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ABSTRACT

Advancements in AI image generation, particularly diffusion models, have pro-
gressed rapidly. However, the absence of an established framework for quanti-
fying the reliability of AI-generated images hinders their use in critical decision-
making tasks, such as medical image diagnosis. In this study, we address the task
of detecting anomalous regions in medical images using diffusion models and pro-
pose a statistical method to quantify the reliability of the detected anomalies. The
core concept of our method involves a selective inference framework, wherein sta-
tistical tests are conducted under the condition that the images are produced by a
diffusion model. With our approach, the statistical significance of anomaly detec-
tion results can be quantified in the form of a p-value, enabling decision-making
with controlled error rates, as is standard in medical practice. We demonstrate
the theoretical soundness and practical effectiveness of our statistical test through
numerical experiments on both synthetic and brain image datasets.

1 INTRODUCTION

Advances in image generation AI, such as diffusion models, have been remarkable (Song & Ermon,
2019). They can generate highly realistic and detailed images, which leads to innovations in various
tasks across various fields. For example, image generation AI significantly enhances medical image
diagnosis by improving accuracy and efficiency. It can generate highly detailed and enhanced images
from standard medical scan images, potentially offering doctors to detect anomalies and diseases
with greater precision. Furthermore, image generation AI can be used to create alternative versions
of medical images to consider what-if scenarios. For example, it can generate virtual images of a
patient when they are healthy, which allows for comparing the current actual images with the virtual
healthy images, making it possible to provide a diagnosis tailored to the individual patient.

On the other hand, when using virtual images generated by AI for critical decision-making, such
as medical diagnosis, it is crucial to ensure the reliability of the decisions. Given that images are
generated by an AI algorithm, such as a deep learning model trained on historical data, they may
inherently contain biases and errors. Therefore, treating virtual synthetic images as equivalent to real
images in decision-making tasks carries the risk of biased and erroneous outcomes. When making
critical decisions based on generated images, it is necessary to be able to assess their reliability
by properly taking into account the fact that the images were generated by AI. However, to our
knowledge, there are no studies that can quantify the reliability of decision-making based on image
generation AI.

In this study, we address this challenge using the statistical hypothesis testing framework. We intro-
duce a statistical inference framework called selective inference (SI), which has gained attention over
the past decade in the statistics community as a novel approach for data-driven hypotheses (Taylor &
Tibshirani, 2015; Fithian et al., 2015; Lee & Taylor, 2014). In SI, statistical inference is performed
based on the sampling distribution of the test statistic under the condition that the hypothesis being
tested was selected based on the data. Our core idea is to formulate decision-making tasks involv-
ing generated images as statistical hypothesis testing problems, and to incorporate SI framework to
accurately quantify the reliability of decisions influenced by these generated images.

As an example of decision-making tasks based on image generation AI, we focus on the problem of
detecting anomalous regions in medical images (Wolleb et al., 2022; Baur et al., 2021) (see Figure 1).
Initially, a diffusion model is trained exclusively on normal images during the training phase. In the
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Figure 1: Schematic illustration of the anomaly detection on a brain image dataset using a diffusion
model and the proposed DMAD-test. When a test image, which may contain an anomalous region,
is fed into a trained diffusion model, a normal image is generated through the forward process
and reverse process. By initiating the image generation from the middle of the forward process, a
normal image that retains the characteristics of the input image can be generated. By comparing
the input image with the normal image, the anomalous region can be identified. In this study, we
propose a method called the DMAD-test, which quantifies the statistical significance of the identified
anomalous regions in the form of p-value. The DMAD-test calculates the p-values by incorporating
the fact that the anomalous region has been identified by the diffusion model, thus enabling unbiased
decision-making (see §3 and §4 for details).

testing phase, a patient’s test image is processed through this model to create a virtual normal image,
against which the original is compared to identify anomalous regions. Our proposed statistical test,
the Diffusion Model-based Anomalous Region Detection Test (DMAD-test), quantifies the statistical
reliability of detected anomalies as p-values. Decisions based on these p-values can theoretically
control the false detection rate at desired significance levels (such as 0.01 or 0.05).

Related work. Diffusion models have been effectively utilized in anomalous region detection
problems (Wolleb et al., 2022; Pinaya et al., 2022; Fontanella et al., 2023; Wyatt et al., 2022;
Mousakhan et al., 2023). In this context, the denoising diffusion probabilistic model (DDPM) is
commonly used (Ho et al., 2020; Song et al., 2022). During the training phase, a DDPM model
learns the distribution of normal medical images by iteratively adding and then removing noise. In
the test phase, the model attempts to reconstruct a new test image. If the image contains anoma-
lous regions, such as tumors, the model may struggle to accurately reconstruct these regions, as it
has been trained primarily on normal regions. The discrepancies between the original and the re-
constructed image are then analyzed to identify and highlight anomalous regions. Other types of
generative AI has also been used for anomalous region detection task (Baur et al., 2021; Chen &
Konukoglu, 2018; Chow et al., 2020; Jana et al., 2022).

SI was first introduced within the context of reliability evaluation for linear model features when they
were selected using a feature selection algorithm (Lee & Taylor, 2014; Lee et al., 2016; Tibshirani
et al., 2016), and then extended to more complex feature selection methods (Yang et al., 2016; Suzu-
mura et al., 2017; Hyun et al., 2018; Rügamer & Greven, 2020; Das et al., 2021). Then, SI proves
valuable not only for feature selection problems but also for statistical inference across various data-
driven hypotheses, including unsupervised learning tasks (Chen & Bien, 2020; Tsukurimichi et al.,
2021; Tanizaki et al., 2020; Duy et al., 2022; Le Duy et al., 2024; Lee et al., 2015; Gao et al., 2022;
Duy et al., 2020; Jewell et al., 2022). The fundamental idea of SI is to perform an inference con-
ditional on the hypothesis selection event, which mitigates the selection bias issue even when the
hypothesis is selected and tested using the same data. To conduct SI, it is necessary to derive the
sampling distribution of test statistic conditional on the hypothesis selection event. To the best of
our knowledge, SI was applied to statistical inferences on several deep learning models (Duy et al.,
2022; Miwa et al., 2023; Shiraishi et al., 2024b; Miwa et al., 2024), but none of them works on
image generation by diffusion models.

Contributions. Our main contributions in this study are summarized as follows. Our first contri-
bution is the introduction of a statistical testing framework for quantifying reliability in decision-
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making based on images generated by diffusion models. The second contribution is the implemen-
tation of SI for diffusion models, which requires the calculation of the sampling distribution condi-
tional on the diffusion model, necessitating the development of non-trivial computational methodol-
ogy. The third contribution is to theoretically guarantee the performance of the proposed DMAD-test
and demonstrate its performance through numerical experiments and applications in brain imaging
diagnostics. The code is available as supplementary material.

2 DIFFUSION MODELS

In this section, we briefly explain the diffusion model employed in this study. Given a test image
which possibly contain anomalous regions, a denoising diffusion model (Ho et al., 2020; Song et al.,
2022) is used to generate the corresponding normal image. The reconstruction process consists of
two processes called forward process (or diffusion process) and reverse process.

In the forward process, noise is sequentially added to the test image so that it converges to a stan-
dard Gaussian distribution N (0, I). Let x be an image represented as a vector with each element
corresponding to a pixel value. Given an original test image x0, noisy images x1,x2, . . . ,xT are
sequentially generated, where T is the number of noise addition steps. We consider the distribution
of the original and noisy test images, which is denoted by q(x), and approximate the distribution
by a parametric model pθ(x) with θ being the parameters. Using a sequence of noise scheduling
parameters 0 < β1 < β2, < · · · < βT < 1, the forward process is written as

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) := N (
√

1− βtxt−1, βtI).

By the reproducibility of the Gaussian distribution, xt can be rewritten by a linear combination of
x0 and ϵ, i.e.,

xt =
√
αtx0 +

√
1− αtϵ, with ϵ ∼ N (0, I), (1)

where αt =
∏t

s=1(1− βs).

In the reverse process, a parametric model in the form of pθ(xt−1|xt) = N (xt−1;µθ(xt, t), βtI) is
employed, where µθ(xt, t) is obtained by using the predicted noise component ϵ(t)θ (xt). Typically,
a U-Net is used as the model architecture for ϵ(t)θ (xt). In DDPM (Ho et al., 2020), the loss function
for training the noise component is simply written as ||ϵ(t)θ (xt)− ϵt||22. Based on (1), given a noisy
image xt after t steps, the reconstruction of the image in the previous step xt−1 is obtained as

xt−1 =
√
αt−1 · f (t)

θ (xt) +
√

1− αt−1 − σ2
t · ϵ

(t)
θ (xt) + σtϵt, (2)

where
f
(t)
θ (xt) := (xt −

√
1− αt · ϵ(t)θ (xt))/

√
αt, (3)

and
σt = η

√
(1− αt−1)/(1− αt)

√
1− αt/αt−1. (4)

Here, η is a hyperparameter that controls the randomness in the reverse process. By setting η = 1,
we can create new images by stochastic sampling. On the other hand, if we set η = 0, determin-
istic sampling is used for image generation. By recursively sampling as in (2), we can obtain a
reconstructed image of the original input x0.

In practice, the reverse process starts from xT ′ with T ′ < T . Namely, we reconstruct the original
input image not from the completely noisy one, but from a one which still contains individual infor-
mation of the original input image. The smaller T ′ ensures that the reconstructed image preserves
fine details of the input image. Conversely, the larger T ′ results in the retention of only large scale
features, thereby converting more of the anomalous regions into normal regions (Ho et al., 2020;
Mousakhan et al., 2023). Therefore, T ′ should be set to balance the feature retention of the input
image and the conversion of the anomalous region to the normal region. Note that setting T ′ smaller
than T has advantages in terms of computational cost. For the purpose of reducing computational
cost, various methods have been proposed. For example, one way is to sample while skipping por-
tions of the sampling trajectory (see Appendix A). The image reconstruction scheme by DDPM is
summarized in Algorithm 1.
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Algorithm 1 Reconstruction Process

Require: Input image x
1: xT ′ ← √αT ′x+

√
1− αT ′ϵ

2: for t = T ′, . . . , 1 do
3: f

(t)
θ (xt)← (xt −

√
1− αt · ϵ(t)θ (xt))/

√
αt

4: xt−1 ←
√
αt−1 · f (t)

θ (xt) +
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt) + σtϵt

5: end for
Ensure: Reconstructed image x0

3 STATISTICAL TEST ON GENERATED IMAGES BY DIFFUSION MODELS

In this section, we formulate the statistical test for detecting anomalous regions using images gen-
erated by a trained DDPM model. As shown in Figure 1, anomalous region detection by diffusion
models is conducted as follows. First, in the training phase, the diffusion model is trained only on
normal images. Then, in the test phase, we feed a test image which might contain anomalous regions
into the trained diffusion model, and reconstruct it back from a noisy image xT ′ at step T ′ < T . By
appropriately selecting T ′, we can generate a normal image that retain individual characteristics of
the test input image. If the image does not contain anomalous regions, the reconstructed image is
expected to be similar to the original test image. On the other hand, if the image contains anoma-
lous regions, such as tumors, the model may struggle to accurately reconstruct these regions, as it
has been trained primarily on normal regions. Therefore, the anomalous regions can be detected by
comparing the original test image and its reconstructed one.

Problem formulation. We develop a statistical test to quantify the reliability of decision-making
based on images generated by diffusion models. To develop a statistical test, we interpret an image
as a sum of a true signal component µ ∈ Rn and a noise component ε ∈ Rn. We emphasize that the
noise component ε should not be confused with the noise ϵ used in the forward process. Regarding
the true signal component, each pixel can have an arbitrary value without any particular assumption
or constraint. On the other hand, regarding the noise component, it is assumed to follow a Gaussian
distribution, and their covariance matrix is estimated using normal data different from that used for
the training of the diffusion model, which is the standard setting of SI. Namely, an image with n
pixels can be represented as an n-dimensional random vector

X = (X1, X2, . . . , Xn)
⊤ = µ+ ε, ε ∼ N (0,Σ),

where µ ∈ Rn is the unknown true signal vector and Σ is the covariance matrix. In the following,
we use capital X to emphasize that an image is considered as a random vector, while the observed
image is denoted asXobs.

Let us denote the reconstruction process of the trained diffusion model in Algorithm 1 as the map-
ping from an input image to the reconstructed image D : Rn ∋ X → D(X) ∈ Rn. The difference
between the input image X and the reconstructed image D(X) indicates the reconstruction error.
When identifying anomalous regions based on reconstruction error, it is useful to apply some fil-
ter to remove the influence of pixel-wise noise. In this study, we simply used an averaging filter.
Let us denote the averaging filter as F : Rn → Rn. Then, the process of obtaining the (filtered)
reconstruction error is written as

E : Rn ∋X 7→ |F(X −D(X))| ∈ Rn,

where absolute value is taken pixel-wise. Anomalous regions are then obtained by applying a thresh-
old to the filtered reconstruction error Ei(X) for each pixel i ∈ [n]. Specifically, we define the
anomalous region as the set of pixels whose filtered reconstruction error is greater than a given
threshold λ ∈ (0,∞), i.e.,

MX = {i ∈ [n] | Ei(X) ≥ λ} . (5)

Statistical inference. In order to quantify the statistical significance of the anomalous regions
detected by using a diffusion model, we consider the concrete example of two-sample test. Note
that our method can be extended to other statistical tests using various statistics. In the two-sample

4
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test, we compare the test image and the randomly chosen reference image in the anomalous region.
Let us define an n-dimensional reference input vector,

Xref = (Xref
1 , Xref

2 , . . . , Xref
n )⊤ = µref + εref , εref ∼ N (0,Σ),

where µref ∈ Rn is the unknown true signal vector of the reference image and the εref ∈ Rn is the
noise component. Then, we consider the following null and alternative hypotheses:

H0 :
1

|MX |
∑

i∈MX

µi =
1

|MX |
∑

i∈MX

µref
i v.s. H1 :

1

|MX |
∑

i∈MX

µi ̸=
1

|MX |
∑

i∈MX

µref
i , (6)

where H0 is the null hypothesis that the mean pixel values are the same between the test image and
the reference images in the anomalous regions, while H1 is the alternative hypothesis that they are
different. A reasonable test statistic for the statistical test in (6) is the difference in mean pixel values
between the test image and the reference image in the anomalous regionMX , i.e.,

T (X,Xref) =
1

|MX |
∑

i∈MX

Xi −
1

|MX |
∑

i∈MX

Xref
i = ν⊤

MX

(
X
Xref

)
,

where νMX
∈ R2n is the vector that depends on the anomalous regionMX , defined as

νMX
=

1

|MX |

(
1n
MX

−1n
MX

)
∈ R2n,

where 1n
C ∈ Rn is an n-dimensional vector whose elements are 1 if they belong to the set C and

0 otherwise. If we do not account for the fact that the anomalous region is detected by a diffusion
model, the distribution of the test statistic would be simply given as

T (X,Xref) ∼ N (0,ν⊤
MX

Σ̃νMX
), where Σ̃ =

(
Σ On

On Σ

)
.

In this case, the p-values defined as

pnaive = PH0

(
|T (X,Xref)| > |T (Xobs,X

ref
obs)|

)
,

would be easily computed by the normality of the test statistic distribution. However, in reality,
since the anomalous region is detected by the trained diffusion model, νMX

depends on the dataX ,
meaning that the sampling distribution of the test statistic is much more complicated. Therefore, if
pnaive is used for decision-making, the false detection error cannot be properly controlled.

4 COMPUTING SELECTIVE p-VALUES

In this section, we introduce selective inference (SI) framework for testing images generated by
diffusion models and propose a method to perform valid hypothesis test.

4.1 CONDITIONAL DISTRIBUTION OF TEST STATISTICS

Due to the complexity described in the previous section, it is difficult to directly obtain the sampling
distribution of T (X,Xref). Then, we consider the sampling distribution of T (X,Xref) conditional
on the event that the anomalous regionMX is the same as the observed anomalous regionMXobs

,
i.e.,

T (X,Xref) | {MX =MXobs
} .

In the context of SI, to make the characterization of the conditional sampling distribution man-
ageable, we also incorporate conditioning on the nuisance parameter that is independent of the test
statistic. As a result, the calculation of the conditional sampling distribution in SI can be reduced to a
one-dimensional search problem in an n-dimensional data space. The nuisance parameter QX,Xref

is written as

QX,Xref =

(
I2n −

Σ̃νMX
ν⊤
MX

ν⊤
MX

Σ̃νMX

)(
X
Xref

)
.
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The p-value calculated from this conditional sampling distribution is called a selective p-value.
Specifically, the selective p-value is defined as

pselective = PH0

(
|T (X,Xref)| > |T (Xobs,X

ref
obs)| |X ∈ X

)
, (7)

where X is the conditional data space defined as

X =

{(
X
Xref

)
∈ R2n

∣∣∣∣MX =MXobs
,QX,Xref = QXobs,Xref

obs

}
.

Due to the conditioning on the nuisance parameterQX , the conditional data space X can be rewrit-
ten as

X =

{(
X(z)
Xref(z)

)
∈ R2n

∣∣∣∣( X(z)
Xref(z)

)
= a+ bz, z ∈ Z

}
,

where X(z) = a1:n + b1:nz, and c1:n represents a vector composed of the first n elements of the
vector c. The vectors a, b ∈ R2n are defined as

a = QXobs
, b =

Σ̃νMXobs

ν⊤
MXobs

Σ̃νMXobs

,

and the region Z is defined as

Z =
{
z ∈ R | MX(z) =MXobs

}
. (8)

Let us consider a random variable Z ∈ R and its observation zobs ∈ R so that they satisfy X =
a1:n + b1:nZ andXobs = a1:n + b1:nzobs. Then, the selective p-value in (7) is re-written as

pselective = PH0
(|Z| > |zobs| | Z ∈ Z) . (9)

Under the null hypothesis H0, the distribution of the unconditional variable Z isN (0,ν⊤
MX

Σ̃νMX
).

Consequently, given Z ∈ Z , the conditional random variable Z adheres to a truncated Gaussian dis-
tribution. Once the truncated region Z is identified, computing the selective p-value in (9) becomes
straightforward. Therefore, the remaining task is the identification of Z .

4.2 OVER-CONDITIONING

To compute the truncated region Z , we employ a divide and conquer approach. It is difficult to
directly identify the truncated region Z due to the complexity of the computational algorithm of
the diffusion model. The basic idea of this approach is to decompose the data space X into a set of
polyhedra by considering additional conditioning, which we refer to as over-conditioning (OC) (Duy
& Takeuchi, 2022). It is easy to understand that a polyhedron in the n-dimensional data space X
corresponds to an interval in the one-dimensional space Z . Therefore, we can sequentially examine
intervals in the one-dimensional space and check whether the same hypothesis (anomalous region)
as the observed one is selected. In this study, we show that the filtered reconstruction error E(X) can
be expressed as a piecewise-linear function ofX . By exploiting this, we identify a over-conditioned
interval Zoc ⊂ Z .

Identification of Zoc. Let us write a polyhedron P composed of piecewise-linear functions as

Pk = {∆kX ≤ δk} , k ∈ [K],

where ∆k and δk for k ∈ [K] are the coefficient matrix and the constant vector with appropriate
dimensions of the k-th piecewise-linear function, respectively. Then, a piecewise-linear function
A(X) is written in the following form:

A(X) =


Ψ1X +ψ1 ifX ∈ P1,

Ψ2X +ψ2 ifX ∈ P2,
...

ΨKX +ψK ifX ∈ PK ,

6
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where Ψk and ψk for k ∈ [K] are the coefficient matrix and the constant vector with appropriate
dimensions for the k-th polyhedron, respectively. Using the notation in (4.1), since the input image
X(z) is restricted on a one-dimensional line, each component of the output of A is written as

Ai(X(z)) =


κAi
1 z + ρAi

1 if z ∈ [LAi
1 , UAi

1 ],

κAi
2 z + ρAi

2 if z ∈ [LAi
2 , UAi

2 ],
...

κAi

K(Ai)
z + ρAi

K(Ai)
if z ∈ [LAi

K(Ai)
, UAi

K(Ai)
],

where K(Ai) is the number of linear pieces of the piecewise-linear function, and κAi

k ∈ R and ρAi

k ∈
R for k ∈ [K(Ai)] are the coefficient and the constant of the k-th polyhedron, respectively. For each
i ∈ [n], there exists k ∈ [K(Ai)] such that z ∈ [LAi

k , UAi

k ], then the inequality Ai(X(z)) ≥ λ, can
be solved as

[Li
z, U

i
z] :=


[
max

(
LAi

k ,
(
(λ− ρAi

k )/κAi

k

))
, UAi

k

]
if κAi

k > 0,[
LAi

k ,min
(
UAi

k ,
(
(λ− ρAi

k )/κAi

k

))]
if κAi

k < 0.

We denote the over-conditioned interval as

Zoc(a+ bz) =
⋂
i∈[n]

[
Li
z, U

i
z

]
. (10)

Piecewise linearity of diffusion models. We now show that the diffusion model mapping D and
then filtered reconstruction error E can be expressed as a piecewise-linear function of X . To
show this, we see that both the forward process and reverse process of the diffusion model are
piecewise-linear functions as long as we employ a class of U-Net described below. It is easy to
see the piecewise-linearity of the forward process as long as we fix the random seed for ϵt. To
make the reverse process a piecewise-linear function, we employ a U-Net architecture composed of
piecewise-linear components such as ReLU activation function and average pooling. Then, ϵ(t)θ (xt)

is represented as a piecewise-linear function of xt. Moreover, since f
(t)
θ (xt) in (3) is a compos-

ite function of ϵ
(t)
θ (xt), it is also a piecewise-linear function. By combining them together, we

see that xt−1 is written as a piecewise-linear function of xt. Therefore, the entire reconstruction
process is a piecewise-linear function since it just repeats the above operation multiple times (see
Algorithm 1). As a result, the entire mapping D(X) of the diffusion model is a piecewise-linear
function of the input image X . Moreover, since the averaging filter F and the absolute operation
are also piecewise-linear functions, |F(X − D(X))|(= E(X)) is piecewise-linear. By exploiting
this piecewise-linearity, the interval Zoc can be computed.

4.3 IDENTIFICATION OF Z BY PARAMETRIC PROGRAMMING

Over-conditioning causes a reduction in power due to excessive conditioning. A technique called
Parametric Programming is utilized to explore all intervals along the one-dimensional line, resulting
in (8). The truncated region Z can be represented using Zoc as

Z =
⋃

z∈R|MX(z)=MXobs

Zoc(a+ bz).

The number of Zoc is obviously finite due to the finiteness of the number of polyhedra, but for
practical purposes it grows exponentially, making it difficult to identify all of them. In many other
SI studies, it is known that a search from zmin = (−10σ−|zobs|) to zmax(= 10σ+|zobs|) is sufficient
for practical use, where σ is the standard deviation of the test statistic T (X,Xref). An algorithm
for calculating the selective p-value via Parametric Programming is summarized in Algorithm 2.

7
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Algorithm 2 Selective p-value Computation by Parametric Programming

Require: Xobs,X
ref
obs, zmin, zmax and zobs := T (Xobs,X

ref
obs)

1: Z ← ∅
2: ObtainMXobs

by (5)
3: Compute a, b by (8)
4: z ← zmin

5: while z < zmax do
6: Compute Zoc(a+ bz) andMX(z) by (10) for z
7: ifMX(z) =MXobs

then
8: Z ← Z ∪ Zoc(a+ bz)
9: end if

10: z ← maxZoc(a+ bz) + γ, where γ is small positive number.
11: end while
12: pselective = PH0

(|Z| > |zobs| | Z ∈ Z)
Ensure: pselective

5 EXPERIMENTS

We compared our proposed methods (DMAD-test, DMAD-test-oc) with the other meth-
ods: naive method (naive), bonferroni correction (bonferroni), and permutation test
(permutation) on type I error rate and power. The details of the methods for comparison are
described in Appendix B. The architecture of the diffusion model used across all experiment settings
is detailed in Appendix C. The computation time analysis is presented in Appendix E. We executed
the experiment on AMD EPYC 9474F processor, 48-core 3.6GHz CPU and 768GB memory.

5.1 NUMERICAL EXPERIMENTS

Experimental setup. Experiments on the type I error rate and power were conducted with two
types of covariance matrices: independent Σ = In ∈ Rn×n and correlation Σ = (0.5|i−j|)ij ∈
Rn×n. In the type I error rate experiments, we used only normal images. The synthetic dataset for
normal images is generated to followX = (X1, X2, . . . , Xn)

⊤ ∼ N (0,Σ). We made 1000 normal
images for n ∈ {64, 256, 1024, 4096}. In the power experiments, we used only abnormal images.
We generated 1000 abnormal images X = (X1, X2, . . . , Xn)

⊤ ∼ N (µ,Σ). The mean vector µ
is defined as µi = ∆ for all i ∈ S, and µi = 0 for all i ∈ [n]\S, where S ⊂ [n] is the anomalous
region with its position randomly chosen. The image size of the abnormal images was set to 4096,
with signals ∆ ∈ {1, 2, 3, 4}. In all experiments, we made the synthetic dataset for 1000 reference
images to follow Xref = (Xref

1 , Xref
2 , . . . , Xref

n )⊤ ∼ N (0,Σ). The threshold was set to λ = 0.8,
and the kernel size of the averaging filter was set to 3. All experiments were conducted under the
significance level α = 0.05. The diffusion models were trained on the normal images from the
synthetic dataset. The diffusion models were trained with T = 1000 and the initial time step of the
reverse process was set to T ′ = 460, and the reconstruction was conducted 5 step samplings. The
noise schedule β1, β2, . . . , βT was set to linear. In all experiment, we aim to generate new images
through probabilistic sampling, η was set to 1. In addition, we conducted robustness experiments
against non-Gaussian noise. The details of the robustness experiments are described in Appendix D.

Results. Figures 2a and 2b show the comparison results of type I error rates. The proposed meth-
ods DMAD-test and DMAD-test-oc can control the type I error rate at the significance level
α, and bonferroni can control the type I error rate below the significance level α. In contrast,
naive and permutation cannot control the type I error rate. Figures 2c and 2d show the com-
parison results of powers. Since naive and permutation cannot control the type I error rate,
their powers are not considered. Among the methods that can control the type I error rate, the pro-
posed method has the highest power. DMAD-test-oc is over-conditioned and bonferroni is
conservative because there are many hypotheses, so they have low power. Figure 3 shows the results
of the robustness experiments. DMAD-test maintains good performance on the type I error rate
for all the considered distribution families.
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Figure 2: Comparison of Type I Error Rate and Power. Figures (a) and (b) show type I error rates,
while (c) and (d) show power under independence (iid) and correlation (Corr) noise settings. Only
the proposed method and the bonferroni correction successfully control type I error rates. The
DMAD-test has the highest power among the methods that can control the type I error rate.
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Figure 3: Type I Error Rate of the DMAD-test for Non-Gaussian Distribution Families. The
DMAD-test exhibits robust performance.

5.2 REAL DATA EXPERIMENTS

We conducted experiments using T2-FLAIR MRI brain scans from the Brain Tumor Segmentation
(BraTS) 2023 dataset (Karargyris et al., 2023; LaBella et al., 2023), which comprises 934 non-skull-
stripped 3D scans with dimensions of 240×240×155. From these scans, we extracted 2D 240×240
axial slices at axis 95, resized them to 64×64 pixels, and categorized them based on the ground
truth annotations into 532 normal images (without tumors) and 402 abnormal images (with tumor
regions). For each scan, we estimated the mean and variance from pixel values excluding both the
non-brain regions and tumor regions identified in the ground truth, followed by standardization. We
randomly selected 312 normal images for model training. The model was trained with T = 1000
and the initial time step of the reverse process was set at T ′ = 300, with reconstruction performed
through 5 step samplings. We set the threshold λ = 0.85 and the kernel size of the averaging filter to
3. Note that, when testing images, the non-brain regions are not treated as anomalous regionsMX .
The results of the DMAD-test and naive are shown in the Figure 4. The naive p-values are low
for both normal and abnormal images, while the selective p-values are high for normal images and
low for abnormal images. This result indicates that the DMAD-test detected anomalous regions as
statistically significant while avoiding misidentification of normal image as anomaly.

6 CONCLUSIONS

In this study, we proposed a novel statistical test for anomalous regions in medical images detected
by using a diffusion model. With the proposed DMAD-test, the false detection rate can be controlled
with the significance level because statistical inference is conducted conditional on the fact that the
anomalous regions are identified by using a diffusion model. We believe this study marks a step
toward bridging the gap between generative AI and rigorous statistical inference in medical imaging
analysis.
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(a) Brain images without tumors
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pnaive = 0.000, pselective = 0.000

(b) Brain images with tumors

Figure 4: An example of the results for applying the proposed DMAD-test and the naive test (an
invalid test ignoring that the anomalous region was identified by the diffusion model) to brain im-
ages. The left column represents the results for normal brain images without tumors, while the right
column represents the results for abnormal brain images with tumors. The pselective calculated by
the proposed DMAD-test is high for normal images (True Negative) and low for abnormal images
(True Positive), indicating that the results are desirable. On the other hand, the pnaive obtained by the
naive test is low not only for abnormal images but also for normal images (False Positive), indicating
the invalidness of the naive test.
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A ACCELERATED REVERSE PROCESSES

Methods for accelerating the reverse process have been proposed in DDPM, DDIM (Song et al.,
2022). When taking a strictly increasing subsequence τ from {1, · · · , T}, it is possible to skip the
sampling trajectory from xτi to xτi−1 . In this case, equations (2) and (4) can be rewritten as

xτi−1 =
√
ατi−1

(
xτi −

√
1− ατi · ϵ(τi)(xτi)√

ατi

)
+
√
1− ατi−1 − σ2

τi · ϵ
(τi)
θ (xτi) + στiϵτi ,

where
στi = η

√
(1− ατi−1

)/(1− ατi)
√

1− ατi/ατi−1
.

Therefore, piecewise-linearity is preserved, making the proposed method DMAD-test applicable.
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B COMPARISON METHODS FOR NUMERICAL EXPERIMENTS

We compared our proposed method with the following methods:

• DMAD-test: The proposed method uses the parametric programming.

• DMAD-test-oc: The proposed method uses over-conditioning.

• naive: The naive method. This method uses a conventional z-test without any condition-
ing. The naive p-value is calculated as

pnaive = PH0
(|Z| > |zobs|) .

• bonferroni: To control the type I error rate, this method applies the bonferroni correc-
tion. Given that the total number of anomaly regions is 2n, the p-value is calculated as
,

pbonferroni = min(1, 2n · pnaive).

• permutation: This method uses a permutation test with the steps outlined below:

– Calculate the observed test statistic zobs by applying the observated imageXobs to the
diffusion model.

– For each i = 1, . . . , B, compute the test statistic z(i) by applying the permuted image
X(i) to the diffusion model, where B represents the total number of permutations, set
to 1,000 in our experiments.

– The permutation p-value is then determined as

ppermutation =
1

B

∑
b∈[B]

1{|z(b)| > |zobs|},

where 1{·} denotes the indicator function.

This rephrasing aims to maintain the original meaning while enhancing readability and comprehen-
sion.

C ARCHITECTURE OF THE U-NET

Figure 5 shows the architecture of the U-Net used in our experiments. The U-Net has three skip
connections, and the Encoder and Decoder blocks. For image sizes n ∈ {64, 256, 1024, 4096}, the
corresponding spatial dimensions of images are (1, d, d) where d ∈ {8, 16, 32, 64}.
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Figure 5: The architecture of the U-Net

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D ROBUSTNESS OF THE PROPOSED METHOD

To evaluate the robustness of our proposed method’s performance, we used various non-Gaussian
distribution families with different levels of deviation from the standard normal distribution
N (0, 1). We considered the following non-Gaussian distributions with a 1-Wasserstein distance
d ∈ {0.01, 0.02, 0.03, 0.04} from N (0, 1):

• Skew normal distribution family (SND).

• Exponentially modified gaussian distribution family (EMG).

• Generalized normal distribution family (GND) with a shape parameter β. This distribution
family can be steeper than the normal distribution (i.e., β < 2).

• Student’s t-distribution family (t-distribution).

Note that these distributions are standardized in the experiments. Figure 6 shows the probability
density functions for distributions from each family, such that the d is set to 0.04. We run 1000 trials
for each distribution family and each 1-Wasserstein distance to calculate the type I error rate. The
significance levels α were set to 0.05 and 0.10, and the image size was set to 256.
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Figure 6: Non-Gaussian distributions with d = 0.04

E COMPUTATION TIME ANALYSIS

We conducted a comprehensive evaluation of the computation times for the proposed method
DMAD-test using an AMD EPYC 9474F processor (48-core, 3.6GHz). Figure 7 shows the compu-
tation time when changing the image size for the synthetic data. These experiments were conducted
under the same settings as the type I error rate experiments described in §5.1. To optimize per-
formance, we applied an acceleration technique that enables early termination once p-values reach
sufficient precision. The detail of this technique is described in Shiraishi et al. (2024a). Theoreti-
cally, while the number of intervals on a one-dimensional line should scale exponentially with image
size, our empirical results demonstrate substantially better practical performance. Table 1 shows the
computation times for the brain image dataset described in §5.2, where the times were averaged
over 100 images each of brains with and without tumor. We performed interval calculations for
the p-value in parallel using 48 cores in this experiment. The computation time was 1100 seconds
per image without tumors and 4220 seconds per image with tumors, demonstrating the method’s
feasibility for clinical applications.
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Figure 7: Computation time when changing the image size for the synthetic data. Results are shown
for both synthetic data with independent (iid) and correlation (corr) noise.

Table 1: Computation time for brain images using parallel processing across 48 cores.

Image Time (s)
Brain image without tumors 1100

Brain image with tumors 4220
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