
AdapterBias: Parameter-efficient Token-dependent Representation Shift
for Adapters in NLP Tasks

Anonymous ACL submission

Abstract

Transformer-based pre-trained models with001
millions of parameters require large storage.002
Recent approaches tackle this shortcoming by003
training adapters, but these approaches still re-004
quire a relatively large number of parameters.005
In this study, AdapterBias, a surprisingly sim-006
ple yet effective adapter architecture, is pro-007
posed. AdapterBias adds a token-dependent008
shift to the hidden output of transformer layers009
to adapt to downstream tasks with only a vec-010
tor and a linear layer. Extensive experiments011
are conducted to demonstrate the effectiveness012
of AdapterBias. The experiments show that013
our proposed method can dramatically reduce014
the trainable parameters compared to the pre-015
vious works with a minimal decrease in task016
performances compared with fine-tuned pre-017
trained models. We further find that Adapter-018
Bias automatically learns to assign more sig-019
nificant representation shifts to the tokens re-020
lated to the task in consideration.021

1 Introduction022

While large pre-trained language models (PLMs)023

reached state-of-the-art results on natural language024

processing (NLP) tasks, PLMs require updating025

all parameters and storing the fully fine-tuned026

model for each downstream task. These require-027

ments have led to difficulties in real-world ap-028

plications. Moreover, fine-tuning PLMs on low-029

resource datasets is subject to instabilities.030

To tackle these shortcomings, Adapters (Houlsby031

et al., 2019), a more parameter-efficient alternative032

training strategy for the transformer architecture033

(Vaswani et al., 2017) has been proposed. Instead034

of full fine-tuning the whole model, Adapters intro-035

duces extra tunable weights and freezes the original036

parameters of PLM. Adapters demonstrated compa-037

rable performance with fully fine-tuning the entire038

model. Although Adapters solve the problem of039

the PLM’s massive parameters, researchers are curi-040

ous about how many more parameters are required041

Figure 1: Overview of the main concept of our work
compared to BitFit (Ben Zaken et al., 2021). Left: Bit-
Fit tends to add the same representation shift to differ-
ent tokens. Right: Our work applies different repre-
sentation shifts to tokens considering their importance
to the downstream task and their characteristics. The
shifts of the input words that are more task-related is
more significant than that of other tokens. For example,
in SST-2 (Socher et al., 2013), which is a semantic task,
the representation shifts of the semantic words, such as
"kind" and "worse", are larger than that of other words.

to reach state-of-the-art performance on standard 042

NLP tasks. The results in Houlsby et al. (2019) 043

have shown that the performance on GLUE bench- 044

mark (Wang et al., 2018) is almost the same when 045

removing the Adapters in the first layers, which 046

indicates that not every adapter is useful. It leaves 047

the question of whether adapters can be even more 048

parameter-efficient. 049

To develop practical and memory-efficient 050

adapters, Diff pruning (Guo et al., 2020) enables 051

parameter-efficient transfer learning that scales 052

well with new tasks. The approach learns a task- 053

specific “diff” vector that extends the original pre- 054

trained parameters and encourages the sparsity of 055

the vector through L0-norm regularization. An- 056

other approach is BitFit (Ben Zaken et al., 2021), 057

which shows that with small-to-medium training 058

data, fine-tuning only a subset of the bias terms 059

of pre-trained BERT models (Devlin et al., 2018) 060

1



is competitive with fine-tuning the entire model.061

The central concept of these approaches is to add062

task-specific shifts to each output representation063

of the PLM layers so as to adapt to different tasks.064

In the previous works, Ben Zaken et al. (2021);065

Guo et al. (2020) both add the same shifts to the066

output representation regardless of which token is067

more relevant to the task. However, considering068

some specific tokens might be more critical to a069

particular task, the representation can better adapt070

to the downstream task under a limited amount of071

parameters if these shifts are based on the input072

tokens.073

Based on this concept, in this study, we add074

token-dependent biases to the shifts by proposing075

AdapterBias, which consists of a vector and a linear076

layer (Lα). The vector represents the task-specific077

shift, and Lα produces the weights for input tokens.078

Thus, with the vector and the weights, AdapterBias079

can add a token-dependent shift to the transformer080

layer. Since the concept of BitFit (Ben Zaken et al.,081

2021) is similar to AdapterBias by adding a shift to082

the representation, we demonstrate the difference083

between BitFit and AdapterBias in Figure 1. Bit-084

Fit assigns identical shifts to all the tokens, while085

AdapterBias adds more significant shifts to the to-086

kens related to the task.087

With fewer trainable parameters required,088

AdapterBias achieves comparable performance on089

the GLUE benchmark with Houlsby et al. (2019);090

Pfeiffer et al. (2020a); Guo et al. (2020); Ben Za-091

ken et al. (2021). We further decrease the param-092

eters of AdapterBias in different ways, including093

partial weight-sharing in AdapterBias and adding094

L0-norm regularization. Finally, AdapterBias has095

better interpretability due to its simplicity. We096

use different tools, including word cloud and PCA097

(Jolliffe, 2002), to visualize what AdapterBias has098

learned, and we found that the proposed approach099

automatically learns to assign larger representation100

shifts to the task-related tokens.101

2 Related Work102

For NLP tasks, adapters are introduced for the103

transformer architecture. A set of adapter param-104

eters was added at each transformer layer, which105

is mostly bottleneck architectures Houlsby et al.106

(2019). By keeping the output dimension identical,107

they cause no change to the structure or parameters108

of the original model.109

Adapters quickly gained popularity in NLP with110

various applications. For multi-task learning (Caru- 111

ana, 1997; Zhang and Yang, 2017; Liu et al., 112

2019b), a projected self-attention layer is proposed 113

by Stickland and Murray (2019), while Bapna et al. 114

(2019) proposed an additional layer norm suitable 115

for machine translation. 116

Besides the applications of adapters, researchers 117

are also dedicated to improving their performance. 118

Based on the architecture introduced by Houlsby 119

et al. (2019), AdapterFusion (Pfeiffer et al., 2020a) 120

leveraged knowledge from multiple tasks with a 121

new two-stage learning algorithm. Despite the re- 122

cent popularity of these methods, they still train a 123

relatively large number of training parameters. 124

Recently, studies start to focus on improving 125

the parameter-efficiency of adapters. Diff-pruning 126

(Guo et al., 2020) achieves parameter efficiency by 127

adding a sparse, task-specific difference-vector to 128

the fixed original parameters. The vector is adap- 129

tively pruned during training with a differentiable 130

approximation to the L0-norm penalty to encour- 131

age sparsity. Rücklé et al. (2020) introduced Adap- 132

terDrop, which has been recently integrated into 133

AdapterHub (Pfeiffer et al., 2020b) by removing 134

adapters from lower transformer layers during train- 135

ing and inference, which can dynamically reduce 136

the computational cost. Mahabadi et al. (2021) pro- 137

posed Compacter, which improved the trade-off 138

between performance and trainable parameters per 139

task with low-rank optimization. 140

On the other hand, without modifying the archi- 141

tecture of the PLM, BitFit (Ben Zaken et al., 2021) 142

shows that fine-tuning only the bias terms of a large 143

PLM is also competitive with fine-tuning the en- 144

tire model. Fine-tuning only the bias terms can 145

be considered as adding a task-specific shift to the 146

token representation. BitFit is most similar to our 147

work. While in BitFit, the shifts added to all the 148

representations are exactly the same for all input 149

tokens, in our work, the shifts are token-dependent. 150

3 Method 151

In this section, we present AdapterBias, an efficient 152

way to adapt large-scale PLMs. In order to better 153

adapt to different downstream tasks, the adapter 154

module should be token-specific. AdapterBias pro- 155

duces a suitable weight of the bias based on the 156

input tokens. 157

Problem Formulation We consider the general 158

problem of fine-tuning PLMs, where the training 159

data D = (xi, yi)
N
n=1 is given. Assume that given 160

2



Figure 2: Model architectures comparison of Houlsby et al. (2019), BitFit (Ben Zaken et al., 2021), and the
proposed method AdapterBias. The orange blocks indicate the trainable parts, while the gray blocks indicate the
frozen parameters during the training stage. Left: Houlsby et al. (2019) adds their Adapters after the feed-forward
layers, and their Adapter consists of two linear layers and an active function. Middle: BitFit tunes all biases from
the original transformer layers. Right: AdapterBias, consisting of a linear layer (Lα) and a vector (v), is added
after the second feed-forward layer only in each transformer layer.

a PLM with parameters θ and AdapterBias with161

parameters θ′. During the training stage, we freeze162

θ and tune θ′ only.163

3.1 AdapterBias164

The architecture of AdapterBias is shown in the165

right part of Figure 2. AdapterBias consists of two166

modules: a vector (v) and a linear layer (Lα). v167

is a task-specific shift added to the output of each168

transformer layer. Since some tokens are more169

important to some tasks, these tokens should be as-170

signed larger representation shifts than other tokens.171

The linear layer (Lα) produces a token-dependent172

weight vector α = [α1, α2 . . . αm]
T , where αi is173

the weight of the ith token’s representation shift.174

By applying the token-specific weight to the task-175

specific representation shift (v), AdapterBias can176

focus on the tokens that are more important to the177

task and is able to adapt to different downstream178

tasks efficiently.179

We define the output of AdapterBias as the bias180

(B), which is the outer product of v and the learned181

weights vector α. When the dimension of the to-182

ken’s representation is r with with m input tokens,183

the function can be defined as follows:184

B = v ⊗ αT =
(
α1v α2v . . . αmv

)
(1)185

where v ∈ Rr, α ∈ Rm, and B ∈ Rr×m.186

To further elaborate on the details of Adapter- 187

Bias, we give an example of how AdapterBias pro- 188

duces B and how B adds to the transformer layer. 189

In Figure 3, we assume that there are three rep- 190

resentation outputs (r1, r2, r3) after the first layer 191

normalization. The dimension of r1, r2 and r3 is 192

the dimension of the 2nd feedforward layer, while 193

the dimension of the linear layer (Lα) is the output 194

dimension of the first feed-forward layer with the 195

token representation (r1, r2, r3) as its inputs. The 196

linear layer (Lα) produces α, where α ∈ R3. The 197

blocks in different colors represent the difference 198

of the weights (α1, α2, α3). Take BERT-base for 199

example, after performing outer product with the 200

weights vector α and the vector (v), the dimension 201

of B becomes 768 × 3. For example, b1, the first 202

column of B, is the shift for the first token repre- 203

sentation. 204

3.2 Further improvement on 205

parameter-efficiency of AdapterBias 206

In this section, we experiment on two ways to make 207

AdapterBias more parameter efficient. One is par- 208

tial weight-sharing of AdapterBias among trans- 209

former layers, another is enforcing the weights of 210

the linear layer (Lα) to be sparse by utilizing L0- 211

norm penalty. 212

3



3.2.1 Cross-layer parameters sharing in213

AdapterBias214

Redundancies have been observed in the informa-215

tion captured by adapters, with adapters in lower216

layers being less important. In the work of Houlsby217

et al. (2019), they observed that their Adapter mod-218

ules in the lower layers are less important. In ad-219

dition, sharing parameters of the Adapter across220

layers leads to a comparatively small drop in per-221

formance in some tasks. In light of the above in-222

formation, we further reduce the number of param-223

eters required for each task by partially sharing224

the weights of the adapters across all transformer225

layers. The experimental results are discussed at226

Section 4.6.1.227

3.2.2 L0 regularization in AdapterBias228

Sparsity has been utilized in various parameter-229

efficient methods. For applications in NLP tasks,230

Diff-pruning (Guo et al., 2020) learns a sparse vec-231

tor added to the whole PLM with L0-norm penalty.232

Inspired by their work, we further apply L0-norm233

regularization to Lα in the AdapterBias module,234

aiming to encourage the sparsity of Lα. We choose235

to drop Lα because it contributes most of the pa-236

rameters in AdapterBias. Encouraging its sparsity237

can further increase the parameter efficiency. Note238

that we specifically apply L0 regularization in Sec-239

tion 4.6.2.240

In AdapterBias, we add L0-norm penalty to the241

linear layer (Lα). The optimization problem can242

be expressed as,243

min
θ′

L(D; θ, θ′) + λ‖θ′Lα
‖0, (2)244

where L(D; ·) represents the original loss with245

training data D. λ is the hyperparameter for L0-246

norm penalty. Note that θ′ represents trainable247

parameters and θ′Lα
represents the parameters of248

Lα in AdapterBias. Following the work of Diff-249

pruning, we utilize a relaxed mask vector (Louizos250

et al., 2017) with a stretched Hard-Concrete distri-251

bution (Jang et al., 2016; Maddison et al., 2016) to252

encourage L0 sparsity.253

4 Experiments254

In this section, we evaluate the effectiveness of our255

proposed adapter module in NLP training tasks,256

and provide the analysis of what AdapterBias has257

learned in different tasks.258

Figure 3: The detailed architecture of how AdapterBias
produces the bias (B) and how B is added to the output
of transformer layers.

4.1 Experimental settings 259

For the experiments, we base our experiments 260

on HuggingFace PyTorch implementation (Wolf 261

et al., 2019) of BERT (Devlin et al., 2018) and 262

RoBERTa (Liu et al., 2019c) models. The learning 263

rate is set in the range [10−4, 10−3], with AdamW 264

(Loshchilov and Hutter, 2017) as the optimizer. 265

GLUE benchmark (Wang et al., 2018) and SQuAD 266

v1.0 (Rajpurkar et al., 2016) are the training data 267

in our settings. 268

The training details are shown in Appendix A.3. 269

Note that the second layer normalization in each 270

transformer layer is also tuned during the training 271

stage, corresponding to the orange component in 272

the right part of Figure 2. We experiment with 273

3 random seeds and choose the seed with the best 274

performance on the validation set to evaluate on the 275

GLUE server. We report the test metrics provided 276

on the submission website1. 277

4.2 Results on GLUE 278

In this section, we compare AdapterBias to other 279

parameter-efficient methods, including Adapters 280

(Houlsby et al., 2019), Diff-pruning (Guo et al., 281

2020), and BitFit (Ben Zaken et al., 2021). In Table 282

1, we report the test scores on the GLUE benchmark 283

1https://gluebenchmark.com/

4



Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BERTLARGE 340M 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2

Adapters (Houlsby et al., 2019) 7.14M 56.9 94.2 89.6 91.4 68.8 87.3 85.3 84.6 71.8 81.1
Diff-Pruning (Guo et al., 2020) 1.7M 61.1 94.1 89.7 93.3 70.6 86.0 86.4 86.0 71.1 82.0
BitFit (Ben Zaken et al., 2021) 0.27M 59.7 94.1 88.9 92.0 72.0 85.5 84.5 84.8 70.5 81.3

AdapterBias 0.23M 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2

Table 1: Performance of all methods on the GLUE testing sets scored by the GLUE evaluation server. For each
method, we report the new adding parameters per task. For QQP, we report the F1 score. For STS-B (Cer et al.,
2017), we report Spearman correlation coefficients. For CoLA (Warstadt et al., 2019), we report Matthews correla-
tion. For all other tasks, we report accuracy. Bold fonts indicate the least trainable parameter per task. The first row
(BERTLARGE) represents fine-tuning the whole BERT-large model without adding new parameters. The results of
baselines including (Houlsby et al., 2019; Guo et al., 2020; Ben Zaken et al., 2021) are their reported performance
and Pfeiffer et al. (2020a) performance is reproduced on our setting. Due to instability during training, we restart
experiments with 3 random seeds and report the best.

Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 110M 52.1 93.5 88.9 90.5 66.4 85.8 84.6 83.4 71.2 79.6
BB BitFit 0.10M 47.2 92.4 87.4 89.7 65.5 87.6 80.8 80.9 67.8 77.7
BB AdapterBias 0.08M 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0
BL Full-FT 340M 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2
BL BitFit 0.27M 62.0 93.1 86.8 89.8 66.6 87.2 84.1 84.3 67.2 81.1
BL AdapterBias 0.23M 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2

RoB Full-FT 125M 61.3 94.7 90.4 92.0 74.4 87.5 87.4 86.8 71.9 82.9
RoB BitFit 0.10M 62.7 94.8 89.7 91.3 73.6 88.5 85.3 84.9 68.1 82.1
RoB AdapterBias 0.08M 61.9 94.5 90.2 91.1 74.1 88.7 85.3 85.1 70.5 82.4
RoL Full-FT 355M 63.3 96.7 92.3 95.4 84.5 92.2 90.8 90.2 74.3 86.6
RoL BitFit 0.26M 64.7 95.8 91.5 94.2 80.9 90.6 89 88.9 72.0 85.3
RoL AdapterBias 0.21M 63.9 96.4 90.4 94.7 83.6 91.3 89.8 89.4 72.3 85.8

Table 2: Performances of AdapterBias adding in different PLMs. Here we experiment four model : BERT-base
(BB), BERT-large (BL), RoBERTa-base (RoB) and RoBERTa-large (RoL). The percentage of new parameters is
compared with the PLM. The setting follows by Table 1. The Full-FT represents fine-tuning the whole PLM
without adding adapters.

and the required new parameters per task. Here we284

use BERT-large as the PLM. AdapterBias reaches285

81.2 average score in GLUE benchmark, with the286

smallest amount of parameters (0.23M) added per287

task. AdapterBias shows competitive performance288

as its parameters are 30× less than the works of289

Houlsby et al. (2019). Although Diff-pruning (Guo290

et al., 2020) has the best average score among all291

parameter-efficient methods, their work trains an292

additional vector whose parameter count is equiv-293

alent to the parameters of the whole PLM. Thus,294

Diff-pruning requires 340M trainable parameters295

of BERT-large during the training stage, while296

AdapterBias only trains 0.23M parameters. Fur-297

thermore, AdapterBias achieves comparable per-298

formance with BitFit with fewer parameters needed299

per task. This shows that AdapterBias is a worth-300

while targeted fine-tuning method.301

4.3 Different base models 302

To analyze how well this approach generalizes to 303

different PLMs on different models of AdapterBias, 304

as shown in Table 2, we apply AdapterBias in differ- 305

ent transformer-based PLMs, including BERT-base 306

(BB), BERT-large (BL), RoBERTa-base (RoB), 307

and RoBERTa-large (RoL), on the GLUE bench- 308

mark. All results are scored by the GLUE evaluate 309

server. Compared with BitFit, In Table 2, not only 310

can AdapterBias perform well on BERT but also 311

achieve competitive performance on larger PLMs 312

such as RoBERTa. 313

4.4 Size of training data 314

In the previous experimental results, we observe 315

that AdapterBias tends to have higher performance 316

on tasks with a smaller amount of data (i.e. CoLA, 317

SST-2, and RTE). To further validate this obser- 318

vation, we follow the work of BitFit (Ben Zaken 319

et al., 2021) by training AdapterBias on subsets of 320

5



Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
w/o Lα 8.8K 45.6 91.5 87.4 88.3 65.6 81.0 77.9 78.4 65.7 75.7

AdapterBias 82.5K 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0

Table 3: The importance of the linear layer (Lα) in AdapterBias. The setting follows by Table 1. The backbone
model is BERT-base. w/o Lα means that there is only a vector (v) in AdapterBias.

Figure 4: Comparison of Finetune, BitFit (Ben Za-
ken et al., 2021), and AdapterBias with BERT-base on
SQuAD validation set. The x-axis represents the total
number of training sets while the y-axis represents the
exact match score.

SQuAD v1.0 (Rajpurkar et al., 2016) of increasing321

size. The experiments are conducted with BERT-322

base model. The results on the validation set of323

the SQuAD dataset are listed in Figure 4, which324

shows the tendency of AdapterBias outperform-325

ing full fine-tuning when the size of the training326

dataset is smaller. However, with more training327

data available, the trend is reversed. The results328

show that AdapterBias has the ability to outperform329

fine-tuning the whole PLM with small-to-medium330

data size, similarly to BitFit.331

4.5 Investigation on the effectiveness of token332

dependent representation shift333

Different from BitFit (Ben Zaken et al., 2021),334

where the bias terms in all transformer layers are335

tuned, we claim that the bias added to the repre-336

sentation should be token-dependent, and proposed337

AdapterBias based on this concept. We conduct338

ablation studies to verify this claim. In this exper-339

iment, the linear layer (Lα) in AdapterBias that340

produces the token-dependent weights vector (α)341

is removed; that is, only the v is trained. All shifts342

added to the representation outputs are identical343

within the same transformer layer. The experiments344

are conducted with BERT-base model. We report 345

the test scores on the GLUE benchmark in Table 3. 346

The performance of AdapterBias without the lin- 347

ear layer (Lα) dramatically decreases. Without Lα, 348

it is hard for the vector (v) to adapt to different 349

downstream tasks. This result demonstrates the im- 350

portance of Lα. In other words, assigning different 351

shifts to different token representations improves 352

the performance of the method. 353

4.6 Improving the parameter efficiency of 354

AdapterBias 355

We further apply two additional methods to 356

AdapterBias to enhance its parameter efficiency. 357

Experiments are conducted to see whether Adapter- 358

Bias can be more parameter-efficient by sharing 359

its components across all layers. Moreover, we 360

experiment on adding L0-norm regularization dur- 361

ing the training stage to encourage the sparsity of 362

AdapterBias. 363

4.6.1 Sharing components in AdapterBias 364

In this experiment, we conduct an ablation study 365

of partial weight-sharing in the AdapterBias mod- 366

ule. In Table 4, we share components of Adapter- 367

Bias among different transformer layers. Share 368

v represents sharing v across all transformer lay- 369

ers, while Share Lα means sharing the linear layer 370

(Lα). Share v+Lα denotes sharing one Adapter- 371

Bias across all transformer layers. As can be seen 372

in Table 4, the performance of Share Lα stands out 373

among other partial weight-sharing methods, while 374

Share v leads to a poor performance. 375

From the experiments above, we conclude that 376

the linear layer (Lα) captures general task informa- 377

tion by learning the weights of the bias for different 378

tokens. Thus, sharing Lα across all layers results in 379

better performance compared to other components. 380

The vector module (v) in AdapterBias aims to learn 381

local information in each transformer layer. If v 382

among different transformer layers are shared, the 383

performance drops dramatically. This might be due 384

to a failure of v to learn general information which 385

can be adapted to each individual transformer layer. 386

6



Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
Share v 74.8K 50.1 90.8 87.1 87.6 65.0 84.9 77.5 77.9 65.1 76.2

Share Lα 49.5K 50.4 91.9 88.1 89.1 65.4 85.2 79.8 79.9 66.6 77.4
Share v+Lα 40.7K 46.8 90.9 87.3 87.8 64.8 85.7 77.7 78.0 64.9 76.0

AdapterBias 82.5K 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0

Table 4: Analysis of more parameter-efficiency improvement in AdapterBias. The setting follows by Table 1. The
backbone model is BERT-base. Share v, Share Lα and Share v+Lα means that we share vector, linear layer, and
both of them, respectively.

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 52.1 93.5 88.9 90.5 66.4 85.8 84.6 83.4 71.2 79.6
BB AdapterBias 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0
BB AdapterBias (L0) 53.7 92.5 87.5 90.3 68.3 85.7 81.7 81.5 69.8 79.0
BL Full-FT 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2
BL AdapterBias 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2
BL AdapterBias (L0) 58.0 93.7 88.2 91.5 69.2 87.2 84.2 84.1 71.2 80.8

Table 5: Performances of our AdapterBias with L0-norm regularization. Here we experiment with two models:
BERT-base (BB) and BERT-large (BL). The setting follows by Table 1. The Full-FT represents fine-tuning the
whole PLM without adding adapters.

4.6.2 L0-norm regularization in AdapterBias387

We observed that many of the trained parameters388

in Lα have values that are extremely close to zero389

after tuning on downstream tasks, which might390

cause redundancy of the parameters. To further391

encourage the sparsity of AdapterBias, we add L0-392

norm regularization to Lα during the training stage.393

In Table 5, we use BERT-base (BB) and BERT-394

large (BL) for the PLM. We compare the perfor-395

mance of fine-tuning, the original AdapterBias, and396

the one trained with L0-norm regularization. The397

experiment shows that adding L0-norm regulariza-398

tion during the training step improves the perfor-399

mance on 7 out of 9 tasks in BERT-base models.400

However, the performance did not improve when401

applied to BERT-large models. As for the param-402

eter efficiency of applying L0-norm penalty, the403

linear layer (Lα) with L0-norm penalty saves about404

17% parameter on average compared to the original405

AdapterBias. The details of the reduced parameters406

of each task are shown in Appendix A.3.407

4.7 What AdapterBias learns408

AdapterBias has good interpretability due to its409

simplicity. Compared to our similar work Bit-410

Fit (Ben Zaken et al., 2021), where the shifts are411

identical for all tokens, AdapterBias adds token-412

dependent shifts to the output representation. By413

observing these token-dependent shifts, we analyze414

what AdapterBias learns when adapting to down-415

stream tasks.416

Figure 5: We analyze the average absolute value of
weights vector α, the output of the linear layer (Lα),
in each layer for different tasks. The y-axis represents
the index of transformer layers, ordered from earlier to
later (i.e. the embedding layer is shown at the top). The
x-axis represents the average absolute value of α.

Figure 6: Word cloud of CoLA, a corpus of linguistic
acceptability. We utilize BERT-base model as the PLM
and words come from validation data. The weights of
the words are the summation of their weights produced
by the linear layer (Lα) in twelve transformer layers.

7



4.7.1 Average representation shifting in417

transformer layers418

In light of the works of Liu et al. (2019a); Ten-419

ney et al. (2019); Kovaleva et al. (2019), which420

show that different information is being encoded421

by different transformer layers of PLMs. We as-422

sume that AdapterBias provides different repre-423

sentation shifts to the transformer layers through424

task-specific fine-tuning.425

In AdapterBias, the linear layer (Lα) produces a426

weights vector α for representation shifts, therefore,427

the average absolute value of vector α can give us a428

look at the shifting amount in the transformer layers429

when adapting to downstream tasks. In Figure 5,430

the layers are ordered from lower to upper. From431

the experimental result, we find that the weight432

in each layer is considerably different in different433

tasks in general.434

CoLA (Warstadt et al., 2019) is a syntactic task435

that consists of English acceptability judgments436

in the GLUE benchmark. As shown in Figure 5,437

its average shift at the ninth layer is the highest438

among all layers, which is quite different from the439

others. We speculate that the ninth layer has the440

ability to extract the syntactic information, leading441

AdapterBias to add the largest shift in this layer.442

Our experiment has a similar observation with the443

work of Jawahar et al. (2019). Jawahar et al. (2019)444

also observe on a syntactic task with BShift (Con-445

neau et al., 2018) that the ninth layer of BERT446

embeds a rich hierarchy of syntactic information.447

(Jawahar et al., 2019)448

Moreover, we observe similar distributions be-449

tween specific tasks. For instance, RTE (Giampic-450

colo et al., 2007; Bentivogli et al., 2009) and451

MNLI (Williams et al., 2017), where both tasks452

recognize textual entailment, have higher values in453

the upper layers than those in the lower ones.454

Based on these findings, we find that Adapter-455

Bias assigns suitable representation shifts in dif-456

ferent tasks. For tasks with similar objectives,457

AdapterBias tends to add similar representation458

shifts.459

4.7.2 Which kind of word does Lα focus on460

Since αi represents the weight of the representation461

shift for ith token in a transformer layer, we can462

observe the significance of ith token from the sum-463

mation of αi in all the transformer layers. Special464

tokens, including [CLS], [SEP], and [PAD], are not465

included for analysis. We use the validation sets466

Figure 7: Word cloud of SST-2, a corpus of movie re-
views categorized in two sentimental classes (i.e. posi-
tive, negative). The visualization approach is the same
as the Figure 6.

of CoLA and SST-2, and word cloud is used for 467

visualizations. 468

In Figure 6, we visualize all words in the valida- 469

tion data of CoLA. The result shows that Adapter- 470

Bias focuses more on reflexive pronouns, such as 471

yourself, himself, and myself. This is because there 472

are many incorrect sentences with misused reflex- 473

ive pronouns, such as "He washed yourself." 474

In Figure 7, we visualize all words in the valida- 475

tion data of SST-2. The result shows that Adapter- 476

Bias focuses more on adjectives, such as "bad", 477

"awful", and "worst". SST-2 is a binary sentiment 478

analysis dataset, which classifies movie reviews 479

into positive and negative classes. AdapterBias 480

learns that adjectives often constitute a crucial fac- 481

tor in sentiment analysis during tuning, and adds 482

larger shifts to these adjective tokens. 483

5 Conclusion 484

In this study, we present AdapterBias. By adding 485

token-dependent representation shifts to the PLM, 486

AdapterBias shows competitive results even though 487

it uses far fewer parameters than the existing meth- 488

ods. Through extensive experiments, not only does 489

AdapterBias reaches competitive results on the 490

GLUE benchmark, but it also obtains good per- 491

formance on small-to-medium datasets. In addi- 492

tion, we demonstrate the robustness of AdapterBias 493

to different PLMs. Finally, we provide analysis 494

on what AdapterBias learns by comparing α, the 495

weights of representation shift for different tokens, 496

finding it has the ability to identify task-specific 497

information. Our study overturns previous archi- 498

tectures of adapters by proposing a simple adapter 499

that can produce suitable representation shifts for 500

different tokens. 501

8



References502

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.503
2019. Simple, scalable adaptation for neural ma-504
chine translation. arXiv preprint arXiv:1909.08478.505

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-506
berg. 2021. Bitfit: Simple parameter-efficient507
fine-tuning for transformer-based masked language-508
models. arXiv e-prints, pages arXiv–2106.509

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo510
Giampiccolo. 2009. The fifth pascal recognizing tex-511
tual entailment challenge. In TAC.512

Rich Caruana. 1997. Multitask learning. Machine513
learning, 28(1):41–75.514

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-515
Gazpio, and Lucia Specia. 2017. Semeval-2017516
task 1: Semantic textual similarity-multilingual and517
cross-lingual focused evaluation. arXiv preprint518
arXiv:1708.00055.519

Alexis Conneau, German Kruszewski, Guillaume Lam-520
ple, Loïc Barrault, and Marco Baroni. 2018. What521
you can cram into a single vector: Probing sentence522
embeddings for linguistic properties. arXiv preprint523
arXiv:1805.01070.524

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and525
Kristina Toutanova. 2018. Bert: Pre-training of deep526
bidirectional transformers for language understand-527
ing. arXiv preprint arXiv:1810.04805.528

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,529
and William B Dolan. 2007. The third pascal recog-530
nizing textual entailment challenge. In Proceedings531
of the ACL-PASCAL workshop on textual entailment532
and paraphrasing, pages 1–9.533

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.534
Parameter-efficient transfer learning with diff prun-535
ing. arXiv preprint arXiv:2012.07463.536

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,537
Bruna Morrone, Quentin De Laroussilhe, Andrea538
Gesmundo, Mona Attariyan, and Sylvain Gelly.539
2019. Parameter-efficient transfer learning for nlp.540
In International Conference on Machine Learning,541
pages 2790–2799. PMLR.542

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-543
ical reparameterization with gumbel-softmax. arXiv544
preprint arXiv:1611.01144.545

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.546
2019. What does bert learn about the structure of547
language? In ACL 2019-57th Annual Meeting of the548
Association for Computational Linguistics.549

Ian T Jolliffe. 2002. Springer series in statistics. Prin-550
cipal component analysis, 29.551

Olga Kovaleva, Alexey Romanov, Anna Rogers, and552
Anna Rumshisky. 2019. Revealing the dark secrets553
of bert. arXiv preprint arXiv:1908.08593.554

Nelson F Liu, Matt Gardner, Yonatan Belinkov, 555
Matthew E Peters, and Noah A Smith. 2019a. Lin- 556
guistic knowledge and transferability of contextual 557
representations. arXiv preprint arXiv:1903.08855. 558

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian- 559
feng Gao. 2019b. Multi-task deep neural networks 560
for natural language understanding. arXiv preprint 561
arXiv:1901.11504. 562

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 563
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 564
Luke Zettlemoyer, and Veselin Stoyanov. 2019c. 565
Roberta: A robustly optimized bert pretraining ap- 566
proach. arXiv preprint arXiv:1907.11692. 567

Ilya Loshchilov and Frank Hutter. 2017. Decou- 568
pled weight decay regularization. arXiv preprint 569
arXiv:1711.05101. 570

Christos Louizos, Max Welling, and Diederik P 571
Kingma. 2017. Learning sparse neural net- 572
works through l_0 regularization. arXiv preprint 573
arXiv:1712.01312. 574

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 575
2016. The concrete distribution: A continuous relax- 576
ation of discrete random variables. arXiv preprint 577
arXiv:1611.00712. 578

Rabeeh Karimi Mahabadi, James Henderson, and Se- 579
bastian Ruder. 2021. Compacter: Efficient low- 580
rank hypercomplex adapter layers. arXiv preprint 581
arXiv:2106.04647. 582

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 583
Kyunghyun Cho, and Iryna Gurevych. 2020a. 584
Adapterfusion: Non-destructive task composi- 585
tion for transfer learning. arXiv preprint 586
arXiv:2005.00247. 587

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish- 588
warya Kamath, Ivan Vulić, Sebastian Ruder, 589
Kyunghyun Cho, and Iryna Gurevych. 2020b. 590
Adapterhub: A framework for adapting transform- 591
ers. arXiv preprint arXiv:2007.07779. 592

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 593
Percy Liang. 2016. Squad: 100,000+ questions 594
for machine comprehension of text. arXiv preprint 595
arXiv:1606.05250. 596

Andreas Rücklé, Gregor Geigle, Max Glockner, 597
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and 598
Iryna Gurevych. 2020. Adapterdrop: On the effi- 599
ciency of adapters in transformers. arXiv preprint 600
arXiv:2010.11918. 601

Richard Socher, Alex Perelygin, Jean Wu, Jason 602
Chuang, Christopher D Manning, Andrew Y Ng, 603
and Christopher Potts. 2013. Recursive deep mod- 604
els for semantic compositionality over a sentiment 605
treebank. In Proceedings of the 2013 conference on 606
empirical methods in natural language processing, 607
pages 1631–1642. 608

9



Asa Cooper Stickland and Iain Murray. 2019. Bert609
and pals: Projected attention layers for efficient610
adaptation in multi-task learning. In International611
Conference on Machine Learning, pages 5986–5995.612
PMLR.613

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.614
Bert rediscovers the classical nlp pipeline. arXiv615
preprint arXiv:1905.05950.616

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob617
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz618
Kaiser, and Illia Polosukhin. 2017. Attention is all619
you need. arXiv preprint arXiv:1706.03762.620

Alex Wang, Amanpreet Singh, Julian Michael, Felix621
Hill, Omer Levy, and Samuel R Bowman. 2018.622
Glue: A multi-task benchmark and analysis platform623
for natural language understanding. arXiv preprint624
arXiv:1804.07461.625

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-626
man. 2019. Neural network acceptability judgments.627
Transactions of the Association for Computational628
Linguistics, 7:625–641.629

Adina Williams, Nikita Nangia, and Samuel R Bow-630
man. 2017. A broad-coverage challenge corpus for631
sentence understanding through inference. arXiv632
preprint arXiv:1704.05426.633

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien634
Chaumond, Clement Delangue, Anthony Moi, Pier-635
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-636
towicz, et al. 2019. Huggingface’s transformers:637
State-of-the-art natural language processing. arXiv638
preprint arXiv:1910.03771.639

Yu Zhang and Qiang Yang. 2017. A survey on multi-640
task learning. arXiv preprint arXiv:1707.08114.641

10



A Appendix642

A.1 Training Details643

We train our model on Pytorch. The training details644

are shown in Table A. In addition, the bottleneck645

of Adapters (Houlsby et al., 2019) and is 32.646

A.2 L0-norm regularization in AdapterBias647

In Table B, we report the remain parameter of uti-648

lizing L0-norm regularization compared with the649

original AdapterBias. BERT-base (BB) and BERT-650

large (BL) are used as PLMs.651

A.3 The direction of representation shifts in652

different tasks653

Different from BitFit (Ben Zaken et al., 2021),654

where all the representation shifts are identical655

within one task, AdapterBias produces different656

weights for the shift based on each token. In this657

section, we compare the transformed tokens in658

AdapterBias and BitFit. We utilize PCA (Jolliffe,659

2002) to reduce the dimension of the vectors. In660

Figure A, we input five sentences from the evalua-661

tion set of SST-2. We experiment on the last trans-662

former layer since it has the most obvious shifts663

compared to the previous layers. ’0’ with lighter664

color indicates the representation before shifting,665

which is the output of the first layer normalization.666

’1’ with darker color is the shifted representation,667

which is the output of the second layer normaliza-668

tion. The color red represents positive sentences,669

and blue are the negative ones.670

The result shows that BitFit shifts all tokens to-671

wards the same direction regardless of the ground-672

truth label. On the other hand, AdapterBias dis-673

cerns the label of the sentences and thus shifts the674

tokens of different sentences toward different direc-675

tions.676

Figure A: We utilize PCA (Jolliffe, 2002) to visualize
the shifting difference between Bitfit (Ben Zaken et al.,
2021) and AdapterBias on SST-2 validation set. ’0’
with light color means the embedding before shifting.
’1’ with dark color means the embedding after shifting.
The color red represents positive sentences, and blue
represents negative sentences.

11



CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP
Max_len 128 128 128 512 350 512 128 128 350
Batchsize 32 32 32 16 32 16 32 32 32

Learning rate 10−3 10−3 10−3 10−4 4× 10−4 10−3 4× 10−4 4× 10−4 4× 10−4

Epoch 20 10 10 10 20 20 10 10 10

Table A: Our training details of GLUE benchmark(Wang et al., 2018).

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP
BB AdapterBias (L0) 26.2% 82.0% 83.1% 82.3% 81.0% 83.0% 83.2% 83.3% 83.4%
BL AdapterBias (L0) 83.2% 83.0% 83.3% 83.7% 83.2% 83.2% 83.4% 83.7% 83.6%

Table B: Percentage of remaining parameters compared with the original parameters of the linear layer (Lα). Here
we experiment with two models: BERT-base (BB) and BERT-large (BL). The setting follows by Table 1.

12



Figure B: Word cloud of SST-2 in layer 0 to layer 6. Figure C: Word cloud of SST-2 in layer 7 to layer 12.

13



Figure D: Word cloud of CoLA in layer 0 to layer 6. Figure E: Word cloud of CoLA in layer 7 to layer 12.

14


