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Abstract

Transformer-based pre-trained models with
millions of parameters require large storage.
Recent approaches tackle this shortcoming by
training adapters, but these approaches still re-
quire a relatively large number of parameters.
In this study, AdapterBias, a surprisingly sim-
ple yet effective adapter architecture, is pro-
posed. AdapterBias adds a token-dependent
shift to the hidden output of transformer layers
to adapt to downstream tasks with only a vec-
tor and a linear layer. Extensive experiments
are conducted to demonstrate the effectiveness
of AdapterBias. The experiments show that
our proposed method can dramatically reduce
the trainable parameters compared to the pre-
vious works with a minimal decrease in task
performances compared with fine-tuned pre-
trained models. We further find that Adapter-
Bias automatically learns to assign more sig-
nificant representation shifts to the tokens re-
lated to the task in consideration.

1 Introduction

While large pre-trained language models (PLMs)
reached state-of-the-art results on natural language
processing (NLP) tasks, PLMs require updating
all parameters and storing the fully fine-tuned
model for each downstream task. These require-
ments have led to difficulties in real-world ap-
plications. Moreover, fine-tuning PLMs on low-
resource datasets is subject to instabilities.

To tackle these shortcomings, Adapters (Houlsby
et al., 2019), a more parameter-efficient alternative
training strategy for the transformer architecture
(Vaswani et al., 2017) has been proposed. Instead
of full fine-tuning the whole model, Adapters intro-
duces extra tunable weights and freezes the original
parameters of PLM. Adapters demonstrated compa-
rable performance with fully fine-tuning the entire
model. Although Adapters solve the problem of
the PLM’s massive parameters, researchers are curi-
ous about how many more parameters are required
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Figure 1: Overview of the main concept of our work
compared to BitFit (Ben Zaken et al., 2021). Left: Bit-
Fit tends to add the same representation shift to differ-
ent tokens. Right: Our work applies different repre-
sentation shifts to tokens considering their importance
to the downstream task and their characteristics. The
shifts of the input words that are more task-related is
more significant than that of other tokens. For example,
in SST-2 (Socher et al., 2013), which is a semantic task,
the representation shifts of the semantic words, such as
"kind" and "worse", are larger than that of other words.

to reach state-of-the-art performance on standard
NLP tasks. The results in Houlsby et al. (2019)
have shown that the performance on GLUE bench-
mark (Wang et al., 2018) is almost the same when
removing the Adapters in the first layers, which
indicates that not every adapter is useful. It leaves
the question of whether adapters can be even more
parameter-efficient.

To develop practical and memory-efficient
adapters, Diff pruning (Guo et al., 2020) enables
parameter-efficient transfer learning that scales
well with new tasks. The approach learns a task-
specific “diff” vector that extends the original pre-
trained parameters and encourages the sparsity of
the vector through Lg-norm regularization. An-
other approach is BitFit (Ben Zaken et al., 2021),
which shows that with small-to-medium training
data, fine-tuning only a subset of the bias terms
of pre-trained BERT models (Devlin et al., 2018)



is competitive with fine-tuning the entire model.
The central concept of these approaches is to add
task-specific shifts to each output representation
of the PLM layers so as to adapt to different tasks.
In the previous works, Ben Zaken et al. (2021);
Guo et al. (2020) both add the same shifts to the
output representation regardless of which token is
more relevant to the task. However, considering
some specific tokens might be more critical to a
particular task, the representation can better adapt
to the downstream task under a limited amount of
parameters if these shifts are based on the input
tokens.

Based on this concept, in this study, we add
token-dependent biases to the shifts by proposing
AdapterBias, which consists of a vector and a linear
layer (L,). The vector represents the task-specific
shift, and L, produces the weights for input tokens.
Thus, with the vector and the weights, AdapterBias
can add a token-dependent shift to the transformer
layer. Since the concept of BitFit (Ben Zaken et al.,
2021) is similar to AdapterBias by adding a shift to
the representation, we demonstrate the difference
between BitFit and AdapterBias in Figure 1. Bit-
Fit assigns identical shifts to all the tokens, while
AdapterBias adds more significant shifts to the to-
kens related to the task.

With fewer trainable parameters required,
AdapterBias achieves comparable performance on
the GLUE benchmark with Houlsby et al. (2019);
Pfeiffer et al. (2020a); Guo et al. (2020); Ben Za-
ken et al. (2021). We further decrease the param-
eters of AdapterBias in different ways, including
partial weight-sharing in AdapterBias and adding
Lo-norm regularization. Finally, AdapterBias has
better interpretability due to its simplicity. We
use different tools, including word cloud and PCA
(Jolliffe, 2002), to visualize what AdapterBias has
learned, and we found that the proposed approach
automatically learns to assign larger representation
shifts to the task-related tokens.

2 Related Work

For NLP tasks, adapters are introduced for the
transformer architecture. A set of adapter param-
eters was added at each transformer layer, which
is mostly bottleneck architectures Houlsby et al.
(2019). By keeping the output dimension identical,
they cause no change to the structure or parameters
of the original model.

Adapters quickly gained popularity in NLP with

various applications. For multi-task learning (Caru-
ana, 1997; Zhang and Yang, 2017; Liu et al,,
2019b), a projected self-attention layer is proposed
by Stickland and Murray (2019), while Bapna et al.
(2019) proposed an additional layer norm suitable
for machine translation.

Besides the applications of adapters, researchers
are also dedicated to improving their performance.
Based on the architecture introduced by Houlsby
et al. (2019), AdapterFusion (Pfeiffer et al., 2020a)
leveraged knowledge from multiple tasks with a
new two-stage learning algorithm. Despite the re-
cent popularity of these methods, they still train a
relatively large number of training parameters.

Recently, studies start to focus on improving
the parameter-efficiency of adapters. Diff-pruning
(Guo et al., 2020) achieves parameter efficiency by
adding a sparse, task-specific difference-vector to
the fixed original parameters. The vector is adap-
tively pruned during training with a differentiable
approximation to the Ly-norm penalty to encour-
age sparsity. Riicklé et al. (2020) introduced Adap-
terDrop, which has been recently integrated into
AdapterHub (Pfeiffer et al., 2020b) by removing
adapters from lower transformer layers during train-
ing and inference, which can dynamically reduce
the computational cost. Mahabadi et al. (2021) pro-
posed Compacter, which improved the trade-off
between performance and trainable parameters per
task with low-rank optimization.

On the other hand, without modifying the archi-
tecture of the PLM, BitFit (Ben Zaken et al., 2021)
shows that fine-tuning only the bias terms of a large
PLM is also competitive with fine-tuning the en-
tire model. Fine-tuning only the bias terms can
be considered as adding a task-specific shift to the
token representation. BitFit is most similar to our
work. While in BitFit, the shifts added to all the
representations are exactly the same for all input
tokens, in our work, the shifts are token-dependent.

3 Method

In this section, we present AdapterBias, an efficient
way to adapt large-scale PLMs. In order to better
adapt to different downstream tasks, the adapter
module should be token-specific. AdapterBias pro-
duces a suitable weight of the bias based on the
input tokens.

Problem Formulation We consider the general
problem of fine-tuning PLMs, where the training
data D = (z, yi)gzl is given. Assume that given
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Figure 2: Model architectures comparison of Houlsby et al. (2019), BitFit (Ben Zaken et al., 2021), and the
proposed method AdapterBias. The orange blocks indicate the trainable parts, while the gray blocks indicate the
frozen parameters during the training stage. Left: Houlsby et al. (2019) adds their Adapters after the feed-forward
layers, and their Adapter consists of two linear layers and an active function. Middle: BitFit tunes all biases from
the original transformer layers. Right: AdapterBias, consisting of a linear layer (L,) and a vector (v), is added
after the second feed-forward layer only in each transformer layer.

a PLM with parameters 6 and AdapterBias with
parameters 0. During the training stage, we freeze
6 and tune 6’ only.

3.1 AdapterBias

The architecture of AdapterBias is shown in the
right part of Figure 2. AdapterBias consists of two
modules: a vector (v) and a linear layer (Ly). v
is a task-specific shift added to the output of each
transformer layer. Since some tokens are more
important to some tasks, these tokens should be as-
signed larger representation shifts than other tokens.
The linear layer (L,) produces a token-dependent
weight vector a = [ag, 0. .. ozm}T, where «; is
the weight of the ¢th token’s representation shift.
By applying the token-specific weight to the task-
specific representation shift (v), AdapterBias can
focus on the tokens that are more important to the
task and is able to adapt to different downstream
tasks efficiently.

We define the output of AdapterBias as the bias
(B), which is the outer product of v and the learned
weights vector a. When the dimension of the to-
ken’s representation is r with with m input tokens,
the function can be defined as follows:

amv) (D)

where v € R", o € R™, and B € R"™*™,

B=v®al = (ozlv QU

To further elaborate on the details of Adapter-
Bias, we give an example of how AdapterBias pro-
duces B and how B adds to the transformer layer.
In Figure 3, we assume that there are three rep-
resentation outputs (r1, ro, r3) after the first layer
normalization. The dimension of r1, o and rg is
the dimension of the 2nd feedforward layer, while
the dimension of the linear layer (L) is the output
dimension of the first feed-forward layer with the
token representation (1, r2, 73) as its inputs. The
linear layer (L) produces o, where o € R3. The
blocks in different colors represent the difference
of the weights (a1, as, ag). Take BERT-base for
example, after performing outer product with the
weights vector « and the vector (v), the dimension
of B becomes 768 x 3. For example, b1, the first
column of B, is the shift for the first token repre-
sentation.

3.2 Further improvement on
parameter-efficiency of AdapterBias

In this section, we experiment on two ways to make
AdapterBias more parameter efficient. One is par-
tial weight-sharing of AdapterBias among trans-
former layers, another is enforcing the weights of
the linear layer (L) to be sparse by utilizing Lg-
norm penalty.



3.2.1 Cross-layer parameters sharing in
AdapterBias

Redundancies have been observed in the informa-
tion captured by adapters, with adapters in lower
layers being less important. In the work of Houlsby
et al. (2019), they observed that their Adapter mod-
ules in the lower layers are less important. In ad-
dition, sharing parameters of the Adapter across
layers leads to a comparatively small drop in per-
formance in some tasks. In light of the above in-
formation, we further reduce the number of param-
eters required for each task by partially sharing
the weights of the adapters across all transformer
layers. The experimental results are discussed at
Section 4.6.1.

3.2.2 L regularization in AdapterBias

Sparsity has been utilized in various parameter-
efficient methods. For applications in NLP tasks,
Diff-pruning (Guo et al., 2020) learns a sparse vec-
tor added to the whole PLM with Lg-norm penalty.
Inspired by their work, we further apply Lg-norm
regularization to L, in the AdapterBias module,
aiming to encourage the sparsity of L,. We choose
to drop L., because it contributes most of the pa-
rameters in AdapterBias. Encouraging its sparsity
can further increase the parameter efficiency. Note
that we specifically apply L regularization in Sec-
tion 4.6.2.

In AdapterBias, we add Lg-norm penalty to the
linear layer (L,). The optimization problem can
be expressed as,

min L(D; 0,0') + A7, llo, )

where L(D;-) represents the original loss with
training data D. A is the hyperparameter for Lg-
norm penalty. Note that 6’ represents trainable
parameters and Q’La represents the parameters of
L., in AdapterBias. Following the work of Diff-
pruning, we utilize a relaxed mask vector (Louizos
et al., 2017) with a stretched Hard-Concrete distri-
bution (Jang et al., 2016; Maddison et al., 2016) to
encourage Lg sparsity.

4 Experiments

In this section, we evaluate the effectiveness of our
proposed adapter module in NLP training tasks,
and provide the analysis of what AdapterBias has
learned in different tasks.
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Figure 3: The detailed architecture of how AdapterBias
produces the bias (B) and how B is added to the output
of transformer layers.

4.1 Experimental settings

For the experiments, we base our experiments
on HuggingFace PyTorch implementation (Wolf
et al., 2019) of BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019c) models. The learning
rate is set in the range [10~%, 10~3], with AdamW
(Loshchilov and Hutter, 2017) as the optimizer.
GLUE benchmark (Wang et al., 2018) and SQuAD
v1.0 (Rajpurkar et al., 2016) are the training data
in our settings.

The training details are shown in Appendix A.3.
Note that the second layer normalization in each
transformer layer is also tuned during the training
stage, corresponding to the orange component in
the right part of Figure 2. We experiment with
3 random seeds and choose the seed with the best
performance on the validation set to evaluate on the
GLUE server. We report the test metrics provided
on the submission website!.

4.2 Results on GLUE

In this section, we compare AdapterBias to other
parameter-efficient methods, including Adapters
(Houlsby et al., 2019), Diff-pruning (Guo et al.,
2020), and BitFit (Ben Zaken et al., 2021). In Table
1, we report the test scores on the GLUE benchmark

"https://gluebenchmark.com/



Method Params | COLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BERT_ARGE M0M | 605 949 893 927 701 876 867 859 721 822
Adapters (Houlsby etal,, 2019) | 7.14M | 569 942 896 914 688 873 853 846 718 8L1
Diff-Pruning (Guoetal, 2020) | 17M | 6.1 941 897 933 706 860 864 860 711 820
BitFit (Ben Zakenetal, 2021) | 0.27M | 597 941 889 920 720 855 845 848 705 813
AdapterBias [023M | 600 944 882 912 705 815 843 839 705 812

Table 1: Performance of all methods on the GLUE testing sets scored by the GLUE evaluation server. For each
method, we report the new adding parameters per task. For QQP, we report the F1 score. For STS-B (Cer et al.,
2017), we report Spearman correlation coefficients. For CoLA (Warstadt et al., 2019), we report Matthews correla-
tion. For all other tasks, we report accuracy. Bold fonts indicate the least trainable parameter per task. The first row
(BERT ARGE) represents fine-tuning the whole BERT-large model without adding new parameters. The results of
baselines including (Houlsby et al., 2019; Guo et al., 2020; Ben Zaken et al., 2021) are their reported performance
and Pfeiffer et al. (2020a) performance is reproduced on our setting. Due to instability during training, we restart

experiments with 3 random seeds and report the best.

Method  Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 110M 521 93.5 88.9 905 664 858 84.6 83.4 712 79.6
BB BitFit 0.10M 472 924 87.4 89.7 655 876 80.8 80.9 67.8 717
BB AdapterBias 0.08M  51.6  93.1 87.5 89.4 66.1 84.6 80.9 80.5 679 78.0
BL Full-FT 340M 605 949 89.3 927 701 876 86.7 85.9 72.1 822
BL BitFit 027M 620  93.1 86.8 89.8  66.6 872 84.1 84.3 672 8l.1
BL AdapterBias 0.23M 600 944 88.2 912 705 815 84.3 83.9 705 812
RoB Full-FT 125M 613 947 90.4 920 744 815 87.4 86.8 719 829
RoB BitFit 0.10M 627 948 89.7 913 73.6 885 85.3 84.9 68.1 82.1
RoB AdapterBias 0.08M  61.9 945 90.2 91.1 741 887 85.3 85.1 705 824
RoL Full-FT 355M 633 967 92.3 954 845 922 90.8 90.2 743  86.6
RoL BitFit 026M 647 958 915 942 809 906 89 88.9 720 853
RoL AdapterBias 0.2IM 639 964 90.4 9477 836 913 89.8 89.4 723 858

Table 2: Performances of AdapterBias adding in different PLMs. Here we experiment four model : BERT-base
(BB), BERT-large (BL), RoBERTa-base (RoB) and RoBERTa-large (RoL). The percentage of new parameters is

compared with the PLM. The setting follows by Table 1. The Full-FT represents fine-tuning the whole PLM

without adding adapters.

and the required new parameters per task. Here we
use BERT-large as the PLM. AdapterBias reaches
81.2 average score in GLUE benchmark, with the
smallest amount of parameters (0.23M) added per
task. AdapterBias shows competitive performance
as its parameters are 30x less than the works of
Houlsby et al. (2019). Although Diff-pruning (Guo
et al., 2020) has the best average score among all
parameter-efficient methods, their work trains an
additional vector whose parameter count is equiv-
alent to the parameters of the whole PLM. Thus,
Diff-pruning requires 340M trainable parameters
of BERT-large during the training stage, while
AdapterBias only trains 0.23M parameters. Fur-
thermore, AdapterBias achieves comparable per-
formance with BitFit with fewer parameters needed
per task. This shows that AdapterBias is a worth-
while targeted fine-tuning method.

4.3 Different base models

To analyze how well this approach generalizes to
different PLMs on different models of AdapterBias,
as shown in Table 2, we apply AdapterBias in differ-
ent transformer-based PLMs, including BERT-base
(BB), BERT-large (BL), RoBERTa-base (RoB),
and RoBERTa-large (RoL), on the GLUE bench-
mark. All results are scored by the GLUE evaluate
server. Compared with BitFit, In Table 2, not only
can AdapterBias perform well on BERT but also
achieve competitive performance on larger PLMs
such as RoOBERTa.

4.4 Size of training data

In the previous experimental results, we observe
that AdapterBias tends to have higher performance
on tasks with a smaller amount of data (i.e. CoLA,
SST-2, and RTE). To further validate this obser-
vation, we follow the work of BitFit (Ben Zaken
et al., 2021) by training AdapterBias on subsets of



Method | Params | CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
wio L, 88K | 456 915 874 883 656 810 719 84 657 757
AdapterBias | 825K | 516 931 875 894 661 846 809 80.5 679 780

Table 3: The importance of the linear layer (L, ) in AdapterBias. The setting follows by Table 1. The backbone
model is BERT-base. w/o L, means that there is only a vector (v) in AdapterBias.
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Figure 4: Comparison of Finetune, BitFit (Ben Za-
ken et al., 2021), and AdapterBias with BERT-base on
SQuAD validation set. The x-axis represents the total
number of training sets while the y-axis represents the
exact match score.

SQuAD v1.0 (Rajpurkar et al., 2016) of increasing
size. The experiments are conducted with BERT-
base model. The results on the validation set of
the SQuAD dataset are listed in Figure 4, which
shows the tendency of AdapterBias outperform-
ing full fine-tuning when the size of the training
dataset is smaller. However, with more training
data available, the trend is reversed. The results
show that AdapterBias has the ability to outperform
fine-tuning the whole PLM with small-to-medium
data size, similarly to BitFit.

4.5 Investigation on the effectiveness of token
dependent representation shift

Different from BitFit (Ben Zaken et al., 2021),
where the bias terms in all transformer layers are
tuned, we claim that the bias added to the repre-
sentation should be token-dependent, and proposed
AdapterBias based on this concept. We conduct
ablation studies to verify this claim. In this exper-
iment, the linear layer (L) in AdapterBias that
produces the token-dependent weights vector ()
is removed; that is, only the v is trained. All shifts
added to the representation outputs are identical
within the same transformer layer. The experiments

are conducted with BERT-base model. We report
the test scores on the GLUE benchmark in Table 3.
The performance of AdapterBias without the lin-
ear layer (L) dramatically decreases. Without L,
it is hard for the vector (v) to adapt to different
downstream tasks. This result demonstrates the im-
portance of L,,. In other words, assigning different
shifts to different token representations improves
the performance of the method.

4.6 Improving the parameter efficiency of
AdapterBias

We further apply two additional methods to
AdapterBias to enhance its parameter efficiency.
Experiments are conducted to see whether Adapter-
Bias can be more parameter-efficient by sharing
its components across all layers. Moreover, we
experiment on adding L-norm regularization dur-
ing the training stage to encourage the sparsity of
AdapterBias.

4.6.1 Sharing components in AdapterBias

In this experiment, we conduct an ablation study
of partial weight-sharing in the AdapterBias mod-
ule. In Table 4, we share components of Adapter-
Bias among different transformer layers. Share
v represents sharing v across all transformer lay-
ers, while Share L, means sharing the linear layer
(Lq). Share v+ L, denotes sharing one Adapter-
Bias across all transformer layers. As can be seen
in Table 4, the performance of Share L, stands out
among other partial weight-sharing methods, while
Share v leads to a poor performance.

From the experiments above, we conclude that
the linear layer (L) captures general task informa-
tion by learning the weights of the bias for different
tokens. Thus, sharing L, across all layers results in
better performance compared to other components.
The vector module (v) in AdapterBias aims to learn
local information in each transformer layer. If v
among different transformer layers are shared, the
performance drops dramatically. This might be due
to a failure of v to learn general information which
can be adapted to each individual transformer layer.



Method | Params | COLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
Share v 748K | 50.1 908 87.1 876 650 849 775 77.9 651 762
Share L, | 495K | 504 919 881  89.1 654 852 79.8 79.9 666 774
Share v+L, | 407K | 468 909 873 878 648 857 77.7 78.0 649 76.0
AdapterBias | 825K | 51.6 93.1 875 894 661 846 80.9 80.5 679 780

Table 4: Analysis of more parameter-efficiency improvement in AdapterBias. The setting follows by Table 1. The
backbone model is BERT-base. Share v, Share L,, and Share v+ L, means that we share vector, linear layer, and

both of them, respectively.

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 52.1 93.5 88.9 90.5 664  85.8 84.6 83.4 712 79.6
BB AdapterBias 51.6 93.1 87.5 894  66.1 84.6 80.9 80.5 67.9 78.0
BB AdapterBias (LO)  53.7 92.5 87.5 903 683 85.7 81.7 81.5 69.8 79.0
BL Full-FT 60.5 94.9 89.3 92.7  70.1 87.6 86.7 85.9 721 822
BL AdapterBias 60.0 94.4 88.2 912 705 87.5 84.3 83.9 70.5 81.2
BL AdapterBias (LO)  58.0 93.7 88.2 915 692 872 84.2 84.1 712 80.8

Table 5: Performances of our AdapterBias with Ly-norm regularization. Here we experiment with two models:

BERT-base (BB) and BERT-large (BL). The setting follows by Table 1.

whole PLM without adding adapters.

4.6.2 Lop-norm regularization in AdapterBias

We observed that many of the trained parameters
in L, have values that are extremely close to zero
after tuning on downstream tasks, which might
cause redundancy of the parameters. To further
encourage the sparsity of AdapterBias, we add Lg-
norm regularization to L., during the training stage.

In Table 5, we use BERT-base (BB) and BERT-
large (BL) for the PLM. We compare the perfor-
mance of fine-tuning, the original AdapterBias, and
the one trained with Lg-norm regularization. The
experiment shows that adding Ly-norm regulariza-
tion during the training step improves the perfor-
mance on 7 out of 9 tasks in BERT-base models.
However, the performance did not improve when
applied to BERT-large models. As for the param-
eter efficiency of applying Lg-norm penalty, the
linear layer (L) with Lg-norm penalty saves about
17% parameter on average compared to the original
AdapterBias. The details of the reduced parameters
of each task are shown in Appendix A.3.

4.7 What AdapterBias learns

AdapterBias has good interpretability due to its
simplicity. Compared to our similar work Bit-
Fit (Ben Zaken et al., 2021), where the shifts are
identical for all tokens, AdapterBias adds token-
dependent shifts to the output representation. By
observing these token-dependent shifts, we analyze
what AdapterBias learns when adapting to down-
stream tasks.

The Full-FT represents fine-tuning the
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Figure 5: We analyze the average absolute value of
weights vector «, the output of the linear layer (L),
in each layer for different tasks. The y-axis represents
the index of transformer layers, ordered from earlier to
later (i.e. the embedding layer is shown at the top). The
x-axis represents the average absolute value of .
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Figure 6: Word cloud of CoLA, a corpus of linguistic
acceptability. We utilize BERT-base model as the PLM
and words come from validation data. The weights of
the words are the summation of their weights produced
by the linear layer (L,,) in twelve transformer layers.



4.7.1 Average representation shifting in
transformer layers

In light of the works of Liu et al. (2019a); Ten-
ney et al. (2019); Kovaleva et al. (2019), which
show that different information is being encoded
by different transformer layers of PLMs. We as-
sume that AdapterBias provides different repre-
sentation shifts to the transformer layers through
task-specific fine-tuning.

In AdapterBias, the linear layer (L) produces a
weights vector « for representation shifts, therefore,
the average absolute value of vector « can give us a
look at the shifting amount in the transformer layers
when adapting to downstream tasks. In Figure 5,
the layers are ordered from lower to upper. From
the experimental result, we find that the weight
in each layer is considerably different in different
tasks in general.

CoL A (Warstadt et al., 2019) is a syntactic task
that consists of English acceptability judgments
in the GLUE benchmark. As shown in Figure 5,
its average shift at the ninth layer is the highest
among all layers, which is quite different from the
others. We speculate that the ninth layer has the
ability to extract the syntactic information, leading
AdapterBias to add the largest shift in this layer.
Our experiment has a similar observation with the
work of Jawahar et al. (2019). Jawahar et al. (2019)
also observe on a syntactic task with BShift (Con-
neau et al., 2018) that the ninth layer of BERT
embeds a rich hierarchy of syntactic information.
(Jawahar et al., 2019)

Moreover, we observe similar distributions be-
tween specific tasks. For instance, RTE (Giampic-
colo et al., 2007; Bentivogli et al., 2009) and
MNLI (Williams et al., 2017), where both tasks
recognize textual entailment, have higher values in
the upper layers than those in the lower ones.

Based on these findings, we find that Adapter-
Bias assigns suitable representation shifts in dif-
ferent tasks. For tasks with similar objectives,
AdapterBias tends to add similar representation
shifts.

4.7.2 Which kind of word does L, focus on

Since «y; represents the weight of the representation
shift for ¢th token in a transformer layer, we can
observe the significance of ith token from the sum-
mation of «; in all the transformer layers. Special
tokens, including [CLS], [SEP], and [PAD], are not
included for analysis. We use the validation sets
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Figure 7: Word cloud of SST-2, a corpus of movie re-
views categorized in two sentimental classes (i.e. posi-
tive, negative). The visualization approach is the same
as the Figure 6.

of CoL A and SST-2, and word cloud is used for
visualizations.

In Figure 6, we visualize all words in the valida-
tion data of CoLA. The result shows that Adapter-
Bias focuses more on reflexive pronouns, such as
yourself, himself, and myself. This is because there
are many incorrect sentences with misused reflex-
ive pronouns, such as "He washed yourself."

In Figure 7, we visualize all words in the valida-
tion data of SST-2. The result shows that Adapter-
Bias focuses more on adjectives, such as "bad",
"awful", and "worst". SST-2 is a binary sentiment
analysis dataset, which classifies movie reviews
into positive and negative classes. AdapterBias
learns that adjectives often constitute a crucial fac-
tor in sentiment analysis during tuning, and adds
larger shifts to these adjective tokens.

5 Conclusion

In this study, we present AdapterBias. By adding
token-dependent representation shifts to the PLM,
AdapterBias shows competitive results even though
it uses far fewer parameters than the existing meth-
ods. Through extensive experiments, not only does
AdapterBias reaches competitive results on the
GLUE benchmark, but it also obtains good per-
formance on small-to-medium datasets. In addi-
tion, we demonstrate the robustness of AdapterBias
to different PLMs. Finally, we provide analysis
on what AdapterBias learns by comparing «, the
weights of representation shift for different tokens,
finding it has the ability to identify task-specific
information. Our study overturns previous archi-
tectures of adapters by proposing a simple adapter
that can produce suitable representation shifts for
different tokens.
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A Appendix
A.1 Training Details

We train our model on Pytorch. The training details
are shown in Table A. In addition, the bottleneck
of Adapters (Houlsby et al., 2019) and is 32.

A.2 Lp-norm regularization in AdapterBias

In Table B, we report the remain parameter of uti-
lizing Lg-norm regularization compared with the
original AdapterBias. BERT-base (BB) and BERT-
large (BL) are used as PLMs.

A.3 The direction of representation shifts in
different tasks

Different from BitFit (Ben Zaken et al., 2021),
where all the representation shifts are identical
within one task, AdapterBias produces different
weights for the shift based on each token. In this
section, we compare the transformed tokens in
AdapterBias and BitFit. We utilize PCA (Jolliffe,
2002) to reduce the dimension of the vectors. In
Figure A, we input five sentences from the evalua-
tion set of SST-2. We experiment on the last trans-
former layer since it has the most obvious shifts
compared to the previous layers. 0’ with lighter
color indicates the representation before shifting,
which is the output of the first layer normalization.
’1° with darker color is the shifted representation,
which is the output of the second layer normaliza-
tion. The color red represents positive sentences,
and blue are the negative ones.

The result shows that BitFit shifts all tokens to-
wards the same direction regardless of the ground-
truth label. On the other hand, AdapterBias dis-
cerns the label of the sentences and thus shifts the
tokens of different sentences toward different direc-
tions.

11

BitFit Ours

F) oy

Figure A: We utilize PCA (Jolliffe, 2002) to visualize
the shifting difference between Bitfit (Ben Zaken et al.,
2021) and AdapterBias on SST-2 validation set. ’0’
with light color means the embedding before shifting.
"1’ with dark color means the embedding after shifting.
The color red represents positive sentences, and blue
represents negative sentences.



CoLA SST-2 MRPC QNLI RTE STS-B  MNLI-m MNLI-mm QQP

Max_len 128 128 128 512 350 512 128 128 350
Batchsize 32 32 32 16 32 16 32 32 32
Learningrate 1073 1073 1073 107% 4x107* 1073 4x10™* 4x10™* 4x107*
Epoch 20 10 10 10 20 20 10 10 10

Table A: Our training details of GLUE benchmark(Wang et al., 2018).

Method CoLA SST-2 MRPC OQNLI RTE STS-B MNLI-m MNLI-mm QQP
BB AdapterBias (LO) 262% 82.0% 83.1% 823% 81.0% 83.0% 83.2% 83.3% 83.4%
BL AdapterBias (LO) 83.2% 83.0% 833% 83.7% 832% 83.2% 83.4% 83.7% 83.6%

Table B: Percentage of remaining parameters compared with the original parameters of the linear layer (L,,). Here
we experiment with two models: BERT-base (BB) and BERT-large (BL). The setting follows by Table 1.

12



pleasure ... creditsEolBeaus
_lovers T

- walue
-

i = 1
images  faz i

1y _distinctivepslitis

a_lented _ .

uulc."![tl'g

tricks excitesent co- REVSRING
1]

pearnest seduc tive- tender o

delightful

nderful enjoyable

.

Q_framkly

ertainly . ridetrear

ecomes

5o ST ALE

unpleasant:
- expect o tragic

nightmar
P la ingy eap

- ams re=1ifeless ¥

:I-.«pgnlflce?t h ’Fﬂcpt g%
wonder =0 4
....... a—k\.wn%g

eneat_hrc =k

falls pulls
del&t%l?E griest p&m |_| stiff -'

emlv ‘-!?_fgeb —-e r L*Ey V-Cg

w?rkﬁfﬂlli lhlawumgmuro == afforts

rlgj!jln

.

app%uae[i-s p##des yfla deserves )i

F‘f:n = hours =1

1 s T LhoursEl

“"“ oints 1 it ”““8:

ojectl B - 4 ]

C . W a #Hept N A"

E M{? § eav L".-Q

w areamy E IEI llesa
ﬂ . » PumpiLn

E oA Tttempftlnsest Sustaln; ple g_

paiats P OVOKE e <1 worst

@emtalnly

confirms ida sustain Stipe

all playspuus

images
‘W tions, draw thir I'l-nﬂe

ither

E"ﬂl’l} l

S Sresult

?
.hours spectacle pleasure actempe woryder ful

o

L i
u:,.;ahle"

E?I"If.'rg}.II
excitement Enerl wonderful

f:;]E ‘”“'“'“ S ha“r: pmagnl? int

trans- Spe':tanc € s O S ored

ext raordlnar

d-ll'h'll ul,

pla_ys modern = . TLly seie| {stuf ;_ Wa -

chemls- g@%m;

Certiﬂr." ) o : P"r}ﬁrﬁler always
Ay _' EROTLiONALLY trapac
rovides:
Faw = /i '_'\J

featiz it rangely scenery 'EL_

¥ -
mile

éc::(:j'11ﬂru %i_ if1;i

FESU]:t 11medc0 Or

Tinall

U}

Jlairalone B accessibleerafred deal

FRies

wmﬂﬁ“;]wmy)éagnlflcenl

i3t a'-"JESC)[TIt pulls =

de 1th$31%i;M;“

o ] wafa] ] s#ttept .

=] et WYl Y =

. "E wiss | ga _.ﬁ!l — E :i R tale -

slashwors ;.W L_JD)O g
ranchise ##uous r

compi

simply L:l\
¥ e E 51“!
ted

_____ Hcheap. f=1a tﬁﬁ"g#r?g

QJ
|_|
3

)
=

dr-r- T spectacle liya'L]y aLrempt

B0w
%ggg

B ~

£ = 4
[T

-:.JU.L]] PPJ-EYS en]uya et o
[t

E unpl eas.an( __ )

131

nlgh;cmare s

desperate :L:“g ﬁl (V]

.E & 1 l—|
s‘:(tu F]llfeless oy "“

E% flat ml'_ld_gl"f og't |. ]-Ey'\’g ifacen
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