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Abstract

Self-supervised learning aims to learn maximally informative representations, but explicit
information maximization is hindered by the curse of dimensionality. Existing methods
like VCReg address this by regularizing first- and second-order feature statistics, which
cannot fully achieve maximum entropy. We propose Radial-VCReg, which augments VCReg
with a radial Gaussianization loss that aligns feature norms with the Chi distribution—a
defining property of high-dimensional Gaussians. We prove that Radial-VCReg transforms a
broader class of distributions toward normality compared to VCReg and show on synthetic
and real-world datasets that it consistently improves performance by reducing higher-order
dependencies and promoting more diverse and informative representations.
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1. Introduction

Self-supervised learning leverages unlabeled data to create useful representations for down-
stream tasks (Radford et al., 2018; Chen et al., 2020). Many methods are based on the
InfoMax principle, which aims to maximize mutual information between different views
of the same input (Hjelm et al., 2019; Ozsoy et al., 2022). This requires both enforcing
agreement across views and preserving feature diversity to prevent collapse—the latter being
more challenging.

Non-contrastive self-supervised learning methods like the VCReg component of VICReg
(Bardes et al., 2022) address this by regularizing the covariance of features (Zbontar et al.,
2021; Ermolov et al., 2021; Bardes et al., 2022). While effective in practice (Sobal et al.,
2025), covariance regularization only removes linear dependencies and cannot fully maximize
information.

In this paper, we aim to optimize the InfoMax objective by Gaussianizing feature
representations. The Gaussian distribution is the maximum entropy distribution for a given
mean and variance (Cover and Thomas, 1991), encouraging features to be maximally spread
out and resistant to collapse. Unfortunately, directly matching the feature distribution to
a high-dimensional Gaussian suffers from the curse of dimensionality. Previous methods
such as E2MC circumvent this by maximizing entropy per feature dimension along with
whitening (Chakraborty et al., 2025). However, there exist distributions that minimize the
E2MC loss but do not maximize entropy. See Figure 1(a) for example.

In this work, we propose to Gaussianize our features radially. A d-dimensional isotropic
Gaussian concentrates on a thin shell of radius

√
d with an O(1) width, whose marginal

follows a Chi distribution (Vershynin, 2018). Enforcing this radial property with whitening
provides sufficient conditions for Gaussianity if the underlying distribution is elliptically
symmetric (Lyu and Simoncelli, 2009, 2008).

Motivated by this, we propose Radial-VCReg, which matches feature radii to a chi-
distribution along with covariance regularization. Our contributions are:
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Figure 1: The Radial-VCReg objective more effectively pushes samples from a non-
elliptically symmetric X-distribution towards the standard normal distribution
in 2D compared to the VCReg objective. (a) The X-distribution has an identity
covariance matrix, but it is not elliptically symmetric. (b) Samples from the X-distribution
are optimized with the Radial-VCReg loss, yielding a spherical structure. (c) As the ratio α
of samples from the X-distribution increases, samples optimized with the Radial-VCReg
loss achieve a lower Wasserstein distance to the standard normal compared to that of
VCReg. The VCReg objective is also unable to move the samples away from their starting
distributions.

1. A loss estimating the KL divergence between empirical and chi radius distributions.

2. Radial-VCReg, extending VCReg with radial regularization and theoretical guarantees
of transforming a broader class of feature distributions toward normality.

3. Empirical results showing Radial-VCReg (i) brings features closer to Gaussian in
synthetic data and (ii) consistently outperforms VCReg on image benchmarks.

2. Radial Gaussianization

In the following section, we show how to incorporate radial Gaussianization into an op-
timization objective for self-supervised learning. Additional background can be found in
Appendix A.

2.1. Self-Supervised Learning

In self-supervised learning, we are given unlabeled samples X = [x1, · · · ,xN ] drawn from a
data distribution pX , where xi ∈ Rdin and X ∈ RN×din . During training, we sample transfor-
mations t, t′ ∼ T and apply them to the original samples to create two sets of transformed
samples, Xaug = [t(x1), · · · , t(xN )] and X′

aug = [t′(x1), · · · , t′(xN )], which form positive
pairs. The goal is to train a neural network hθ to learn representations such that the re-
sulting positive pairs, Z = [hθ(t(x1)), · · · , hθ(t(xN ))] and Z′ = [hθ(t

′(x1)), · · · , hθ(t′(xN ))],
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are close according to a specified distance metric. Simultaneously, the output features
zi, z

′
i ∈ Rdout must remain diverse and informative, avoiding representational collapse.

2.2. VICReg

VICReg (Bardes et al., 2022) is a non-contrastive self-supervised learning method that
contains the variance, invariance, and covariance loss terms. For a feature matrix Z ∈
RN×dout , we denote the i-th row as zi ∈ Rdout and the j-th column as zj ∈ RN . The
variance loss is given by v(Z) = 1

dout

∑dout
j=1 max(0, γ −

√
Var(zj) + ϵ), where γ is typically

fixed at 1. The invariance loss, computed as the mean squared error between Z and Z′,
is given by s(Z,Z′) = 1

N

∑N
i=1 ∥zi − z′i∥22. This term encourages positive pairs to have

similar representations. Let the empirical covariance matrix for the feature matrix Z
be C(Z) = 1

N−1

∑N
i=1(zi − z̄)(zi − z̄)⊤, where z̄ = 1

N

∑N
i=1 zi is the empirical mean. The

covariance loss is defined as c(Z) = 1
dout

∑
i ̸=j [C(Z)]2i,j . Combining the three terms, we arrive

at the VICReg formulation:

LVICReg(Z,Z
′) = λ1s(Z,Z

′) + λ2[v(Z) + v(Z′)] + λ3[c(Z) + c(Z′)] (1)

where the variance and covariance losses are applied to Z and Z′ separately. When λ1 = 0,
we call it VCReg.

2.3. Radial-VICReg

Let ∥z∥2 be the norm (or radius) of the feature vector z with density pθ(∥z∥2). The radial
Gaussianization loss is a consistent estimator of the Kullback–Leibler divergence between
pθ(∥z∥2) and the Chi distribution pχ(∥z∥2) up to constant offsets:

r(Z;β1, β2) =
β1

N

N∑
i=1

(
1
2∥zi∥

2
2 − (dout − 1) log ∥zi∥2

)
− β2

N−m

N−m∑
i=1

log
(
N+1
m ( ˜∥zi+m∥2 − ∥̃zi∥2)

)
(2)

where β1, β2 are tunable hyperparameters, m is the spacing hyperparameter, and ∥̃z1∥2 ≤
∥̃z2∥2 ≤ · · · ≤ ∥̃zN∥2 are the ordered samples of the set {∥zi∥2}Ni=1. We defer detailed
derivations to Appendix B. In practice, we apply this term to both Z and Z′, resulting in
the Radial-VICReg loss:

LRadial-VICReg(Z,Z
′) = LVICReg(Z,Z

′) + r(Z;β1, β2) + r(Z′;β1, β2) (3)

In Lemma 1, we show that the set of distributions Gaussianizable by Radial-VCReg (with
λ1 = 0) strictly contains that of VCReg (See Appendix C for proofs). Thus, we interpret
the radial Gaussianization term as enforcing a necessary—but not sufficient—condition for
Gaussianity.

Lemma 1 Let X be a random vector in Rd with distribution PX. Define the VCReg map
and Radial-VCReg map as

TVCReg(x) = Σ−1/2(x− µ) (4)

TRadial-VCReg(x) =
Σ−1/2(x− µ)

∥Σ−1/2(x− µ)∥2
F−1
χ

(
F∥Σ−1/2(x−µ)∥2(∥Σ

−1/2(x− µ)∥2)
)

(5)
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where µ = E[X], Σ = Cov[X], F∥Σ−1/2(x−µ)∥2 is the CDF of the radial component of

the whitened random vector, and F−1
χ is the inverse CDF of the χ(d) distribution. We

denote the pushforward measure by TVCReg#PX and TRadial-VCReg#PX. Let FVCReg = {PX :
TVCReg#PX = N (0, I)} and FRadial-VCReg = {PX : TRadial-VCReg#PX = N (0, I)} be sets
of distributions that can be Gaussianized by the VCReg map and the Radial-VCReg map
respectively. Then FVCReg ⊊ FRadial-VCReg.

3. Synthetic Experiments

To test whether Radial-VCReg encourages Gaussianity, we construct the X-distribution in
2D Euclidean space as shown in Figure 1(a). Although it has identity covariance, minimizing
variance and covariance losses, the distribution is not elliptically symmetric and exhibits
higher-order dependencies.

We apply gradient descent over samples from the X-distribution by differentiating the
Radial-VCReg loss with respect to the sampled points. In Figure 1(b), we show the final
samples after 200000 training steps. The resulting points spread spherically and resemble
standard normal samples (Figure 1(b)). We further measure the Wasserstein distance
between optimized samples from a mixture αX+(1−α)N (0, I) and N (0, I). As α increases,
Radial-VCReg consistently produces samples closer to Gaussian than standard VCReg
(Figure 1(c)). Thus, even though the X-distribution is not elliptically symmetric, the added
radial Gaussianization term can push the samples closer to a Gaussian distribution. We also
provide additional details and experiments in Appendix D.

4. Empirical Results

To evaluate Radial-VICReg, we pretrain networks with 512-dimensional outputs and an
MLP projector on CIFAR-100 and ImageNet-10, reporting results in Table 1, 2. Radial-
VICReg consistently outperforms VICReg by about 1.5% on both datasets for smaller
projector dimensions like 512, with gains holding across ResNet18 and ViT backbones.
The improvements remain stable under MLP probing (Table 3 in Appendix G), suggesting
that radial Gaussianization enhances representations rather than exploiting linear probes.
Figures 4(a), 4(b), and 4(c) show that the added radial term shifts radius distributions
toward the Chi distribution, while Figure 4(d) illustrates that closer alignment with Chi
correlates with higher accuracy. We also observe improvements on CelebA for multi-label
attribute prediction (Appendix H); further experimental details are in Appendix F.

5. Conclusion

We introduced Radial-VCReg, a self-supervised method that augments VCReg with a radial
Gaussianization loss to align feature norms with a Chi distribution. This extension pushes a
broader class of distributions toward Gaussianity than VCReg alone, as shown theoretically
and on synthetic data. Experiments on real-world image datasets confirm that the radial
term consistently improves performance. While not sufficient for perfect Gaussianity, it
highlights the value of higher-order constraints in learning more diverse and informative
representations.

4



Extended Abstract Track
Radial-VCReg: More Informative Representation Learning through Radial Gaussianization

References

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance
regularization for self-supervised learning, 2022. URL https://arxiv.org/abs/2105.

04906.

Deep Chakraborty, Yann LeCun, Tim G. J. Rudner, and Erik Learned-Miller. Improving
pre-trained self-supervised embeddings through effective entropy maximization, 2025. URL
https://arxiv.org/abs/2411.15931.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations, 2020. URL https://arxiv.org/abs/

2002.05709.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
Sons, New York, 1991. ISBN 978-0471062592.

Martin T. Wells Dominique Fourdrinier, William E. Strawderman. Shrinkage estimation.
Springer Series in Statistics, 2018.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening
for self-supervised representation learning. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 3015–3024. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/ermolov21a.html.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization, 2019. URL https://arxiv.org/abs/1808.06670.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

S Lyu and E P Simoncelli. Nonlinear extraction of ’independent components’ of natural
images using radial Gaussianization. Neural Computation, 21(6):1485–1519, Jun 2009.
doi: 10.1162/neco.2009.04-08-773.

Siwei Lyu and Eero Simoncelli. Reducing statistical dependencies in natural signals using
radial gaussianization. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems, volume 21. Curran Associates,
Inc., 2008. URL https://proceedings.neurips.cc/paper_files/paper/2008/file/

da4fb5c6e93e74d3df8527599fa62642-Paper.pdf.
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Appendix A. Additional Background

In this section, we review key concepts related to information maximization in self-supervised
learning.

Mutual Information Self-supervised learning can be viewed as maximizing the mutual
information I(Z;Z ′) between different views Z and Z ′ of the same input. By definition,
I(Z;Z ′) = H(Z) + H(Z ′) − H(Z,Z ′) where H is the entropy function. During training,
we would like to minimize the joint entropy H(Z,Z ′) and maximize the marginal entropies
H(Z) and H(Z ′). In general, it’s difficult to directly maximize the marginal entropy due to
the curse of dimensionality.

Maximum Entropy Distribution Even if it’s hard to maximize entropy in general,
some distributions are maximum entropy by default. Given a fixed mean and variance, the
Gaussian distribution is the maximum entropy distribution when compared to all other
distributions with support over [−∞,∞] (Cover and Thomas, 1991). This fact also extends
to high-dimensional cases. In the context of representation learning, maximizing the entropy
of the output feature distribution is crucial to preventing representational collapse, where
the model learns to map all inputs to a single, trivial point.

Elliptically Symmetric Density (ESD) Given a random vector x in d dimension with
a zero mean, we say that its density pX is elliptically symmetric if it has the following form:

pX(x) = c · f
(
− 1

2
x⊤Σ−1x

)
(6)

where c is the normalization constant, Σ is a positive definite matrix, and f(·) ≥ 0 and∫∞
0 f(−r2/2)rd−1dr < ∞ (Lyu and Simoncelli, 2008). When Σ is the covariance matrix and
is a scalar multiple of the identity matrix (i.e., Σ = σ2I), the density function is said to be
spherically symmetric. A key property of ESDs is that they can always be transformed into
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a spherically symmetric density by applying whitening (i.e., making the covariance matrix
the identity).

In practice, it’s difficult to Gaussianize high-dimensional output features without making
assumptions. In the following lemma, we provide a sufficient condition for a Gaussian density
that relates to the family of elliptically symmetric densities.

Lemma 2 If x is a random vector in d dimensions with a spherically symmetric density
and the random variable ∥x∥2 follows the Chi distribution χ(d) with d degrees of freedom,
then the density function p(x) = N (0, Id).

Proof From Theorem 4.2 in Dominique Fourdrinier (2018), we know that the density
function for spherically symmetric density only depends on the norm, i.e. p(x) = g(∥x∥2).
Let r = ∥x∥2 be the radius. Our goal is to show that p(x) = g(r) = N (0, Id).

It’s well known that the infinitesimal volume element dx in spherical coordinate is given
by dx = rd−1drdΩd where Ωd is the surface measure of a unit sphere Sd. It’s shown in
Dominique Fourdrinier (2018) that the surface measure of a unit sphere is

Ωd(Sd) =
∫
Sd

dΩd =
2πd/2

Γ(d/2)
(7)

Thus the probability distribution can be computed with this new measure

P (x ∈ B) =

∫
B
p(x)dx (8)

=

∫ ∞

0

∫
Sd

p(x)rd−1drdΩd (9)

=

∫ ∞

0

∫
Sd

g(r)rd−1drdΩd (10)

=

∫ ∞

0
g(r)rd−1

(∫
Sd

dΩd

)
dr (11)

=

∫ ∞

0

2πd/2

Γ(d/2)
g(r)rd−1dr (12)

(13)

Since we marginalize out the angular components, we can define the density for the radial
component r to be

pχ(r) =
2πd/2

Γ(d/2)
g(r)rd−1 (14)

However, we are also constraining r to follow a Chi distribution r ∼ χ(d) with d degree of
freedom. This gives us another expression for the radial marginal

pχ(r) =
rd−1

2
d
2
−1Γ(d2)

exp(−r2

2
) (15)
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We can combine these two expressions to compute g(r) as follows

g(r) =
pχ(r)Γ(d/2)

2πd/2rd−1
(16)

=

rd−1

2
d
2−1Γ( d

2
)
exp(− r2

2 )Γ(d/2)

2πd/2rd−1
(17)

=
1

(2π)
d
2

exp(−r2

2
) (18)

=
1

(2π)
d
2

exp(−∥x∥2

2
) (19)

= N (x;0, I) (20)

Thus we have shown that any random vector with spherically symmetric density and Chi-
distributed radius with d degree of freedom has to be the standard multivariate normal
distribution N (0, Id).

Lemma 2 shows that we can transform any distribution from the ESD family into
a standard Gaussian by ensuring two conditions are met: isotropic covariance (achieved
through whitening) and a Chi-distributed radius. While real-world feature distributions
are not guaranteed to be elliptically symmetric, there are cases where this transformation
remains useful. We argue that imposing these two conditions serves as a necessary step
towards optimizing for Gaussian features, which inherently maximize information content.

Appendix B. Derivation of the Radial Gaussianization Loss

Our goal is to minimize the Kullback–Leibler divergence between pθ(∥z∥2) and the Chi-
distribution pχ(∥z∥2):

min
θ

DKL

(
pθ(∥z∥2)

∥∥∥∥ pχ(∥z∥2)
)

= E∥z∥2∼pθ(∥z∥2)[− log pχ(∥z∥2)]︸ ︷︷ ︸
Cross-Entropy

−H(pθ(∥z∥2))︸ ︷︷ ︸
Entropy

(21)

where the cross entropy term is approximated using the Monte Carlo estimate:

E∥z∥2∼pθ(∥z∥2)[− log pχ(∥z∥2)] = E
[(

d

2
− 1

)
log 2 + log Γ(

d

2
)︸ ︷︷ ︸

constants

+
∥z∥22
2

− (d− 1) log ∥z∥2
]

(22)

≈ β1
N

N∑
i=1

(
1

2
∥zi∥22 − (dout − 1) log ∥zi∥2

)
+ C (23)

with a tunable hyperparameter β1. The entropy term can also be computed using the
m-spacing estimator (Vasicek, 1976):

H(pθ(∥z∥2)) ≈
β2

N −m

N−m∑
i=1

log

(
N + 1

m

(
˜∥zi+m∥2 − ∥̃zi∥2

))
(24)
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We refer to the composition of the cross-entropy and entropy loss as the radial Gaussianization
loss r(Z;β1, β2). By the Law of Large Numbers, the cross-entropy estimator is consistent.
Vasicek (1976) also shows that the m-spacing estimator is consistent. If β1 and β2 are both
set to 1, the radial Gaussianization loss is a consistent estimator of the true KL divergence, as
it is a linear combination of two consistent estimators. In practice, we notice that sometimes
it’s useful to include a multiplicative term 1/dout for the cross entropy term, but we view
this as absorbed in the β1 hyperparameter.

The goal of radial Gaussianization can also be achieved with other optimization objectives.
We defer the details on alternative loss constructions to Appendix E.

Appendix C. Proofs of Lemma 1

Proof We would like to prove the following equivalent conditions first.

• 1) TVCReg#PX = N (0, I) ⇐⇒ PX is Gaussian, i.e., PX = N (µ,Σ).

• 2) TRadial-VCReg#PX = N (0, I) ⇐⇒ PX is elliptically symmetric.

We list the proofs below for claims 1) and 2).
Claim 1). VCReg.
(⇒). Since TVCReg(X) ∼ N (0, I), we can write the random vector X via the affine map

X = Σ1/2TVCReg(X) + µ ∼ N (µ,Σ). Thus PX = N (µ,Σ).
(⇐). We know that X ∼ N (µ,Σ). Then the random vector TVCReg(X) = Σ−1/2(X−

µ) ∼ N (0, I). Thus TVCReg#PX = N (0, I).

Claim 2). Radial-VCReg.
(⇒) We’re given that TRadial-VCReg#PX = N (0, I). Then Z = TRadial-VCReg(X) is

spherically symmetric. Let Y := Σ−1/2(X− µ) = r ·Θ, where r = ∥Y∥2 is the radius and
Θ = Y/∥Y∥2 is the angle. Note that TRadial-VCReg preserves angles and only modifies radius.
Therefore, the angular component Θ must be uniform and independent of r, which implies
Y is spherically symmetric. Hence, X = Σ1/2Y + µ is elliptically symmetric.

(⇐) Suppose PX is elliptically symmetric. Then Y = Σ−1/2(X − µ) is spherically
symmetric. By Lemma 2, we know that TRadial-VCReg#PX = N (0, I).

Now given the equivalent conditions, we know that FVCReg consists only of Gaussian
distributions, whereas FRadial-VCReg contains all elliptically symmetric distributions. Since
there exist elliptically symmetric distributions that are not Gaussian (e.g., uniform on a
sphere or isotropic Student-t), we have FVCReg ⊊ FRadial-VCReg.

Appendix D. Synthetic Distributions

D.1. Sunshine Distribution

There also exist non-ESD (elliptically symmetric) distributions that already minimize the
Radial-VCReg loss but are not Gaussian. In Figure 2(a), we plot the sunshine distribution
with an identity covariance matrix and chi-distributed radius. The final optimized samples
using the Radial-VCReg objective are shown in Figure 2(b) with varying weights for the
radial entropy loss. Across hyperparameters, Radial-VCReg is unable to push samples from
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Figure 2: There exist distributions that minimize the Radial-VICReg loss but are
not Gaussian. (a) The Sunshine distribution is constructed by generating samples from
a 2D isotropic Gaussian, converting to polar coordinates, partitioning into pie slices, and
rotating every even slice to form segmented clusters. (b) As the entropy weight β2 increases
in the radial Gaussianization loss, samples are pushed toward the circle of radius

√
d− 1

(equal to 1 in 2-D). (c) For both the X distribution and the Sunshine distribution, the E2MC
loss and radial Gaussianization loss correlate with Wasserstein distance to the Gaussian.

the sunshine distribution towards Gaussian. This illustrates that certain distributions cannot
be fully Gaussianized by the Radial-VCReg objective. Nevertheless, the inclusion of the
radial Gaussianization term expands the class of feature distributions that move toward
Gaussianity compared to standard VCReg.

In Figure 2(c), we explore to what extent the radial Gaussianization loss is related to
E2MC (Chakraborty et al., 2025). We take samples from both the X distribution and the
Sunshine distribution with Radial-VCReg optimization and log the corresponding E2MC
loss. We find that minimizing the radial Gaussianization loss implicitly leads to a lower
E2MC loss. The reduction in both losses also bring samples closer to a standard normal as
measured by Wasserstein distances. Therefore, both Radial-VCReg and E2MC are effective
proposals for reducing higher-order dependencies and achieving more Gaussian-like samples.

D.2. Experimental Details

For both the X-distribution and the sunshine distribution, we utilized a dataset of 10, 000
samples for optimization. Training was performed using stochastic gradient descent (SGD)
for 200, 000 steps with a linear warm-up and cosine-decay learning rate scheduler.

We performed a hyperparameter sweep over the following values:

• Mixture Weight (α): {0.01, 0.25, 0.5, 0.75, 0.99}

• Learning Rate: {5× 10−1, 5× 10−2, 5× 10−3, 5× 10−4, 5× 10−5}

• Radial Gaussianization Parameters (β1, β2): {0, 0.1, 1, 10, 100}

10
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• VCReg Parameters (λ2, λ3): {1, 10, 25}

Appendix E. Wasserstein Distance Formulation of the Radial
Gaussianization Loss

E.1. Approximating the Radial Chi Distribution: KL vs. Wasserstein

Our radial objective is one–dimensional: given features z ∈ Rdout with radii r = ∥z∥2, we
seek to match the empirical radius distribution prθ to the Chi distribution with dout degrees
of freedom, denoted χ(dout). Two natural divergences for this one-dimensional matching are
(i) a KL-based loss, introduced in the main text, and (ii) a Wasserstein-1 loss, which we
detail here.

Wasserstein-1 (quantile) radial loss. For one-dimensional distributions, the Wasserstein
distance is characterized by Vallender (1974):

W1(p
r
θ, pχ) =

∫
R

∣∣F r
θ (t)− Fχ(t)

∣∣ dt = ∫ 1

0

∣∣(F r
θ )

−1(u)− (Fχ)
−1(u)

∣∣ du, (25)

where F denotes the cumulative distribution function. We use a simple, low-variance
empirical estimator: given K radii samples {ri}Ki=1 from the mini-batch and K i.i.d. samples
{ui}Ki=1 from χ(dout), we sort both sets and compute

Ŵ1 =
1

K

K∑
i=1

∣∣r(i) − u(i)
∣∣, with r(1) ≤ · · · ≤ r(K), u(1) ≤ · · · ≤ u(K). (26)

For two augmented views Z,Z′, we sum their losses:

LW1(Z,Z
′) = Ŵ1({∥zi∥2}, χ(dout)) + Ŵ1({∥z′i∥2}, χ(dout)). (27)

We weight the radial Wasserstein term by a scalar γ ≥ 0:

Ltotal(Z,Z
′) = λ1 s(Z,Z

′) + λ2 [v(Z)+v(Z′)] + λ3 [c(Z)+c(Z′)]︸ ︷︷ ︸
LVICReg(Z,Z′)

+ γ LW1(Z,Z
′). (28)

The estimator in eq. (26) is differentiable almost everywhere (via the sort’s subgradient
routing). Unlike the KL-based loss, however, the Wasserstein-1 estimator depends on the
batch size: larger K reduces quantile noise and yields sharper shape matching.

Empirical comparison. In practice, we find that both KL and Wasserstein objectives
optimize essentially the same radial constraint. To illustrate this, we compare three cases: (a)
optimization directly minimizing the Wasserstein-1 distance, (b) Radial-VICReg optimization
using the KL-based radial Gaussianization loss, and (c) no optimization. The results are
shown in Figure 3: Wasserstein-1 minimization achieves a distance of 0.310 to the χ
distribution, KL optimization achieves 0.792, while the unoptimized baseline achieves a
distance of 8.175.
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(a) Wasserstein-1 optimiza-
tion; W1 = 0.310, γ = 1.0,
batch-size=512.
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(b) KL optimization; W1 =
0.792, β1 = 100, β2 = 0.
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(c) No optimization; W1 =
8.175.

Figure 3: Radial Gaussianization aligns radii distributions with the χ distribution.
Comparison of (a) direct Wasserstein-1 optimization, (b) Radial-VICReg optimization,
and (c) no optimization. Both Wasserstein-1 and Radial-VICReg push the empirical radii
distribution closer to the target χ distribution, with Radial-VICReg achieving substantial
improvement over the unoptimized baseline.

Table 1: CIFAR-100 Results (Linear Probes). The table reports the mean ± standard
deviation for Top-1 and Top-5 accuracies, with the two metrics separated by a forward
slash (/). All results were averaged over multiple random seeds. Hyperparameter details are
provided in Appendix F.1.

Projector Dimension (d)

Architecture Method 512 2048

ResNet18
Radial-
VICReg

65.99± 0.08 / 89.28± 0.21 68.25± 0.41 / 90.61± 0.23

VICReg 64.23± 0.10 / 88.32± 0.10 67.99± 0.27 / 90.78± 0.05

ViT
Radial-
VICReg

61.33± 0.29 / 87.36± 0.28 62.91± 0.20 / 88.11± 0.37

VICReg 60.30± 0.21 / 86.68± 0.05 62.28± 0.33 / 87.97± 0.31

Appendix F. Experimental Details

For hyperparameter sweeps, we varied the base learning rate {0.3, 0.03}, the cross-entropy
(CE/rlw) weight {0, 1, 10, 100}, and the entropy (rlew) weight {0, 0.1, 0.3, 0.5, 0.75, 1.0}, each
across three random seeds.

CIFAR-100 (ResNet-18). For all experiments on CIFAR-100 with ResNet-18, we trained
the radialvicreg method using a three-layer MLP projector with dimensionality varying
across settings. We applied standard image augmentations: random resized crops (scale
range 0.2–1.0), color jitter (brightness 0.4, contrast 0.4, saturation 0.2, hue 0.1, applied
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Table 2: ImageNet-10 Results (Linear Probes). The table reports the mean ± standard
deviation for Top-1 and Top-5 accuracies, which are separated by a forward slash (/). All
results were averaged over multiple random seeds. Hyperparameter details can be found in
Appendix F.2.

Projector Dimension 512 2048 8192

Radial-VICReg 94.73± 0.58/99.27± 0.12 93.93± 0.31/99.07± 0.12 93.33± 0.70/99.47± 0.23

VICReg 93.20± 0.69/99.07± 0.31 93.53± 0.23/99.47± 0.31 93.33± 1.55/99.20± 0.00
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χ = 17.15.

0 10 20 30 40
Radius

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Empirical
Target

(b) Learned represen-
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χ = 8.17.
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(c) Learned represen-
tation with Radial-
VICReg; W1 dist
to χ = 0.79.
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Figure 4: Radial-VICReg enforces a chi-distributed radius after optimization, and
there exists a correlation between classification accuracy and the quality of the
chi-distribution matching. (a) The feature norm distribution at random initialization
with Wasserstein distance W1 to the Chi distribution χ equal to 17.15. (b) Feature norm
distribution under the VICReg loss is far away from the Chi distribution. (c) Representations
learned with Radial-VICReg is closely matching the Chi distribution density function. (d)
Across hyperparameter sweeps, validation accuracy increases as the radii distribution better
matches the χ-distribution as measured by lower Wasserstein distance.

with probability 0.8), random grayscale (probability 0.2), horizontal flips (probability 0.5),
and solarization (probability 0.1). Gaussian blur and histogram equalization were disabled
for CIFAR-100. Images were resized to 32× 32, with two crops per image. Optimization
used LARS with batch size 256, base learning rate (either 0.3 or 0.03 depending on sweep
setting), classifier-head learning rate 0.1, weight decay 10−4, learning-rate clipping, η = 0.02,
and bias/normalization parameters excluded from weight decay. We used a warmup cosine
schedule for learning-rate annealing. Training ran for 400 epochs with mixed precision
(fp16) and distributed data parallelism (ddp) across GPUs. The invariance, variance, and
covariance loss weights were fixed at 25.0, 25.0, and 1.0, respectively.

CIFAR-100 (ViT-Tiny/16). We also trained a vision transformer variant using the
ViT-Tiny/16 architecture from timm, consisting of 12 transformer encoder layers with an
embedding dimension of 192 and 3 attention heads per layer. For CIFAR-100, we adapted
the patch size from 16 to 4 to accommodate 32× 32 images, yielding 8× 8 patches. The
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projector was configured with hidden and output dimensions of 2048. Optimization employed
AdamW with a base learning rate of 5× 10−4 (and 5× 10−3 for the classifier head), batch
size 256, weight decay 10−4, and a warmup cosine learning rate schedule. Training details
otherwise matched the ResNet-18 CIFAR-100 setup.

ImageNet-10 (ResNet-18). For ImageNet-10, we used a ResNet-18 backbone with a
three-layer MLP projector. Images were cropped to 224 × 224 and augmented with the
same transformations as above, except that Gaussian blur (probability 0.5) was enabled.
Optimization followed the CIFAR-100 ResNet-18 settings, except with batch size 128.
Training was conducted for 400 epochs with synchronized batch normalization, mixed
precision, and two GPUs.

All experiments (on synthetic and image datasets) were run on NVIDIA V100, RTX8000,
or A100 GPUs.

F.1. Table 1 Details

ResNet-18. Best Radial-VICReg hyperparameters on CIFAR-100:

• d = 2048: β1 = 1.0, β2 = 0.10, learning rate = 0.3.

• d = 512: β1 = 100, β2 = 0.0, learning rate = 0.3.

For VICReg, the best learning rates were 0.03 at d = 512 and 0.3 at d = 2048. These values
were obtained from the sweep described above.

ViT-Tiny/16. Best Radial-VICReg hyperparameters:

• d = 512: β1 = 100.0, β2 = 0.0.

• d = 2048: β1 = 1.0, β2 = 0.10.

For VICReg, both β1 and β2 are set to 0.

F.2. Table 2 Details

ResNet-18. Best Radial-VICReg hyperparameters on ImageNet-10:

• d = 512: β1 = 100, β2 = 0.

• d = 2048: β1 = 1, β2 = 0.5.

• d = 8192: β1 = 0, β2 = 0.1.

Appendix G. Additional Results for CIFAR-100

In Table 3, we provide CIFAR-100 MLP probe results. We also show the sensitivity to
hyperparameters for the Radial-VICReg objective in Figure ??.
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Table 3: CIFAR-100 MLP Probe Results. The table reports the mean and standard
deviation for Top-1 and Top-5 accuracies, which are separated by a forward slash (/). All
results were averaged over multiple random seeds, and the experimental settings are identical
to those in Table 1.

Projector Dimension 512 2048

Radial-VICReg 64.11± 0.14 / 86.88± 0.14 66.33± 0.33 / 88.05± 0.10
VICReg 62.30± 0.34 / 85.58± 0.14 65.81± 0.16 / 88.09± 0.42

Table 4: CelebA Multi-Label Classification. We compare standard VICReg with
Radial-VICReg by ablating the cross entropy and entropy terms in the KL divergence for the
Chi-distribution. Radial CE stands for only using the cross entropy term, and Radial ENT
represents using the entropy term alone. Radial KL uses both with non-zero hyperparameter
values for β1 and β2.

Encoder Linear Probe Projector Linear Probe

Projector Dimension 512 2048 512 2048

VICReg 62.29± 0.49 65.93± 0.35 62.88± 0.58 67.50± 0.39
VICReg + Radial CE 63.37± 0.89 66.07± 0.27 64.33± 0.70 67.48± 0.50
VICReg + Radial ENT 50.51± 0.41 54.95± 1.16 50.04± 0.07 55.97± 1.56
VICReg + Radial KL 62.40± 0.45 66.00± 0.31 62.76± 0.47 66.54± 0.52

Appendix H. Additional Results for CelebA

In Table 4, we show the averaged multi-label attributes prediction performances over
the CelebFaces Attributes Dataset (CelebA) (Liu et al., 2015) for Radial-VICReg and
VICReg. The hyperparameter settings are inherited from the CIFAR-100 experiments. In
addition, we sweep the base learning rate in {(0.3, 0.03, 0.003)} with linear probe learning
rate {0.1, 0.01, 0.001}. For CelebA, we apply standard data augmentations commonly used
in self-supervised learning. Each image is randomly resized and cropped to 128× 128 pixels
with scale sampled uniformly from [0.5, 1.0], producing two views per image. We further
apply color jittering (brightness/contrast ±0.4, saturation ±0.2, hue ±0.1) with probability
0.8, random grayscale conversion with probability 0.2, Gaussian blur with probability 0.5,
and horizontal flipping with probability 0.5. Solarization and histogram equalization are
disabled, as such transformations might distort facial structures and yield unnatural artifacts
on human faces.

On average, we observe the most improvements from optimizing the cross entropy term
alone in the radial Gaussianization loss. We notice that optimizing the entropy term alone
actually leads to a performance degradation. This is expected since maximizing the entropy
alone leads to unconstrained variance in the feature norm.
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Figure 5: The optimal performance of Radial-VICReg can be obtained with β1 ̸= β2,
even if β1 = β2 gives a theoretically consistent estimator of the underlying KL
divergence. We observe that sometimes it’s better to have β1 > β2 for optimal performance
in downstream tasks.
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