Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative
Retrieval

Ravisri Valluri! Akash Kumar Mohankumar? Kushal Dave® Amit Singh? Jian Jiao® Manik Varma '
Gaurav Sinha '

Generative Retrieval introduces a new approach to Infor-
mation Retrieval by reframing it as a constrained genera-
tion task, leveraging recent advancements in Autoregressive
(AR) language models. However, AR-based Generative Re-
trieval methods suffer from high inference latency and cost
compared to traditional dense retrieval techniques, limiting
their practical applicability. This paper investigates fully
Non-autoregressive (NAR) language models as a more ef-
ficient alternative for generative retrieval. While standard
NAR models alleviate latency and cost concerns, they ex-
hibit a significant drop in retrieval performance (compared
to AR models) due to their inability to capture dependencies
between target tokens. To address this, we question the con-
ventional choice of limiting the target token space to solely
words or sub-words. We propose PIXAR, a novel approach
that expands the target vocabulary of NAR models to include
multi-word entities and common phrases (up to 5 million
tokens), thereby reducing token dependencies. PIXAR em-
ploys inference optimization strategies to maintain low infer-
ence latency despite the significantly larger vocabulary. Our
results demonstrate that PIXAR achieves a relative improve-
ment of 31.0% in MRR@10 on MS MARCO and 23.2% in
Hits@5 on Natural Questions compared to standard NAR
models with similar latency and cost. Furthermore, online
A/B experiments on a large commercial search engine show
that PIXAR increases ad clicks by 5.08% and revenue by
4.02%.

1. Introduction

Generative Retrieval (GR) has emerged as a promising ap-
proach within Information Retrieval, particularly for text
retrieval tasks (Bevilacqua et al., 2022; Tay et al., 2022;

"Microsoft Research, India >Microsoft, India *Microsoft, USA.
Correspondence to: Ravisri Valluri <t-ravalluri @microsoft.com>,
Akash Kumar Mohankumar <makashkumar@microsoft.com>,
Kushal Dave <kudave@microsoft.com>, Amit Singh
<siamit@microsoft.com>, Jian Jiao <jian.jiao @microsoft.com>,
Manik Varma <manik @microsoft.com>, Gaurav Sinha <gauravs-
inha@microsoft.com>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

Wang et al., 2022; Li et al., 2023b). This approach involves
creating a set of document identifiers that represent docu-
ments from the original corpus. A generative model is then
trained to generate document identifiers for an input query.
The generated identifiers are subsequently mapped back to
the corresponding documents in the corpus. GR methods
typically utilize an autoregressive (AR) language model to
generate the document identifier as a sequence of words
or sub-words tokens from a predefined target vocabulary.
By leveraging high-quality document identifiers and cap-
turing complex dependencies between tokens through the
autoregressive generation process, GR has achieved substan-
tial improvements in retrieval performance in recent years
(Bevilacqua et al., 2022; Li et al., 2023b;a).

Despite these advancements, deploying GR models in low-
latency applications, such as sponsored search, remains a
significant challenge due to the high inference complexity
of AR models (Li et al., 2024; Mohankumar et al., 2022).
This stems from their sequential token-by-token generation
mechanism (Gu et al., 2017). To address this challenge, our
paper explores the use of non-autoregressive (NAR) lan-
guage models for GR. These models significantly reduce
inference costs by generating all tokens of the document
identifier simultaneously. However, this parallel generation
limits the model’s ability to capture dependencies among
tokens (words, sub-words) in the output identifier, leading
to inferior retrieval performance compared to AR-based
GR models. To enable NAR-based GR to leverage word
and sub-word interactions during generation, we propose
expanding the model’s target vocabulary by incorporating
phrases within the document identifiers as tokens. Intu-
itively, predicting high-probability phrases at each position
in the output sequence allows the NAR model to better
understand the intricate relationships between words and
sub-words within each predicted phrase, potentially enhanc-
ing retrieval performance. This forms the basis of our first
research question:

(RQ1)- How does the retrieval accuracy of a NAR-based
GR model (with a target vocabulary containing word/sub-
word level tokens) change when the target vocabulary is
expanded to include phrases from document identifiers as
additional tokens? While a positive answer to the above

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

question will provide an approach to get high quality re-
trieval from NAR-based GR, it also comes at a cost to the
inference latency. While generating phrases at output in-
stead of solely words leads to shorter output sequences and
helps latency, as the vocabulary size grows, predicting the
most likely tokens at each of these output positions becomes
computationally far more demanding leading to much higher
overall latency. Consequently, to make NAR-based GR truly
viable for latency-sensitive applications, we need to develop
efficient inference methods that can select the top tokens
from the enlarged vocabulary more efficiently. This leads
us to our second research question:

(RQ2)- How can we reduce the inference latency of a NAR-
based GR model with a large target vocabulary without
compromising its retrieval accuracy?

In this work, we make progress on both these questions. Our
key contributions are outlined below.

1.1. Our Contributions

1. We present PIXAR (Phrase-Indexed eXtreme vocab-
ulary for non-Autoregressive Retrieval), a novel ap-
proach to NAR-based GR. By leveraging a vast target
vocabulary encompassing phrases within document
identifiers, PIXAR achieves superior retrieval qual-
ity compared to conventional NAR-based GR models.
Through innovative training and inference optimiza-
tions, PIXAR effectively mitigates the computational
burden associated with its large vocabulary. This al-
lows for efficient retrieval of relevant documents during
the inference process. The architecture of PIXAR is
presented in Figure 1. A comprehensive explanation
of each component can be found in Section 4.

2. We conducted comprehensive experiments on two
widely-used text retrieval benchmarks, MS MARCO
(Bajaj et al., 2018) and Natural Questions (NQ)
(Kwiatkowski et al., 2019). Our results demonstrate
PIXAR’s significant performance gains: a relative im-
provement of 24.0% in MRR @10 on MSMARCO and
a23.2% increase in Hits@5 on NQ, compared to stan-
dard NAR-based retrieval models while maintaining
similar inference latency. These findings underscore
PIXAR’s effectiveness in enhancing retrieval quality
for various text retrieval tasks.

3. Moreover, A/B testing on a large commercial search en-
gine revealed a significant impact of PIXAR: a 5.08%
increase in ad clicks and a 4.02% boost in revenue.
These findings validate PIXAR’s practical value in
improving user engagement and driving business out-
comes.

2. Related Work

Generative retrieval: GR is an emerging paradigm in in-
formation retrieval that formulates retrieval as a generation
task. A key distinction among different GR methods lies
in their approach to represent documents. Some methods
directly generate the full text of the document, particularly
for short documents like keywords (Lian et al., 2019; Mo-
hankumar et al., 2021; Qi et al., 2020). Others opt for more
concise representations, such as numeric IDs (Tay et al.,
2022; Zhuang et al., 2022; Mehta et al., 2022; Wang et al.,
2022; Zeng et al., 2023; Rajput et al., 2023), document titles
(Cao et al., 2020; Chen et al., 2022), sub-strings (Bevilac-
qua et al., 2022), pseudo queries (Tang et al., 2023), or a
combination of these descriptors (Li et al., 2023b;a). De-
spite showcasing promising results, existing GR approaches
have high inference latency and computational cost due their
reliance on AR language models, presenting a significant
challenge for their real-world adoption.

Non-autoregressive Models: Recent works have explored
NAR models for various generation tasks, such as machine
translation (Gu et al., 2017), text summarization (Qi et al.,
2021), and specific retrieval applications like sponsored
search (Mohankumar et al., 2022). NAR models aim to
accelerate inference by predicting word or sub-word tokens
independently and in parallel with a single forward pass.
However, NAR models struggle to capture the inherent mul-
timodality in target sequences, where multiple valid outputs
exist for a single input, due to their lack of target dependency
modeling (Gu et al., 2017). This often leads to predictions
that mix tokens from multiple valid outputs, resulting in
significant performance degradation. To mitigate this, ex-
isting approaches focus on accurately predicting a single
mode rather than modeling all modes. For instance, some
methods use knowledge distillation to simplify the training
data (Gu et al., 2017; Zhou et al., 2019), while a few others
relax the loss function (Ghazvininejad et al., 2020; Du et al.,
2021; Libovicky & Helcl, 2018; Saharia et al., 2020). While
these approaches are effective for tasks requiring a single
correct output, GR necessitates retrieving all relevant docu-
ment identifiers for accurate retrieval and ranking. In this
work, we propose an orthogonal approach to improve NAR
models for retrieval by directly predicting phrases instead
of sub-words. This reduces the number of independent pre-
dictions required in NARs, leading to improved retrieval
performance.

Efficient Softmax: The softmax operation, crucial for gen-
erating probability distributions over target vocabularies
in language models, presents a significant computational
bottleneck, particularly for large vocabularies. Existing ap-
proaches address this through techniques such as low-rank
approximation of classifier weights (Chen et al., 2018a; Sam-
aga et al., 2024), clustering of classifier weights or hidden

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

states to pre-select target tokens (Grave et al., 2017; Chen
et al., 2018b). However, these methods remain computa-
tionally expensive for NAR models which perform multiple
softmax operations within a single forward pass. In contrast,
we introduce a novel method that utilizes a dedicated short-
list embedding to efficiently narrow down target tokens for
the entire query, thereby significantly reducing latency and
maintaining strong retrieval performance.

Large Vocabulary: Recent work has highlighted the ben-
efits of large sub-word vocabularies for encoder models,
particularly in multilingual settings (Liang et al., 2023).
Non-parametric language models, which predict outputs
from an open vocabulary of n-grams and phrases using their
dense embeddings, have also gained traction for tasks like
question answering and text continuation (Min et al., 2022;
Cao et al., 2024; Lan et al., 2023). While our work shares
the goal of expanding vocabulary size with non-parametric
models, we directly learn classifier weights for an extended
target vocabulary within a non-autoregressive framework.

3. Preliminaries

Notation: We let Q to be a set of queries and X to be a
finite set of textual documents (called the document corpus).
Following the GR paradigm from prior works (Bevilacqua
et al., 2022; Li et al., 2023b;a), we use a set of document
identifiers (docids) D. Prior literature uses docids such as
titles, sub-strings, pseudo-queries etc. In this paper, follow-
ing recent works (Wang et al., 2022; Zhuang et al., 2022;
Li et al., 2023b), we leverage pre-trained language models
to generate high quality pseudo-queries from documents,
which we then use as docids. For non-negative integers
m < n, we denote the set {m,...,n} by [m,n]. We use
P (with or without subscripts) to denote probability distri-
butions and the exact distribution is made clear at the time
of use. Next we describe salient features of NAR language
models relevant to our work.

NAR Models: NAR models generate all tokens of the docid
in parallel and therefore lead to faster retrieval than AR
models. These models assume conditional independence
among target tokens, i.e., P(d | ¢,0) = [[}_, P(d" | q,0)
and so for each position ¢ € [s], they select the top tokens
based on the conditional probability distribution P(. | g, 8).
This simplification enables efficient inference but comes at
a cost. Previous studies in various applications, including
machine translation (Gu et al., 2017; Gu & Kong, 2020),
have demonstrated that the assumption of conditional inde-
pendence rarely holds for real-world data. Consequently,
NAR models often struggle to capture crucial dependencies
between target tokens, leading to a substantial performance
degradation compared to their autoregressive counterparts.
In our proposed work described in Section 4, we develop
a technique that can overcome this quality degradation by

adding phrase level tokens (within docids) and designing
novel training/inference mechanisms that can still benefit
from the parallel generation mode of NAR models.

4. Proposed Work: PIXAR

The core idea behind PIXAR is to scale up the target vo-
cabulary of NAR models by including phrases from docids.
We explain the methodology for constructing this expanded
vocabulary in Section 4.1. To enable efficient inference with
a larger vocabulary, PIXAR constructs a small number of
token subsets from the target vocabulary during training.
At inference time, PIXAR selects and combines relevant
subsets to create a concise shortlist of candidate tokens. For
each output position, PIXAR only re-ranks tokens among
this shortlisted subset to predict the top tokens. Finally,
these top tokens at different positions are combined using
trie constrained beam search to generate the docids. Section
4.2 provides the complete details of the PIXAR pipeline,
including the novel training and inference mechanisms. Fig-
ure 1 illustrates the different components of PIXAR through
a concrete example.

4.1. Vocabulary Construction

Our goal is to build a target tokenizer and vocabulary with
the following desired characteristics: (i) Efficient Encoding:
The vocabulary should encode docids using fewer bits, re-
sulting in shorter target sequences, (ii) Token Frequency:
Ensure every token appears with a minimum frequency
in the docid set to facilitate effective training of the lan-
guage modelling weights, and (iii) Linguistic Structure: In-
clude common phrases while respecting word boundaries.
While Byte-Pair Encoding (BPE) (Sennrich et al., 2015) is
a popular method for constructing vocabularies, it involves
pre-tokenization heuristics that split sentences by spaces
and punctuation marks and limit its use to words and sub-
words, which can cause it to perform significantly worse
than phrase-based vocabularies.

Instead, we follow a two-stage approach: candidate selec-
tion followed by vocabulary construction, as proposed in
TokenMonster (Forsythe, 2023). Initially, we generate a set
of potential token candidates by considering all possible
character substrings up to a specified maximum length, fil-
tering tokens based on criteria such as adherence to word
boundaries and consistency in character types (letters, num-
bers, punctuation, etc.). Then, we iteratively prune tokens
until the target vocabulary size is reached, deleting tokens
based on the total number of characters they compress in
the docid set. Since we follow the vocabulary construction
process from TokenMonster (Forsythe, 2023), we refer the
reader to (Forsythe, 2023) for further details.

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

Shortlisted Tokens: Wy = W7 U Wy
R4

shortlist
embedding

Transformer
Encoder

T

[CLS] Who is the bad guy in
the lord of the rings?

Query q:

|
|
|
|
l
1
| who is the villain
1
1
1
|

who is the necromancer in the
who is the dark lord in
who is the villain

who is the necromancer

who is the dark lord

lord of the rings

v v v
wa wg wg

lord of the rings

Constrained

Beam Search

Generated Document Identifiers

who is the necromancer in the lord of the rings

who is the dark lord in lord of the rings

Figure 1. PIXAR inference pipeline: The query is first encoded by a Transformer to produce shortlist embedding zo and token embeddings
{1, -+ ,zs}. The shortlist embedding o is used to identify k vocabulary clusters {ci}le. The union of these clusters, Wy, is then
re-ranked at each position using the corresponding token embeddings, producing a set of ranked candidate tokens (W ... W§) with their
probability scores. The docids are predicted from these tokens via constrained beam search

4.2. PIXAR Pipeline

In this section, we provide details of the PIXAR pipeline.
At a high level PIXAR comprises of a NAR model, a set
of learnable vectors ¢y, ..., ¢,, and their corresponding r-
sized subsets Wy, ..., W,, C V, where V is the target
vocabulary constructed using the method described in Sec-
tion 4.1. Here, m and r are hyper-parameters that can be
tuned. The set W;, ¢ € [m] contains the top r tokens in the
target vocabulary V' as per the Softmax probability score,

exp (cFwy)

> exp (cFwy)’
ueV

P, (U) =

where for each token u € V, w, € R? is a learnable pa-
rameter vector in the NAR model. We will explain the role
of the ¢;s below but first we demonstrate the journey of an
input query g through the pipeline. ¢ is first prepended with
a special "[CLS]" token and sent through the NAR model.
It passes through the transformer layers which outputs a
sequence of embeddings z(q), 71(q),...,7s(q) € R,
where s is the output sequence length and d is the hidden
dimension of the embeddings. Following this, & vectors
from the set {¢;,% € [m]}, that have the largest inner prod-
uct with z(q) are computed. Without loss of generality,
assume they are cy, .. ., cx. The union of the corresponding
sets i.e., Wy(q) = Wi U ... U Wy is then obtained. This

becomes a final set of shortlisted tokens from V' and to-
kens within it are subsequently used for generation of the
docids. This means Wy(q) should at least contain tokens
for all positions in the output to be generated for q. For
each t € [1, s], the set W(q) is re-ranked according to the
Softmax probability scores' P (. | ¢), defined as,

exp (xt(q)va)

> exp (wi(q)Twy)
ueV

Pi(v]q) =

This gives ordered sets W (q) for each ¢t € [1,s]. The
top tokens in W{(q) are ideally more relevant to the ¢**
position in the docid to be generated. We generate the top
docids by performing permutation decoding (Mohankumar
et al., 2021) which utilizes constrained beam search on trie
data structures representing document identifiers in D as
a sequence of tokens from the target vocabulary V. Since
x0(q) is used to obtain the shortlisted set of tokens Wy(q),
we call it the shortlist embedding.

Training: We train PIXAR using a training dataset of query,
docid pairs (g1,d1),...,(gn,dn). Our training has two
parts. First, we minimize a novel loss function () to learn
a vector A comprising of the the hidden parameters within

the transformer layers as well as the token parameter vectors

'we actually use estimates P; (. | ¢) (described later) that can

be computed efficiently.

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

Wy, u € V. Our loss £(6) comprises of three terms. The
first term £, (f) is the standard cross entropy loss between
the Softmax predictions at each ¢ € [1, s] and the actual
docid sequence of the document identifiers in the training

data, i.e.,

N

() = 3" os [Biatia)|

i=1 t=1

In the PIXAR pipeline, we use z((q) to compute a subset of
tokens Wy (q) C V, that should ideally contain tokens at all
positions in the generated output docid. To achieve this we
add another cross entropy loss term that intuitively accounts
for how well a Softmax activation is able to predict the set
of tokens in the output docid by using embedding xo(q),

- b =33 los [wﬂqi)}

i=1 t=1

Finally, for all ¢ € [1, s] we add a self normalization loss
term that enables efficient computation of the Softmax based
probability scores, i.e.,

N s
00 =3 log? [Z exp (z:(q))]
=1 t=1 veV

Note that, post minimization of the loss ¢3(#), for each
t € [1, s], we can use the probability estimates Py (v | ¢) =
exp (z4(g)Twy), instead of P;(v | ¢) defined above. For
large target vocabularies (e.g., our expanded vocabulary
with phrase tokens), these estimates are much faster to com-
pute since the sum in the denominator over the entire target
vocabulary is avoided. Finally, we combine these three
terms into our overall loss as,

0(0) = £1(0) + Xalo(0) + N3l3(0),

where A2, A3 are hyper-parameters to be tuned. After mini-
mizing £(6), we train further to learn the vectors c1, . . ., ¢,
described earlier. For each training pair (g;, d;), ¢ € [IN], let
e; € [m] be such that ¢, has the largest inner product with

xo(q), i.e.,

e; = arg max (xo(q;), ¢;)
j€lm]

Then we minimize a function ¢'(cy, . .., ¢,) that computes
the cross entropy loss between the Softmax distributions
Pe,,,i € [N] and the docid sequence d;, i.e.,

Ocry. . em) =— zNj Z log [IPC% (df)}

i=1 t=1

Intuitively, this means that we try to maximize the likelihood
of the tokens present in the docid d;, for the vector c., that

is most aligned with xy(g;). This will ensure that the set
W, (defined earlier in this section) will have a good chance
of containing the tokens in d;. Recall that, in our description
of the PIXAR pipeline we find k vectors that have highest
inner product with xo(¢;) and not just the most aligned
vector c.,. This enhances the chance of the tokens in d;
being present in Wy (g), since it is a union of the sets of
tokens corresponding to these k vectors.

Efficient Inference: We now explain how the PIXAR
pipeline outlined in this section is able to circumvent la-
tency overheads that arise due to the new expanded target
vocabulary V. Recall the typical NAR model described
in Section 3. As the size of V' becomes larger the com-
putational cost of inference grows primarily due to two
reasons; (a) the language modelling head needs to select top
tokens from V' at each output position, and (b) computing
the Softmax distribution at each output position becomes
expensive since its denominator computes a sum over the
target vocabulary. While (b) is easily tackled using the self
normalization loss ﬁg(é), PIXAR'’s handling of (a) is more
intricate. Instead of directly selecting tokens from V' at each
output position, it selects tokens from re-ranked versions
of the shortlisted subset W, (q). This set is further a union
of (k many) r-sized subsets and therefore has size < rk.
By choosing hyper-parameters appropriately, we can ensure
that rk < |V|. To identify the shortlisted subset Wy(q),
PIXAR finds the k vectors among ¢y, . . ., ¢, with largest
inner product with x4(q). Given x((q), this can also be done
efficiently since we can choose the hyper-prameter m ap-
propriately, i.e. m < |V|. This allows the PIXAR pipeline
to avoid the additional inference latency that arises from the
expanded target vocabulary V. Note that very small values
of m,r, k can impact retrieval quality and therefore need
to be tuned for high quality retrieval. In our experiments
in Section 5, we demonstrate for two popular datasets that
even when |V| is scaled to 5 million, m, r, k can be chosen
in a way that ensures high retrieval quality with negligible
impact on inference time.

5. Experiments & Results

In this section, we evaluate our proposed PIXAR method
in three different experimental settings. First, we bench-
mark PIXAR against leading GR approaches, including AR
and NAR methods. Next, we perform a component-wise
ablation study on PIXAR to examine the impact of each
component on retrieval performance and model latency. We
also compare our novel inference pipeline (Section 4.2) with
inference optimization methods from the literature. Finally,
we assess the effectiveness of PIXAR in a real-world appli-
cation, focusing on sponsored search.

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

5.1. Experimental Setup

We evaluate PIXAR on two types of datasets: (i) public
datasets designed for passage retrieval tasks, and (ii) a pro-
prietary dataset used for sponsored search applications. Be-
low, we describe each dataset:

Public Datasets: We use two prominent datasets to evaluate
PIXAR and other GR methods: MS MARCO (Bajaj et al.,
2018) and Natural Questions (NQ) (Kwiatkowski et al.,
2019). The MS MARCO dataset, derived from Bing search
queries, provides a large collection of real-world queries and
their corresponding passages from relevant web documents.
NQ contains real user queries from Google Search that
are linked to relevant Wikipedia articles, emphasizing text
retrieval for answering intricate information needs. For both
these datasets, we follow the preprocessing approach of (Li
et al., 2023b) and utilize pseudo queries generated from
passages as docids for PIXAR.

Proprietary Dataset: We further evaluate PIXAR in the
context of sponsored search, where the objective is to re-
trieve relevant ads for user queries. We utilize advertiser
bid keywords as docids for ads. We perform offline eval-
uations on SponsoredSearch-1B, a large-scale dataset of
query-keyword pairs mined from the logs of a large com-
mercial search engine. This dataset includes approximately
1.7 billion query-keyword pairs, with 70 million unique
queries and 56 million unique keywords. The test set con-
sists of 1 million queries, with a retrieval set of 1 billion
keywords.

Metrics & Baselines: Following prior work (Li et al.,
2023b;a), we evaluate all models using MRR @k and Re-
call@k for the MS MARCO dataset, and Hits @k for NQ.
For the SponsoredSearch-1B dataset, we use Precision@K
as the evaluation metric. Additionally, we measure infer-
ence latency with a batch size of 1 on a Nvidia T4 GPU. We
compare PIXAR with several AR baselines, including DSI
(Tay et al., 2022), NCI (Wang et al., 2022), SEAL (Bevilac-
qua et al., 2022), MINDER (Li et al., 2023b), and LTRGR
(Li et al., 2023a). We report retrieval results from the re-
spective papers and obtain inference latency by running the
official code. For NAR baselines, we include CLOVERvV2
(Mohankumar et al., 2022) and replicate their method on
our datasets due to the absence of reported numbers and
official code for these datasets. Complete implementation
details are provided in Appendix 6.

5.2. Results

We present the results of PIXAR and various GR base-
lines on the MS MARCO dataset in columns 4-7 of Ta-
ble 1. We observe several key findings from this com-
parison. First, CLOVERV2 significantly outperforms AR
baselines like SEAL, NCI, and DSI, while also offering

substantial improvements in inference latency. This high-
lights CLOVERV2 as a strong NAR baseline. However,
CLOVERV?2 falls short when compared to more recent AR
models, particularly MINDER and LTRGR. For instance,
CLOVERV2’s recall at 100 is lower than that of MINDER by
11.8 absolute points. Next, our proposed PIXAR model with
a 5M target vocabulary outperforms the strong CLOVERvV2
baseline across all metrics, showing approximately 20-30%
relative improvements. This strongly supports our hypoth-
esis that increasing the target vocabulary of NAR models
can significantly imrpove retrieval performance. Moreover,
PIXAR exceeds the performance of MINDER in every met-
ric, achieving a 22.5% improvement in MRR at 10, while
also achieving substantial speedups in inference latency.
Notably, PIXAR achieves this performance without utiliz-
ing multiple types of docids like MINDER (titles, n-grams,
pseudo queries) and relies solely on pseudo queries. Ad-
ditionally, PIXAR closely rivals LTRGR, lagging by only
1.5 absolute points in MRR@10 (a 5.8% relative differ-
ence), despite not using a complex two-stage training with
a passage-level loss like LTRGR.

The results on the NQ dataset are presented in the last three
columns of Table 1. Here, the baseline CLOVERvV2 NAR
model significantly trails behind AR models like SEAL,
MINDER, and LTRGR. For example, CLOVERV2 exhibits
a relative gap of 16.3% with respect to LTRGR on recall
at 100. Similar to MS MARCO, PIXAR substantially out-
performs CLOVERV?2 on all metrics, yielding around 13-
23% gains while maintaining significant latency speedups
over AR models. Importantly, PIXAR reduces the rela-
tive gap with LTRGR from 16.3% to 5.1%. These results
demonstrate the effectiveness of PIXAR in leveraging large
vocabularies in NAR models to achieve substantially bet-
ter retrieval performance than standard NAR models while
retaining their latency benefits.

5.3. Ablations

Our PIXAR model integrates three primary components:
(i) a vocabulary and tokenizer that incorporate phrases in
addition to words, (ii) an expanded vocabulary size of SM
tokens, and (iii) an efficient inference pipeline (Section 4.2)
to accelerate NAR inference. To analyze the impact of each
component, we conducted detailed ablation studies, which
we describe below.

Efficient PIXAR Inference: Scaling vocabulary size in-
troduces computational challenges due to the expensive
softmax operation. Table 2 compares PIXAR’s inference
pipeline (Section 4.2) against established techniques: (i)
low-rank approximation methods: SVD-Softmax (Shim
et al., 2017), HiRE-Softmax (Samaga et al., 2024)) and
(ii) clustering-based methods: Fast Vocabulary Projection
(Chen et al., 2018a) and it’s variant Centroid Projection.

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

Models GPU MS MARCO Natural Questions
Latency @5 @20 @100 M@10 @5 @20 @100
DSI (Tay et al., 2022; Pradeep et al., 2023) - - - - 17.3 28.3 47.3 65.5
NCI (Wang et al., 2022) - - - - 9.1 - - -
SEAL-LM (Bevilacqua et al., 2022) 84.3x - - - - 40.5 60.2 73.1
AR SEAL-LM+FM (Bevilacqua et al., 2022) 84.3x - - - - 439 65.8 81.1
SEAL (Bevilacqua et al., 2022) 84.3x 19.8 353 57.2 12.7 61.3 76.2 86.3
MINDER (Li et al., 2023b) 94.1x 29.5 53.5 78.7 18.6 65.8 78.3 86.7
LTRGR (Li et al., 2023a) 94.1x 40.2 64.5 85.2 25.5 68.8 80.3 87.1
CLOVERV2 (Mohankumar et al., 2022) 1.0x 29.2 47.7 66.9 18.3 49.6 63.4 72.9
NAR PIXAR (Ours) 1.2x 38.7 61.0 80.9 24.0 61.1 74.1 82.7
% improvement - 32.7% 279% 209% 31.0% 232% 169% 13.4%

Table 1. Performance and inference latency on MS MARCO and NQ. We report Recall@5, 20, 100, MRR@10 (MS MARCO) and
Hits@5, 20, 100 (NQ), with inference latency relative to CLOVERv2. Bottom row shows PIXAR’s relative improvement over CLOVERv2.

"-" denotes unreported results.

MSMARCO Latency (ms)
Method MRR@I0 R@I00 Mean 99
Full Softmax 24.2 81.6 479 483
SVD-Softmax (Shim et al., 2017) 22.8 78.6 13.7 14.3
HiRE-Softmax (Samaga et al., 2024) 24.0 81.3 12.7 13.2
Centroid Clustering (Amer et al., 2022) 21.7 78.2 14.2 17.4
Fast Vocab (Amer et al., 2022) 22.6 79.6 9.5 16.7
PIXAR (Ours) 24.0 80.9 4.5 5.0

Table 2. Retrieval performance and inference latency (in ms) for
various softmax optimization methods

Tokenizer M@10 | R@5 | R@20 | R@100
DeBERTa 18.3 29.2 47.7 66.9
BPE 18.7 29.8 48.5 67.4
Unigram 19.0 30.5 49.7 68.7
Phrase-based 21.6 34.7 56.0 77.5

Table 3. Retrieval performance of different tokenizers on MS
MARCO (vocabulary size of 128K)

While offering modest speedups, low-rank approximations
like HiRE-softmax still result in significantly higher in-
ference latency (3.4x slower than the 128k vocabulary
CLOVERV?2 baseline) due to their linear complexity with
vocabulary size. Clustering-based methods like Fast Vocab-
ulary Projection offer further speedups in mean latency but
remain 2.5x slower than CLOVERV2. In contrast, PIXAR
achieves superior performance, delivering a 10.6x speedup
over full softmax and a 2.1x speedup over Fast Vocabu-
lary Projection while maintaining comparable retrieval per-
formance to full softmax (within 0.82% in MRR @10 and
0.85% in Recall@100). This translates to a latency only
21% higher than the CLOVERV2 model which has a 39x
smaller vocabulary. These results highlight the effectiveness
of our tailored softmax approximation, which efficiently
predicts shortlist tokens for all vocabulary projections in
NAR models.

Phrase-enhanced Vocabulary: We investigate the effec-
tiveness of PIXAR’s vocabulary construction strategy (de-
tailed in Section 4.1), focusing on the inclusion of phrases.
To isolate this effect, we fixed the vocabulary size to 128K,
equivalent to that of DeBERTa-v3, which was used to ini-
tialize the encoder. We compared the retrieval performance
on the MS MARCO dataset using the original DeBERTa
BPE tokenizer, a custom sub-word BPE, a sub-word Uni-
gram, and our phrase-based tokenizer, all trained on the MS
MARCO docid set. Table 3 presents the retrieval perfor-
mance for the different tokenizers.

We observed that a custom-tailored BPE tokenizer performs
marginally better than the original DeBERTa tokenizer. Fur-
ther, the Unigram tokenizer outperforms the BPE by ap-
proximately 1.9% in MRR @10 and Recall@100, in relative
terms. Most notably, our phrase-based tokenizer substan-
tially outperforms the best baseline (Unigram tokenizer),
with a relative improvement of 13.7% in MRR @10 (from
19.0% to 21.6%) and 12.6% in Recall@ 100 (from 68.7% to
77.5%). These results clearly demonstrate the benefits of ex-
tending beyond words to include phrases in the vocabulary
for NAR models.

Vocabulary Scaling: Here we analyze the impact of increas-
ing the target vocabulary size in NAR models, addressing
RQ1 posed in Section 1. For this study, we utilized the
phrase-based tokenizer and varied the vocabulary size from
128K to 5 million tokens. We used the full softmax opera-
tion without any approximation to observe the raw effect of
scaling. As shown in Table 5, there is a consistent increase
in retrieval performance as the vocabulary size increases
across both MS MARCO and NQ datasets. Notably, the im-
provement persists even when the vocabulary size exceeds
1 million tokens. For instance, when increasing the vocab-
ulary size from 1 million to 5 million tokens, Recall@5
on the MS MARCO dataset improves by 7.7% (from 35.7
to 38.5). These findings highlight the clear advantages of
scaling up the vocabulary size in NAR models.

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

Query PIXAR CLOVERV2
average temperatures | 1. average temp des moines iowa 1. average temperature
des moines iowa 2. what’s the average temperature in des moines 2. what temperature
iowa 3. what is des mo-ines des mo-ines
3. weather in des moines iowa fahrenheit 4. what is des
4. what’s the weather like in des moines
how many best - 1. best western rewards points 1. how many hotels
western points for 2. how many best western rewards points do i need | 2. what is points
free night 3. how many best western hotels 3. how many hotel
4. how many best western points for free nights 4. how many best western points for free nights

Table 4. Examples from PIXAR (5M vocab) and CLOVERV2 (128K vocab) on two sampled queries from MS MARCO dev set. Underlined

spans indicate target tokenizer tokens.

Vocab MS MARCO Natural Questions
Size @5 @20 @100 M@10 @5 @20 @100
128K 347 560 775 216 567 71.6 80.7
500K 349 569 786 217 57.8 727 814
800K 352 575 792 219 582 73.0 812

1M 3577 584 79.6 22.5 585 73.0 82.0
5M 385 610 81.6 242 612 748 835

Table 5. Scaling vocabulary improves NAR retrieval: We report
the Recall @k and Hits @k for MSMARCO and NQ datasets

5.4. Further Analysis

To gain deeper insights into PIXAR’s superior perfor-
mance compared to smaller vocabulary NAR models like
CLOVERV2, we present qualitative examples in Table 4.
PIXAR’s tokenizer effectively captures multi-word entities
like locations (e.g., "des moines iowa") and common phrases
(e.g., "average temp", "what’s the weather like in") as single
tokens. Consequently, the weights in the language mod-
elling head of PIXAR can learn representations for these
multi-word entities and phrases from training data, capturing
their semantic meaning. In contrast, standard NAR models
like CLOVERV?2 tend to break down words representing sin-
gle concepts into multiple tokens (e.g., "des moines iowa"
is fragmented into four tokens: "des", "mo", "ines", "iowa").
This hinders the language modeling head from learning
meaningful representations for these concepts. Moreover,
representing common phrases like "what’s the weather like
in" allows PIXAR to make fewer independent predictions in
parallel, reducing the target output sequence length. Specifi-
cally, the mean and 99th percentile target sequence length
decreases from 10.98 to 4.05 and from 18 to 9 in PIXAR
compared to CLOVERvV2. This reduction in target tokens
simplifies the model’s prediction task, leading to improved
retrieval performance. Interestingly, despite shorter target
sequence lengths, PIXAR tends to predict longer outputs
with more words, as each token represents multiple words.
This addresses a common issue with NAR models, namely
their tendency to generate short outputs (Guo et al., 2019;

Mohankumar et al., 2022). More details can be found in
Appendix 6.

5.5. Application to Sponsored search

To demonstrate the effectiveness of PIXAR in real-world
scenarios, we conducted a series of experiments in spon-
sored search, where the task is to retrieve the most relevant
advertisements for user queries. In this application, ads
are treated as documents, and the keywords bid by adver-
tisers serve as the docids. We first evaluated PIXAR on
the SponsoredSearch-1B dataset, where it significantly out-
performed CLOVERV2, increasing P@ 100 from 23.5% to
29.1% (relative improvement of 23.7%). Further, we de-
ployed PIXAR on a large-scale commercial search engine
and conducted A/B testing against an ensemble of leading
proprietary dense retrieval and generative retrieval algo-
rithms. PIXAR improved revenue by 4.02% with 5.08%
increase in clicks, 0.64% increase in click-through rate, and
4.35% increase in query coverage, underscoring its effec-
tiveness in a real-world setting.

6. Conclusion

In this work, we introduced PIXAR, a novel NAR-based re-
trieval approach that leverages phrase-level tokens within an
expanded target vocabulary. Our experiments demonstrated
that PIXAR bridges the performance gap with state-of-the-
art AR methods while retaining the inherent efficiency of
NAR models. This speed advantage positions PIXAR as a
promising candidate for latency-sensitive applications like
real-time search and recommendation systems.

References

Amer, H., Kim, Y. J., Afify, M., Matsushita, H.,
and Awadalla, H. H. Fast vocabulary projec-
tion method via clustering for multilingual ma-
chine translation on gpu. ArXiv, abs/2208.06874,
2022. URL https://api.semanticscholar.

https://api.semanticscholar.org/CorpusID:251564288
https://api.semanticscholar.org/CorpusID:251564288

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

org/CorpusID:251564288.

Bajaj, P,, Campos, D., Craswell, N., Deng, L., Gao, J., Liu,
X., Majumder, R., McNamara, A., Mitra, B., Nguyen,
T., Rosenberg, M., Song, X., Stoica, A., Tiwary, S., and
Wang, T. Ms marco: A human generated machine reading
comprehension dataset, 2018.

Bevilacqua, M., Ottaviano, G., Lewis, P, tau Yih, W,
Riedel, S., and Petroni, F. Autoregressive search
engines: Generating substrings as document identi-
fiers. ArXiv, abs/2204.10628, 2022. URL https:
//api.semanticscholar.org/CorpusID:
248366293.

Cao, B., Cai, D., Cui, L., Cheng, X., Bi, W.,, Zou,
Y., and Shi, S. Retrieval is accurate generation.
ArXiv, abs/2402.17532, 2024. URL https:
//api.semanticscholar.org/CorpusID:
268031947.

Cao, N. D., Izacard, G., Riedel, S., and Petroni, F. Au-
toregressive entity retrieval. ArXiv, abs/2010.00904,
2020.
org/CorpusID:222125277.

Chen, J., Zhang, R., Guo, J., Liu, Y, Fan, Y., and
Cheng, X. Corpusbrain: Pre-train a generative re-
trieval model for knowledge-intensive language tasks.
Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management,
2022.
org/CorpusID:251594672.

Chen, P. H., Si, S., Kumar, S., Li, Y., and Hsieh, C.-J.
Learning to screen for fast softmax inference on large
vocabulary neural networks, 2018a.

Chen, P. H., Si, S., Kumar, S., Li, Y., and Hsieh, C.-J.
Learning to screen for fast softmax inference on large
vocabulary neural networks. ArXiv, abs/1810.12406,

2018b. URL https://api.semanticscholar.

org/CorpusID:53113692.

Du, C., Tu, Z., and Jiang, J. Order-agnostic cross
entropy for non-autoregressive machine translation.
In International Conference on Machine Learning,
2021.
org/CorpusID:235377210.

Forsythe, A. Tokenmonster: Ungreedy subword to-
kenizer and vocabulary trainer for python, go and
javascript. 2023. URL https://github.com/
alasdairforsythe/tokenmonster.

Ghazvininejad, M., Karpukhin, V., Zettlemoyer, L.,
and Levy, O. Aligned cross entropy for non-
autoregressive machine translation. In International

URL https://api.semanticscholar.

URL https://api.semanticscholar.

URL https://api.semanticscholar.

Conference on Machine Learning, 2020. URL https:
//api.semanticscholar.org/CorpusID:
214795061.

Grave, E., Joulin, A., Cissé, M., Grangier, D., and Jégou, H.
Efficient softmax approximation for gpus, 2017.

Gu, J. and Kong, X. Fully non-autoregressive neural
machine translation: Tricks of the trade. In Findings,
2020. URL https://api.semanticscholar.
org/CorpusID:229923438.

Gu, J., Bradbury, J., Xiong, C., Li, V. O. K., and
Socher, R. Non-autoregressive neural machine translation.
ArXiv, abs/1711.02281, 2017. URL https://api.
semanticscholar.org/CorpusID:3480671.

Guo, J., Tan, X., He, D., Qin, T., Xu, L., and Liu, T.-
Y. Non-autoregressive neural machine translation with
enhanced decoder input. AAAI’19/IAAT’ 19/EAAT’19.
AAALI Press, 2019. ISBN 978-1-57735-809-1. doi:
10.1609/aaai.v33i01.33013723. URL https://doi.
org/10.1609/aaai.v33101.33013723.

He, P., Gao, J., and Chen, W. Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing. ArXiv, abs/2111.09543,
2021. URL https://api.semanticscholar.
org/CorpusID:244346093.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I.,
Devlin, J., Lee, K., Toutanova, K., Jones, L., Kel-
cey, M., Chang, M.-W., Dai, A. M., Uszkoreit, J., Le,
Q., and Petrov, S. Natural questions: A benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:452-466,
2019. doi: 10.1162/tacl_a_00276. URL https://
aclanthology.org/Q19-1026.

Lan, T., Cai, D., Wang, Y., Huang, H., and Mao, X.-
L. Copy is all you need. ArXiv, abs/2307.06962,
2023. URL https://api.semanticscholar.
org/CorpusID:2592987809.

Li, X., Jin, J.,, Zhou, Y., Zhang, Y., Zhang, P,
Zhu, Y., and Dou, Z. From matching to genera-
tion: A survey on generative information retrieval.
2024. URL https://api.semanticscholar.
org/CorpusID:269303210.

Li, Y, Yang, N., Wang, L., Wei, F,, and Li, W. Learning
to rank in generative retrieval. In AAAI Conference
on Artificial Intelligence, 2023a. URL https:
//api.semanticscholar.org/CorpusID:
259262395.

https://api.semanticscholar.org/CorpusID:251564288
https://api.semanticscholar.org/CorpusID:248366293
https://api.semanticscholar.org/CorpusID:248366293
https://api.semanticscholar.org/CorpusID:248366293
https://api.semanticscholar.org/CorpusID:268031947
https://api.semanticscholar.org/CorpusID:268031947
https://api.semanticscholar.org/CorpusID:268031947
https://api.semanticscholar.org/CorpusID:222125277
https://api.semanticscholar.org/CorpusID:222125277
https://api.semanticscholar.org/CorpusID:251594672
https://api.semanticscholar.org/CorpusID:251594672
https://api.semanticscholar.org/CorpusID:53113692
https://api.semanticscholar.org/CorpusID:53113692
https://api.semanticscholar.org/CorpusID:235377210
https://api.semanticscholar.org/CorpusID:235377210
https://github.com/alasdairforsythe/tokenmonster
https://github.com/alasdairforsythe/tokenmonster
https://api.semanticscholar.org/CorpusID:214795061
https://api.semanticscholar.org/CorpusID:214795061
https://api.semanticscholar.org/CorpusID:214795061
https://api.semanticscholar.org/CorpusID:229923438
https://api.semanticscholar.org/CorpusID:229923438
https://api.semanticscholar.org/CorpusID:3480671
https://api.semanticscholar.org/CorpusID:3480671
https://doi.org/10.1609/aaai.v33i01.33013723
https://doi.org/10.1609/aaai.v33i01.33013723
https://api.semanticscholar.org/CorpusID:244346093
https://api.semanticscholar.org/CorpusID:244346093
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://api.semanticscholar.org/CorpusID:259298789
https://api.semanticscholar.org/CorpusID:259298789
https://api.semanticscholar.org/CorpusID:269303210
https://api.semanticscholar.org/CorpusID:269303210
https://api.semanticscholar.org/CorpusID:259262395
https://api.semanticscholar.org/CorpusID:259262395
https://api.semanticscholar.org/CorpusID:259262395

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

Li, Y., Yang, N., Wang, L., Wei, F, and Li, W. Mul-
tiview identifiers enhanced generative retrieval.
ArXiv, abs/2305.16675, 2023b. URL https:
//api.semanticscholar.org/CorpusID:
258947148.

Lian, Y., Chen, Z., Hu, J., Zhang, K., Yan, C., Tong, M.,
Han, W., Guan, H., Li, Y., Cao, Y., Yu, Y., Li, Z., Liu, X.,
and Wang, Y. An end-to-end generative retrieval method
for sponsored search engine —decoding efficiently into a
closed target domain, 2019.

Liang, D., Gonen, H., Mao, Y., Hou, R., Goyal, N.,
Ghazvininejad, M., Zettlemoyer, L., and Khabsa, M.
XlIm-v: Overcoming the vocabulary bottleneck in multi-
lingual masked language models. ArXiv, abs/2301.10472,
2023.
org/CorpusID:256231072.

Libovicky, J. and Helcl, J. End-to-end non-autoregressive
neural machine translation with connectionist tem-
poral classification. In Conference on Empirical
Methods in Natural Language Processing, 2018.
URL https://api.semanticscholar.org/
CorpusID:53083422.

Mehta, S. V., Gupta, J.,, Tay, Y., Dehghani, M.,
Tran, V. Q., Rao, J., Najork, M., Strubell, E., and
Metzler, D. Dsi++: Updating transformer mem-
ory with new documents. ArXiv, abs/2212.09744,
2022. URL https://api.semanticscholar.
org/CorpusID:254854290.

Min, S., Shi, W., Lewis, M., Chen, X., tau Yih, W.,
Hajishirzi, H., and Zettlemoyer, L. Nonparamet-
ric masked language modeling. In Annual Meet-
ing of the Association for Computational Linguistics,
2022. URL https://api.semanticscholar.
org/CorpusID:254220735.

Mohankumar, A. K., Begwani, N., and Singh, A.
Diversity driven query rewriting in search advertis-
ing. Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining,
2021. URL https://api.semanticscholar.
org/CorpusID:235364004.

Mohankumar, A. K., Dodla, B., Gururaj, K., and
Singh, A. Unified generative & dense retrieval
for query rewriting in sponsored search. Pro-
ceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management,
2022. URL https://api.semanticscholar.
org/CorpusID:259075708.

Pradeep, R., Hui, K., Gupta, J., Lelkes, A. D., Zhuang, H.,
Lin, J. J., Metzler, D., and Tran, V. Q. How does genera-
tive retrieval scale to millions of passages? In Conference

URL https://api.semanticscholar.

10

on Empirical Methods in Natural Language Processing,
2023. URL https://api.semanticscholar.
org/CorpusID:258822999.

Qi, W,, Gong, Y., Yan, Y., Jiao, J., Shao, B., Zhang, R.,
Li, H., Duan, N., and Zhou, M. Prophetnet-ads: A
looking ahead strategy for generative retrieval models
in sponsored search engine. ArXiv, abs/2010.10789,
2020. URL https://api.semanticscholar.
org/CorpusID:2221791209.

Qi, W., Gong, Y., Jiao, J., Yan, Y., Chen, W,, Liu, D., Tang,
K., Li, H., Chen, J., Zhang, R., et al. Bang: Bridging
autoregressive and non-autoregressive generation with
large scale pretraining. In International Conference on
Machine Learning, pp. 8630-8639. PMLR, 2021.

Rajput, S., Mehta, N., Singh, A., Keshavan, R. H., Vu, T,
Heldt, L., Hong, L., Tay, Y., Tran, V. Q., Samost, J., Kula,
M., Chi, E. H., and Sathiamoorthy, M. Recommender
systems with generative retrieval, 2023.

Saharia, C., Chan, W., Saxena, S., and Norouzi, M.
Non-autoregressive machine translation with latent
alignments. In Conference on Empirical Methods in
Natural Language Processing, 2020. URL https:
//api.semanticscholar.org/CorpusID:
215786391.

Samaga, Y., Yerram, V., You, C., Bhojanapalli, S.,
Kumar, S., Jain, P, and Netrapalli, P. Hire:
High recall approximate top-k estimation for ef-
ficient Ilm inference. ArXiv, abs/2402.09360,
2024. URL https://api.semanticscholar.
org/CorpusID:267657774.

Sennrich, R., Haddow, B., and Birch, A. Neural ma-
chine translation of rare words with subword units.
ArXiv, abs/1508.07909, 2015. URL https://api.
semanticscholar.org/CorpusID:1114678.

Shim, K., Lee, M., Choi, I, Boo, Y., and Sung, W.
Svd-softmax: Fast softmax approximation on large
vocabulary neural networks. In Neural Information
Processing Systems, 2017. URL https://api.
semanticscholar.org/CorpusID:43626912.

Tang, Y., Zhang, R., Guo, J., Chen, J., Zhu, Z., Wang,
S., Yin, D., and Cheng, X. Semantic-enhanced dif-
ferentiable search index inspired by learning strate-
gies. Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
2023. URL https://api.semanticscholar.
org/CorpusID:258865792.

Tay, Y., Tran, V. Q., Dehghani, M., Ni, J., Bahri, D., Mehta,
H., Qin, Z., Hui, K., Zhao, Z., Gupta, J., Schuster, T.,

https://api.semanticscholar.org/CorpusID:258947148
https://api.semanticscholar.org/CorpusID:258947148
https://api.semanticscholar.org/CorpusID:258947148
https://api.semanticscholar.org/CorpusID:256231072
https://api.semanticscholar.org/CorpusID:256231072
https://api.semanticscholar.org/CorpusID:53083422
https://api.semanticscholar.org/CorpusID:53083422
https://api.semanticscholar.org/CorpusID:254854290
https://api.semanticscholar.org/CorpusID:254854290
https://api.semanticscholar.org/CorpusID:254220735
https://api.semanticscholar.org/CorpusID:254220735
https://api.semanticscholar.org/CorpusID:235364004
https://api.semanticscholar.org/CorpusID:235364004
https://api.semanticscholar.org/CorpusID:259075708
https://api.semanticscholar.org/CorpusID:259075708
https://api.semanticscholar.org/CorpusID:258822999
https://api.semanticscholar.org/CorpusID:258822999
https://api.semanticscholar.org/CorpusID:222179129
https://api.semanticscholar.org/CorpusID:222179129
https://api.semanticscholar.org/CorpusID:215786391
https://api.semanticscholar.org/CorpusID:215786391
https://api.semanticscholar.org/CorpusID:215786391
https://api.semanticscholar.org/CorpusID:267657774
https://api.semanticscholar.org/CorpusID:267657774
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:43626912
https://api.semanticscholar.org/CorpusID:43626912
https://api.semanticscholar.org/CorpusID:258865792
https://api.semanticscholar.org/CorpusID:258865792

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

Cohen, W. W., and Metzler, D. Transformer memory as
a differentiable search index. ArXiv, abs/2202.06991,
2022. URL https://api.semanticscholar.
org/CorpusID:246863488.

Wang, Y., Hou, Y., Wang, H., Miao, Z., Wu, S., Sun, H.,
Chen, Q., Xia, Y., Chi, C., Zhao, G., Liu, Z., Xie, X., Sun,
H., Deng, W., Zhang, Q., and Yang, M. A neural corpus
indexer for document retrieval. ArXiv, abs/2206.02743,
2022. URL https://api.semanticscholar.
org/CorpusID:2493955409.

Zeng, H., Luo, C., Jin, B., Sarwar, S. M., Wei,
T., and Zamani, H. Scalable and effective gener-
ative information retrieval. ArXiv, abs/2311.09134,
2023. URL https://api.semanticscholar.
org/CorpusID:265213270.

Zhou, C., Neubig, G., and Gu, J. Understanding
knowledge distillation in non-autoregressive ma-
chine translation. ArXiv, abs/1911.02727, 2019.
URL https://api.semanticscholar.org/
CorpusID:207847275.

Zhuang, S., Ren, H., Shou, L., Pei, J., Gong, M.,
Zuccon, G., and Jiang, D. Bridging the gap be-
tween indexing and retrieval for differentiable search
index with query generation. ArXiv, abs/2206.10128,
2022. URL https://api.semanticscholar.
org/CorpusID:249890267.

11

A. Implementation Details
A.1. Model details

We initialize PIXAR and the baseline CLOVERvV2 model
with the pretrained DeBERTa encoder (He et al., 2021). We
use the "microsoft/deberta-v3-base" checkpoint available
on HuggingFace. For CLOVERvV2, we use the provided
128K DeBERTa vocabulary for both the input and target.
The language modeling head for PIXAR must necessarily
be initialized from scratch.

A.2. Document identifiers

We employ the pseudo queries used in MINDER as our docu-
ment identifiers. The total number of unique pseudo queries
is around 80 million for the Natural Questions Wikipedia
passages, and about 170 million for the MS MARCO pas-
sages. In addition to using pseudo queries as our document
identifiers, we also augment our training dataset by adding
these pseudo queries as questions that map to other pseudo
queries asked of the same passage. For each passage, we
sample up to 20 pseudo queries and add them to the training
dataset.

A.3. Training details

All models were trained with a learning rate of 5 x 1075,
1000 warmup steps, and an effective batch size of 6400.
Hyperparameters Ay (shortlist loss scaling factor) and A3
(self-normalization loss scaling factor) were set to 0.25 and
1.0. The Adam optimizer was employed with a linear decay
learning rate scheduler. Models were trained for 5 epochs
on the MSMARCO dataset and 10 epochs on the Natural

Model Mean 99th
CLOVERv2 10098 18
. 128K 5.56 12
Questions dataset. []0.5 500K 478 1
M 4.46 10
5M 4.05 9

A.4. Compute

We trained models using a 5M target vocabulary on 8 Nvidia
H100 GPUs and models of all other vocabulary sizes on 16
AMD Mi200 GPUs. Inference experiments were all carried
out on an NVIDIA Tesla T4 GPU. Training time ranges
from 1-2 days depending on the size of the vocabulary.

A.5. Shortlisting module

We set the hyperparameters m, r, k to 4096, 20000 and 5
respectively.

https://api.semanticscholar.org/CorpusID:246863488
https://api.semanticscholar.org/CorpusID:246863488
https://api.semanticscholar.org/CorpusID:249395549
https://api.semanticscholar.org/CorpusID:249395549
https://api.semanticscholar.org/CorpusID:265213270
https://api.semanticscholar.org/CorpusID:265213270
https://api.semanticscholar.org/CorpusID:207847275
https://api.semanticscholar.org/CorpusID:207847275
https://api.semanticscholar.org/CorpusID:249890267
https://api.semanticscholar.org/CorpusID:249890267

Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval

\ \
PIXAR-5M I
—CLOVERv2

Avg. # words in target sentence
© B N W & U1 & N 0© ©

1

Avg. length over top-K documents

5 10

15

Figure 2. PIXAR-5M generates longer sentences on average compared to CLOVERV2 (NQ dataset)

A.6. Vocabulary construction

For PIXAR, we construct a target vocabulary of 5 million
tokens using the method described in Section 4.1. We
construct separate vocabularies for MS MARCO and NQ
datasets, on the full set of document identifiers for each
dataset. TokenMonster binaries were used to construct the
vocabulary. We detail some important hyperparameters
here. The "min-occur" parameter was set to 20 for con-
structing the PIXAR vocabulary, ensuring that candidate
phrases occur at least 20 times in the document identifier
corpus. While constructing the vocabulary, we use "strict"
mode, in order to prevent minor variations of a phrase from
receiving multiple tokens in the vocabulary.

A.7. Sequence Lengths and Target Sentence Lengths

NAR models often generate document identifiers that are
sometimes too brief to convey significant semantics. By
contrast, PIXAR generates longer and more relevant target
sentences, by generating phrases directly instead of sub-
words and words. Figure 2 presents the aggregated results
that shows that PIXAR (5M vocabulary).

The phrase-based tokens in PIXAR have another benefit:
they enable the generation of longer and relevant target
sentences using fewer tokens, thereby enhancing generation
quality. Table A.3 illustrates how the sequence lengths of the
target tokens decrease as vocabulary sizes increase. Notably,
the sequence lengths for the 128K vocabulary generated by

12

PIXAR’s vocabulary construction algorithm results in fewer
token sequence lengths compared to CLOVERv2 which
uses DeBERTa tokenization.

