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Abstract

The definition of Linear Symmetry-Based Disentanglement (LSBD) formalizes1

the notion of linearly disentangled representations, but there is currently no metric2

to quantify LSBD. Such a metric is crucial to evaluate LSBD methods and to3

compare to previous understandings of disentanglement. We propose DLSBD, a4

mathematically sound metric to quantify LSBD, and provide a practical implemen-5

tation. Furthermore, from this metric we derive LSBD-VAE, a semi-supervised6

method to learn LSBD representations. We demonstrate the utility of our metric7

by showing that (1) common VAE-based disentanglement methods don’t learn8

LSBD representations, (2) LSBD-VAE as well as other recent methods can learn9

LSBD representations, needing only limited supervision on transformations, and10

(3) various desirable properties expressed by existing disentanglement metrics are11

also achieved by LSBD representations.12

1 Introduction13

Learning low-dimensional representations that disentangle the underlying factors of variation in data14

is considered an important step towards interpretable machine learning with good generalization. To15

address the fact that there is no consensus on what disentanglement entails and how to formalize it,16

Higgins et al. (2018) propose a formal definition for Linear Symmetry-Based Disentanglement, or17

LSBD, arguing that underlying real-world symmetries give exploitable structure to data.18

However, there is currently no metric to quantify LSBD. Such a metric is crucial to properly evaluate19

methods aiming to learn LSBD representations and to relate LSBD to previous definitions of disentan-20

glement. Although previous works have evaluated LSBD by measuring performance on downstream21

tasks (Caselles-Dupré et al., 2019) or by measuring specific traits related to LSBD (Painter et al.,22

2020; Quessard et al., 2020), none of these evaluation methods directly quantify LSBD according to23

its well-formalized definition.24

We propose DLSBD, a well-formalized and generally applicable metric that quantifies the level of25

LSBD in learned data representations. We show an intuitive justification of this metric, as well26

as its theoretical derivation. We also provide a practical implementation to compute DLSBD for27

common symmetry groups. Furthermore, we show that our metric formulation can be used to derive28

a semi-supervised method to learn LSBD representations, which we call LSBD-VAE. To make29

LSBD-VAE more widely applicable, we also demonstrate how to disentangle symmetric properties30

from other non-symmetric properties, and how to quantify this disentanglement with DLSBD.31

We show the utility of DLSBD by quantifying LSBD in a number of settings, for a variety of datasets32

with underlying SO(2) symmetries and other non-symmetric properties. First, we evaluate common33

VAE-based disentanglement methods and show that most don’t learn LSBD representations. Second,34

we evaluate LSBD-VAE and other recent methods that specifically target LSBD, showing that they35
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can obtain much better DLSBD scores while needing only limited supervision on transformations.36

Third, we compare DLSBD with existing disentanglement metrics, showing that various desirable37

properties expressed with these metrics are also achieved by LSBD representations.38

2 Related Work39

Plenty of works have focused on learning and quantifying disentangled representations recently, but40

research has shown that there is little consensus about the exact definition of disentanglement and41

methods often do not achieve it as well as they proclaim (Locatello et al., 2019). To introduce some42

much-needed formalization, Higgins et al. (2018) proposed to define disentanglement with respect43

to symmetry transformations acting on the data. They used group theory to provide two formal44

definitions, which we refer to as (Linear) Symmetry-Based Disentanglement, or (L)SBD. In this45

paper we focus only on LSBD, not SBD.46

Several methods have been proposed to learn LSBD representations (Caselles-Dupré et al., 2019;47

Painter et al., 2020; Quessard et al., 2020). These methods also learn to represent the transformations48

acting on the input data, assuming various levels of supervision on these transformations. Other49

methods have previously focused on capturing transformations of the data outside the context of50

disentanglement as well (Cohen and Welling, 2015; Sosnovik et al., 2019; Worrall et al., 2017).51

3 Linear Symmetry-Based Disentanglement52

Higgins et al. (2018) provide a formal definition of linear disentanglement that connects symmetry53

transformations affecting the real world (from which data is observed) to the internal representations54

of a model. The definition is grounded in concepts from group theory, we provide a more detailed55

description of these concepts in the Supplementary Material.56

The definition1 considers a group G of symmetry transformations acting on the data space X through57

the group action · : G ×X → X . In particular, G can be decomposed as the direct product of K58

groups G = G1 × . . .×GK . A model’s internal representation of data is modeled with the encoding59

function h : X → Z that maps data to the embedding space Z. The definition for Linearly Symmetry-60

Based Disentangled (LSBD) representations then formalizes the requirement that a model’s encoding61

h should reflect and disentangle the transformation properties of the data, and that the transformation62

properties of the model’s encoding should be linear. The exact definition is as follows:63

Definition: Linear Symmetry-Based Disentanglement (LSBD) A model’s encoding map h :64

X → Z, where Z is a vector space, is LSBD with respect to the group decomposition G =65

G1 × . . .×GK if66

1. there is a decomposition of the embedding space Z = Z1 ⊕ . . . ⊕ ZK into K vector67

subspaces,68

2. there are group representations for each subgroup in the corresponding vector subspace69

ρk : Gk → GL(Zk), k ∈ {1, . . . ,K}70

3. the group representation ρ : G→ GL(Z) acts on Z as71

ρ(g) · z = (ρ1(g1) · z1, . . . , ρK(gK) · zK), (1)

for g = (g1, . . . , gK) ∈ G and z = (z1, . . . , zK) ∈ Z with gk ∈ Gk and zk ∈ Zk.72

4. the map h is equivariant with respect to the actions of G on X and Z, i.e. , for all x ∈ X73

and g ∈ G it holds that h(g · x) = ρ(g) · h(x).74

Furthermore, we say that a group representation ρ is linearly disentangled with respect to the group75

decomposition G = G1 × . . .×GK if it satisfies criteria 1 to 3 from the LSBD definition above.76

1The original definition actually considers an additional set of world states W , but our definition is more
practical and can be shown to be the same under mild conditions, see Supplementary Material.
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4 Quantifying LSBD: DLSBD77

4.1 Intuition: Measuring Equivariance with Dispersion78

Figure 1: A dataset of images from a rotating ob-
ject expressed in terms of the group G = SO(2)
acting on a base image x0. It is possible to quan-
tify the level of LSBD of an encoding map h by
measuring its equivariance with respect to a group
representation ρ. Since all data has been gener-
ated from x0, equivariance can be measured as the
dispersion of the points {ρ(g−1

n ) · h(xn)}Nn=1.

To motivate our metric, let’s first assume a set-79

ting in which a suitable linearly disentangled80

group representation ρ is known. Let’s further81

assume that the dataset of observations can be82

expressed with respect toG acting on some base83

point x0 ∈ X , i.e. {xn}Nn=1 = {gn · x0}Nn=1.84

Formally, this assumes that the action of G on85

X is regular. In this case, we can use the inverse86

group elements g−1
n to transform each data point87

toward the base point x0, i.e.88

x0 = g−1
1 · x1 = . . . = g−1

N · xN . (2)

Since ρ is linearly disentangled, we only need to89

measure the equivariance of the encoding map90

h to quantify LSBD. Equivariance is achieved91

when h(g · x) = ρ(g) · h(x), for all g ∈ G, x ∈92

X . Given the dataset described above, we can93

check this property for x ∈ {xn}Nn=1 and g ∈94

{gn}Nn=1.2 In particular, from Equation (2) we95

can see that we have equivariance if96

h(x0) = ρ(g−1
1 ) · h(x1) = . . . = ρ(g−1

N ) · h(xN ). (3)

This not only characterizes perfect equivariance, but also allows for an efficient way to quantify how97

close we are to true equivariance, by measuring the dispersion of the points {ρ(g−1
n ) · h(xn)}Nn=1.398

Given a suitable norm ‖ · ‖Z in Z, we can thus quantify LSBD in this setting as99

1

N

N∑
n=1

∥∥∥∥∥ρ(g−1
n ) · h(xn)− 1

N

N∑
n′=1

ρ(g−1
n′ ) · h(xn′)

∥∥∥∥∥
2

Z

, (4)

i.e. we compute the mean of {ρ(g−1
n ) · h(xn)}Nn=1 and use the average squared distance to this mean100

for points in {ρ(g−1
n ) · h(xn)}Nn=1 as our LSBD metric, see Figure 1.101

However, this formulation requires knowing the right linearly disentangled group representation and102

a suitable norm in Z. Moreover, it implicitly assumes a uniform probability measure over the group103

elements {gn}Nn=1. In the next section we formulate our metric for a more general setting.104

4.2 DLSBD: A Metric for LSBD105

Generalizing the ideas from the previous section with concepts from measure theory, we propose a106

metric to measure the level of LSBD of any encoding h : X → Z given a data probability measure µ107

on X , provided that µ can be written as the pushforward GX(·, x0)#ν of some probability measure108

ν on G by the function GX(·, x0) for some base point x0. More formally,109

µ(A) = GX(·, x0)#ν(A) = ν ({g ∈ G | GX(g, x0) ∈ A}) , (5)

for Borel subsets A ⊂ X . Note that this is only possible if the action GX is transitive.110

For example, the situation of a dataset with N datapoints {xn}Nn=1 = {gn · x0}Nn=1 corresponds to111

the case in which ν and µ are empirical measures on the group G and data space X , respectively:112

ν :=
1

N

N∑
i=1

δgi , µ :=
1

N

N∑
i=1

δxi
. (6)

2Note that {gn}Nn=1 can be used to describe all known group transformations between elements in the dataset
by means of composition and inverses, since xi = gi · (g−1

j · xj). Thus it suffices to check equivariance for
these N group transformations.

3Note that we do not actually need to know x0 nor h(x0).
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We define the metric DLSBD for an encoding h and a measure µ as113

DLSBD := inf
ρ∈P(G,Z)

∫
G

∥∥ρ(g)−1 · h(g · x0)−Mρ,h,x0

∥∥2

ρ,h,µ
dν(g),

with Mρ,h,x0 =

∫
G

ρ(g′)−1 · h(g′ · x0)dν(g′),

(7)

where the norm ‖·‖ρ,h,µ is a Hilbert-space norm depending on the representation ρ, the encoding map114

h : X → Z, and the data measure µ. More details of this norm can be found in the Supplementary115

Material. Moreover, P(G,Z) denotes the set of linearly disentangled representations of G in Z.116

Lower values of DLSBD indicate better disentanglement, zero being optimal.117

4.3 Practical Computation of DLSBD118

There are two main challenges for computing the metric of Equation (7). First, to calculate the119

integrals in the formula, all possible datapoints that can be expressed as g · x0 with g ∈ G =120

G1 × · · · × GK must be available. Second, the infimum of the integrals over all possible linearly121

disentangled representations must be estimated. This requires finding the possible invariant subspaces122

Z = Z1⊕· · ·⊕ZK induced by the encoding h over which the group representations are disentangled.123

We present a practical implementation of an upper bound to DLSBD for an encoding function h given124

a dataset X generated by some known group transformations. In particular, this approximation of125

DLSBD is designed for a group decomposition G = G1 × · · · ×GK where each Gk = SO(Dk) with126

k ∈ {1, . . . ,K} the group of rotations in Dk dimensions. This implementation approximates the127

integrals of Equation (7) by using the empirical distribution of X . The invariant subspaces of Z to the128

subgroup actions are found by applying a suitable change of basis. In the new basis, the disentangled129

group representations are expressed in a parametric form whose parameters are optimized to find the130

tightest bound to DLSBD. See Figure 2 for an intuitive description of the process.131

Assume there is a datasetX that can be modeled in terms of the group decompositionG = G1×· · ·Gk.132

For each Gk subgroup there is a set of known group elements Gk ⊆ Gk uniformly sampled such133

that the dataset is described in terms of all elements in G = G1 × · · · × GK and a base point x0 as134

X = {(g1, . . . , gK) · x0|gk ∈ Gk, k ∈ {1, . . . ,K}} .135

For each subgroup Gk we construct a set of encoded data Zk ⊆ Z whose variability should only de-136

pend on the action of Gk. The set Zk is given by Zk = {zk(g1, . . . , gK)|gj ∈ Gj , j ∈ {1, . . . ,K}},137

in which138

zk(g1, . . . , gK) = h((g1, . . . , gK) · x0)− 1

|Gk|
∑
g′∈Gk

h((g1, . . . , gk−1, g
′, gk+1, . . . , gK) · x0). (8)

Similar to (Cohen and Welling, 2014), we find a suitable change of basis that exposes the invariant139

subspace Zk corresponding to the k-th subgroup Gk. The new basis is obtained from the eigenvectors140

resulting from applying Principal Component Analysis (PCA) to Zk. Each element in Zk is projected141

into the first Dk eigenvectors. The new set is denoted as Z ′k ⊆ RDk with elements z′k(g1, . . . , gK) ⊆142

RDk that are the projected versions of zk(g1, . . . , gK).143

(Quessard et al., 2020) describes how one could parameterize the subgroup representations of SO(Dk)144

for arbitrary Dk but here we will focus on Gk = SO(2). In this case, we can parameterize each145

subgroup representation in terms of a single integer parameter ω ∈ Z as ρk,ω(gk) corresponding146

to a 2 × 2 rotation matrix whose angle of rotation is ω multiplied by the known angle associated147

to the group element gk ∈ Gk = SO(2). For this subgroup we can approximate the Mρ,h,x0 from148

Equation (7) as Mk,ω given by149

Mk,ω =
1

|G|
∑

(g1,...,gK)∈G

ρk,ω(g−1
k ) · z′(g1, . . . , gK). (9)

Similar to Equation (7) we would like to find the optimal ρk,ω that minimizes the integral over the150

group representations. We can define a parameter search space Ω ⊆ Z, e.g. Ω = [−10, 10] for finding151

the optimal ω ∈ Ω that minimizes the dispersion, this is expressed in the following equation152

D(k)
LSBD = min

ω∈Ω

1

|G|
∑

(g1,...,gK)∈G

‖ρk,ω(g−1
k ) · z′(g1, . . . , gK)−Mk,ω‖2. (10)
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Figure 2: Consider a dataset modeled by a group decomposition G = G1 × · · · ×GK acting on x0

and is embedded in a latent space Z via h. In this example the subgroup Gk = SO(2) models the
rotations of an airplane. Other subgroups G6=k could also be acting e.g. changes in airplane color.
The first step to calculate the disentanglement of Gk is to construct a set of data embeddings Zk ⊆ Z
whose variability is due to Gk. These embeddings are then projected into a 2-dimensional space
through PCA. For these projected embeddings we can describe the group representations in a simple
parametric form ρk,w. For a given ρk,w the equivariance of Gk is measured as the dispersion after
applying the action of the inverse group representation ρ−1

k,w.

EachD(k)
LSBD measures the degree of equivariance of the projected embeddings for each k-th subgroup153

corresponding to the best fitting group representation. The upper bound to the metric is finally obtained154

by averaging across all subgroups DLSBD ≤ 1
K

∑K
k=1D

(k)
LSBD.155

5 Learning LSBD Representations: LSBD-VAE156

In this section we present LSBD-VAE, a semi-supervised VAE-based method to learn LSBD repre-157

sentations. The main idea is to train an unsupervised Variational Autoencoder (VAE) (Kingma and158

Welling, 2014; Rezende et al., 2014) with a suitable latent space topology, and use our metric as an159

additional loss term for batches of transformation-labeled data.160

Assumptions LSBD-VAE requires some knowledge about the group structure G that is to be161

disentangled. Concretely, the group and its decomposition G = G1 × . . .×GK should be known,162

as well as a suitable linearly disentangled group representation ρ : G→ GL(Z) and a latent space163

Z = Z1 ⊕ . . . ⊕ ZK . Moreover, we assume there exists an embedded submanifold ZG ⊆ Z such164

that the action of G on Z restricted to ZG is regular, and ZG is invariant under the action. Only ZG165

will then be used as the codomain for the encoding map, h : X → ZG.166

We demonstrate the assumptions above for the common group structure G = SO(2)× SO(2). For167

the group representation ρ = ρ1 ⊕ ρ2, with Z = R2 ⊕ R2, we can use rotation matrices in R2 for168

ρ1 and ρ2. We can then use 1-spheres S1 = {z ∈ R2 : ‖z‖ = 1} for the embedded submanifold:169

ZG = S1 × S1. In this case, the action of G on Z restricted to ZG is indeed regular, and ZG is170

invariant under the action.171

Unsupervised Learning on Latent Manifold To learn encodings only on the latent manifold172

ZG, we use a Diffusion Variational Autoencoder (∆VAE) (Perez Rey et al., 2020). ∆VAEs can173

use any closed Riemannian manifold embedded in a Euclidean space as a latent space (or latent174

manifold), provided that a certain projection function from the Euclidean embedding space into the175

latent manifold is known and the scalar curvature of the manifold is available. The ∆VAE uses176

a parametric family of posterior approximates obtained from a diffusion process over the latent177

manifold. To estimate the intractable terms of the negative ELBO, the reparameterization trick is178

implemented via a random walk.179

In the case of S1 as a latent (sub)manifold, we consider R2 as the Euclidean embedding space, and180

the projection function4 Π : R2 → S1 normalizes points in the embedding space: Π(z) = z/|z|. The181

scalar curvature of S1 is 0.182

4This projection function is not defined for z = 0, but this value does not occur in practice.
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Semi-Supervised Learning with Transformation Labels Caselles-Dupré et al. (2019) proved183

that LSBD representations cannot be inferred from a training set of unlabeled observations, but that184

access to the transformations between data points is needed. They therefore use a training set of185

observation pairs with a given transformation between them.186

However, we posit that only a limited amount of supervision is sufficient. Since obtaining supervision187

on transformations is typically more expensive than obtaining unsupervised observations, it is188

desirable to limit the amount of supervision needed.189

dec.

dec.

dec.

enc.

enc.

enc.

Figure 3: Overview of the supervised part of LSBD-VAE.

Therefore, we augment the un-190

supervised ∆VAE with a super-191

vised method that makes use of192

transformation-labeled batches, i.e.193

batches {xm}Mm=1 such that xm =194

gm · x1 for m = 2, . . . ,M , where195

the transformations gm (and thus196

their group representations ρ(gm)) are197

known and are referred to as transfor-198

mation labels. The simplified version199

of the metric from Equation (4) can200

then be used for each batch as an ad-201

ditional loss term (with x0 = x1), as202

it is differentiable under the assump-203

tions described above (using the Eu-204

clidean norm).205

We make a small adjustment to Equation (4) for the purpose of our method, since the mean computed206

there does not typically lie on the latent manifold ZG. Thus, we use the projection Π from the ∆VAE207

to project the mean onto ZG. Writing the encodings as zm := h(xm), the additional loss term for a208

transformation-labeled batch {xm}Mm=1 then becomes209

LLSBD =
1

M

M∑
m=1

∥∥∥∥∥ρ(g−1
m ) · zm −Π

(
1

M

M∑
m=1

ρ(g−1
m ) · zm

)∥∥∥∥∥
2

, (11)

where g1 = e, the group identity.210

Moreover, instead of feeding the encodings zm to the decoder, we use ρ(gm) · z, where z =211

Π
(

1
M

∑M
m=1 ρ(g−1

m ) · zm
)

. This encourages the decoder to follow the required group structure.212

This only affects the reconstruction loss component of the ∆VAE.213

Figure 3 illustrates the supervised part of our method for a transformation-labeled batch {xm}Mm=1.214

The loss function is the regular ELBO (but with adjusted decoder input as described above) as used215

in ∆VAE plus an additional term γ · LLSBD, where γ is a weight hyperparameter to control the216

influence of the supervised loss component. By alternating unsupervised and supervised training217

(using the same encoder and decoder), we have a method that makes use of both unlabeled and218

transformation-labeled observations.219

6 Experimental Setup220

We evaluate the disentanglement of several models on three different image datasets (Square, Arrow,221

and Airplane) with a known group decomposition G = SO(2)× SO(2) describing the underlying222

transformations. For each subgroup a fixed number of |Gk| = 64 with k ∈ {1, 2} transformations is223

selected. The datasets exemplify different group actions of SO(2): periodic translations, in-plane224

rotations, out-of-plane rotations, and periodic hue-shifts.225

In real settings, not all variability in the data can be modelled by the actions of a group. Therefore,226

we also evaluate the same models on two datasets ModelNet40 (Wu et al., 2014) and COIL-100227

(Nene et al., 1996) that consist of images from various objects (i.e. non-symmetric variation) under228

known out-of-plane rotations (SO(2) symmetries). In many settings it is easy to obtain labels for229

such rotations, e.g. when the camera or object angle is controlled by an agent. See Figure 4 for230

examples of the datasets. For more details, see the Supplementary Material.231

6



(a) Square (b) Arrow (c) Airplane

(d) ModelNet40 (e) COIL-100

Figure 4: Example images from each of the datasets used. Each row shows different examples from a
single factor changing.

For the Square, Arrow, and Airplane datasets we test LSBD-VAE with transformation-labeled batches232

of size M = 2. More specifically, for each experiment we randomly select L disjoint pairs of data233

points, and label the transformation between the data points in each pair. We vary the number of234

labeled pairs L from 0 (corresponding to a ∆VAE) to N/2 (in which case each data point is involved235

in exactly one labeled pair). We set the weight γ of the supervised loss component to γ = 100236

for all experiments. We choose M = 2 for our experiments since it is the most limited setting for237

LSBD-VAE. Higher values of M would provide stronger supervision, so successful results with238

M = 2 imply that good results can also be achieved for higher values of M (but not necessarily vice239

versa).240

For the COIL-100 and ModelNet40 datasets, we train LSBD-VAE on batches containing images of241

one particular object from all different angles (72 and 64 for COIL-100 and ModelNet40, respectively).242

Each batch is labelled with transformations (g1, e), . . . , (gM , e), where gm represent rotations, and243

the unit transformation e indicates that the object is unchanged. To represent the rotations we use244

a S1 latent space as in ∆VAE, whereas for the object identity we use a 5-dimensional Euclidean245

space with standard Gaussian prior as in regular VAEs. LSBD is measured as the disentanglement of246

rotations in the latent space. For these experiments we used γ = 1.247

We furthermore test a number of known disentanglement methods for comparison, including tra-248

ditional disentanglement methods as well as methods focusing on LSBD. In particular, we use249

disentanglement_lib (Locatello et al., 2019) to train a regular VAE (Kingma and Welling, 2014;250

Rezende et al., 2014), β-VAE (Higgins et al., 2017), CC-VAE (Burgess et al., 2018), FactorVAE251

(Kim and Mnih, 2018), and DIP-VAE-I/II (Kumar et al., 2018). Furthermore we evaluate the method252

from Quessard et al. (2020) that focuses on LSBD. We also tested ForwardVAE (Caselles-Dupré253

et al., 2019), but show only limited results since we were not able to reproduce any reasonable results254

for our datasets.255

We use encodings from all these methods to evaluate DLSBD, as well as common traditional disentan-256

glement metrics from disentanglement_lib: Beta (Higgins et al., 2017), Factor (Kim and Mnih,257

2018), SAP (Kumar et al., 2018), DCI Disentanglement (Eastwood and Williams, 2018), Mutual258

Information Gap (MIG) (Chen et al., 2018), and Modularity (MOD) (Ridgeway and Mozer, 2018).259

More information about the architecture, epochs and hyperparameters can be found in the Supplemen-260

tary Material. For the traditional disentanglement methods trained on Square, Arrow and Airplane261

datasets the latent spaces have 4 dimensions, since these are the minimum number of dimensions262

necessary to learn LSBD representations for an underlying SO(2) × SO(2) symmetry group, see263

(Higgins et al., 2018; Caselles-Dupré et al., 2019). For COIL-100 and ModelNet40 we use latent264

spaces with 7 dimensions for a fair comparison with the LSBD-VAE method.265

7 Results: Evaluating LSBD with DLSBD266

We now highlight four key observations from our experimental results. In particular, we differentiate267

between the methods (VAE, β-VAE, CC-VAE, FACTOR, DIP-I, DIP-II) and metrics (BETA,268

FACTOR, SAP, DCI, MIG, MOD) that approach disentanglement in the traditional sense, and269

methods (∆VAE, QUESSARD, LSBD-VAE) and metric (DLSBD) that focus specifically on LSBD.270

The full quantitative results can be found in the Supplementary Material.271
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7.1 Standard Disentanglement Methods Don’t Learn LSBD Representations272

Figure 5 summarizes the DLSBD scores (lower is better) for all methods on all datasets. Bars show273

the mean scores over 10 runs for each method, the vertical lines represent standard deviations.274

LSBD-VAE/L indicates our method trained on L labelled pairs (LSBD-VAE/0 corresponds to the275

unsupervised ∆VAE), LSBD-VAE/full indicates our method trained on batches containing a single276

object in all known transformations (for datasets with non-symmetric variation). Note that LSBD-277

VAE obtained very good scores (nearly 0) on the Arrow and Pixel datasets, hence the missing278

bars.279
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(a) Datasets with SO(2)× SO(2) symmetries
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Figure 5: DLSBD scores for all methods on all datasets

None of the traditional disentanglement methods achieve good DLSBD scores, even if they score well280

on other traditional disentanglement metrics. This implies that LSBD isn’t achieved by traditional281

methods. Moreover, from the full results in the Supplementary Material we see that the traditional282

methods on these datasets do not achieve good scores on all traditional metrics. In particular, SAP,283

DCI, and MIG scores are low. We believe this is a result of the cyclic nature of the symmetries284

underlying our datasets, further emphasizing the need for disentanglement methods that can capture285

such symmetries.286

The SAP and MIG scores measure to what extent generative factors are disentangled into a single287

latent dimension. However, since the factors in our dataset are inherently cyclic due to their symmetry288

structure, they cannot be properly represented in a single latent dimension, as shown by Perez Rey289

et al. (2020). Instead, at least two dimensions are needed to continuously represent each cyclic factor290

in our data. A similar conclusion was made by Caselles-Dupré et al. (2019) and Painter et al. (2020).291

DCI disentanglement measures whether a latent dimension captures at most one generative factor.292

This is accomplished by measuring the importance of each latent dimension in predicting the293

true generative factor using boosted trees. However, since the generative factors are cyclic, the294

performance of the boosted tree classifiers is far from optimal, thus providing more importance to295

several dimensions in predicting the generative factors and giving overall lower DCI scores.296

7.2 LSBD-VAE and other LSBD Methods Can Learn LSBD Representations with Limited297

Supervision on Transformations298

From Figure 5 we observe that methods focusing specifically on LSBD can score higher on DLSBD,299

showing that they are indeed more suitable to learn LSBD representations. In particular, LSBD-VAE300

got very good DLSBD scores for all datasets. Moreover, our experiments on the Arrow, Airplane, and301

Pixel datasets also show that only limited supervision suffices to obtain good DLSBD scores with low302

variability.303

We only partially managed to reproduce the results from Quessard et al. (2020) on our datasets. Their304

method scored fairly well on the Airplane, ModelNet40, and COIL-100 datasets, but did not do well305

on the Square and Arrow dataset in our experiments.306

Furthermore, we tested ForwardVAE by Caselles-Dupré et al. (2019), but we did not manage307

to produce any reasonable results on our datasets, trying both their original architecture and the308
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architecture we used for our other experiments. Therefore, we do not include scores for this method.309

We did however manage to reproduce ForwardVAE’s results on the Flatland dataset, which was used310

in their paper. For those experiments, we computed a mean DLSBD score of 0.012 with standard311

deviation 0.001 over 10 runs, indicating that ForwardVAE indeed learns LSBD representations for312

Flatland.313

7.3 LSBD Representations Also Satisfy Previous Disentanglement Notions314

Our results also indicate that LSBD captures various desirable properties that are expressed by315

traditional disentanglement metrics. In Figure 6 we compare DLSBD scores with scores for previous316

disentanglement metrics, for all our experiments. Note that for DLSBD lower is better, whereas for317

all other metrics higher is better. As we noted before, good scores on traditional disentanglement318

metrics don’t necessarily imply good DLSBD scores. Conversely however, methods that score well319

on DLSBD also score well on many traditional disentanglement metrics, often even outperforming320

the traditional methods. In particular, from the full results (see Supplementary Material) we see321

that LSBD-VAE matches or outperforms the traditional methods on the BETA, FACTOR and MOD322

metrics, and achieves much better scores for the DCI metric where traditional methods scored poorly.323

The MIG and SAP scores are still low for methods focusing on LSBD. This is expected however, as324

explained earlier in Section 7.1. This was also observed by Painter et al. (2020) for different datasets.325
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Figure 6: Comparing DLSBD to previous disentanglement metrics

8 Conclusion326

We presented DLSBD, a metric to quantify Linear Symmetry-Based Disentanglement (LSBD) as327

defined by Higgins et al. (2018). We further used this metric formulation to motivate LSBD-VAE,328

a semi-supervised method to learn LSBD representations given some expert knowledge on the329

underlying group symmetries that are to be disentangled.330

We used DLSBD to evaluate various disentanglement methods, both traditional methods and recent331

methods that specifically focus on LSBD, and showed that LSBD-VAE can learn LSBD representa-332

tions where traditional methods fail to do so. We also comparedDLSBD to traditional disentanglement333

metrics, showing that LSBD captures many of the same desirable properties that are expressed by334

existing disentanglement methods. Conversely, we also showed that traditional disentanglement335

methods and metrics do not usually achieve or measure LSBD.336

Challenges that remain are expanding and testing LSBD-VAE and DLSBD on different group struc-337

tures, towards more practical applications, as well as focusing on the utility of LSBD representations338

for downstream tasks.339

Broader Impact The work is fairly theoretical, and practical methods derived from this work have340

no obvious negative societal impact. However, the ideas presented are relevant to representation341

learning and could be, in particular, used in computer vision and agent control applications.342
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