
Under review as a conference paper at ICLR 2024

FEDLPA: PERSONALIZED ONE-SHOT FEDERATED
LEARNING WITH LAYER-WISE POSTERIOR AGGREGA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently aggregating trained neural networks from local clients into a global
model on a server is a widely researched topic in federated learning. Recently,
motivated by diminishing privacy concerns, mitigating potential attacks, and re-
ducing the overhead of communication, one-shot federated learning (i.e., limiting
client-server communication into a single round) has gained popularity among
researchers. However, the one-shot aggregation performances are sensitively af-
fected by the non-identical training data distribution, which exhibits high statis-
tical heterogeneity in some real-world scenarios. To address this issue, we pro-
pose a novel one-shot aggregation method with Layer-wise Posterior Aggrega-
tion, named FedLPA. FedLPA aggregates local models to obtain a more accurate
global model without requiring extra auxiliary datasets or exposing any confiden-
tial local information, e.g., label distributions. To effectively capture the statistics
maintained in the biased local datasets in the practical non-IID scenario, we ef-
ficiently infer the posteriors of each layer in each local model using layer-wise
Laplace approximation and aggregate them to train the global parameters. Exten-
sive experimental results demonstrate that FedLPA significantly improves learning
performance over state-of-the-art methods across several metrics.

1 INTRODUCTION

The significance of data privacy in Deep Learning (LeCun et al., 2015; Schmidhuber, 2015; Zhang
et al., 2018; Krizhevsky et al., 2017; Amodei et al., 2016; Pouyanfar et al., 2018b;a) has surged to the
forefront as a major global concern (Yang et al., 2019). With the primary objectives of safeguarding
data privacy and curbing the aggregation and management of data across institutions, the distribution
of data exhibits variations among clients (Yang et al., 2019). In the burgeoning domain of machine
learning, federated learning (FL), as denoted by references (McMahan et al., 2016; Kairouz et al.,
2021; Li et al., 2021), has emerged as a prominent paradigm. The fundamental tenet of federated
learning revolves around the sharing of machine learning models derived from decentralized data
repositories, as opposed to divulging the raw data itself. This approach effectively preserves the
confidentiality of individual data.

The standard federated learning framework, Fedavg (McMahan et al., 2016; 2017), involves local
model training and aggregating these local models into a global one through parameter averaging.
However, the majority of current FL algorithms like Fedavg necessitate numerous communication
rounds to effectively train a global model. This leads to substantial communication overhead, height-
ened privacy concerns, and heightened demands for fault tolerance throughout the rounds. One-shot
FL, which limits client-server communication into one round as explored in previous works (Guha
et al., 2019; Li et al., 2020a; Diao et al., 2023), has emerged as a promising yet challenging scheme to
address these issues. It proves particularly practical in such scenarios where iterative communication
is not feasible. Additionally, a reduction in communication rounds translates to fewer opportunities
for any potential eavesdropping attacks.

While one-shot FL shows promise, existing methods often grapple with several challenges such
as non-independent and non-identically distributed (non-IID) data (Zhou et al., 2020; Zhang et al.,
2021), or inadequate handling of high statistical heterogeneity information in the previous works

1

Under review as a conference paper at ICLR 2024

(Liu et al., 2021; Al-Shedivat et al., 2020). Moreover, some methods rely on an auxiliary public
dataset to achieve satisfactory performance in one-shot FL (Guha et al., 2019; Li et al., 2020a), or
even on pre-trained large models (Yang et al., 2023), which may not be practical (Zhu et al., 2021)
in some sensitive scenarios. Additionally, certain approaches (Shin et al., 2020; Zhang et al., 2021;
Heinbaugh et al., 2022; Diao et al., 2023) might expose data/label privacy to the local and global
models, e.g., the client label distribution, potentially violating General Data Protection Regulation
(GDPR) rules. Furthermore, some of these methods (Li et al., 2020a; Zhou et al., 2020; Zhang et al.,
2022a) may require substantial computing resources for dataset distillation, model distillation, or
even training a generator capable of generating synthetic data for second-stage training on the server
side.

On the other hand, the one-shot FL performance always falls short when dealing with non-IID data.
Non-IID data biases global updates, reducing the accuracy of the global model and slowing down
convergence. In extreme non-IID cases, clients may be required to address distinct classes. To
tackle this heterogeneity among clients, personalized federated learning (PFL) (Smith et al., 2017)
in multi-round settings becomes essential, allowing each client to use a personalized model instead
of a shared global model. With the personalized approach, the multi-round framework benefits
from joint training while allowing each client to keep its own unique model. However, one-shot
aggregation on the local model is far from being resolved under the personalized setting.

In this paper, we introduce a novel one-shot aggregation approach to address these issues, named
FedLPA, i.e., federated learning with Layer-wise Posterior Aggregation. FedLPA infers the pos-
teriors of each layer in each local model using the empirical Fisher information matrix obtained
by Layer-wise Laplace Approximation. Laplace Approximations are widely used to compute the
empirical Fisher information matrix for the neural networks, conveying the data statistics in person-
alized settings. However, computing empirical Fisher information matrices of multiple personalized
local clients and aggregating their Fisher information matrices remains an ongoing challenge (Liu
et al., 2021). FedLPA aggregates the posteriors of local models using the accurately computed
block-diagonal empirical Fisher information matrices as a metric of the parameter space. This ma-
trix captures essential parameter correlations and distinguishes itself from prior methods by being
non-diagonal and non-low-rank, thereby conveying the statistics of biased local datasets. In our
approach, we directly train global model parameters after the aggregation without any need for
server-side knowledge distillation (Lin et al., 2020).

Our experiments verify the efficiency and effectiveness of FedLPA, highlighting that FedLPA
markedly enhances the test accuracy when compared to existing one-shot FL approaches across
various datasets. Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose a personalized one-shot federated learning
approach that directly trains the global models using the block-diagonal empirical Fisher informa-
tion matrices. Our approach is data-free without the need for any auxiliary information and signif-
icantly enhances the system performance, including negligible communication cost and moderate
computing overhead.

• We are the first to train the global model parameters via constructing a multi-variates linear ob-
jective function and using its quadratic form, which allows us to formulate and solve this problem
in a convex form. Nevertheless, from the theoretical analysis, we show that FedLPA has a linear
convergence rate, ensuring good performance.

• We conduct extensive experiments to illustrate the effectiveness of FedLPA. Our approach consis-
tently outperforms the baselines, showcasing substantial enhancements across various settings and
datasets. Even in some extreme scenarios with severe label skew, e.g., where each client has only
one class, in which many federated learning algorithms struggle, we achieve satisfactory results.

2 BACKGROUND AND RELATED WORKS

2.1 FEDERATED LEARNING

Previous work Fedavg (McMahan et al., 2016) first introduced the concept of FL and presented the
algorithm, which achieved competitive performance on i.i.d data, in comparison to several central-
ized techniques. However, it was observed in previous works (Li et al., 2019; Zhao et al., 2018) that

2

Under review as a conference paper at ICLR 2024

the convergence rate and ultimate accuracy of Fedavg on non-IID data distributions were signifi-
cantly reduced, compared to the results observed with homogeneous data distributions.

Other methods have been developed to enhance performance in federated learning. The SCAFFOLD
method (Karimireddy et al., 2020) leveraged control variates to reduce objective inconsistency in lo-
cal updates. It estimated the drift of directions in local optimization and global optimization and
incorporated this drift into local training to align the local optimization direction with the global
optimization. Fednova (Wang et al., 2020b) addressed objective inconsistency while maintaining
rapid error convergence through a normalized averaging method. It scaled and normalized the local
updates of each client based on the number of local optimization steps. Fedprox (Li et al., 2020c)
enhanced the local training process by introducing a global prior in the form of an L2 regularization
term within the local objective function. In Yurochkin et al. (2019); Wang et al. (2020a), researchers
introduced PFNM, a Bayesian probabilistic framework specifically tailored for multilayer percep-
trons. PFNM employed a Beta-Bernoulli process (BBP) (Thibaux & Jordan, 2007) to aggregate
local models, quantifying the degree of alignment between global and local parameters. The frame-
work proposed in Liu et al. (2021) utilized a multivariate Gaussian product method to construct a
global posterior by aggregating local posteriors estimated using an online Laplace approximation.
FedPA (Al-Shedivat et al., 2020) also applied the Gaussian product method but employed stochastic
gradient Markov chain Monte Carlo for approximate inference of local posteriors. DAFL (Data-Free
Learning) (Chen et al., 2019) introduced an innovative framework based on generative adversarial
networks. ADI (Yin et al., 2020) utilized an image synthesis method that leveraged the image distri-
bution to train deep neural networks without real data. The pFedHN method (Shamsian et al., 2021)
incorporated HyperNetworks (Krueger et al., 2017) to address federated learning applications.

However, all of these methods encountered challenges in the personalized one-shot federated learn-
ing setting, as they required aggregating the model by multiple rounds and might be inaccurate
due to the omission of critical information, such as posterior joint probabilities between different
parameters.

2.2 ONE-SHOT FEDERATED LEARNING

One-shot Federated Learning (FL) is an emerging and promising research direction characterized
by its minimal communication cost. In the first study on one-shot FL (Guha et al., 2019), the ap-
proach involved on the aggregation of local models, forming an ensemble to construct the final
global model. Subsequently, knowledge distillation using public data was applied in the follow-
ing step. FedKT (Li et al., 2020a) brought forward the concept of consistent voting to fortify the
ensemble. Recent research endeavors (Zhang et al., 2021; 2022a) proposed data-free knowledge
distillation schemes tailored for one-shot FL. These methods adopted the basic ensemble distilla-
tion framework as FedDF (Lin et al., 2020). XorMixFL (Shin et al., 2020) introduced the use of
exclusive OR operation (XOR) for encoding and decoding samples in data sharing. It is important
to note that XorMixFL assumed the possession of labeled samples from a global class by all clients
and the server, which might not align with practical real-world scenarios. A noteworthy innovation
of DENSE (Zhang et al., 2022a) was its utilization of a generator to create synthetic datasets on the
server side, circumventing the need for a public dataset in the distillation process. FedOV (Diao
et al., 2023) delved into addressing comprehensive label skew cases. FEDCVAE (Heinbaugh et al.,
2022) confronted this challenge by transmitting all label distributions from clients to servers. These
schemes (Shin et al., 2020; Li et al., 2020a; Zhang et al., 2021; 2022a; Heinbaugh et al., 2022;
Diao et al., 2023) exposed some client-side private information, leading to additional communica-
tion overhead and potential privacy leakage, e.g., FEDCVAE (Heinbaugh et al., 2022) needed all
the client label distribution to be transmitted to the server side and FedOV Diao et al. (2023) needed
the clients to know the labels which were unknown. Instead, MA-Echo (Su et al., 2023) adopted
a unique approach by emphasizing the addition of norms among layer-wide parameters during the
aggregation of local models. FedFisher (Jhunjhunwala et al., 2023) also leveraged empirical Fisher
information matrix, but focused on theoretic analysis of the error on its approximation method.
However, their method grappled with limited experiments and lacked detailed explanations of the
approach. FedDISC (Yang et al., 2023), on the other hand, relied on the pre-trained model CLIP
from OpenAI, where their reliance might not always align with practicality or suitability for diverse
scenarios.

3

Under review as a conference paper at ICLR 2024

While some of these techniques are orthogonal to FedLPA and can be integrated with it, it is worth
noting that none of the previously mentioned algorithms possess the capability to train global model
parameters using empirical Fisher information matrices. Some of them may require additional in-
formation, entail the risk of breaching data/label privacy.

3 METHODOLOGY

3.1 OBJECTIVE FORMULATION

Generally, federated learning is defined as a optimization problem (Li et al., 2020b;c; Karimireddy
et al., 2020; Wang et al., 2020b) for maximizing a global objective function F(θ) which is a mixture
of local objective functions Fk(θ,Dk):

F(θ) =
K∑

k=1

Fk(θ,Dk), (1)

where θ = [vec(W1), . . . , vec(Wl), . . . , vec(WL)] is the parameter vector of global model and
Wl is the weight and bias of layer l for a L-layers neural network; Dk is the local dataset k-th
client. Fk(θ,Dk) is the expectation of the local objective function, which is proportional to the
logarithm of likelihood log p(Dk|θ).
Previous works (Liu et al., 2021; Al-Shedivat et al., 2020) give a common formula of the global
posterior which consists of local posteriors p(θ|Dk) under variational inference formulation:

p(θ|D) ∝
K∏

k=1

p(Dk|θ) ∝
K∏

k=1

p(θ|Dk). (2)

max
θ

F(θ) =
K∑

k=1

|Dk|
|D|
· Es∈Dk

[log p(s|θ)] ≡ max
θ

K∏
k=1

p(θ|Dk). (3)

As we know, the objective function is the expectation of the likelihood, and the sum of the logarithms
is equal to the logarithms of the product as Eq. 3. Therefore, globally variational inference using
Eq. 2 is equivalent to optimization for Eq. 1. Correspondingly, we get:

max
θ

Fk(θ,Dk) ≡ max
θ

p(θ|Dk). (4)

Following the same training pattern of federated learning, each client infers the local posterior
p(θ|Dk) by using the local dataset Dk, and then uploads probability parameters to the server. As a
result, the server obtains the global posterior p(θ|D) by aggregating local posteriors using Eq. 2.

However, both the global and local posterior are usually intractable because modern neural networks
are usually non-linear and have a large number of parameters. Therefore, it is necessary to design
an efficient and accurate aggregation method for one-shot federated learning.

3.2 APPROXIMATING POSTERIORS

Although the posterior is usually intractable, the posterior can be approximated as a Gaussian dis-
tribution by performing a Taylor expansion on the logarithm of the posterior (Ritter et al., 2018):

log p(θ|D) ≈ log p (θ∗|D)− 1

2
(θ − θ∗)

⊤
H̄ (θ − θ∗) , (5)

where θ∗ is the optimal parameter vector, H̄ = Es∈D[H] is the average Hessian of the negative
log posterior over a dataset D. It is reasonable to approximate global and local posteriors as multi-
variates Gaussian distributions with expectations µ̄ = θ∗ and µk = θ∗

k; co-variances Σ̄ = H̄−1

and Σk = H̄−1
k (Daxberger et al., 2021). The details are discussed in Appendix B.

p(θ|D) ≡ θ ∼ N (µ̄, Σ̄), p(θ|Dk) ≡ θ ∼ N (µk,Σk). (6)

4

Under review as a conference paper at ICLR 2024

As a result, if given local expectation µk and local co-variance Σk, the global posterior is determined
by Eq. 2 as below:

µ̄ = Σ̄

K∑
k

Σ−1
k µk, Σ̄−1 =

K∑
k

Σ−1
k . (7)

Modern algorithms (Rumelhart et al., 1986; Martens & Grosse, 2015a) allow the local training
process to obtain an optimal, regarded as the expectation µk in the above equations. However,
H̄k is intractable to compute due to a large number of parameters in modern neural networks. An
efficient method is to approximate H̄k using the empirical Fisher information matrix (Van Loan,
2000).

3.3 INFERRING THE LOCAL LAYER-WISE POSTERIORS WITH THE BLOCK-DIAGONAL
EMPIRICAL FISHER INFORMATION MATRICES

A empirical Fisher F̃ is defined as below:

F̃ =
∑
s∈D

[
∇ log p(s|θ)∇ log p(s|θ)⊤

]
, (8)

where p(s|θ) is the likelihood on data point s. It is an approximate of the Fisher information matrix,
the empirical Fisher information matrix is equivalent to the expectation of the Hessian of the negative
log posterior if assuming p(s|θ) is identical for each s ∈ D.

Therefore, the local co-variance Σk can be approximated by the empirical Fisher F̃k (Martens &
Grosse, 2015b; Grosse & Martens, 2016). the details is discussed in Appendix C:

Σ−1
k ≈ F̃k + λI (9)

Kirkpatrick et al. (2017); Liu et al. (2021) ignore co-relations between different parameters and only
consider the self-relations of parameters as computing all co-relations is impossible, which are in-
accurate. In order to capture co-relations between different parameters efficiently, previous works
(Martens & Grosse, 2015a; Ritter et al., 2018) estimate a block empirical Fisher information matrix
F instead of assuming parameters are independent and approximating the co-variance by the diag-
onal of the empirical Fisher. As pointed out in Martens & Grosse (2015a); Benzing (2022); Zhang
et al. (2022b), co-relations inner a layer are much more significant than others, while computing the
co-relations between different layers brings slight improvement but much more computation. There-
fore, assuming parameters are layer-independent is a good trade-off. As a result, the approximated
layer-wise empirical Fisher is block-diagonal, while the details are shown in Appendix D. For layer
l on client k, its empirical Fisher Fkl

is one of the diagonal blocks in the whole empirical Fisher for
the local model and is factored into two small matrices as below,

Σ−1
kl
≈ Fkl

= Akl
⊗Bkl

, (10)

where ⊗ is the Kronecker product; Akl
= âkl−1

â⊤kl−1
+ πl

√
λI and Bkl

= b̂kl
b̂⊤
kl

+ 1
πl

√
λI are

two factor matrices; âkl
is the activations and b̂kl

is the linear pre-activations of layer l on client
k, λ is the hyperparameter and πl is a factor minimizing approximation error in Fkl

(Martens &
Grosse, 2015a; Grosse & Martens, 2016; Botev et al., 2017). Akl

and Bkl
are symmetric positive

definite matrices (Rumelhart et al., 1986; Martens & Grosse, 2015a). The details are discussed in
Appendix D.

We use θkl
to denote the parameter vector of layer l and µkl

= vec(W∗
kl
) is the vectorized optimal

weight matrix of layer l on client k. Thus, the resulting local layer-wise posterior approximation is
θkl
∼ N (µkl

,F−1
kl

).

5

Under review as a conference paper at ICLR 2024

3.4 ESTIMATING THE GLOBAL EXPECTATION

Given the local posteriors, the global expectation could be aggregated by Eq. 7. With Eq. 33, the
l-th layer’s global expectation µ̄l consists of Kronecker products:

µ̄l = Σ̄l

K∑
k

Σ−1
kl

µkl
= Σ̄l

K∑
k

(Akl
⊗Bkl

)µkl

= Σ̄l

K∑
k

vec(Bkl
Mkl

Akl
) = Σ̄l

K∑
k

zkl
= Σ̄lz̄l,

(11)

where z̄l =
∑K

k zkl
and zkl

= vec(Bkl
Mkl

Akl
) is a immediate notations for simplification; Mkl

is the local expectation matrices that µkl
= vec(Mkl

). The corresponding global co-variance is an
inverse of the sum of Kronecker products:

Σ̄l = (

K∑
k

Akl
⊗Bkl

)−1. (12)

As shown in Eq. 11, obtaining the global expectation µ̄l requires calculating the inverse of Σ̄−1
l as

Eq. 12, which is unacceptable. Thus, we propose our method to directly train the parameters of the
global model on the server side.

3.5 TRAIN THE PARAMETERS OF GLOBAL MODEL

Previous works (Martens & Grosse, 2015a; Grosse & Martens, 2016) approximate the expectation
of Kronecker products by a Kronecker product of expectations E [A⊗B] ≈ E [A] ⊗ E [B] with
an assumption of Akl

and Bkl
are independent, which is called Expectation Approximation (EA).

However, it may lead to a biased global expectation. The details are discussed in Appendix E.

Instead, we could construct a linear objective after aggregating the approximation of local posteriors
via using block-diagonal empirical fisher information matrices. We denotes M̄ as the matrix formula
of µ̄ = vec(M̄), and the optimal solution of µ̄ is µ̄∗ = vec(M̄∗). As we have µ̄ = Σ̄ · z̄. We
construct f(µ̄) as a multi-variates linear objective function. When µ̄ = µ̄∗ is optimal solution,
f(µ̄) = o, where o is a vector with all zero. Note that

f(µ̄) = Σ̄−1µ̄− z̄ =

K∑
k

vec(BkM̄Ak)− z̄ = vec(E
[
BM̄A

]
)− z̄. (13)

To obtain the optimal solution, we minimize the following problem to obtain an approximate solu-
tion M̄∗ of M̄:

M̄∗ = min
M̄

1

2

∥∥∥∥∥
K∑
k

vec(BkM̄Ak)− z̄

∥∥∥∥∥
2

2

. (14)

The above equation is a quadratic objective, and it can be solved by modern optimization tools
efficiently and conveniently.

Since the main objective of the above problem is both convex and Lipschitz smooth w.r.t vec(M̄),
we can use the gradient descent method to solve it with a linear convergence rate (See detailed proof
in Appendix F). Here, we use automatic differentiation to calculate the gradient w.r.t. M̄. The
overall pseudo Algorithm 1 is in the Appendix A. The transmitted data between the clients and the
server is solely Ak,Bk,Mk without any extra auxiliary information, which preserves the data/label
privacy for the local clients.

3.6 T-SNE OBSERVATION AND DISCUSSIONS

To quickly demonstrate the effectiveness of FedLPA, We show the t-SNE visualization of our
FedLPA global model on MNIST dataset with biased training data setting among 10 local clients as
an example. The experiment details, t-SNE visualizations of the local models and the global models
of other algorithms and discussions are in the Appendix G.2. As shown in Figure 1, FedLPA gener-
ates the global model which can distinguish the ten classes, meanwhile, the classes are separate.

6

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

Figure 1: t-SNE visualization for
our FedLPA global model.

Datasets. We conduct experiments on MNIST (LeCun
et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10
(Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011)
datasets. We use the data partitioning methods for non-IID
settings of the benchmark 1 to simulate different label skews.
Specifically, we try two different kinds of partition: 1) #C = k:
each client only has data from k classes. We first assign k ran-
dom class IDs for each client. Next, we randomly and equally
divide samples of each class to their assigned clients; 2) pk -
Dir(β): for each class, we sample from Dirichlet distribution
pk - Dir(β) and distribute pk,j portion of class k samples to
client j. In this case, smaller β denotes worse skews.

Training Details. By default, we follow Fedavg (McMahan
et al., 2017) and other existing studies (Wang et al., 2020c; Li et al., 2022; Diao et al., 2023) to use a
simple CNN with 5 layers in our experiments. We set the batch size to 64, the learning rate to 0.001,
and the λ = 0.001 for FedLPA. By default, we set 10 clients and run 200 local epochs for each
client. For the various settings of the number of clients and local epochs, we refer to Section 4.3 and
Section 4.4. For results with error bars, we run three experiments with different random seeds. All
methods were evaluated under fair comparison settings. Due to the page limit, we only present some
representative results in the main paper. For more experimental details and results, please refer to
Appendix G.

Baselines. To ensure fair comparisons, we neglect the comparison with methods that require to
download auxiliary models or datasets, such as FedBE (Chen & Chao, 2020), FedKT (Li et al.,
2020a) and FedGen (Zhu et al., 2021), or even pretrained large model, like FedDISC (Yang et al.,
2023). FedOV (Diao et al., 2023) and FEDCAVE (Heinbaugh et al., 2022) entail sharing more
client-side label information or transmitting client label information to the server, which could jeop-
ardize label privacy and are beyond the scope of this study. XorMixFL (Shin et al., 2020) may be
not practical as we mentioned before. FedFisher (Jhunjhunwala et al., 2023) is not publicly avail-
able. FedDF (Lin et al., 2020), DAFL (Chen et al., 2019) and ADI (Yin et al., 2020) are compared
with the state-of-the-art data-free method DENSE (Zhang et al., 2022a). In conclusion, we include
one-shot FL algorithms as baselines including Fedavg (McMahan et al., 2017), Fedprox (Li et al.,
2020c), Fednova (Wang et al., 2020b), SCAFFOLD (Karimireddy et al., 2020) and the state-of-the-
art data-free method DENSE (Zhang et al., 2022a). All the methods are fairly compared, and our
implementation is available and the experiment details can be viewed in Appendix G.10.

4.2 AN OVERALL COMPARISON

We compare the accuracy between FedLPA and the other baselines as shown in Table 1, the data in
the green shadow shows the best results. FedLPA can achieve the best performance in all the dataset
and partition settings. In extreme cases such as β = {0.01, 0.05}, #C = 1, #C = 2, FedLPA exhibits a
significant performance advantage over the baseline algorithms. This demonstrates our framework’s
ability to effectively aggregate valuable information from local clients for global weight training.
In summary, the state-of-the-art DENSE could be comparable with FedLPA when the skew level is
small. However, with the increment of skewness, FedLPA shows significantly superior results.

4.3 SCALABILITY

We assess the scalability of FedLPA by varying the number of clients. In this section, we show
results on FMNIST in Table 2. From the table, we can observe that FedLPA still almost always
achieves the best accuracy when increasing the number of clients. Notably, there is a slight exception
highlighted in red, where DENSE outperforms us when we have 20 clients and β = 0.5, this may

1https://github.com/Xtra-Computing/NIID-Bench

7

Under review as a conference paper at ICLR 2024

Table 1: Comparison with various FL algorithms in one round.

Dataset Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

β=0.01 21.20±0.67 10.13±0.00 15.97±0.12 18.17±0.15 13.37±0.19 15.23±0.14
β=0.05 54.27±0.38 18.67±0.41 18.67±0.41 18.67±0.41 22.03±0.14 47.77±0.20
β=0.1 55.33±0.06 30.47±0.59 31.40±0.25 30.93±0.58 31.00±0.52 52.93±0.67
β=0.3 68.20±0.04 49.40±0.26 46.00±0.02 45.17±0.05 44.30±0.08 64.27±0.08
β=0.5 73.33±0.06 57.03±0.28 56.03±0.28 59.10±0.63 58.10±0.47 72.87±0.13
β=1.0 76.03±0.05 63.63±0.33 66.10±0.02 62.13±0.43 63.10±0.29 72.97±0.01
#C=1 13.20±0.02 10.37±0.00 10.40±0.00 10.37±0.00 13.03±0.18 10.00±0.00
#C=2 46.13±0.15 21.00±0.10 23.53±0.22 23.20±0.08 19.97±0.10 38.90±0.45
#C=3 57.90±0.06 27.47±0.02 27.37±0.36 29.20±0.03 23.93±0.33 53.40±0.07

CIFAR-10

β=0.01 16.17±0.00 11.57±0.02 11.47±0.01 11.53±0.05 10.47±0.00 12.30±0.03
β=0.05 18.37±0.00 10.30±0.00 10.73±0.01 10.23±0.00 10.97±0.02 17.87±0.31
β=0.1 19.97±0.02 12.30±0.04 10.87±0.01 12.83±0.06 11.97±0.04 19.93±0.07
β=0.3 26.60±0.01 11.77±0.02 10.93±0.01 10.53±0.00 10.97±0.00 25.57±0.84
β=0.5 24.20±0.02 11.07±0.00 11.77±0.02 10.97±0.00 11.33±0.00 20.17±0.73
β=1.0 29.33±0.00 12.00±0.00 13.00±0.00 13.23±0.00 13.63±0.01 28.23±0.34
#C=1 10.70±0.01 10.50±0.00 10.27±0.00 10.23±0.00 10.37±0.01 10.00±0.00
#C=2 16.40±0.00 10.07±0.00 12.03±0.08 10.07±0.00 10.03±0.00 14.13±0.22
#C=3 18.97±0.01 11.30±0.01 11.00±0.01 11.53±0.01 10.77±0.00 14.77±0.11

MNIST

β=0.01 39.17±1.16 13.53±0.20 8.87±0.01 9.37±0.00 9.33±0.00 15.80±0.24
β=0.05 70.07±0.05 31.60±0.71 41.07±0.46 38.57±0.28 32.23±0.18 57.83±1.55
β=0.1 77.43±0.14 48.07±0.28 47.73±0.22 48.63±0.15 47.40±0.00 70.33±0.02
β=0.3 85.77±0.02 67.6±0.40 67.07±0.15 66.17±0.21 63.40±0.41 84.50±0.01
β=0.5 88.73±0.07 79.27±0.08 78.57±0.29 77.37±0.07 79.60±0.24 86.33±0.36
β=1.0 93.37±0.08 84.93±0.18 85.33±0.15 85.10±0.13 86.50±0.16 91.43±0.02
#C=1 11.43±0.01 10.27±0.02 10.10±0.01 10.10±0.01 10.13±0.01 9.93±0.00
#C=2 69.63±0.29 20.90±0.49 25.23±1.08 16.47±0.23 14.30±0.34 52.73±0.46
#C=3 77.13±0.24 29.53±1.65 31.83±2.45 33.13±2.60 29.00±2.05 58.90±0.31

SVHN

β=0.01 19.20±0.00 13.73±0.14 9.83±0.00 12.13±0.04 11.43±0.12 17.33±0.28
β=0.05 22.93±0.38 14.90±0.43 15.77±0.14 16.60±0.23 15.90±0.12 21.47±0.20
β=0.1 39.77±0.69 25.97±0.13 25.70±0.08 22.17±0.02 24.50±0.06 19.43±0.45
β=0.3 52.23±0.26 34.40±0.28 34.03±0.06 33.93±0.26 34.70±0.20 47.13+7.14
β=0.5 54.27±0.02 38.53±0.07 40.07±0.13 38.53±0.15 36.93±0.09 53.70±0.07
β=1.0 67.80±0.01 55.60±0.08 54.03±0.14 55.97±0.04 55.23±0.12 54.40+9.43
#C=1 19.60±0.00 10.43±0.00 13.73±0.18 13.77±0.17 18.27±0.03 7.70±0.03
#C=2 47.03±4.63 12.90±0.27 24.47±0.08 20.17±0.04 17.47±0.13 37.67±0.76
#C=3 48.00±0.22 20.87±0.12 28.37±0.09 27.60±0.03 24.93±0.10 47.43±0.40

Table 2: Experimental results of varying number of clients on FMNIST dataset.

of Clients Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

20 Clients

β=0.01 33.57±0.38 10.00±0.00 13.13±0.24 13.23±0.21 13.93±0.08 10.30±0.00
β=0.05 47.30±0.74 21.30±0.08 20.53±0.56 21.20±0.64 19.40±0.46 46.13±0.36
β=0.1 57.37±0.05 31.50±0.29 29.23±0.60 32.43±0.99 28.80±1.26 57.20±0.12
β=0.3 71.30±0.03 53.87±0.33 50.63±0.10 52.83±0.08 52.13±0.40 71.17±0.04
β=0.5 74.07±0.00 62.83±0.03 58.60±0.08 60.17±0.03 59.47±0.06 74.10±0.04
β=1.0 76.07±0.01 68.63±0.08 69.13±0.12 68.33±0.08 69.33±0.10 75.47±0.04
#C=1 21.50±0.30 10.00±0.00 10.00±0.00 10.00±0.00 10.33±0.00 10.00±0.00
#C=2 59.17±0.45 19.23±0.23 19.47±0.49 18.53±0.46 13.53±0.26 33.07±0.27
#C=3 66.37±0.01 27.30±0.20 28.07±0.35 25.93±0.27 24.63±0.26 52.23±0.79

50 Clients

β = 0.01 15.91±0.01 10.00±0.00 10.00±0.00 10.00±0.00 10.27±0.00 10.00±0.00
β=0.05 28.43±0.80 15.50±0.43 17.77±0.25 17.37±0.24 18.10±0.01 25.03±0.47
β=0.1 57.03±0.00 34.33±0.04 30.17±0.03 28.90±0.05 31.00±0.27 55.83±0.49
β=0.3 66.70±0.23 46.70±0.12 43.97±0.02 45.40±0.12 45.07±0.11 59.23±1.90
β=0.5 71.13±0.00 57.93±0.40 52.93±0.22 53.67±0.26 53.80±0.20 69.57±0.02
β=1.0 71.07±0.04 60.00±0.20 57.67±0.22 56.30±0.45 56.90±0.41 70.33±0.03
#C=1 15.93±0.02 10.00±0.00 10.00±0.00 10.00±0.00 10.27±0.00 10.00±0.00
#C=2 49.60±0.37 18.03±0.11 17.20±0.00 20.50±0.26 15.70±0.03 44.57±0.92
#C=3 65.50±0.05 38.03±0.99 40.53±1.41 40.97±1.51 38.93±1.34 56.10±0.38

be attributed to the dataset being less biased and the DENSE only getting a marginal 0.03% higher
test accuracy. Our method is generally much more robust in all kinds of settings.

4.4 ABLATION STUDY

The hyper-parameter of our approach is λ from Eq. 30, which controls variances of a priori normal
distribution and guarantees Ak and Bk are positive semi-definite. In this part, we show results on
FMNIST. All other Laplace Approximations are sensitive to the hyper-parameter λ based on their
experimental results, Table 3 shows that our approach is relatively robust. Based on our numerical
results, we set λ = 0.001 by default for our method FedLPA.

We also conduct the experiments when the local epochs are 10,20,50,100. More experiments are
available in Appendix G.3, which shows that our methods outperform all the baselines in all kinds
of scenarios without requiring extensive tuning.

4.5 COMMUNICATION AND COMPUTATION OVERHEAD

8

Under review as a conference paper at ICLR 2024

Table 3: Experimental results of different
hyper-parameter λ on FMNIST dataset.

value of λ 0.01 0.001 0.0001
β=0.01 18.63±0.78 21.20±0.67 22.50±1.84
β=0.05 54.33±0.54 54.27±0.38 53.30±0.01
β=0.1 56.83±0.19 55.33±0.06 54.60±0.15
β=0.3 66.83±0.02 68.20±0.04 67.53±0.03
β=0.5 73.20±0.03 73.33±0.06 72.17±0.04
β=1.0 76.53±0.02 76.03±0.05 73.47±0.19
#C=1 12.73±0.01 13.20±0.02 14.17±0.02
#C=2 45.20±0.21 46.13±0.15 44.80±0.03
#C=3 58.97±0.07 57.90±0.06 55.60±0.06

Table 4: Communication and computation
overhead evaluation.

Overall
Computation (mins)

Overall
Communication (MB)

FedLPA 65 2.77
Fednova 50 2.47

SCAFFOLD 50 4.94
Fedavg 50 2.47
Fedprox 75 2.47
DENSE 400 2.47

Figure 2: Extension to multiple rounds on MNIST
dataset.

We conduct experiments on CIFAR-10 on a sin-
gle 2080Ti GPU to estimate the overall commu-
nication and computation overhead. We set the
number of clients is 10. Table 4 shows the nu-
merical results on FedLPA and other baseline
approaches. Details of the overhead evaluation
are referred to Appendix G.8 and G.9. Our ob-
servations reveal that FedLPA is slightly slower
than Fednova, SCAFFOLD, Fedavg, and Fed-
prox, while much faster than the state-of-art
data-free approach DENSE. Note that FedLPA
has significantly improved the one-shot learn-
ing performance of the above four approaches.
Similarly, FedLPA performs moderately incre-
mental communication overhead while outper-
forming other baseline approaches on learning
performance. It’s noteworthy that FedLPA strikes a favorable balance between computation and
communication overhead, making it the most promising approach for one-shot FL.

4.6 SUPPLEMENTARY EXPERIMENTS

Extension to Multiple Rounds. We conduct experiments on MNIST with 10 clients and data
partitioning pk - Dir(β = 0.5). The results are shown in Figure 2. As DENSE could not sup-
port multiple rounds, we compare our methods with Fedavg, Fednova, SCAFFOLD, and Fedprox.
FedLPA achieves the highest accuracy in the first round, denoting the strongest learning capabilities
in a one-shot setting. With the increment in the number of rounds, the performances of FedLPA
increase slower than the other baseline approaches. This figure shows that the joint approach (ours
(one round) then Fedavg) that utilizes FedLPA in the first round and then adopts other baseline meth-
ods may be most promising to save communication and computation resources in the multiple-round
federated learning scenario.

Some experiments in extreme settings (the number of clients=5, β = 0.001) and an aggregation
visualization can be found in Appendix G.

5 CONCLUSIONS

In this work, we design a novel one-shot FL algorithm FedLPA to better model the global parameters
in personalized one-shot federated learning. We propose a method that could aggregate the local
clients in a layer-wise manner with their posteriors approximation via block-diagonal empirical
fisher information matrices, which could effectively capture the accurate statistics of local biased
dataset. Our extensive experiments show that FedLPA significantly outperforms other baselines in
terms of accuracy under various settings, doing so both effectively and efficiently. Overall, FedLPA
stands out as the most practical framework that conducts data-free one-shot FL, particularly well-
suited for high data heterogeneity and preserving privacy without extra information leakage.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Rostamizadeh. Federated
learning via posterior averaging: A new perspective and practical algorithms. arXiv preprint
arXiv:2010.05273, 2020.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International conference on machine learning,
pp. 173–182. PMLR, 2016.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimiza-
tion. In International Conference on Machine Learning, pp. 1817–1853. PMLR, 2022.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Data-free learning of student networks. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3514–3522, 2019.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to feder-
ated learning. arXiv preprint arXiv:2009.01974, 2020.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021.

Yiqun Diao, Qinbin Li, and Bingsheng He. Towards addressing label skews in one-shot federated
learning. In The Eleventh International Conference on Learning Representations, 2023.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

Clare Elizabeth Heinbaugh, Emilio Luz-Ricca, and Huajie Shao. Data-free one-shot federated learn-
ing under very high statistical heterogeneity. In The Eleventh International Conference on Learn-
ing Representations, 2022.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Towards a theoretical and practical un-
derstanding of one-shot federated learning with fisher information. In Federated Learning and
Analytics in Practice: Algorithms, Systems, Applications, and Opportunities, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

10

Under review as a conference paper at ICLR 2024

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Qinbin Li, Bingsheng He, and Dawn Song. Practical one-shot federated learning for cross-silo
setting. arXiv preprint arXiv:2010.01017, 2020a.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
A survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),
pp. 965–978. IEEE, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429–450, 2020c.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Liangxi Liu, Feng Zheng, Hong Chen, Guo-Jun Qi, Heng Huang, and Ling Shao. A bayesian fed-
erated learning framework with online laplace approximation. arXiv preprint arXiv:2102.01936,
2021.

James Martens. Second-order optimization for neural networks. University of Toronto (Canada),
2016.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015a.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015b.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742,
2010.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-
Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning: Algorithms,
techniques, and applications. ACM Computing Surveys (CSUR), 51(5):1–36, 2018a.

11

Under review as a conference paper at ICLR 2024

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-
Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning: Algorithms,
techniques, and applications. ACM Computing Surveys (CSUR), 51(5):1–36, 2018b.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR 2018-Conference
Track Proceedings, volume 6. International Conference on Representation Learning, 2018.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International Conference on Machine Learning, pp. 9489–9502. PMLR, 2021.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. arXiv
preprint arXiv:2006.05148, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Shangchao Su, Bin Li, and Xiangyang Xue. One-shot federated learning without server-side train-
ing. Neural Networks, 164:203–215, 2023.

Romain Thibaux and Michael I Jordan. Hierarchical beta processes and the indian buffet process.
In Artificial intelligence and statistics, pp. 564–571. PMLR, 2007.

Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100, 2000.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020a.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020b.

Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A principled approach to
data valuation for federated learning. Federated Learning: Privacy and Incentive, pp. 153–167,
2020c.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Mingzhao Yang, Shangchao Su, Bin Li, and Xiangyang Xue. Exploring one-shot semi-supervised
federated learning with a pre-trained diffusion model. arXiv preprint arXiv:2305.04063, 2023.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Ni-
raj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8715–8724, 2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.

12

Under review as a conference paper at ICLR 2024

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Jianghe Xu, Shouhong Ding, and Chao
Wu. A practical data-free approach to one-shot federated learning with heterogeneity. arXiv
preprint arXiv:2112.12371, 1, 2021.

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chunhua Shen, and Chao
Wu. Dense: Data-free one-shot federated learning. Advances in Neural Information Processing
Systems, 35:21414–21428, 2022a.

Lin Zhang, Shaohuai Shi, Wei Wang, and Bo Li. Scalable k-fac training for deep neural networks
with distributed preconditioning. IEEE Transactions on Cloud Computing, 2022b.

Qingchen Zhang, Laurence T Yang, Zhikui Chen, and Peng Li. A survey on deep learning for big
data. Information Fusion, 42:146–157, 2018.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated
learning. arXiv preprint arXiv:2009.07999, 2020.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International conference on machine learning, pp. 12878–12889. PMLR,
2021.

13

Under review as a conference paper at ICLR 2024

A THE FEDLPA ALGORITHM

The proposed algorithm follows the same paradigm as the standard one-shot federated learning
framework. The entire procedure is illustrated in Algorithm 1. After completing local training, each
client employs its trained local model to calculate the local co-variance over its training dataset using
the layer-wise Laplace approximation. Subsequently, each client transmits its local model along with
the extra local co-variance information to the server. The server aggregates these contributions to
obtain the global expectation, as described in Eq. 7, and trains the global model parameters, as
outlined in Eq. 14.

Algorithm 1 FedLPA Algorithm

1: Input: clients K, layers L
2: Initialize global weight W̄l of layer l =

1, ..., L
3: clients executes:
4: Initialize local model
5: for k = 1, ..., K do
6: {Mkl

,Akl
,Bkl

|l = 1, ..., L} ← local
training

7: end for

8: Server executes:
9: for l = 1, ..., L do

10: Āl ←
∑K

k Akl

11: B̄l ←
∑K

k Bkl

12: Z̄l ←
∑K

k Bkl
Mkl

Akl

13: M̄l ← Train the parameter of the global
model

14: W̄l ← M̄l

15: end for

B FURTHER DISCUSSION OF EQ. 5

Eq. 5 ignores the first-order term because the first-order derivative is almost zero near the opti-
mal. Terms of a higher order than the second-order terms are ignored because they are much less
significant and the curvature near the optima is assumed to be quadratic (Ritter et al., 2018).

In fact, the Gaussian distribution is employed to approximate the small neighborhood of the pos-
teriors based on the MAP estimate. This choice is made because the empirical Fisher information
matrix we utilize in the end is equivalent to the expectation of the Hessian of the negative log pos-
terior, as detailed in Appendix C. We are not approximating the entire posterior as Gaussian but
rather approximating the local optimization curve near the posterior parameters as Gaussian, where
the distance of the points on the curve to the true posterior point is sufficiently small. Thus, it is
reasonable to approximate global and local posteriors as multi-variates Gaussian distributions with
expectations µ̄ = θ∗ and µk = θ∗

k; co-variances Σ̄ = H̄−1 and Σk = H̄−1
k (Daxberger et al.,

2021).

C ESTIMATE HESSIAN MATRIX USING EMPIRICAL FISHER INFORMATION
MATRIX

We can find that the co-variances are a sum of prior co-variances and the expectations of the second
derivation of likelihood.

Σ−1 = H̄

= −∇2 log p(θ|D)
= −{∇2 log p(D|θ) +∇2 log p(θ)−∇2p(D)}
= −Es∈D

[
∇2 log p(s|θ)

]
+ λI− 0

= − 1

|D|

|D|∑
i=1

∇2 log p(si|θ) + λI.

(15)

14

Under review as a conference paper at ICLR 2024

However, H̄ is intractable to compute and store due to many parameters in modern neural networks.
An efficient method is to approximate H̄ as a diagonal matrix using the empirical Fisher information
matrix F̃ (Van Loan, 2000).

For a neural network, a F̃ is defined as below:

F̃ = Ep(s|θ)
[
∇ log p(s|θ)∇ log p(s|θ)⊤

]
, (16)

where p(s|θ) is the likelihood on data point x.

The F̃ has an obvious property that it is equivalent to the expectation of the Hessian of the negative
log posterior, as shown below:

H̄ = Ep(s|θ)
[
H− log p(s|θ)

]
= −Ep(s|θ)

[
Hlog p(s|θ)

]
= −Ep(s|θ)

[
J

(
∇p(s|θ)
p(s|θ)

)]
= −Ep(s|θ)

[
Hp(s|θ)p(s|θ)−∇p(s|θ)∇p(s|θ)⊤

p(s|θ)p(s|θ)

]

= −Ep(s|θ)

[
Hp(s|θ)p(s|θ)
p(s|θ)p(s|θ)

− ∇p(s|θ)∇p(s|θ)
⊤

p(s|θ)p(s|θ)

]
= −Ep(s|θ)

[
Hp(s|θ)

p(s|θ)
−

(
∇p(s|θ)
p(s|θ)

)(
∇p(s|θ)
p(s|θ)

)⊤
]

= −Ep(s|θ)

[
Hp(s|θ)

p(s|θ)

]
+ Ep(s|θ)

[(
∇p(s|θ)
p(s|θ)

)(
∇p(s|θ)
p(s|θ)

)⊤
]

= Ep(s|θ)
[
∇ log p(s|θ)∇ log p(s|θ)⊤

]
−

∫
Hp(s|θ)

p(s|θ)
p(s|θ)dx

= F̃−H∫
p(s|θ)dx

= F̃−H1

= F̃.

(17)

However, the expectation of the likelihood p(s|θ) is usually intractable to compute. Therefore, a
common method is to use an empirical distribution q(s) ≈ p(s|θ) to approximate the likelihood,
and q(s) is always assumed to be p(D).

F̃ ≈ Eq(s)

[
∇ log p(s|θ)∇ log p(s|θ)⊤

]
= E

[
∇ log p(s|θ)∇ log p(s|θ)⊤

]
=

1

|D|

|D|∑
i=1

∇ log p(si|θ)∇ log p(si|θ)⊤.

(18)

Eq. 18 is called the empirical Fisher information matrix, which is computable. Therefore, a diagonal
matrix of H̄ can be estimated by the diagonal of empirical F̃. We denote diag(·) as the diagonal of
a matrix.

diag(H̄) = diag(F̃+ λI)

≈ 1

|D|

|D|∑
i=1

diag(∇ log p(x|θ)∇ log p(x|θ)⊤) + λI.
(19)

15

Under review as a conference paper at ICLR 2024

D BLOCK-DIAGONAL EMPIRICAL FISHER INFORMATION MATRIX

Storing and computing Eq. 19 for a neural network is efficient. It is equivalent to calculating
the expectation of the square of the gradient of the loss function with respect to the parameters θ.
Meanwhile, diag(H̄) is easy to inverse, diag(H̄)−1 = 1

diag(H̄)
. Therefore, such a diagonal matrix

is always used as the co-variances of a Gaussian posterior, that is:

p(θ|D) ≡ θ ∼ N (θ∗,diag(F̃+ λI)−1). (20)

Separately, as for layers l, the weight vec(Wl) is approximated by a Gaussian,

vec(Wl) ∼ N (vec(W∗
l),diag(F̃l + λI)−1). (21)

This diagonal approximation has been used in many previous works (Martens, 2016; Martens et al.,
2010; Liu et al., 2021; Kirkpatrick et al., 2017), but it is crude that ignores co-relations between
different parameters and only considers the self-relations of parameters. As a result, regions with
high posterior probability due to strong correlation are incorrectly discarded.

To efficiently capture these correlations between different parameters, earlier studies (Martens &
Grosse, 2015a; Grosse & Martens, 2016; Botev et al., 2017) have proposed estimating a block-
diagonal Fisher information matrix F instead of a coordinate-wise one.

In a L layers neural network, there are L × L blocks in its empirical Fisher. For layers l1 and l2,
their empirical Fisher block is as below:

F̃l1,l2 = E
[
∇ log p(s|vec(Wl1))∇ log p(s|vec(Wl2)

⊤] , (22)

In modern back-propagation neural networks, the weights are usually updated by the back-
propagation algorithm. We denote ỹ = f(x,θ) as the output of the network f(·,θ); L(·) as the
loss function. Given a sample s = (x, y), the loss is L(y, ỹ).

After computing the derivation of loss function gloss = ∂L(y,f(x,θ))
∂ỹ , the gradients used to update

weights are calculated by back-propagation algorithm.

Therefore, for layers l, the gradients are as below,

Gl = −∇ log p(s|Wl)

=
∂L(y, f(x,θ))
∂vec(Wl)

= b̂lâ
⊤
l−1,

(23)

where b̂l = W⊤
l+1b̂l+1⊙σ′

l(hl) and b̂L = W⊤
Lgloss⊙σ′

L(hL−1). ⊙ is coordinate-wise multiplica-
tion. All intermediate values in Eq. 23 can be computed efficiently by back-propagation algorithm
(Rumelhart et al., 1986; Martens & Grosse, 2015a).

Applying Eq. 23 into Eq. 22, we get a simply format of F̃l1,l2 represented by Gl1 and Gl2 ,

F̃l1,l2 = E
[
vec(Gl1)vec(Gl2)

⊤] . (24)

Using Kronecker product property, we re-write vec(Gl) as a Kronecker product of âl−1 and b̂l,

vec(Gl) = vec(b̂lâ
⊤
l−1) = âl−1 ⊗ b̂l. (25)

Therefore, using Eq. 25, we get a new format of F̃l1,l2 ,

F̃l1,l2 = E
[
(âl1−1 ⊗ b̂l1)(âl2−1 ⊗ b̂l2)

⊤
]

= E
[
âl1−1â

⊤
l2−1 ⊗ b̂l1 b̂

⊤
l2

]
.

(26)

16

Under review as a conference paper at ICLR 2024

However, until the above step, there is still a significant overhead to store and inverse F̃l1,l2 . In order
to save computational overhead, previous work (Martens & Grosse, 2015a) takes an approximate
matrix F̂l1,l2 . F̂l1,l2 is a result of approximating the expectation of the Kronecker product by the
Kronecker product of expectation. The approximation is as below:

F̃l1,l2 = E
[
âl1−1â

⊤
l2−1 ⊗ b̂l1 b̂

⊤
l2

]
≈ F̂l1,l2

F̂l1,l2 = E
[
âl1−1â

⊤
l2−1

]
⊗ E

[
b̂l1 b̂

⊤
l2

]
= Âl1−1,l2−1 ⊗ B̂l1,l2 ,

(27)

where Âl1−1,l2−1 = âl1−1â
⊤
l2−1 and B̂l1,l2 = b̂l1 b̂

⊤
l2

.

It is important to note that, however, the expectation of a Kronecker product is not equal to the
Kronecker product of expectations. Such an approximation is equivalent to assuming that âl−1

and b̂l are independent, but it is obviously not true because they are weakly related due to back-
propagation. Although the approximation is biased, it could well capture the coarse structure of
the empirical Fisher information matrix as demonstrated in Martens & Grosse (2015a) and fit in
the personalized one-shot federated learning settings to obtain the information of vital importance,
which may also explain the performance result for the multiple round setting in Figure 2. The vi-
sualization of the block-diagonal Fisher information matrix is shown in Appendix D.1. Meanwhile,
Eq. 27 saves significant computational overhead of inverting Kronecker Product and small sizes of
Âl1−1,l2−1 and B̂l1,l2 .

By filling all blocks into F̃, we obtain F̃ in a format of the Khatri-Rao product,

F̃ ≈ F̂ =

Â0,0 ⊗ B̂1,1 Â0,1 ⊗ B̂1,2 · · · Â0,L−1 ⊗ B̂1,L

Â1,0 ⊗ B̂2,1 Â1,1 ⊗ B̂2,2 · · · Â1,L−1 ⊗ B̂2,L

...
...

. . .
...

ÂL−1,0 ⊗ B̂L,1 ÂL−1,1 ⊗ B̂ℓ,2 · · · ÂL−1,L−1 ⊗ B̂L,L

 (28)

Therefore, the Gaussian posterior is given,

p(θ|D) ≡ θ ∼ N (θ∗, (F̂+ λI)−1). (29)

The prior co-variances λ−1I are only added into a diagonal block of F̂, but it is not convenient to
be inverted. Similar to an approximation in Eq. 27, we add prior co-variances inside Kronecker
product,

F̂l,l + λI = Âl−1,l−1 ⊗ B̂l,l + λI⊗ I

≈ Fl,l

= (Âl−1,l−1 + πl

√
λI)⊗ (B̂l,l +

1

πl

√
λI)

= Âl−1,l−1 ⊗ B̂l,l + πl

√
λI⊗ B̂l,l

+
1

πl

√
λÂl−1,l−1 ⊗ I+ λI⊗ I,

(30)

where πl is a factor minimizing approximation error in F̂l,l. Previous works (Martens & Grosse,
2015a; Grosse & Martens, 2016) give it formula as below,

πl =

√√√√√
∥∥∥Âl−1,l−1 ⊗ I

∥∥∥∥∥∥I⊗ B̂l,l

∥∥∥ . (31)

Previous work (Martens & Grosse, 2015a) shows that co-relations inner a layer are much more
significant than others. Therefore, it is reasonable to assume that layers are independent of each

17

Under review as a conference paper at ICLR 2024

other, which means the Fisher information matrix is block-diagonal. Then the posterior for layer l
is given in Martens & Grosse (2015a) as below,

vec(Wl) ∼ N (vec(W∗
l),F

−1
l,l). (32)

Additionally, keeping co-relations between layers is feasible using Eq. 28. Researchers in Martens
& Grosse (2015a) have proposed a tri-diagonal approximation for the Fisher information matrix,
which considers the co-relations between two consecutive layers, but the effect is not significant
compared with the required extra computational resource.

Therefore, in our methodology, we apply the Layer-wise Laplace approximation to obtain a block-
diagonal co-variance of the posterior.

For simplicity, for the k-th client, we use Akl
= Âl−1,l−1 + πl

√
λI = âkl−1

â⊤kl−1
+ πl

√
λI; We

use Bkl
= B̂l,l +

1
πl

√
λI = b̂kl

b̂⊤
kl
+ 1

πl

√
λI

For layer l on client k, its empirical Fisher block is as below,

Σ−1
kl
≈ Fkl

= Akl
⊗Bkl

, (33)

D.1 VISUALIZATION OF THE BLOCK-DIAGONAL EMPIRICAL FISHER INFORMATION MATRIX

≈

Full empirical Fisher information matrix Block-diagonal empirical Fisher information matrix

Figure 3: Visualization of block-diagonal empirical Fisher information matrix.

In Figure 3, we give an example, showing that the block-diagonal empirical Fisher information
matrix could well capture the coarse structure of the full Fisher information matrix based on a neural
network with three convolution layers and one fully connected layer trained on MNIST dataset. The
four diagonal blocks corresponding to four layers, can capture the most useful information of the
original Fisher Information Matrix. Thus, our proposed FedLPA can yield good performance with
this approximation.

E EXPECTATION APPROXIMATION (EA)

Previous works (Martens & Grosse, 2015a; Grosse & Martens, 2016) approximate the expectation
of Kronecker products by a Kronecker product of expectations E [A⊗B] ≈ E [A]⊗ E [B] with an
assumption of Akl

and Bkl
are independent, which is called Expectation Approximation (EA).

It is a simple and effective method to approximate the expectation of Kronecker products. As a
result, the global co-variance Σ̄ is approximated by:

Σ̄l ≈ (

K∑
k

Akl
)−1 ⊗ (

K∑
k

Bkl
)−1 = Ā−1

l ⊗ B̄−1
l , (34)

18

Under review as a conference paper at ICLR 2024

where Āl =
∑K

k Akl
and B̄l =

∑K
k Bkl

. Denoting Z̄l as matrix formula of z̄l = vec(Z̄l), then µ̄l

can be computed efficiently as below:

µ̄l = Σ̄l · z̄l ≈ (Ā−1
l ⊗ B̄−1

l)z̄l = vec(B̄−1
l Z̄lĀ

−1
l). (35)

However, Eq. 35 leads to a biased global expectation. The EA needs the assumption of indepen-
dence, but Akl

and Bkl
are weakly related in back-propagation. Besides, even if they are inde-

pendent, Eq. 35 still suffers from approximation error because the clients’ number K is finite and
always a small number but statistical independence can only be demonstrated when the sampling
number is large enough. Eq. 36 shows the approximation error directly:

(A1 +A2)⊗ (B1 +B2) = A1 ⊗B1 +A2 ⊗B2

+A1 ⊗B2 +A2 ⊗B1

̸= A1 ⊗B1 +A2 ⊗B2.

(36)

F CONVERGENCE ANALYSIS OF EQ. 14

We denote v = vec(M̄). For v ∈ V , we have ∥v∥2 ≤ D and D is a positive constant. We let
g(v) = 1

2∥
∑K

k vec(BkM̄Ak)− z̄∥22. Then we have

g(v) =
1

2
∥(

K∑
k

A⊤
k ⊗Bk)vec(M̄)− z̄∥22 =

1

2
∥(

K∑
k

A⊤
k ⊗Bk)v − z̄∥22. (37)

Then we have

∇vg(v) = v⊤(

K∑
k

A⊤
k ⊗Bk)

⊤(

K∑
k

A⊤
k ⊗Bk)− z̄⊤(

K∑
k

A⊤
k ⊗Bk). (38)

Therefore, for any two points v1,v2, we have

∥∇vg(v1)−∇vg(v2)∥ ≤ ∥v1 − v2∥∥(
K∑
k

A⊤
k ⊗Bk)

⊤(

K∑
k

A⊤
k ⊗Bk)∥, (39)

where the inequality is due to the Cauchy-Schwarz inequality. Since Ak and Bk are all constant,
there exists a positive constant L s.t. ∥∇vg(v1) − ∇vg(v2)∥ ≤ L∥v1 − v2∥∥. Therefore g(v) is
L-Lipschitz smooth. Moreover, we have ∇2

vg(v) = (
∑K

k A⊤
k ⊗ Bk)

⊤(
∑K

k A⊤
k ⊗ Bk), which is

positive semi-definite. So g(v) is convex w.r.t v. Therefore, let δ = 1
L , then we have g(vt+1) ≤

g(vt)− 1
2L∥∇g(v

t)∥2. We have

∥vt+1 − v∗∥2 = ∥vt − δ∇g(vt)− v∗∥2 (40)

= ∥vt − v∗∥2 − 2

L
(⟨∇g(vt)⊤,vt − v∗⟩ − 1

2L
∥∇g(vt)∥2). (41)

Then we obtain
T−1∑
t=0

g(vt+1)− g(v∗) ≤
T−1∑
t=0

(g(vt)− g(v∗)− 1

2L
∥∇g(vt)∥2) (42)

≤
T−1∑
t=0

(⟨∇g(vt)⊤,vt − v∗⟩ − 1

2L
∥∇g(vt)∥2) (43)

=
L

2

T−1∑
t=0

(∥vt − v∗∥2 − ∥vt+1 − v∗∥2) (44)

≤ L

2
∥v0 − v∗∥2. (45)

Therefore, we obtain g(vt+1) − g(v∗) ≤ L
2t∥v

0 − v∗∥2 ≤ LD2

2t , it has a linear convergent rate.
Note that v = vec(M̄), this also implies that we have a linear convergent rate to M̄∗.

19

Under review as a conference paper at ICLR 2024

G ADDITIONAL EXPERIMENTS

G.1 DATASET INFORMATION

Our experiments were conducted using four real-world datasets: MNIST (LeCun et al., 1998), FM-
NIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009).
Here’s a brief overview of these datasets:

MNIST Dataset: The MNIST dataset comprises binary images of handwritten digits. It consists of
60,000 28x28 training images and 10,000 testing images.

FMNIST Dataset: Similar to MNIST, the FMNIST dataset also contains 60,000 28x28 training
images and 10,000 testing images.

SVHN Dataset: The SVHN dataset includes 73,257 32x32 color training images and 10,000 testing
images.

CIFAR-10 Dataset: CIFAR-10 consists of 60,000 32x32 color images distributed across ten classes,
with each class containing 6,000 images.

The input dimensions for MNIST, FMNIST, SVHN, and CIFAR-10 are 784, 784, 3,072, and 3,072,
respectively.

G.2 T-SNE VISUALIZATION

(a) local client #1 (b) local client #2 (c) local client #3 (d) local client #4 (e) local client #5

(f) local client #6 (g) local client #7 (h) local client #8 (i) local client #9 (j) local client #10

Figure 4: t-SNE visualizations of 10 local clients.

(a) Fedavg (b) Fednova (c) SCAFFOLD (d) Fedprox (e) DENSE

Figure 5: t-SNE visualizations of the baseline approaches on the global model.

20

Under review as a conference paper at ICLR 2024

We conduct experiments using MNIST dataset with a β value of 0.05, training 10 local clients over
200 local epochs with random seed 0. In this biased local dataset setting, local clients could only
distinguish a subset of the classes, as illustrated in Figure 4.

Based on seed 0, we partition the training data for the 10 local clients with the following form
(label:# of the data) as:

local client #1: {4: 2, 5: 12, 6: 2847, 9: 16}
local client #2: {1: 20, 4: 189, 5: 5349}
local client #3: {0: 669, 1: 476, 2: 67, 6: 15, 7: 6068}
local client #4: {0: 266, 1: 375, 3: 3956, 7: 196, 9: 5932}
local client #5: {0: 4, 1: 418, 2: 5862}
local client #6: {1: 2, 2: 25, 4: 5195, 5: 24, 6: 80, 8: 28}
local client #7: {1: 5034, 2: 3, 4: 22, 5: 6, 6: 2669}
local client #8: {0: 4914}
local client #9: {4: 433, 5: 29, 6: 307, 8: 5373}
local client #10: {0: 70, 1: 417, 2: 1, 3: 2175, 4: 1, 5: 1, 7: 1, 8: 450, 9: 1}

It is worth noting that local client #2 has the training data mostly with label number 5, and as the
corresponding t-SNE visualization shows in Figure 4b, the local train model could mainly cluster
the data with label 5 (marked as purple). As data for label 1 (marked as orange) is different from
other data with all other labels, some local clients may be able to cluster the data with label 1 with
good results. Other local clients, such as local client #3, #4, #6, #7, #9, #10, show the similar results
like local client #2.

Figure 5 displays the t-SNE visualization for the global models of Fedavg, Fednova, SCAFFOLD,
Fedprox, and DENSE using the training data, with the figure legends identical to those in Figure 1.
It’s evident from Figure 1 that FedLPA outperforms the baselines in classifying the ten classes.
FedLPA’s superiority is not only demonstrated by its ability to cluster the ten classes but also by the
distinct separation between classes, as observed in Figure 1, compared to the baselines.

G.3 EXPERIMENTS ON DIFFERENT LOCAL EPOCH NUMBERS

Table 5: Comparison with various FL algorithms in one round with 10 local epochs settings.

Dataset Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

β=0.01 24.47±1.02 11.43±0.04 13.37±0.11 11.83±0.03 12.30±0.10 10.00±0.00
β=0.05 30.77±0.94 15.67±0.28 20.07±0.46 19.93±0.30 20.07±0.37 23.60±0.14
β=0.1 42.83±0.33 25.10±1.32 21.03±1.08 22.57±1.08 22.20±1.17 34.83±0.16
β=0.3 61.43±0.17 40.90±0.05 40.70±0.09 38.20±0.10 37.50±0.03 43.17±0.05
β=0.5 67.63±0.36 52.43±0.60 51.77±0.46 54.67±0.73 54.33±0.64 54.30±0.07
β=1.0 71.90±0.09 51.03±0.62 52.30±0.53 51.50±0.62 50.90±0.57 52.30±0.15
#C=1 13.03±0.04 10.90±0.02 11.27±0.03 10.90±0.02 11.43±0.04 10.00±0.00
#C=2 28.93±0.74 16.93±0.19 22.07±0.01 23.83±0.20 23.33±0.03 22.60±0.88
#C=3 37.73±0.09 22.20±0.23 26.60±0.03 23.67±0.27 22.80±0.40 23.03±0.86

CIFAR-10

β=0.01 15.80±0.00 10.07±0.00 12.13±0.09 11.90±0.07 11.93±0.07 10.00±0.00
β=0.05 20.23±0.01 10.90±0.02 10.00±0.00 10.00±0.00 10.00±0.00 13.33±0.04
β=0.1 20.20±0.07 10.27±0.00 10.93±0.02 10.37±0.00 10.27±0.00 14.77±0.09
β=0.3 25.60±0.01 18.13±0.33 14.97±0.05 14.77±0.05 15.67±0.03 20.33±0.06
β=0.5 25.60±0.08 14.87±0.05 16.77±0.01 15.73±0.01 13.93±0.08 23.20±0.16
β=1.0 28.93±0.01 15.63±0.03 19.10±0.14 15.30±0.05 15.43±0.05 22.30±0.46
#C=1 11.00±0.01 10.30±0.00 10.23±0.00 10.30±0.00 10.33±0.00 10.00±0.00
#C=2 20.40±0.03 11.37±0.04 11.67±0.06 11.00±0.02 11.80±0.06 10.40±0.00
#C=3 22.30±0.03 12.23±0.04 14.37±0.13 14.10±0.14 14.00±0.12 18.50±0.14

MNIST

β=0.01 32.20±0.50 9.53±0.00 9.37±0.00 9.00±0.01 9.40±0.00 9.53±0.00
β=0.05 60.60±0.07 20.80±0.13 35.17±0.66 35.10±0.87 34.13±0.91 50.37±1.57
β=0.1 78.07±0.09 45.07±0.37 43.23±0.10 43.83±0.13 44.27±0.21 65.53±0.85
β=0.3 85.60±0.17 64.40±0.24 64.03±0.11 64.17±0.09 64.07±0.11 75.53±0.22
β=0.5 91.77±0.00 79.43±0.13 77.37±0.22 78.17±0.25 77.90±0.30 87.93±0.17
β=1.0 94.70±0.00 85.00±0.10 85.10±0.06 84.40±0.08 84.63±0.08 89.30±0.03
#C=1 11.87±0.00 10.43±0.02 10.13±0.01 10.13±0.01 10.13±0.01 9.93±0.00
#C=2 47.93±0.89 13.20±0.09 16.47±0.21 12.97±0.16 12.23±0.07 32.57±0.26
#C=3 65.97±0.98 26.70±2.24 31.67±2.60 31.63±3.03 31.20±3.24 53.80±0.09

SVHN

β=0.01 17.00±0.03 13.93±0.16 16.57±0.15 16.27±0.22 13.30±0.20 13.97±0.17
β=0.05 20.23±0.05 15.40±0.11 15.53±0.12 15.53±0.12 15.53±0.12 17.90±1.01
β=0.1 32.57±0.53 15.17±0.18 18.37±0.03 18.37±0.03 18.33±0.03 24.20±0.28
β=0.3 35.47±0.54 18.23±0.29 20.77±0.02 21.63±0.03 21.17±0.01 29.23±0.03
β=0.5 41.17±0.01 26.07±0.13 27.40±0.00 26.27±0.00 27.80±0.00 36.80±0.13
β=1.0 44.33±0.01 30.77±0.01 32.27±0.01 30.43±0.03 31.97±0.00 29.47±2.86
#C=1 19.60±0.00 10.10±0.03 16.60±0.11 16.77±0.13 15.53±0.12 8.90±0.02
#C=2 31.20±0.01 11.80±0.33 15.77±0.29 15.67±0.31 15.60±0.32 14.00±0.24
#C=3 34.43±0.40 8.93±0.01 22.03±0.05 18.03±0.12 17.50±0.17 23.57±0.90

21

Under review as a conference paper at ICLR 2024

Table 6: Comparison with various FL algorithms in one round with 20 local epochs settings.

Dataset Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

β=0.01 24.17±1.13 11.90±0.07 15.33±0.15 13.40±0.09 10.57±0.00 12.67±0.14
β=0.05 36.97±0.78 18.83±0.55 19.93±0.11 19.37±0.14 19.70±0.17 33.13±0.47
β=0.1 41.83±0.02 28.13±1.34 23.00±0.41 24.63±0.75 24.10±1.29 36.40±0.02
β=0.3 60.83±0.38 42.50±0.12 42.83±0.01 40.47±0.22 40.63±0.11 40.67±0.04
β=0.5 67.80±0.25 53.17±0.25 55.23±0.67 53.27±0.34 54.20±0.52 64.60±0.45
β=1.0 75.47±0.03 55.47±0.57 54.53±0.52 53.57±0.46 54.73±0.41 70.97±0.02
#C=1 14.07±0.02 10.43±0.00 11.03±0.02 10.43±0.00 11.13±0.03 10.00±0.00
#C=2 29.67±0.37 16.83±0.21 22.67±0.27 23.27±0.24 25.43±0.17 24.77±0.14
#C=3 34.37±0.79 24.93±0.02 26.17±0.01 27.70±0.02 27.70±0.03 29.43±0.22

CIFAR-10

β=0.01 15.13±0.01 10.10±0.00 12.50±0.11 11.90±0.07 11.83±0.07 10.50±0.00
β=0.05 23.37±0.01 11.33±0.04 10.20±0.00 10.00±0.00 10.77±0.01 14.67±0.02
β=0.1 25.07±0.00 11.60±0.05 12.33±0.10 12.67±0.14 13.23±0.21 18.50±0.06
β=0.3 26.00±0.02 16.63±0.13 13.10±0.01 13.87±0.01 14.43±0.02 24.97±1.13
β=0.5 30.60±0.00 14.20±0.02 13.30±0.04 13.13±0.03 14.23±0.04 27.60±0.06
β=1.0 26.77±0.10 17.60±0.01 17.50±0.05 18.13±0.04 18.20±0.01 26.07±0.18
#C=1 10.67±0.01 10.20±0.00 10.23±0.00 10.20±0.00 10.27±0.00 10.00±0.00
#C=2 22.00±0.00 12.03±0.08 10.23±0.00 11.10±0.02 11.40±0.04 15.33±0.14
#C=3 23.60±0.05 11.97±0.03 14.93±0.17 13.37±0.09 13.63±0.09 21.17±0.05

MNIST

β=0.01 32.43±0.86 11.00±0.06 9.30±0.00 9.37±0.00 10.33±0.02 12.40±0.19
β=0.05 68.73±0.45 26.73±0.24 37.77±0.68 37.70±0.84 36.57±0.75 62.03±0.54
β=0.1 71.77±0.20 48.57±0.60 45.67±0.22 46.63±0.23 45.83±0.23 66.93±0.25
β=0.3 90.83±0.01 68.17±0.33 66.90±0.03 66.60±0.15 66.03±0.21 85.37±0.11
β=0.5 89.43±0.09 80.90±0.14 76.63±0.13 79.57±0.22 79.47±0.27 86.07±0.22

1.0 96.17±0.01 86.60±0.13 85.90±0.14 86.03±0.14 86.57±0.15 88.40±0.00
#C=1 11.47±0.01 10.27±0.01 10.13±0.01 10.13±0.01 10.13±0.01 9.87±0.00
#C=2 53.37±0.61 17.47±0.48 20.70±0.58 14.77±0.14 13.47±0.02 43.33±0.10
#C=3 72.27±0.44 28.63±1.61 32.93±2.76 31.40±2.01 30.97±2.50 44.30±0.62

SVHN

β=0.01 19.03±0.00 14.83±0.13 9.33±0.02 9.30±0.02 9.30±0.02 18.23±0.03
β=0.05 26.27±0.19 13.37±0.04 15.53±0.12 15.53±0.12 15.57±0.12 24.63±0.41
β=0.1 28.8±0.70 17.47±0.05 19.33±0.00 19.30±0.01 19.70±0.06 26.63±0.42
β=0.3 45.03±0.17 27.83±0.04 26.53±0.05 26.90±0.00 27.57±0.01 38.27±4.74
β=0.5 48.00±0.21 30.80±0.19 32.20±0.33 30.07±0.21 30.97±0.14 43.33±0.08
β=1.0 62.23±0.05 49.07±0.25 47.83±0.32 48.03±0.25 48.53±0.10 60.03±0.55
#C=1 16.23±0.23 9.83±0.03 17.07±0.11 16.60±0.12 15.50±0.12 7.70±0.03
#C=2 27.87±0.49 11.83±0.32 20.57±0.02 19.17±0.01 16.00±0.27 18.53±0.57
#C=3 42.97±0.02 14.10±0.12 23.70±0.20 25.80±0.39 23.37±0.00 36.73±0.07

Table 7: Comparison with various FL algorithms in one round with 50 local epochs settings.

Dataset Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

β=0.01 19.33±0.43 10.13±0.00 15.87±0.16 18.53±0.35 12.97±0.15 10.70±0.01
β=0.05 32.70±0.40 19.47±0.53 24.10±0.02 23.93±0.11 22.63±0.20 31.33±1.34
β=0.1 40.00±0.01 30.40±1.05 27.37±0.23 25.83±0.35 25.50±0.72 39.93±1.10
β=0.3 62.80±0.41 43.67±0.01 42.50±0.09 41.50±0.10 42.23±0.11 57.80±0.04
β=0.5 68.27±0.00 55.97±0.23 55.27±0.38 53.95±0.27 55.00±0.26 63.50±0.11
β=1.0 73.47±0.27 61.20±0.09 60.67±0.19 60.77±0.12 61.40±0.15 66.03±0.06
#C=1 13.30±0.03 10.50±0.00 11.03±0.02 10.50±0.00 11.87±0.07 10.00±0.00
#C=2 27.60±0.02 16.37±0.08 23.00±0.12 18.37±0.38 18.60±0.32 29.33±0.44
#C=3 38.13±0.01 25.47±0.02 25.23±0.29 26.70±0.05 26.40±0.18 37.53±0.17

CIFAR-10

β=0.01 16.23±0.01 10.23±0.00 12.27±0.07 13.07±0.08 12.17±0.09 10.33±0.00
β=0.05 17.93±0.06 11.00±0.02 10.33±0.00 10.13±0.00 11.20±0.03 7.63±0.01
β=0.1 19.20±0.02 13.17±0.09 13.63±0.21 12.00±0.03 12.43±0.06 19.13±0.09
β=0.3 27.57±0.03 12.53±0.05 12.33±0.02 11.93±0.01 12.90±0.01 26.03±0.52
β=0.5 27.57±0.29 13.47±0.03 12.30±0.00 12.47±0.02 13.47±0.02 26.40±0.23
β=1.0 30.27±0.02 15.47±0.12 15.30±0.14 15.23±0.13 15.53±0.10 29.17±2.06
#C=1 10.90±0.00 10.30±0.00 10.30±0.00 10.30±0.00 10.33±0.00 10.00±0.00
#C=2 21.17±0.06 10.13±0.00 11.93±0.02 10.57±0.01 11.27±0.01 15.87±0.08
#C=3 23.80±0.01 12.00±0.06 12.07±0.02 12.97±0.04 11.90±0.02 21.53±0.29

MNIST

β=0.01 34.10±0.88 10.57±0.02 9.50±0.00 9.33±0.02 10.13±0.01 12.53±0.19
β=0.05 66.23±0.32 32.00±0.78 39.70±0.50 39.60±0.31 39.87±0.15 56.63±0.65
β=0.1 72.90±0.27 49.17±0.62 47.20±0.22 47.07±0.23 46.30±0.10 69.93±0.27
β=0.3 87.03±0.02 68.30±0.33 66.40±0.16 67.10±0.09 66.17±0.22 82.47±0.01
β=0.5 90.43±0.07 80.70±0.13 78.13±0.19 79.37±0.19 79.50±0.22 88.30±0.05
β=1.0 94.47±0.04 86.73±0.15 85.43±0.11 86.07±0.12 86.20±0.16 89.23±0.01
#C=1 11.37±0.01 10.17±0.01 10.13±0.01 10.13±0.01 10.10±0.01 9.80±0.00
#C=2 71.07±0.02 23.53±1.00 22.93±0.80 22.63±0.99 17.53±0.12 42.97±0.17
#C=3 76.17±0.38 29.60±1.80 33.50±2.91 32.77±2.27 23.40±3.38 57.30±0.12

SVHN

β=0.01 19.60±0.00 13.93±0.16 13.57±0.19 9.50±0.03 9.27±0.02 19.10±0.52
β=0.05 22.97±0.01 14.87±0.12 15.83±0.13 15.67±0.12 14.67±0.14 19.97±0.54
β=0.1 45.83±1.70 22.40±0.21 22.97±0.12 22.47±0.01 24.30±0.04 41.47±4.63
β=0.3 36.30±2.02 33.90±0.15 33.87±0.20 33.50±0.13 34.43±0.21 29.90±0.56
β=0.5 51.77±0.01 39.70±0.19 39.93±0.13 38.03±0.14 38.33±0.12 50.10±1.71
β=1.0 57.97±0.10 56.70±0.15 54.03±0.28 55.33±0.23 55.80±0.15 47.80+8.91
#C=1 19.37±0.00 9.90±0.03 16.57±0.12 16.53±0.12 15.53±0.12 10.00±0.00
#C=2 36.93±0.02 12.53±0.25 20.30±0.07 20.70±0.12 15.57±0.22 40.77±2.21
#C=3 42.43±0.02 21.07±0.31 29.63±0.16 27.10±0.06 24.73±0.00 38.50±0.60

Here, we present experiments similar to those in Table 1 but with different numbers of epochs (10,
20, 50, 100). The performance of our methods outperforms other approaches, as shown in Table 5,
Table 6, Table 7, and Table 8. Without tuning the number of local epochs, our method consistently
achieves high performance compared to other baselines.

22

Under review as a conference paper at ICLR 2024

Table 8: Comparison with various FL algorithms in one round with 100 local epochs settings.

Dataset Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

β=0.01 19.17±0.01 11.73±0.06 16.10±0.18 19.00±0.27 12.67±0.12 10.07±0.00
β=0.05 36.77±0.51 18.07±0.35 22.67±0.03 22.73±0.04 21.20±0.17 31.77±1.14
β=0.1 35.90±0.12 32.83±0.58 29.87±0.49 30.80±0.28 29.33±0.60 33.23±1.22
β=0.3 64.07±0.28 47.77±0.07 42.20±0.01 43.33±0.06 46.03±0.06 60.30±0.17
β=0.5 68.73±0.10 57.03±0.20 55.87±0.38 56.10±0.31 58.60±0.43 64.60±0.01
β=1.0 76.27±0.00 65.00±0.05 61.67±0.35 65.13±0.14 65.03±0.14 75.80±0.05
#C=1 13.37±0.04 10.87±0.02 10.47±0.00 10.87±0.02 13.23±0.21 10.00±0.00
#C=2 31.40±1.16 20.93±0.23 24.97±0.19 23.13±0.25 21.50±0.29 26.30±1.56
#C=3 49.73±0.24 26.97±0.00 25.57±0.27 26.17±0.22 25.50±0.12 46.87±0.10

CIFAR-10

β=0.01 16.93±0.01 10.33±0.00 10.97±0.02 9.57±0.41 11.10±0.02 11.23±0.01
β=0.05 19.07±0.01 12.33±0.11 12.50±0.12 10.33±0.00 12.60±0.13 18.63±0.11
β=0.1 20.80±0.08 12.53±0.05 10.33±0.00 10.67±0.00 11.87±0.03 24.30±0.05
β=0.3 28.33±0.00 11.63±0.02 11.03±0.01 11.07±0.00 11.70±0.01 28.23±0.36
β=0.5 29.37±0.01 12.07±0.01 12.13±0.01 11.80±0.01 13.17±0.01 28.90±0.49
β=1.0 30.57±0.00 14.53±0.09 13.93±0.01 13.97±0.10 15.93±0.11 29.37±1.73
#C=1 11.03±0.02 10.23±0.00 10.23±0.00 10.23±0.00 10.57±0.01 10.00±0.00
#C=2 16.70±0.13 10.00±0.00 12.90±0.03 11.00±0.01 11.97±0.03 13.67±0.03
#C=3 18.87±0.01 11.33±0.03 10.70±0.00 11.77±0.02 11.67±0.02 15.97±0.10

MNIST

β=0.01 34.10±0.66 13.60±0.32 9.33±0.00 9.30±0.00 9.30±0.00 16.63±0.33
β=0.05 72.47±0.07 32.30±0.66 41.37±0.37 38.57±0.35 40.70±0.49 55.30±1.88
β=0.1 78.53±0.20 48.20±0.39 47.87±0.26 47.57±0.19 46.93±0.04 76.47±0.20
β=0.3 85.83±0.04 68.77±0.28 67.43±0.11 67.13±0.12 65.67±0.36 84.23±0.08
β=0.5 89.03±0.12 80.53±0.19 79.13±0.23 79.00±0.28 79.50±0.30 88.30±0.31
β=1.0 94.13±0.03 86.53±0.09 85.87±0.09 85.63±0.08 86.17±0.14 92.57±0.02
#C=1 11.27±0.01 10.30±0.02 10.10±0.01 10.10±0.01 10.13±0.01 9.93±0.00
#C=2 71.07±0.35 21.00±0.61 22.47±0.89 18.83±0.55 14.50±0.12 45.47±0.14
#C=3 76.83±0.32 29.63±2.43 35.17±2.54 32.47±3.15 29.2±2.22 67.33±0.95

SVHN

β=0.01 19.50±0.00 13.90±0.16 9.37±0.02 12.57±0.22 11.60±0.09 19.10±0.13
β=0.05 32.90±0.05 13.50±0.03 16.03±0.15 15.90±0.18 16.83±0.10 25.80±1.64
β=0.1 36.63±0.27 22.37±0.62 24.17±0.20 24.83±0.07 25.93±0.09 26.97±0.23
β=0.3 56.40±0.01 35.43±0.10 34.40±0.05 35.17±0.10 34.40±0.07 55.67±1.85
β=0.5 55.63±0.16 39.07±0.03 40.33±0.05 37.47±0.01 37.07±0.12 55.53±0.62
β=1.0 65.57±0.01 55.87±0.27 55.30±0.26 54.80±0.19 54.17±0.34 62.50±0.12
#C=1 16.27±0.22 10.33±0.00 13.83±0.17 15.67±0.11 15.63±0.11 12.10±0.30
#C=2 41.87±0.01 14.80±0.12 22.53±0.07 20.77±0.06 13.87±0.86 41.43±1.77
#C=3 48.70±0.02 23.50±0.04 30.20±0.08 29.20±0.10 25.30±0.02 48.60±0.49

G.4 EXTREME SETTING, 5 CLIENTS

Table 9: Comparison with various FL algorithms in one round when client number is 5.

Dataset Partition FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

β=0.01 48.13±0.28 26.03±0.07 30.77±0.49 30.80±0.34 17.83±0.07 44.23±0.14
β=0.05 55.20±0.17 23.40±0.16 30.80±0.67 29.90±0.12 20.43±0.16 46.17±0.09
β=0.1 59.27±0.12 33.47±0.16 37.77±0.45 35.43±0.86 32.57±0.98 58.73±0.15
β=0.3 73.13±0.00 53.13±0.42 52.57±0.46 52.03±0.59 49.90±0.33 63.40±0.06
β=0.5 74.17±0.02 60.27±0.53 60.13±0.57 59.97±1.14 61.67±0.35 72.03±0.05
β=1.0 75.30±0.0 63.00±0.05 60.87±0.24 62.63±0.05 60.37±0.01 74.93±0.04

When the number of clients is set to 5, the experimental results for the FMNIST dataset are shown
in Table 9. These results demonstrate that our framework performs well even in extreme situations
when the number of clients is relatively small.

G.5 EXTREME SETTING, β = 0.001

Here, we demonstrate that even when β = 0.001 and with different dataset and local epoch number
settings, FedLPA has the potential to aggregate models effectively in extreme situations and produce
superior results. These results are presented in Table 10.

G.6 AGGREGATION VISUALIZATION

Figure 6 displays the visualization aggregation of two heterogeneous Gaussians. In comparison to
the Fisher Diagonal (Liu et al., 2021) method and Fedavg, our method aggregates the local clients
on the Riemannian manifold while treating the empirical Fisher information matrix as a metric of
the parameter space, which is much better.

23

Under review as a conference paper at ICLR 2024

Table 10: Comparison with various FL algorithms in one round with different epoch numbers and
β = 0.001.

Dataset epochs number FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE

FMNIST

10 14.57±0.04 10.60±0.01 10.53±0.01 10.60±0.01 13.10±0.01 10.00±0.01
20 15.33±0.04 10.13±0.00 10.23±0.00 10.13±0.00 12.87±0.16 10.00±0.00
50 13.77±0.02 10.57±0.01 10.17±0.00 10.57±0.01 12.30±0.11 10.00±0.00

100 15.83±0.03 10.17±0.00 10.73±0.01 10.17±0.00 13.23±0.21 10.00±0.00
200 14.53±0.00 10.07±0.00 10.10±0.00 10.07±0.00 12.50±0.12 10.00±0.00

CIFAR-10

10 11.50±0.00 10.27±0.00 10.17±0.00 10.27±0.00 10.33±0.00 10.00±0.00
20 10.57±0.01 10.27±0.00 10.13±0.00 10.27±0.00 10.30±0.00 10.00±0.00
50 10.77±0.01 10.23±0.00 10.33±0.00 10.23±0.00 10.33±0.00 10.00±0.00

100 10.90±0.01 10.20±0.00 10.30±0.00 10.23±0.00 10.57±0.01 10.00±0.00
200 10.87±0.02 10.27±0.00 10.23±0.00 10.27±0.00 10.37±0.01 10.00±0.00

MNIST

10 24.10±0.17 10.07±0.01 12.17±0.07 11.83±0.05 12.17±0.12 9.90±0.00
20 19.53±0.33 10.07±0.01 12.07±0.07 13.37±0.08 12.37±0.12 9.27±0.00
50 16.93±0.37 10.07±0.01 10.80±0.04 13.17±0.09 13.13±0.25 11.40±0.08

100 19.07±0.41 10.13±0.01 10.97±0.00 11.37±0.02 12.90±0.13 12.83±0.17
200 15.63±0.03 10.07±0.01 11.13±0.06 12.50±0.04 11.83±0.11 9.27±0.00

SVHN

10 17.50±0.02 15.90±0.00 15.53±0.12 15.53±0.12 15.53±0.12 17.13±0.03
20 20.10±0.21 15.90±0.00 15.53±0.12 15.53±0.12 14.00±0.11 17.13±0.03
50 20.07±0.71 16.30±0.00 15.50±0.12 15.13±0.16 14.03±0.07 15.17±0.16

100 19.70±0.00 15.90±0.00 15.10±0.16 15.53±0.12 13.77±0.10 18.47±0.05
200 19.13±0.00 13.90±0.11 14.90±0.19 15.13±0.16 13.27±0.06 15.23±0.16

Figure 6: Aggregation Visualization.

G.7 EXPERIMENTS WITH FEDOV

We compare with FedOV2, the state-of-the-art method which addresses label skews in one-shot
federated learning. We run the experiments with fair comparison (same model size) on MNIST
dataset with #C=2 partition setting. Table 11 shows that our method could be comparable with
FedOV in some scenarios even when FedOV transmits the unknown label information to the clients
and utilizes the knowledge distillation. As the epoch number of local clients equals to 50,100,200,
FedLPA outperforms FedOV.

2https://github.com/Xtra-Computing/FedOV

Table 11: Comparison with FedOV on MNIST with #C=2.

epoch number 10 20 50 100 200
FedLPA 47.93±0.89 53.37±0.61 71.07±0.02 71.07±0.35 69.63±0.29
FedOV 71.0±0.25 70.27±0.39 69.23±0.31 65.83±0.23 64.50±0.38

24

Under review as a conference paper at ICLR 2024

Table 12: Running time and computation overhead evaluation.

FedLPA Fednova SCAFFOLD Fedavg Fedprox DENSE FedOV
65mins 50mins 50mins 50mins 75mins 400mins 150mins

G.8 COMMUNICATION OVERHEAD EVALUATION

Table 4 shows the communication overhead evaluation of a simple CNN with 5 layers on CIFAR-10
dataset. The results are given based on the experiments. In this section, we will give a concrete
example to show the details.

The communication bits are the number of bits that are transmitted between a server and a client in a
directed communication. It reflects the communication efficiency of federated learning algorithms.
Better algorithms should have lower communication bits.

The default floating point precision is 32 bits in Pytorch. We use a fully-connected neural network
model with architecture 784-254-64-10 as an example to show the calculation, which has 784∗256+
256 + 254 ∗ 64 + 64 + 64 ∗ 10 + 10 = 217930 floating point numbers, which is 6973760 bits or
around 0.831 MB.

For a single directed communication from a client to the server or vice versa, the cost for Fedavg,
Fedprox, Fednova, FedPA, and DENSE is 0.831 MB each. SCAFFOLD costs 1.662 MB for the
same communication, which is double the amount of the others.

For a single communication from a client to the server, our method requires additional upload of
Ak and Bk, which contain 785 ∗ 785 + 256 ∗ 256 + 257 ∗ 257 + 64 ∗ 64 + 65 ∗ 65 + 10 ∗ 10 =
756231 floating point numbers in total. Note, as Ak and Bk are symmetric matrices, we only need
to upload the upper triangular part of them, reducing the total to roughly 756231/2 = 378115.5
floating point numbers as about 1.442 MB. Therefore, our approach costs 2.272 MB for the one
directed communication, which is 2.734 times as Fedavg, Fedprox, and DENSE, and 1.367 times as
SCAFFOLD.

In practical real-world applications, convolutional neural networks (CNNs) are commonly used in-
stead of fully connected networks, and our approach introduces relatively low extra communication
overhead, as indicated in Table 4. Specifically in Table 4, our approach incurs about 1.13 times the
communication overhead of Fedavg, Fednova, Fedprox, and DENSE, while being only 0.56 times
the overhead of SCAFFOLD.

However, as Figure 2 demonstrates, to achieve the same performance as FedLPA, Fedavg, Fednova,
SCAFFOLD, and Fedprox require more communication rounds, resulting in a heavier data transfer
burden on the system.

G.9 RUNNING TIME AND COMPUTATION OVERHEAD EVALUATION

The running times of different algorithms, using a simple CNN on the CIFAR-10 dataset, are sum-
marized in Table 12. In this experiment, there are 10 clients, each running 200 local epochs with
only one communication round. Our device is a single 2080Ti GPU. Compared to the state-of-the-art
methods FedOV and DENSE, our method is efficient and slightly slower than the fastest algorithm.
Notably, DENSE consumes almost 7 times the computational resources, as the knowledge distilla-
tion method is computationally intensive and resource-demanding. It’s important to note that while
our method is efficient, it also yields the best results.

G.10 ARTIFACT DETAILS

We have uploaded the codebase containing all the methods compared in our paper. Setting up the
environment is relatively straightforward with the provided readme file. If you refer to the scripts
folder, you will find all the bash scripts necessary to reproduce the tables and figures from our
experiments.

25

Under review as a conference paper at ICLR 2024

The experiments.sh script covers the experiments in Table 1, Table 5, Table 6, Table 7, and Table 8.
Running these experiments on a single 2080Ti GPU will take approximately 81 days. Specifically,
Table 1 itself will take about 35 days.

The experiments client.sh script covers the experiments in Table 2, requiring approximately 40 days
on a single 2080Ti GPU.

The experiments coor.sh script covers the experiments in Table 3, which can be completed in 2 days.

The experiments extreme.sh script reproduces the experiments in Table 10 and takes about 10 days.

The experiments extreme clients.sh script covers the experiments in Table 9 and requires approxi-
mately 4 days of GPU processing.

Running experiments multiple round.sh will yield the results as shown in Figure 2, and this process
takes about 1 day.

To generate the t-SNE visualizations shown in Figure 1, Figure 4, and Figure 5, you can use the
experiments.py script with the “alg=tsne” option.

26

	Introduction
	Background and Related Works
	Federated Learning
	One-shot Federated Learning

	Methodology
	Objective Formulation
	Approximating Posteriors
	Inferring the Local Layer-Wise Posteriors with the Block-Diagonal Empirical Fisher Information Matrices
	Estimating the Global Expectation
	Train the Parameters of Global Model
	t-SNE Observation and Discussions

	Experiments
	Experiments Settings
	An Overall Comparison
	Scalability
	Ablation Study
	Communication and Computation Overhead
	Supplementary Experiments

	Conclusions
	The FedLPA Algorithm
	Further Discussion of Eq. 5
	Estimate Hessian Matrix Using empirical Fisher Information Matrix
	Block-Diagonal Empirical Fisher Information Matrix
	Visualization of the Block-diagonal Empirical Fisher Information Matrix

	Expectation Approximation (EA)
	Convergence Analysis of Eq. 14
	Additional Experiments
	Dataset Information
	T-SNE Visualization
	Experiments on Different Local Epoch Numbers
	Extreme Setting, 5 clients
	Extreme Setting, =0.001
	Aggregation Visualization
	Experiments with FedOV
	Communication Overhead Evaluation
	Running Time and Computation Overhead Evaluation
	Artifact Details

