
SYNQL: Synthetic Data Generation for In-Domain,
Low-Resource Text-to-SQL Parsing

Denver Baumgartner
Semiotic Labs / Los Altos, CA, USA

denver@semiotic.ai

Tomasz Kornuta
Semiotic Labs / Los Altos, CA, USA

tomasz@semiotic.ai

Abstract

We address the challenge of generating high-quality data for text-to-SQL parsing
in low-resource, in-domain scenarios. Although leveraging large language models
(LLMs) and in-context learning often achieves the best results in research settings, it
is frequently impractical for real-world applications. Therefore, fine-tuning smaller,
domain-specific models provides a viable alternative. However, the scarcity of
training data frequently constrains it. To overcome this, we introduce SYNQL,
a novel method for synthetic text-to-SQL data generation tailored for in-domain
contexts. We demonstrate the effectiveness of SYNQL on the KaggleDBQA
benchmark, showing significant performance improvements over models fine-
tuned on original data. Additionally, we validate our method on the out-of-domain
Spider dataset. We open-source the method and both synthetic datasets.

1 Introduction

Semantic parsing Kamath and Das [2018] is the process of mapping natural language to machine-
interpretable representations. Text-to-SQL Zelle and Mooney [1996], Qin et al. [2022], Katsogiannis-
Meimarakis and Koutrika [2023] is a specialized form of semantic parsing that converts natural
language questions into SQL queries. Recent progress has been enabled by the emergence of several
large-scale benchmarks [Zhong et al., 2017, Yu et al., 2018, Li et al., 2023] and marked by two
main research directions: In-context learning [Brown et al., 2020, Pourreza and Rafiei, 2024] and
Fine-tuning Raffel et al. [2020]. In-context learning, primarily relying on the latest large language
models (LLMs) such as GPT-4 [Achiam et al., 2023] or Llama 2 [Touvron et al., 2023], is currently
demonstrating superior performance on most benchmarks [Chang and Fosler-Lussier, 2023, Wang
et al., 2024]. However, this approach is impractical for many real-world applications due to high
inference costs and/or latency. Because of this, many have focused on fine-tuning smaller models
tailored to a given domain and database(s). It appears that in most cases, people encounter a low-
resource scenario, where high-quality, domain-specific data is scarce, and only a limited number
of Question-Query Pairs (QQPs) is initially available. Given that manual data generation is both
expensive and labor-intensive, alternative methods involving Synthetic Data Generation (SDG) and
data augmentation techniques for the text-to-SQL domain [Yu et al., 2021, Wu et al., 2022, Hu et al.,
2023] have become increasingly essential. In this paper, we focus on this problem and propose a new
method for generating synthetic text-to-SQL data. Contributions of this paper are as follows:

• We present a systematic comparison of text-to-SQL SDG methods and highlight the need
for more diverse data.

• To address this, we propose SYNQL, a novel synthetic data generation method for text-to-
SQL that leverages in-context learning and introduces ’Topics’—a new type of contextual
information enhancing the diversity of generated QQPs.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Paper / Method SQL Synthesis NLQ Synthesis
Wang et al. [2021]
SQL→NLQ

Algorithm:
1) Construct dataset-specific PCFG from original dataset
2) Generate SQLs using the constructed PCFG
Contextual data: Grammar/PCFG extracted from dataset

Algorithm:
1) Fine-tune BART on original data for SQL-to-NLQ
2) Prompting: generated SQLs-to-NLQs
Contextual data: Generated SQLs

Wu et al. [2022]
SQL→NLQ

Algorithm:
1) Construct an abstract syntax tree grammar (ASTG)
2) Generate SQL using ASTG until 80% coverage of the original
dataset’s SQL Templates occurs
Contextual data: Target SQL Template Distribution

Algorithm:
1) SQLs are decomposed and represented as segments
2) Train a copy-based seq2seq model for SQL-to-NLQ
3) Generate & compose NLQs from generated SQLs
Contextual data: Generated SQLs

Hu et al. [2023]
SQL→IR→NLQ

Algorithm:
1) Extract SQL Templates from original dataset
2) Fill templates using schema-weighted column sampling
Contextual data: Extracted SQL Templates

Algorithm:
1) Fine-tune T5/Large models for SQL-to-IR & IR-to-NLQ
2) Prompting: T5/Large models for SQL→IR & IR→NLQ
Contextual data: Generated SQLs

NLQ Synthesis SQL Synthesis
Yang et al. [2021]
(H-NEURSYN)
ES→NLQ→SQL

Algorithm:
1) Extract Entity Sequences (ES) from SQL
2) Train Schema-to-ES & ES-to-NLQ models (T5)
3) Sample ESs & generate NLQs
Contextual data: Database Schemas

Algorithm:
1) Train a NLQ→SQL T5 model
2) Generate QQPs from NLQs: beam search w/ execution
3) Deduplicate resulting data (including origin)
Contextual data: Generated NLQs

Ye et al. [2023]
(SEMGEN)
NLQ→SQL

Algorithm: Prompting: Codex/davinci-002
Contextual data:
- Database Schemas (+ ST + KR)
- 3 exemplary rows per table (pulled from database)
- 10-shot NLQs (randomly sampled from original dataset)

Algorithm: Prompting: Codex (+ filter: valid execution)
Contextual data: - Database Schemas (+ ST + KR)
- NQL (synthesized)
- 3 exemplary rows per table (pulled from database)
- 10-shot QQPs (randomly sampled from original dataset)

Joint SQL+NLQ Synthesis
Yu et al. [2021]
(GRAPPA)
NLQ+SQL

Algorithm:
1) Induce grammer/SCFG based on the original dataset
2) Select 90 predominant SQL Template programs

3) For each SQL program select 4 associated NLQ templates
4) Fill template pairs, sampling the SCFG given a database
Contextual data: Extracted grammar rules (SCFG)

Kuznia [2023]
NLQ+SQL

Algorithm: Prompting: GPT-3 (+filter: non-NULL exec.)
Contextual data: - Database Schemas (+ ST + KR)

- 3 exemplary rows per table (pulled from database)
- 5-shot QQPs (manually selected & curated)

Ours
(SYNQL)
T→SQL+NQL

Algorithm:
1) Extraction of SQL Templates from the original dataset
2) Prompting: GPT-4 (Topic generation)
3) Prompting: GPT-4 (+ filter: valid execution)

Contextual data:
- Database Schemas (+ ST + KR)
- Extracted SQL Templates
- Synthesized Topics

Table 1: Comparison of selected state-of-the-art Synthetic Data Generation methods. Arrow → in
Method indicates order of main synthesis steps, similarly as numbers in particular algorithms. (+ ST
+ KR) next to Database Schema indicates that the used Schema includes Strong Typing (ST) and
Key Relationships (KR). (+ filter: valid execution) next to Prompting indicates an additional step of
checking if synthesized SQL is valid and can be executed.

• In order to assess the quality of our method, we experiment with KaggleDBQA Lee et al.
[2021], an established low-resource benchmark, and demonstrate that models trained on
SYNQL-KaggleDBQA exceed the performance of those trained on the original data.

• Additionally, to better understand the properties of SYNQL data, we generate a synthetic
equivalent of the Spider dataset Yu et al. [2018] and analyze model performance when
trained on both original and synthetic data.

• Finally, we open-source both method 1 and synthetic datasets 23 for further research.

2 Related work

Synthetic data generation for text-to-SQL involves synthesizing two components: a Natural Language
Question (NLQ) and a corresponding SQL query. Hence, at a high level, one can distinguish
three types of methods: 1. SQL→NLQ: methods that first synthesize query and then question,
2. NLQ→SQL: methods that first synthesize question and then query, 3. SQL+NLQ: methods that
synthesize both query and question at the same time.

Tab. 1 utilizes this categorization and presents a selection of recent methods for text-to-SQL synthesis,
emphasizing the most critical steps of a method (algorithm) and the contextual data provided as input
to the algorithm. Note that a clear trend is visible: deep learning-based methods leveraging LLMs are
replacing other synthesis methods. This shift follows a broader trend of utilizing LLMs for SDG in
other fields of NLP, with the Phi family of Small Language Models (SLMs) being the most prominent
example of this process [Gunasekar et al., 2023, Javaheripi and Bubeck, 2023, Abdin et al., 2024].

1https://github.com/semiotic-ai/SynQL
2https://huggingface.co/datasets/semiotic/SynQL-Spider-Train
3https://huggingface.co/datasets/semiotic/SynQL-KaggleDBQA-Train/

2

https://github.com/semiotic-ai/SynQL
https://huggingface.co/datasets/semiotic/SynQL-Spider-Train
https://huggingface.co/datasets/semiotic/SynQL-KaggleDBQA-Train/


(a) Extraction of SQL templates (b) Generation of Schema-specific topics

(c) Joint generation of Question-Query Pairs (QQPs)

Figure 1: Steps of the SYNQL data generation method. See the appendices for exemplary data.

For NLQ synthesis, solutions leveraging question templates Yu et al. [2021] were replaced by fine-
tuning (BERT-derived) encoder-(domain-specific)decoder models [Wang et al., 2021, Wu et al., 2022],
and most recently by generative decoders with In-Context Learning [Ye et al., 2023, Kuznia, 2023].

A similar process occurs with SQL synthesis, progressing from earlier works that build on domain-
specific grammars [Wang et al., 2021, Yu et al., 2021, Wu et al., 2022], to methods utilizing template
or pattern-based filling and/or sampling [Hu et al., 2023], and finally to generative decoders [Ye et al.,
2023, Kuznia, 2023].

Additionally, a few past solutions tried to bridge the SQL-NLQ gap by, e.g., leveraging Entity
Sequences [Yang et al., 2021] or Intermediate Representations [Hu et al., 2023]. This problem is
naturally addressed in methods leveraging joint SQL+NLQ synthesis. According to our knowledge,
Ye et al. [2023] and Kuznia [2023] are the first to utilize a purely prompt-based generative approach
for text-to-SQL SDG, relying upon in-context learning to guide QQP generation. Broadly, the primary
components of these prompts are: 1. Task definition and rules, 2. Contextual info (database schemas,
demonstrations, etc.), 3. Output formatting. Both utilize few-shot demonstrations when synthesizing
QQPs and provide database schemas and sampled database content as contextual information. Chang
and Fosler-Lussier [2023], Wang et al. [2024], Gao et al. [2023] and others follow a related line of
research, investigating the optimal selection of demonstrations for inference.

3 The SYNQL Method

The core motivation that led to the development of SYNQL was to create a simple yet effective way
of controlling the diversity of generated questions and their SQL query counterparts across both
the Question and Query spaces. For that purpose, as indicated in Tab. 1, we leverage three types of
contextual data: 1. SQL Templates 2. Topics 3. Database Schemas.

By changing the number and diversity of the former two, one can control the size and diversity of
generated data. SQL Templates serve as anonymized examples to guide SQL generation. Topics’
main role is guiding NLQ generation. They help instantiate SQL queries while also bridging the gap
between NLQ and SQL for a given pair. Finally, Database Schemas ground the generative process in
a given domain and ensure the correct names of tables, columns, and leveraged table relations. Fig. 1
presents the three main steps of SYNQL, two of which are responsible for pre-processing inputs and
preparing contextual data, which is then used to generate QQPs.

3.1 Contextual Data

Database Schemas: SYNQL uses a rich schema representation of the underlying database(s),
formatted as a series of CREATE statements, including column types and key relationships, indicating

3



Dataset/Split # Databases # Tables/DB # QQPs # Topics # SQL Templates
Spider/train 140 5.26 7,000 – 912
Spider/dev 11 4.05 1,034 – 254
SYNQL-Spider/train 140 5.26 114,955 764 15,775

KaggleDBQA/fewshot 8 2.25 87 – 50
KaggleDBQA/test 8 2.25 185 – 84
SYNQL-
KaggleDBQA/train

8 2.25 1,638 37 319

Table 2: Statistics of original and corresponding SYNQL- splits for both Spider and KaggleDBQA.

primary and foreign keys. For LLM-based SDG, this representation has yielded the best results [Ye
et al., 2023, Hu et al., 2023, Kuznia, 2023]. In particular, providing column types helps to mitigate
errors, such as performing arithmetic functions on text-based values (e.g., SUM(student.name)),
whereas providing key relationships helps to ensure JOIN(s) occur on the correct fields. Appendices
A.3 and A.4 show an exemplary schema and model response to potential type errors.

SQL Templates: We process input SQL queries to extract a set of unique SQL Templates, as
presented in Fig. 1a. Our process follows Zhong et al. [2020b] and anonymizes all variables of a
given SQL query, leaving the operations untouched. We perform this for all the collected SQL queries
and store all unique, extracted templates.

Schema-specific Topics: A Topic is a sentence that describes a subject related to a given database
schema. It serves as a contextual hint derived from the schema, helping guide the creation of relevant
and diverse questions focused on specific aspects of the schema. The process for generating topics
is outlined in Fig. 1b. For a given database schema, we create a prompt instructing the model to
generate distinct topics relevant to that schema4, and repeat this for every database schema.

3.2 Algorithm

Fig. 1c outlines the process of joint generation of SQL and NLP pairs5. Given the three contextual
data components (Database Schemas, SQL Templates and Topics) we construct prompts utilizing a
combination of every Topic and SQL Template. As Topics are inherently tied to Database Schemas,
we utilize the Database Schema associated with the selected Topic for any given prompt. After
running LLM inference given a prompt, we check the correctness of the generated QQP by ensuring
it properly executes against the underlying database, similarly to Ye et al. [2023].

Note that this method can be adjusted to utilize a subset of the prompt components, reducing the total
amount of generated QQPs. For example, for the data-rich Spider dataset, we randomly sample one
topic for every Database/Query Template pair, whereas for the low-resource KaggleDBQA dataset,
we generate QQPs for every possible combination of Topic and SQL Template. A data-efficiency
analysis, further exploring the impact of dataset size on the fine-tuned model performance, can be
found in Appendix A.6.

Dataset/Split Easy Medium Hard Extra

Spider/train 8.9% 33.3% 18.3% 39.5%
SYNQL-Spider/train 2.2% 16.6% 16.1% 65.1%

KaggleDBQA /fewshot 28.0% 32.0% 18.0% 22.0%
SYNQL-KaggleDBQA/train 16.6 32.9% 24.2% 26.3%

Table 3: Distribution of SQL Template hardness across original and generated datasets and splits.

4The prompt for topic generation, along with example topics, can be found in appendix A.5.
5The associated prompt can be found in appendix A.7.

4



4 SYNQL datasets

Using the method described in the previous section, we have generated two synthetic datasets
associated with two different benchmarks: Spider and KaggleDBQA. The core difference between
those two benchmarks is that Spider aims at "cross-domain generalization" (training and testing on
different database schemas), whereas KaggleDBQA tests "in-domain generalization," hence this pair
became a de facto standard for testing various text-to-SQL parsing methods (e.g. Gao et al. [2023],
Chang and Fosler-Lussier [2023], Wang et al. [2024]). In Tab. 2, we present a comparison of original
datasets and splits with their synthetic SYNQL- counterparts.

(a) Spider and SYNQL-Spider splits (b) KaggleDBQA and SYNQL-KaggleDBQA splits

Figure 2: Composition of SQL structure hardness for queries in different dataset splits. (a) Distribution
for Spider and SYNQL-Spider. (b) Distribution for KaggleDBQA and SYNQL-KaggleDBQA.

4.1 SYNQL-Spider

Spider Yu et al. [2018] is one of the most established benchmarks for semantic parsing/text-to-SQL,
designed to facilitate the training and evaluation of models that can generalize across different
database schemas. It consists of over 10,000 QQPs across 200 databases, making it (still) one of the
most comprehensive benchmarks in SQL parsing. We first investigate this dataset because it allows
for a deeper analysis of the properties of synthetically generated data compared to the original dataset,
which is abundant with data, enabling us to draw more general conclusions.

We derived our synthetic split from Spider/train. We started with 140 training database schemas
and generated topics for each, resulting in 764 topics. Next, we extracted query templates from all
training queries, resulting in 912 templates. Finally, we used database schemas, topics, and query
templates to generate question-query pairs, resulting in 127,680 QQPs. After filtering the invalid
queries (ensuring they can properly execute against the underlying database), we received 114,955
QQPs, forming the SYNQL-Spider/train split.

The first interesting observation goes to the diversity of generated queries, which is reflected by
the fact that from those 115k queries, we extracted (following procedure from Fig. 1a) more than
15k unique SQL templates. This is also visible in t-SNE visualization of SQL embeddings space
on Fig. 3b, where generated queries (green) cover large fragments of spaces not covered by the
Spider/train split from which the templates were derived (yellow). We also note that the SYNQL
method covered most of them without access to queries from Spider/dev split (red).

Regarding the NLQ (question) space presented in Fig. 3a, we can see hundreds of small clusters,
in most cases, formed around original questions. This is an intriguing property, especially since
no natural questions from the original Spider splits were used to generate SYNQL NLQs. We
hypothesize that this is a direct consequence of injecting topics into prompts during generation.

Finally, when comparing the hardness of original and synthetic queries (Fig. 2a), we notice that for
the Spider dataset, the SYNQL method has a tendency towards generating more complex queries,
with extra hard queries constituting almost half of the generated split (41.1% vs 19.9%), and heavily
under-representing the queries falling into easy category (8.1% vs 25.1%). To understand this better,
we compare this distribution with the distribution of SQL templates as presented in Tab. 3, and note

5



(a) NLQ (question) embedding space (b) SQL (query) embedding space

Figure 3: t-SNE visualizations of Spider and SYNQL-Spider splits in SQL and NLQ embedding
spaces. Details of procedures we used for embedding generation can be found in Appendix A.1.

that, on average, our SynQL method generated a QQP that matched the hardness of the SQL Template
used as contextual information 85.1% of the time, indicating an impressive ability to generate data
matching the original distribution in terms of hardness.

4.2 SYNQL-KaggleDBQA

In contrast to Spider, KaggleDBQA [Lee et al., 2021] is a smaller dataset (in terms of both number
of QQPs and databases), developed to bridge the gap between academic datasets (such as Spider)
and industrial databases. The databases used in KaggleDBQA are from Kaggle, with minimalistic
preprocessing and data cleansing. It features abbreviated and obscure naming of tables, columns, and
domain-specific categorical values, often accrued from legacy development or migrations. Despite
simpler database schemas, the dataset offers more complex SQL structures compared to those from
Spider. A visualization of this dataset embedding space can be found in Appendix A.2.

We treat KaggleDBQA as our benchmark as it is closer to our considered low-resource scenario,
where the organization collects a small number of new QQPs from its production environment (from
its users) and wants to quickly fine-tune its model to perform better on those (and similar) queries.

Starting from the KaggleDBQA/fewshot split, created by the authors of Lee et al. [2021] and avail-
able at the project website; we generated 37 distinctive topics given 8 input database schemas. Next,
we took 87 queries and extracted 50 unique templates. Finally, we generated 1,850 QQPs and filtered
the invalid ones, resulting in 1,638 QQPS. Those queries formed SYNQL-KaggleDBQA/train.

Please note that despite the relatively large number of synthetic SQL templates (319, compared to 50
SQL templates in the original KaggleDBQA/fewshot), in this case, the SYNQL method generated a
more balanced split from the point of view of query hardness (Fig. 2). As in the case of Spider, we
find the resulting distribution of query hardness follows the distribution of SQL templates extracted
from KaggleDBQA/fewshot split and used as contextual data during generation, with the generated
QQP matching in hardness 86.4% of the time.

5 Experimental Results

5.1 Training procedure

In our experiments we utilize the training framework provided by Scholak et al. [2021] to fine-tune
T5-Large and T5-3B base checkpoints [Raffel et al., 2020]. We follow the same procedure for each
training, reporting the average results of three runs utilizing random seeds. We use Adafactor [Shazeer
and Stern, 2018] optimizer with a learning rate of 10-4 and gradient accumulation of batch size of
2048 and 32 for Spider and KaggleDBQA, respectively. We train for 50 epochs with early stopping
based on dev/test EX values. For input data formatting, we follow Scholak et al. [2021] and use the
schema encoding from Shaw et al. [2020].

6



Fine-tuned on Evaluated on Spider/dev
Model/Checkpoint Dataset/split EM [%] EX [%] TS-EX [%]

Previous works with In-context Learning
LLaMA-13B (0-shot) ♢ – 2.4 – 20.3

LLaMA-13B + 5-shot DAILs ♢ – 16.2 – 32.4
GPT-4 (0-shot) ♢ – 22.1 – 72.3

GPT-4 + 5-shot DAILs ♢ – 71.9 – 82.4
Previous works with Fine-tuning

LLaMA-13B (0-shot) ♢ Spider/train (SFT) 62.7 – 67.0
LLaMA-13B + 5-shot DAILs ♢ Spider/train (SFT) 61.3 – 66.4

T5-3B/base ♣ Spider/train 71.5 74.4 68.38
Previous works with Fine-tuning on Synthetic Data

T5-3B/base ♠ Spider/train + Synthetic 74.5 78.6 –
T5-3B/base ♡ SYMGEN (140db, 71k) 48.55 – 61.03
T5-3B/base ♡ SYMGEN (160db, 103k) 48.55 – 69.25

This work
T5-3B/base SYNQL-Spider/train 33.88 ± 1.40 69.05 ± 1.12 57.74 ± 2.76
T5-3B/base SYNQL-Spider/train – 75.05 62.28

Table 4: Performance of selected solutions on Spider. Reporting Exact Set Match Accuracy (EM),
Execution Accuracy (EX) and Test-Suite Execution Accuracy (TS-EX) Zhong et al. [2020a]. ♢ indi-
cates results reported in Gao et al. [2023], results with ♣ come from Scholak et al. [2021], ♠ indicate
results from Hu et al. [2023] and ♡ come from Ye et al. [2023].

5.2 Results on SYNQL-Spider

The most recent state-of-the-art results in the Spider leaderboard are obtained by leveraging In-context
Learning with LLMs. This is also reflected in Tab. 4, where we present selected results from several
papers. In particular, we observed that the best results, in terms of Test-Suite Execution Accuracy
(TS-EX) [Zhong et al., 2020a] that we treat as our primary indicator of model quality, are achieved
using In-context Learning with GPT-4, utilizing five demonstrations selected with DAILs Gao et al.
[2023]. Note that GPT-4 is impractical for many scenarios, e.g., applications requiring fast responses,
whereas pure In-context Learning with smaller models, such as LLaMA-13B, yields worse results.

When it comes to results obtained with LLaMA, we can clearly see a huge improvement when
leveraging Supervised Fine-Tuning (SFT) for both zero-shot and few-shot settings, with DAILs used
for selecting relevant demonstration examples. Still, the achieved scores are far from the recent state
of the art, and even with five demonstrations, LLaMA-13B is still under-performing compared to the
scores achieved when fine-tuning much smaller T5-3B/base model (GOOGLE-T5/T5-3B checkpoint
from HuggingFace) on the same Spider/train split. Hence, we decided to use this architecture (and
checkpoint) in our experiments.

Next, comparing the performance of T5-3B models when trained on synthetic data, it is evident that
purely synthetic data for Spider resulted in worse performance than the original Spider/train data,
and the only improvement over the baseline comes from augmenting the original Spider/train split
with synthetic data Hu et al. [2023].

Finally, an interesting observation is associated with the gap between EM and EX/TS-EX scores
achieved by T5-3B/base fine-tuned on our SYNQL-Spider/train data. We conclude this to be
a property resulting from the data generated by GPT-4 and derived straight from the knowledge
embedded in this model. Note that this is consistent with the results seen with zero-shot prompting
obtained with GPT-4, suggesting that the model generates SQL queries that, despite being significantly
different from the queries in the original split, can still yield correct data from the database.

5.3 Results on SYNQL-KaggleDBQA

Experimental results with KaggleDBQA are presented in Tab. 5. Similarly, as for Spider, the
current SOTA performance on the KaggleDBQA dataset is achieved using In-context Learning, this
time by the Codex model (14.8 billion parameters) and eight demonstrations selected by the ODIS
method Chang and Fosler-Lussier [2023]. Moreover, analogically, smaller models like CodeLlama-
7B with In-context Learning achieve worse results than model fine-tuning. In particular, the best

7



Fine-tuned on Evaluated on KaggleDBQA/test
Model/Checkpoint Dataset/Split EM[%] EX[%]

Previous works with In-context Learning
CodeLlama-7B (0-shot) ♣ – – 9.9

CodeLlama-7B + 10-shot FUSED ♣ – – 22.8
Codex/davinci-002 (0-shot) ♡ – – 26.8

Codex/davinci-002 + 8-shot ODIS ♡ – – 54.8
Previous works with Fine-tuning

SmBoP ♡ KaggleDBQA/fewshot – 27.2
T5-3B/base + Picard ♡ KaggleDBQA/fewshot – 29.8

This work
T5-Large/base KaggleDBQA/fewshot 12.79 ± 0.62 19.82 ± 0.82
T5-Large/base SYNQL-KaggleDBQA/train 12.61 ± 1.74 33.15 ± 1.12

T5-3B/base KaggleDBQA/fewshot 18.66 ± 1.17 24.50 ± 0.31
T5-3B/base SYNQL-KaggleDBQA/train 12.43 ± 1.43 35.14 ± 0.0

Table 5: Performance of selected solutions on KaggleDBQA. ♣ denotes results reported in Wang
et al. [2024], whereas ♡ indicates results from Chang and Fosler-Lussier [2023].

score reported before our work was T5-3B/base+PICARD, achieving 29.8% EX when fine-tuned on
the original KaggleDBQA/fewshot.

Remarkably, our results indicate that we can surpass this score by over 5 points using the T5-3B/base
model, even without employing PICARD. When we compare the performance of fine-tuning of
T5-3B/base models on KaggleDBQA/fewshot and SYNQL-KaggleDBQA/train splits, we see an
increase of over 10 points (on average!) in relative performance when utilizing the latter. Furthermore,
we observe a similar improvement with a smaller model, T5-Large (770M parameters). Finally, we
observe lower EM scores for models trained on synthetic and original data and huge gaps between
EM and EX scores for models trained on SYNQL-KaggleDBQA/train. We find those consistent
with results achieved on Spider.

These findings underscore the potential of our SYNQL method to enhance model performance signifi-
cantly in smaller, resource-constrained scenarios. We think the ability to improve model performance
on in-domain problem settings is associated with injecting topics as contextual information and
leveraging GPT-4 for generating more diverse, although still domain-specific queries.

6 Summary

In this work, we introduced SYNQL, an LLM-prompting-based SDG approach for joint synthesis
of QQP pairs for low-resource scenarios. We reviewed the leading SDG text-to-SQL methods and
built upon their work by introducing additional generation steps to expand the available contextual
information used during generation with Topics. We demonstrated the ability of this method to
improve model performance in low-resource settings, utilizing KaggleDBQA as a benchmark for
performance. Additionally, to better understand the properties of the SYNQL method, we applied it
to the data-rich Spider benchmark and demonstrated the method’s ability to generate data of high
diversity, one of the primary objectives of SDG for NLP.

Our future work will be focused on three areas: 1. more granular control of synthetic data distributions,
2. injecting richer contextual information during generation, 3. utilization of contextual information
for post-generation filtering. The first direction is motivated by the observation that sometimes our
method does not fully cover the query space (e.g., right-hand side of Fig. 3b). This is indicative of
the larger challenge of guiding the distribution of QQPs in a granular fashion and warrants further
investigation. Second, we see room for the injection of more contextual information, starting from
SQL Templates from external sources to using records sampled from the database [Kuznia, 2023],
to leveraging the latest demonstration selection algorithms [Chang and Fosler-Lussier, 2023, Wang
et al., 2024] for In-context learning. Given the limitless ability to generate valid SQL, the challenge
becomes selecting the optimal components given a domain and problem space. Finally, more complex
filtering and selection of generated QQPs, e.g., ensuring that SQL does not return NULL upon
execution, can help align generated data with external requirements or user preferences.

8



References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany

Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Shuaichen Chang and Eric Fosler-Lussier. Selective demonstrations for cross-domain text-to-sql.
arXiv preprint arXiv:2310.06302, 2023.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan, Henghui Zhu, Anuj Chauhan, Alexander Hanbo
Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Jiang Guo, Mingwen Dong, Joseph
Lilien, Patrick Ng, Zhiguo Wang, Vittorio Castelli, and Bing Xiang. Importance of synthesizing
high-quality data for text-to-SQL parsing. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Findings of the Association for Computational Linguistics: ACL 2023, pages
1327–1343, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.findings-acl.86. URL https://aclanthology.org/2023.findings-acl.86.

Mojan Javaheripi and Sebastien Bubeck. Phi-2: The surprising power of small language mod-
els. https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-
models/, 2023.

Aishwarya Kamath and Rajarshi Das. A survey on semantic parsing. In Automated Knowledge Base
Construction (AKBC), 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. The VLDB Journal, 32(4):905–936, 2023.

Kirby Kuznia. Using language models to generate text-to-sql training data an approach to improve per-
formance of a text-to-sql parser, 2023. URL https://hdl.handle.net/2286/R.2.N.187426.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. KaggleDBQA: Realistic evaluation
of text-to-SQL parsers. In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2261–2273, Online, August 2021. Association for Computational
Linguistics. URL https://aclanthology.org/2021.acl-long.176.

9

https://aclanthology.org/2023.findings-acl.86
https://hdl.handle.net/2286/R.2.N.187426
https://aclanthology.org/2021.acl-long.176


Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C. Chang, Fei
Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database interface. A big
bench for large-scale database grounded text-to-sqls. CoRR abs/2305.03111, 2023.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu
Cao, Jian Sun, Luo Si, et al. A survey on text-to-sql parsing: Concepts, methods, and future
directions. arXiv preprint arXiv:2208.13629, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for
constrained auto-regressive decoding from language models. arXiv preprint arXiv:2109.05093,
2021.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. Compositional generaliza-
tion and natural language variation: Can a semantic parsing approach handle both? arXiv preprint
arXiv:2010.12725, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caiming Xiong. Learning to synthesize data for
semantic parsing. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou, ed-
itors, Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2760–2766, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.220. URL
https://aclanthology.org/2021.naacl-main.220.

Dingzirui Wang, Longxu Dou, Xuanliang Zhang, Qingfu Zhu, and Wanxiang Che. Improving
demonstration diversity by human-free fusing for text-to-sql. arXiv preprint arXiv:2402.10663,
2024.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan Xiao, Hua Wu, Min Zhang, and Haifeng
Wang. Data augmentation with hierarchical sql-to-question generation for cross-domain text-to-sql
parsing, 2022.

Wei Yang, Peng Xu, and Yanshuai Cao. Hierarchical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212, 2021.

Jiacheng Ye, Chengzu Li, Lingpeng Kong, and Tao Yu. Generating data for symbolic language with
large language models. arXiv preprint arXiv:2305.13917, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In Department
of Computer Science, Yale University, 2018. URL https://arxiv.org/abs/1809.08887.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. Grappa: Grammar-augmented pre-training for table semantic
parsing, 2021.

10

https://aclanthology.org/2021.naacl-main.220
https://arxiv.org/abs/1809.08887


John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive logic
programming. In Proceedings of the national conference on artificial intelligence, pages 1050–
1055, 1996.

Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-sql with distilled test suites. In
EMNLP 2020 Long Paper, 2020a. URL https://arxiv.org/abs/2010.02840.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning, 2017.

Victor Zhong, Mike Lewis, Sida I Wang, and Luke Zettlemoyer. Grounded adaptation for zero-shot
executable semantic parsing. arXiv preprint arXiv:2009.07396, 2020b.

11

https://arxiv.org/abs/2010.02840


A Appendix

A.1 Generation of SQL and NLQ embeddings

To generate the SQL embeddings, we utilized the code2seq model [Alon et al., 2018], trained on
a combination of Spider [Yu et al., 2018] and WikiSQL data [Zhong et al., 2017]. Our ‘code2seq‘
model takes the abstract syntax tree (AST) representation of SQL and predicts the corresponding
NLQ, using a branch based attention mechanism to learn the common logical structures of SQL.

To generate the NLQ embeddings, we utilize the most recent version of ‘Sentence-Transformers‘,
all-mpnet-base-v2, from Reimers and Gurevych [2019].

A.2 t-SNE Visualizations

Figure 4: t-SNE visualization of Spider and SYNQL-Spider splits in NLQ (question) embedding
space.

Figure 5: t-SNE visualization of Spider and SYNQL-Spider splits in SQL (query) embedding space.

12



Figure 6: t-SNE visualization of KaggleDBQA and SYNQL-KaggleDBQA splits in NLQ (question)
embedding space.

Figure 7: t-SNE visualization of KaggleDBQA and SYNQL-KaggleDBQA splits in SQL (query)
embedding space.

A.3 Exemplary Database Schema

Example is shown in listing 1.

Listing 1: "Exemplary database schema"
CREATE TABLE "Web_client_accelerator" (

"id" int ,
"name" text ,
"Operating_system" text ,
"Client" text ,
"Connection" text ,
PRIMARY key("id")

13



)
CREATE TABLE "browser" (

"id" int ,
"name" text ,
"market_share" real ,
PRIMARY key("id")

)
CREATE TABLE "accelerator_compatible_browser" (

"accelerator_id" int ,
"browser_id" int ,
"compatible_since_year" int ,
PRIMARY key("accelerator_id", "browser_id"),
FOREIGN KEY ("accelerator_id") REFERENCES ‘

Web_client_accelerator ‘("id"),
FOREIGN KEY ("browser_id") REFERENCES ‘browser ‘("id")

)

14



A.4 Example of Prompt and Response in Case of Invalid Combination

Exemplary prompt for QQP generation presented in Fig A.7. Retrieved response regarding the invalid
combination is presented in "Model Response".

Schema:
CREATE TABLE "Web_client_accelerator" (

"id" int ,
"name" text ,
"Operating_system" text ,
"Client" text ,
"Connection" text ,
PRIMARY key("id")

)
CREATE TABLE "browser" (

"id" int ,
"name" text ,
"market_share" real ,
PRIMARY key("id")

)
CREATE TABLE "accelerator_compatible_browser" (

"accelerator_id" int ,
"browser_id" int ,
"compatible_since_year" int ,
PRIMARY key("accelerator_id", "browser_id"),
FOREIGN KEY ("accelerator_id") REFERENCES ‘

Web_client_accelerator ‘("id"),
FOREIGN KEY ("browser_id") REFERENCES ‘browser ‘("id")

)

Topic: Web Client Accelerator Information (Questions specifically related
to the web client accelerator. Avoid questions related to browser or
compatibility)

SQL Template: SELECT SUM(?) FROM ? ORDER BY ? DESC LIMIT ?;

Model Response: The provided query structure is not applicable to the
given topic and the schema. The structure suggests an aggregate function
(SUM) on a table and sorting the result in descending order, which is
not applicable to the Web Client Accelerator schema provided. It is
recommended to revise the query structure to align with the database
schema.

15



A.5 Topic Generation Prompt and Examples

Exemplary prompt for topic generation is presented in Fig 8, whereas it’s response is presented in
Fig 9.

System Prompt:
Your job is to provide distinct topics that encapsulate a specific subset of questions that can be asked about a
database.

The goal is to generate distinct topics for the database. The topics should not overlap. Please return the topics as
a numbered list within a JSON object. The list should have integer keys for each topic and the value should be
the topic description itself. Ensure that the numbering starts at 1 and each entry is unique.
{
"1": "Topic Description for the first topic",
"2": "Topic Description for the second topic",
"3": "Topic Description for the third topic",
}
The topics should be relevant to typical questions that would be asked about the database, so try to avoid details
that are too specific to the database (such as column names). Try to make the topics distinct from each other, so
that a large area of potential questions is covered.

User Prompt:
Provided here are the create statements for tables in database browser_web. Your job is to return distinct topics
of questions that can be asked about the database browser_web.

schema:
CREATE TABLE "Web_client_accelerator" (

"id" int,
"name" text,
"Operating_system" text,
"Client" text,
"Connection" text,
PRIMARY key("id")

)
CREATE TABLE "browser" (

"id" int,
"name" text,
"market_share" real,
PRIMARY key("id")

)
CREATE TABLE "accelerator_compatible_browser" (

"accelerator_id" int,
"browser_id" int,
"compatible_since_year" int,
PRIMARY key("accelerator_id", "browser_id"),
FOREIGN KEY ("accelerator_id") REFERENCES ‘Web_client_accelerator‘("id"),
FOREIGN KEY ("browser_id") REFERENCES ‘browser‘("id")

)

Example Topics:
{
"1": "College Information (Questions specifically related to the colleges. Avoid questions related to players or
tryouts)",
"2": "Player Information (Questions specifically related to players. Avoid questions related to colleges or
tryouts)",
"3": "Tryout Information (Questions specifically related to tryouts. Avoid questions related to colleges or
players)",
}
Only respond with the topic of the question, not the question itself, formatted as the Example Topics are. Please
return the topics as a numbered dictionary within a JSON object.

Figure 8: Topic Generation Prompt

16



Example Generated Topics:
"browser_web":
{

"1": "Web Client Accelerator Information (Questions specifically related to the web client accelerator. Avoid
questions related to browser or compatibility)",

"2": "Browser Information (Questions specifically related to the browser. Avoid questions related to the web
client accelerator or compatibility)",

"3": "Compatibility Information (Questions specifically related to the compatibility of browsers and web
client accelerators. Avoid questions related to the browser or the web client accelerator individually)"
}

Figure 9: Topic Generation Prompt Response

A.6 Synthetic Data Efficiency Analysis

Model performance tends to improve in a somewhat predictable fashion as the size of training data
increases (a phenomena known as scaling laws [Kaplan et al., 2020]). As SynQL enables one to
can control the size of the generated split in several ways (the simplest being increasing/decreasing
the number of topics that we generate and/or decreasing the number of extracted templates by
sub-sampling), we decided to test the impact of size on the model performance.

Model Fine-tuned On Size (QQPs) EX [%]
T5-3B Spider/train (Baseline) N=7,000 71.41 (± 0.51)

T5-3B SynQL-Spider/train 114,955 69.05 (± 1.12)
T5-3B SynQL-Spider/train-3N 21,000 66.05 (± 0.84)
T5-3B SynQL-Spider/train-2N 14,000 65.93 (± 0.30)
T5-3B SynQL-Spider/train-N 7,000 61.70 (± 0.60)

T5-3B KaggleDBQA/fewshot (Baseline) N=87 24.50 (± 0.25)

T5-3B SynQL-KaggleDBQA/train 1,638 35.14 (± 0.00)
T5-3B SynQL-KaggleDBQA/train-3N 261 27.03 (± 0.88)
T5-3B SynQL-KaggleDBQA/train-2N 174 24.86 (± 0.44)
T5-3B SynQL-KaggleDBQA/train-N 87 13.87 (± 0.67)

Table 6: Impact of synthetic dataset size on T5-3B model performance. Models trained on varying
sizes of SYNQL-Spider and SYNQL-KaggleDBQA datasets are evaluated on their respective test sets
(Spider/dev and KaggleDBQA/test). EX represents Execution Accuracy with standard deviations.

We investigate the impact of dataset size on model performance by fine-tuning our base model on
varying sized subsets of our SYNQL-Spider and SYNQL-Kaggle datasets, using their associated
manually generated datasets as the determiner of split size. We evaluate across four dataset splits:

1. All: The entire SYNQL dataset,
2. 3N: A random split of SYNQL, 3 times the size of original dataset training/fine-tuning split,
3. 2N: A random split of SYNQL, 2 times the size,
4. N: A random split of SYNQL, same size as original dataset training/fine-tuning split.

Across our runs, presented in Tab. 6, we affirm the assumption that larger splits will result in improved
downstream model performance. In terms of data quality, this further validates the ability of our
SYNQL method to generate both diverse and high quality data. Given the ability to cheaply and
rapidly generate a datasets orders of magnitude greater than that observed in our experiments, we
expect that further improvement in downstream model performance will be observed simply by
scaling the quantity of synthetically generated data.

17



A.7 QQP Generation Prompt and Examples

Exemplary prompt for generation of QQPs is presented in Fig 10, with several generated responses
presented in Fig 11.

System Prompt:
Your task is to create a SQL query and an associated question based on a given subject, query structure, and
schema. ∗∗The query must strictly adhere to the provided query structure and be a valid SQL query. The
question should be relevant to the subject and accurately answered by the query∗∗. Follow these guidelines:

1) The query must be valid and logical SQL.
2) The query must match the query structure exactly.
3) The question must match the topic of the subject.
4) The query must answer the question.
5) The query must comply with the given table schema.
6) Do not ask overly vague or specific questions that a user would not typically ask.

Do not modify the query structure. Do not keep any placeholder (’?’) values. For example:
Query Structure: SELECT ? FROM ? WHERE ? = ?;
Generated Query: SELECT column_one FROM table_one WHERE column_two = 1

The response must be in the following JSON format:
Response Format: {"question": "<generated question>", "query": "<generated query>"}

User Prompt:
Given the following topic, query structure, and schema, generate a unique question and SQL query. The
generated SQL query must strictly adhere to the provided query structure and be valid, logical, SQL. The
question should be relevant to the topic, and the query should accurately answer the question using the given
schema.
∗∗Do not generate low-quality questions or queries∗∗. These include queries that have irrelevant structure, such
as unnecessary joins. ∗∗The SQL query must be valid∗∗, both in its syntax and relation to the database schema.
- Schema:
CREATE TABLE "Web_client_accelerator" (

"id" int,
"name" text,
"Operating_system" text,
"Client" text,
"Connection" text,
PRIMARY key("id")

)
CREATE TABLE "browser" (

"id" int,
"name" text,
"market_share" real,
PRIMARY key("id")

)
CREATE TABLE "accelerator_compatible_browser" (

"accelerator_id" int,
"browser_id" int,
"compatible_since_year" int,
PRIMARY key("accelerator_id", "browser_id"),
FOREIGN KEY ("accelerator_id") REFERENCES ‘Web_client_accelerator‘("id"),
FOREIGN KEY ("browser_id") REFERENCES ‘browser‘("id")

)
- Question Topic: Web Client Accelerator Information (Questions specifically related to the web client
accelerator. Avoid questions related to browser or compatibility)
- Query Structure: SELECT COUNT(DISTINCT columnOne) FROM tableOne WHERE columnTwo = 1

Response Format: {question: <generated question>, query: <generated query>}

Figure 10: QQP Generation Prompt

18



Example Generated QQPs:
{

"question": "What are the names of the web client accelerators that run on the Windows operating system,
sorted by their names?",

"query": "SELECT name FROM Web_client_accelerator WHERE Operating_system LIKE ’%Windows%’
ORDER BY name",
}

Figure 11: QQP Generation Prompt Response

19


	Introduction
	Related work
	The SynQL Method
	Contextual Data
	Algorithm

	SynQL datasets
	SynQL-Spider
	SynQL-KaggleDBQA

	Experimental Results
	Training procedure
	Results on SynQL-Spider
	Results on SynQL-KaggleDBQA

	Summary
	Appendix
	Generation of SQL and NLQ embeddings
	t-SNE Visualizations
	Exemplary Database Schema
	Example of Prompt and Response in Case of Invalid Combination
	Topic Generation Prompt and Examples
	Synthetic Data Efficiency Analysis
	QQP Generation Prompt and Examples


