robustly encode character-level information, especially in larger
models [34}[27]]. This may be because word variants that do not share tokens in common (consider
e.g., [_dictionary] and [ _diction, aries], as tokenized by GPT-2) incentivize the model to
learn spelling as a general solution to understanding their relations [34]]. Other works argue that LMs
maintain an implicit vocabulary, and can compose arbitrary token sequences (including non-canonical
ones) into useful higher-level representations [[19} [33]]. Even in domains like biomedical text where
terms are highly agglutinative, using tokenizers that segment on meaningful components does not lead
to improved models [30]. Recent works have even found that coarser superword tokenization [40,57],
which capture common word sequences in a single token, preserve character-level understanding
while providing benefits in compression and downstream performance.

Our work informs this conversation by showing that LMs can effectively leverage character-level
knowledge of their tokens and glean potential benefits of improved representation at inference time.

Partial token problem A related but distinct problem is the partial token problem (also known
as tokenization bias or the prompt boundary problem) where the prompt ends with the prefix of a
valid token, causing the model to assign unexpectedly low probability to the completion of that token.
Many works have found that this continues to compromise a serious failure mode for frontier LMs
(5111411166l 22]]. In particular, DEEPSEEK V3 [15] aims to improve robustness to partial punctuation
tokens by randomly splitting some proportion of multi-punctuation tokens into smaller tokens during
training, though they do not present experiments with this ablation. We note that these results are
not inconsistent with ours — together, they suggest that while models are very unlikely to generate
non-canonical tokenizations, they can nonetheless understand them in the context history.

Non-canonical tokenizations It has long been recognized that there are many possible ways to
segment a string into tokens with a fixed vocabulary [[10], which in principle should be considered in
the calculation of a string’s likelihood [7, 19} 20]. Previous work has briefly touched on non-canonical
tokenization in the context of self-supervised evaluation [28]] and defense against adversarial attacks
[29]. In contemporaneous work, Geh et al. [21] also show that non-canonical tokenizations can be
constructed adversarially to trigger unsafe completions. In contrast, we provide a more systematic
study of LM robustness using benchmark evaluations and additionally study its source.

Somewhat relatedly, other works have provided algorithms for sampling at the character- or byte-level
from tokenizer-based LMs [50} 65} 3L 22]]. Together, these directions suggest that despite being
trained with one deterministic tokenization scheme, LMs can both condition on and produce token
sequences over a different (sub)vocabulary.

6 Conclusion

Despite being trained with deterministic tokenization algorithms, we show that instruction-tuned
language models are surprisingly robust to token sequences not seen in training. In certain domains,
such as arithmetic or code, more intuitively meaningful tokenizations can even be swapped-in at
inference time for improved performance. We analyze the source of this robustness, and find that
while the base and instruct models both perceive the semantics of non-canonical tokenizations, only
instruct models are capable of providing fluent continuations. Our work demonstrates a way in which
LMs are not necessarily tied to tokenizer they were trained with, and highlights the potential of
finding more optimal representations of text after pretraining.
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the architecture clearly and fully.
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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¢ The instructions should contain the exact command and environment needed to run to
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: This information will be provided in the appendix.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide information about standard deviation and statistical significance.
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» The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96 CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We will provide this information in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: The work has no immediate societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: No data from the paper has high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the creators and comply with the license of all assets used in the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Justification: We will release the datasets we created.
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: There are no experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: There are no experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required. this
research?

Answer:
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Justification: We did not use LLMs to conduct this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Random Non-Canonical Tokenization

In this section, we provide our algorithm for producing a random non-canonical tokenization, and a
proof that each non-canonical tokenization that is more fine-grained than the canonical one has equal
probability of being output.

A.1 Algorithm

We will split each token in a canonical tokenization into smaller tokens (that each exists in the
tokenizer’s vocabulary). We formulate our problem as: Given a valid token ¢, and a set of vocabulary
V), construct a sequence of tokens seq using tokens that exist in ) and form ¢ when concatenated
together. We produce seq using a recursive algorithm. Since there can be many possible seq for
each ¢, we need to randomly choose one and guarantee that each possible seq is chosen with equal
probability. We achieve this by considering recursion as producing a tree. Each path down the tree
corresponds to one possible way to segment ¢. Each node of the tree represents a segmentation state
where we have chosen some number of sub-tokens. At each node, we weigh the choice of which
child node to visit by the number of leaves in the sub-tree that is rooted at each child node. This
guarantees that each path down the tree is chosen with equal probability since the number of paths
down a tree is equal to the number of leaf nodes in that tree. The pseudocode for the algorithm is in [T}

A.2 Proof

Goal: To prove that the random segmentation algorithm chooses one valid segmentation from all
possible valid segmentations with uniform probability.

Notation: Let W (i) denote the number of valid segmentation completions (i.e., the number of
leaves in the recursive tree) for the substring starting at index 4. In particular, W (|token|) = 1. Note
that W (%) is calculated by the memoized recursive function countSegments(i), which calculates
the number of leaves of the subtree rooted at 7.

Base Case: Consider the node corresponding to ¢ = |token| (the end of the token). Here, there is
exactly one valid segmentation (the empty segmentation), so the algorithm returns it with probability
1. That is, every segmentation (in this case, the only one) is chosen with probability

1 1

S
W (|token|) 1

Thus, the base case holds.

Inductive Hypothesis: Assume that for any node corresponding to an index j with j > ¢ (i.e.,
deeper in the recursion tree), every complete segmentation (leaf) in the subtree rooted at j is chosen
with probability
1
W)

Inductive Step: Now consider a node corresponding to index 4 (with ¢ < |token|). Suppose
that from ¢ there are k valid branches corresponding to choosing substrings that end at indices
J1,J2,- -+, jk, where for each j we have i < j < |token| and the substring token[i : j] is in the
vocabulary. By definition,

k
W(i) =Y W(r)
r=1

The algorithm selects the branch from ¢ to a specific child j with probability

W)

w(i)

Once branch ¢ — j is chosen, by the inductive hypothesis every complete segmentation (leaf) in the
subtree rooted at j is chosen with probability

P(i —+ j) =

W(5)
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Thus, the probability P(.S) of obtaining a particular complete segmentation ) that starts at 4 by first
taking the branch ¢ — j and then following a specific path in the subtree rooted at j is

W(j) 1

P(S)

TW6E) WG W)

Since the factor W () cancels, the probability P(S) is independent of the particular child j chosen.

Conclusion: By the inductive step, every complete segmentation (leaf) in the subtree rooted at any
index ¢ is chosen with probability %@ In particular, when ¢ = 0 (the start of the token), every valid

segmentation of the entire token is selected with uniform probability ﬁ. This completes the proof.

Algorithm 1 Random Token Segmentation

1: function COUNTSEGMENTS(start) > Cached (using memoization)
2 if start = |token| then

3 return 1 > Reached end; valid segmentation
4: end if

5: total < 0

6: for end + start + 1 to [token| do

7 substring + token[start : end]

8 if substring € vocabulary then

9: total < total + COUNTSEGMENTS (end)
10: end if
11: end for
12: return total

13: end function
14: function BUILDSEGMENTS(start)
15: if start = |token| then

16: return & > Empty segmentation
17: end if

18: validSegments < [|

19: weights + [|

20: for end + start + 1 to |token| do

21: substring + token[start : end)]

22: if substring € vocabulary then

23: segCount < COUNTSEGMENTS (end)

24: if segCount > 0 then

25: Append substring to validSegments

26: Append segCount to weights

27: end if

28: end if

29: end for

30: if validSegments is empty then

31: return &

32: end if

33: chosenSegment < weightedRandomChoice(validSegments, weights)

34: return [chosenSegment] || BUILDSEGMENTS(start + |chosenSegment|) > Concatenate

chosen segment with segmentation of remaining token
35: end function
36: procedure SEGMENTTOKEN(token, vocabulary)
37: if COUNTSEGMENTS(0) = 0 then

38: return o > No valid segmentation exists
39: else

40: return BUILDSEGMENTS(0)

41: end if

42: end procedure

24



B Evaluation Details

B.1 General benchmarks

For short-answer benchmarks, the system prompt is:
You are a helpful assistant.

For multiple-choice benchmarks, the system prompt is:

You are a helpful assistant. For the following multiple choice questions,
return the answer only, without any additional reasoning or explanation.

MATH MATH is a dataset composed of fairly difficult, competition level math problems [24]. The
test set is composed of short answer problem that describe some scenario and asks the model to
output a mathematically correct answer.

GSMS8K GSMSK is a dataset consisting of relatively simple math questions that would appear
in grade school math exams [14]. For GSM8K, the evaluations were done in the same manner as
MATH.

MMLU MMLU is a benchmarks comprising of multiple choice questions from a wide variety of
subjects. [23]] We sampled 500 questions from MMLU for our evaluation. We instructed the model to
only output one answer to each question without any explanation.

Alpaca Eval Alpaca Eval is an evaluation benchmark where generations from language models
against given prompts are compared and judged by an annotator model. [17] The metric used was
raw winrate of the perturbed model as judged by a language model. The annotator we used was
alpaca_eval_gpt4, which has been shown to have the highest Spearman and Pearson correlation
coefficient with human annotators.

ARC Challenge and ARC Easy Contains multiple choice questions with four options each, taken
from grade school science exams [13]. ARC Easy is tests basic science knowledge while ARC
Challenge requires some procedural reasoning.

BoolQ Contains true or false questions along with a context passage that provides the answer to the
question. [[11]]

CommonsenseQA Contains multiple choice questions with five options each that requires common
sense knowledge to answer. [62]

COPA Contains multiple choice questions with two options each that tests knowledge of cause and
effect. [[54]

CUTE Contains questions that require the model to manipulate sentence-level, word-level, and
character-level structure for strings. [18]

DROP contains questions that potentially require reasoning multiple pieces of information present
in a given passage. [16]

HellaSwag contains multiples choice questions with four options each that asks for the most natural
continuation to some given context. [[72]]

JeopardyQA contains short answer questions from the “Jeopardy!” game show. [32]]

OpenbookQA contains multiple choice questions with four options each that require some multi-
step and common sense reasoning. [44]
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Table 5: System prompt for tasks in See [Table 2|for example instructions.

Counting characters: You are a helpful assistant. The following prompt will ask you
to return a sequence of words. Only return the sequence, separated by spaces.
Do not provide any additional text or explanation.

Code Description: You are a programming assistant trained to analyze and interpret
code snippets. When provided with a code snippet and a set of answer choices
(A, B, C, or D), your task is to evaluate the code, determine its behavior, and
select the answer that best describes this behavior. Your response must be a
single letter: A, B, C, or D. Do not provide explanations or additional text
unless explicitly requested.

Arithmetic: You are a computational assistant trained to evaluate arithmetic
operations. When provided with an arithmetic expression, calculate the result
and round it to the nearest integer. Respond only with the rounded result,
without any additional text or explanation.

PIQA contains multiple choice questions that require reasoning about the physical world. [6]
TriviaQA contains short answer questions that requires knowledge of the world. [31]]

Winograd contains multiple choice questions with two options that asks to determine what a pro-
noun might refer to. Answering these questions require knowledge of commen sense and surrounding
context. [37]

Winogrande contains questions in the same format of Winograd but there are more questions and
the questions are harder. [55]]

TOFU contains general short answer questions that tests the model’s ability to process world
knowledge. This is the retain set of the task of fictitious unlearning dataset. [42]]

WikidataQA require models to complete factual statements. [S]

B.2 Constructed Benchmarks

In this section, we provide more detail on how datasets we use in[§3]are constructed.

Count Characters Task The prompt asks the model to count the number of occurrences of a
given character in a 10-character word; we always use the most frequently occurring character.
Evaluation was done, similar to GSM and MATH, by finding the last number in the generated
response. Generations without any numbers are considered incorrect.

Generate Acronym Task The model is asked to generate a sequence of words whose first letters
form a randomly sampled five character string. For evaluation, we take the first character of each
whitespace-delimited word and check if it matches the desired acronym.

Codeline Description Task The model is asked to comprehend a piece of code and choose the best
description from four options.

Arithmetic Task The model is asked to perform addition or subtraction with 10 digit numbers.
We use regex to extract numbers from the generation, which are then compared to the ground truth
answer.

B.3 Metrics of generation quality

Here we provide additional details on the metrics defined in
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Table 6: Data format of ablations in

No ablation: <|user|>Provide a detailed analysis of Candace Parker’s defensive
techniques in her recent games, excluding the words "aggressive" and "blocking",
in the format of a sports commentary script. <|assistant|>[Sports Commentary
Script]

[Opening Scene...

QA Template: Question: Provide a detailed analysis of Candace Parker’s defensive
techniques in her recent games, excluding the words "aggressive" and "blocking",
in the format of a sports commentary script. Answer: [Sports Commentary
Script]

[Opening Scene...

Removing the chat template: Provide a detailed analysis of Candace Parker’s defensive
techniques in her recent games, excluding the words "aggressive" and "blocking",
in the format of a sports commentary script. [Sports Commentary Script]

[Opening Scene...

Removing the instruction: <|user|>[Sports Commentary Script]

[Opening Scene: A packed basketball arena, with fans eagerly awaiting the
analysis of Candace Parker’s recent performances on the court.]

Commentator 1: Welcome back, basketball fans! <|assistant|>Tonight, we’re
diving into the defensive prowess of Candace Parker...

Spelling We use the top 10000 most frequently appearing English words in Google’s trillion word
corpus. We only consider words with more than one character. This is because sometimes base
models will repeatedly generate the same letter, and since all English letters are in the word list, the
generation would receive a high score.

Grammaticality One drawback with this evaluation method is that oftentimes the model would
repeat the same letter over and over again, or start counting numbers. In both of these cases, there
are no detected grammar mistakes, however they are still obviously gibberish. Therefore, we only
calculate grammaticality scores for generations that receive a score > 0.5 on spelling; otherwise, we
give it a grammaticality score of 0.

Win rate  Similar to evaluation in[§2] we also used alpaca_eval_gpt4 as the evaluator and report
raw win rate. In[4. 1} the win rate is calculated against generations conditioned on input with canonical
tokenization. In the win rate is against generations from the No Ablation setting when also given
character-level tokenization. By construction, the win rate of the No Ablation setting itself is 50%.

B.4 Ablation Settings

For ablations on the data format, see examples of formatted data in Our finetuning code was
forked from allenai/open-instruct. The exact finetune recipe is given below:

» Setup: 8 L40S GPUs

* Gradient Accumulation Steps: 20

* Per Device Train Batch Size: 2

* Mixed Predision: bf16

* Max Seq Length: 4096

* Learning Rate: 5e-06

* LR Scheduler Type: Linear

* Warmup Ratio: 0.03

* Weight Decay: 0

* Epochs: 1

* Seed: 123
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Table 7: QWEN-2.5-7B-INSTRUCT is robust to character-level tokenization of Chinese text.

Benchmark Canon Char

Chinese MMLU 77.8 74.2
Chinese GSM 78.8 76.8

B.5 Disentangling understanding from generation

For these tasks, we use 500 words randomly sampled from Google’s 10000 English word lisﬂ
Word Repeat An example prompt is shown below.

Repeat each word directly, while correcting any typos.

Question: guarantees
Answer: guarantees

Question: revelation (character-level tokenization)
Answer:

Identifying Misspellings We obtain the misspelled word by randomly adding, removing, or
substituting a single character from the word. An example prompt is shown below.

Question: Which of the two words contains a misspelling? Respond directly
with the answer option.

Question:

A. guarantees
B. garantees

Answer: B
{9 more in context examples}
Question:

A. farmer (character-level tokenization)
B. farme (canonical tokenization)

C Additional Results

C.1 Evaluation on Chinese Benchmarks

We also investigate how robust language models are given character-level tokenization of text in
Chinese as evaluated on two tasks, Chinese GSM [59]] (part of multilingual GSM benchmarks) and
Chinese MMLU [38]. Note that since each Chinese character is usually represented with three
bytes under UTF-8 encoding, this is not equivalent to byte-level tokenization. We focus on QWEN-
2.5-7B-INSTRUCT as LLAMA-3.1-8B-INSTRUCT and OLMO0-2-7B-INSTRUCT do not officially
support Chinese. As shown in we observe a similar robustness on Chinese, with performance
dropping by only ~ 3% on each task.

Shttps://github.com/first20hours/google-10000-english/blob/master/
google-10000-english.txt
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