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ABSTRACT

Large language models (LLMs) have recently shown promise for multimodal rec-
ommendation, particularly with text and image inputs. Yet real-world recom-
mendation signals extends far beyond these modalities. To reflect this, we for-
malize recommendation features into four modalities: text, images, categorical
features, and numerical attributes, and emphasize unique challenges this hetero-
geneity poses for LLMs in understanding multimodal information. In particular,
these challenges arise not only across modalities but also within them, as attributes
(e.g., price, rating, time) may all be numeric yet carry distinct meanings. Beyond
this intra-modality ambiguity, another major challenge is the nested structure of
recommendation signals, where user histories are sequences of items, each car-
rying multiple attributes. To address these challenges, we propose UniRec, a
unified multimodal encoder for LLM-based recommendation. UniRec first em-
ploys modality-specific encoders to produce consistent embeddings across het-
erogeneous signals. It then applies a triplet representation—comprising attribute
name, type, and value—to separate schema from raw inputs and preserve semantic
distinctions. Finally, a hierarchical Q-Former models the nested structure of user
interactions while maintaining their layered organization. On multiple real-world
benchmarks, UniRec outperforms state-of-the-art multimodal and LLM-based
recommenders by up to 15%, while extensive ablation studies further validate the
contributions of each component.

1 INTRODUCTION

Large language models (LLMs) have recently transformed recommender systems by reframing rec-
ommendation as a language modeling task (Geng et al., 2022; Li et al., 2023a; Zhang et al., 2023;
Bao et al., 2023). Leveraging world knowledge and reasoning ability, LLM-based recommenders
can capture rich semantic representations of users and items, enabling zero-shot prediction and
explainable recommendations (Hou et al., 2023; Wang et al., 2025). However, most existing ap-
proaches primarily operate in text-centric settings, or at best combine text with images, where de-
scriptive content such as reviews, metadata, or product visuals is abundant. While text and visual
modalities are important, real-world recommendation data is far more heterogeneous, encompass-
ing numerical, categorical, temporal, and geographical attributes that current LLM-based systems
are ill-equipped to handle. Therefore, an open challenge remains: how can we design a unified
framework that enables LLMs to effectively understand and reason over heterogeneous multimodal
recommendation signals?

Addressing this challenge requires encoders that can faithfully represent such heterogeneous data.
An effective encoder must be schema-aware, distinguishing attributes like price versus timestamp
even when both are numeric; hierarchy-aware, capturing the nested structure of user histories as
sequences of items with multiple attributes; and modality-aware, balancing signals across text, im-
ages, categorical fields, and numerical values. Naı̈ve serialization into text or simple concatenation
of embeddings discards these structural cues, obscures cross-feature interactions, and fails to capture
sequential or relational patterns (Zhou et al., 2023a; Hou et al., 2023; Liu et al., 2023b; Singh et al.,
2023; Bao et al., 2023).

While recent studies have begun exploring multimodal foundation models for recommenda-
tion (Geng et al., 2023; Luo et al., 2024), and vision–language models such as BLIP-2 demon-
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strate how Q-Formers can bridge modalities (Li et al., 2023b), these approaches are still limited in
not tailoring to specific modality pairs or tasks and not providing a general solution for arbitrary
heterogeneous recommendation inputs. A unified framework is still missing—one that can pre-
serve schema, modality, and structural information while making heterogeneous signals accessible
to LLM reasoning.

To fill this gap, we propose UniRec, a unified multimodal encoder that enables LLMs to leverage
heterogeneous recommendation signals. UniRec employs modality-specific encoders to produce
aligned embeddings for text, image, categorical, and numerical features. Each attribute is repre-
sented as a triplet—(attribute name, type, value)—to disentangle schema from raw inputs and pre-
serve semantic distinctions. A hierarchical Query-Former then aggregates these representations, first
into item-level embeddings and subsequently into user-level histories, explicitly maintaining the lay-
ered structure of interactions. Integrated with a pretrained LLM, UniRec enables reasoning over
multimodal signals without losing structural context, thereby improving recommendation accuracy.

We validate UniRec on a suite of benchmark datasets spanning diverse recommendation scenarios
with differing combinations of textual, visual, numerical, categorical, temporal, and geographical
attributes. Across all settings, UniRec consistently outperforms state-of-the-art multimodal and
LLM-based baselines and demonstrates robustness across datasets with varying attribute composi-
tions, underscoring its effectiveness in both conventional and richly multimodal recommendation
tasks.

2 PRELIMINARIES

In this section, we first introduce the preliminaries of multimodal recommendation and formally
define the problem setup. We then discuss the limitations of existing methods in this setting, which
motivates the design of our proposed UniRec encoder.

2.1 PROBLEM SETUP

We begin by formalizing the task of multimodal sequential recommendation, where users interact
with items over time and items are described by heterogeneous attributes across multiple modalities.

Users and Items. Let U = {u1, . . . , u|U|} be the set of users and I = {i1, . . . , i|I|} the set of
items. Each user u ∈ U generates a chronological interaction history

Hu =
[
(t1, ℓ1, i1), (t2, ℓ2, i2), . . . , (tT , ℓT , iT )

]
,

where tj is the timestamp, ℓj an optional location, and ij ∈ I the item at step j. The next-item
prediction task is to model the conditional distribution

p(iT+1 | Hu),

and use it to rank candidate items for recommendation.

Attributes and Modalities. Each item i ∈ I is described by a heterogeneous collection of attributes
spanning multiple modalities, such as textual descriptions, images, categorical labels, numerical
values, or spatiotemporal information. Formally, let N denote the attribute namespace and {Va}a∈N
the corresponding value domains. Then an item is associated with

A(i) = {(a, v) | a ∈ N , v ∈ Va},

where a is the attribute name and v its observed value. Different attributes may share the same value
format (e.g., both price and rating are numerical) yet carry distinct semantics.

2.2 LIMITATIONS OF EXISTING METHODS

Although prior work has made progress by leveraging textual and visual signals, existing approaches
still face fundamental shortcomings when applied to heterogeneous multimodal recommendation.

Loss of Schema and Structural Semantics. Text-only LLM-based recommenders (Geng et al.,
2022; Li et al., 2023a; Ye et al., 2024) flatten multimodal signals into text prompts. This process
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Figure 1: UniRec Model Architecture: (a) Item-Level Q-Former: Raw item attributes across
heterogeneous modalities (text, categorical, image, numerical) are processed by modality-specific
encoders and triplet formation. These generate schema-aware attribute embeddings, which are then
aggregated by the Item Q-Former to produce a fixed-length item representation (zt). (b) User-Level
Q-Former: A user’s chronological interaction history, consisting of learned item tokens (zt), multi-
modal review contexts (ct), and timestamp embeddings (pt), is processed by an Interaction Feature
Assembly module. The resulting sequence of combined interaction embeddings is then distilled by
the User Q-Former into a unified user representation (U). The arrow passing the Learned Item To-
kens from (a) to (b) explicitly models the nested structure of recommendation signals—where
a user’s history is a sequence of items, and each item is a collection of heterogeneous attributes.
(c) LLM-Based Recommendation: The learned user representation and item representations are pro-
jected as soft prompts to condition the LLM for next-item prediction, ranking against a corpus of
candidate item embeddings.

erases distinctions between different attribute roles and obscures the nested structure of interactions,
making it difficult to preserve schema semantics or accurately model structured data.

Shallow Fusion of Modalities. Conventional multimodal recommenders (He & McAuley, 2016a;
Wei et al., 2019b; Tao et al., 2022b) typically combine auxiliary signals such as images or reviews
through simple concatenation or late fusion. Such shallow integration limits the model’s ability to
capture fine-grained cross-modal dependencies or hierarchical structures within user–item interac-
tions.

Limited Generalization Across Modalities. Recent LLM–multimodal hybrids (Geng et al., 2023;
Luo et al., 2024; Zhang et al., 2025a; López-Ávila & Du, 2025) demonstrate improved multimodal
reasoning but are usually tailored to specific modality pairs and lack explicit schema-awareness.
This reduces their generalizability across diverse recommendation settings with heterogeneous at-
tribute types.

3 UNIREC: UNIFIED MULTIMODAL ENCODING FOR LLM-BASED
RECOMMENDATIONS

To address the limitations identified in the previous section, we propose UniRec for multimodal
LLM-based recommendation. We first formalize heterogeneous signals into four modalities with
modality-specific encoders to obtain reliable feature representations. On top of these, we design a
schema-preserving triplet representation and a hierarchical Q-Former aggregation mechanism, en-
abling LLMs to effectively understand heterogeneous recommendation signals for next-item predic-
tion. The details are introduced as follows.

3.1 MODALITY-SPECIFIC ENCODERS

Robust modality-wise encoders and dense, comparable representations are crucial for stable multi-
modal fusion (Li et al., 2024; Vouitsis et al., 2024; Xu et al., 2022). To this end, we map all inputs
into 1024-dimensional embeddings using modality-specific encoders. For text (e.g., titles, reviews),
we employ Qwen3-0.6B Embedding1. Categorical labels (e.g., product categories) are encoded
with the same model using category-aware instructions, avoiding the mixing of sparse one-hot fea-
tures with dense vectors—a practice known to cause semantic misalignment and training instabil-
ity (Guan et al., 2022; Li et al., 2022; Cheng et al., 2022). For images, we use CLIP ViT-L/14 (Rad-

1https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
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ford et al., 2021b)2, followed by a projection layer that maps the native 768D representations to
1024D. For numerical features, we adopt a Fourier-based Math-Aware Number Encoder (Zhou
et al., 2025; Cao et al., 2025), which integrates Fourier components (sine/cosine with log-spaced
frequencies), raw magnitude/sign values, and a small learned projection. The encoder is trained
with objectives enforcing additivity, invertibility, and distance preservation, while domain-specific
adaptations handle temporal cycles (e.g., hour-of-day, month-of-year) and geospatial coordinates
projected onto the unit sphere. Implementation details are provided in Appendix A.

3.2 HIERARCHICAL Q-FORMER ENCODER

To model the nested structure of user-item interactions, we introduce a two-stage Hierarchical Q-
Former. This architecture first distills an item’s raw multimodal attributes into a fixed-size item
representation, and then aggregates a sequence of item interactions into a final user representation.

Schema-Aware Attribute Representation. To preserve the semantic meaning of each attribute
(e.g., knowing that ”19.99” is a ”price”), we represent it as a triplet of its (name, type, value). We
obtain embeddings for the attribute’s name (aj), its modality type (tj), and its value (vj). These are
fused via summation into a single schema-aware attribute embedding hj :

hj = aj + tj + vj

The complete set of attribute embeddings for an item i is denoted by Hi = {h1, . . . ,hNi
}, which

serves as the input for the first stage of our hierarchy.

Two-Stage Hierarchical Aggregation. Our aggregation process uses two sequential Q-Formers.

First, an Item Q-Former processes the variable-length set of an item’s attribute embeddings, Hit .
Using a set of learnable queries Qitem, it distills this information into a fixed-length item representa-
tion, zt:

zt = QFormeritem(Qitem,Hit) ∈ RKitem×d

Next, a User Q-Former aggregates the sequence of interactions over time. For each step t, the
item representation zt is combined with its associated review context embedding ct and a timestamp
embedding pt to preserve chronological order. A new set of queries, Quser, processes this entire
sequence to yield the final user representation U:

U = QFormeruser(Quser, {Concat(zt, ct) + pt}Tt=1) ∈ RKuser×d

This design yields rich, multi-token representations for both items (zt) and the user (U), capturing
more granular information than a single aggregated vector.

3.3 UNIREC TRAINING AND INFERENCE

Our training strategy decouples representation learning from LLM adaptation in a two-stage process.
First, we pretrain the UniRec encoder with a frozen LLM to learn aligned representations. Second,
we fine-tune the encoder and the LLM jointly for the next-item prediction task.

Pretraining Stage. The objective of this stage is to train the modality-specific encoders and the
Hierarchical Q-Former to produce a well-structured latent space while the LLM remains frozen. We
employ a multi-task learning framework that combines two objectives. The first is a reconstruction
loss (Lrecon), which ensures the Q-Former’s output retains modality-specific details by using an
MLP head to reconstruct the original attribute embeddings from the output tokens. The second is a
contrastive loss (Lcontrast), which uses InfoNCE (van den Oord et al., 2018) to learn semantic item
similarity by treating adjacent items in user histories as positive pairs. The final pretraining objective
is a weighted sum of these two losses:

Lpretrain = Lcontrast + λreconLrecon

where λrecon is a balancing hyperparameter. This approach ensures the encoder learns representations
that are both comprehensive and semantically aligned.

Fine-Tuning Stage. In the second stage, we adapt the system for recommendation by jointly training
the Hierarchical Q-Former and the LLM’s Low-Rank Adaptation (LoRA) weights (Hu et al., 2021),

2https://huggingface.co/openai/clip-vit-large-patch14
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Table 1: Detailed summarization of user and item attributes in Beauty, Baby and Yelp datasets.

Dataset Level Attributes

Beauty User timestamp, rating, title, text, image

Item main category, title, average rating, features, description, price, image,
store, categories, details

Baby User timestamp, rating, title, text, image

Item main category, title, average rating, features, description, price, image,
store, categories, details

Yelp User review date, review text, review star

Item name, latitude, longitude, stars, review count, attributes, categories, im-
age, image caption, image label

while keeping the core modality encoders frozen. The final user representation is projected into the
LLM’s word embedding space, functioning as a soft prompt that conditions the LLM on the user’s
multimodal history.

The fine-tuning objective is the InfoNCE loss, applied to the next-item prediction task. The model
learns to distinguish the ground-truth next item from a set of in-batch negative samples:

Lfinetune = − log
exp(sim(u, zT+1)/τ)

exp(sim(u, zT+1)/τ) +
∑N

j=1 exp(sim(u, z−j )/τ)

This joint training allows the Q-Former to refine its representations for the recommendation task
while teaching the LLM to interpret the injected soft prompts.

Inference and Ranking. During inference, a final user representation u is generated by processing
the user’s interaction history and mean-pooling the LLM’s final hidden state. To produce a ranked
list, this user embedding is used to compute a relevance score via dot product similarity against a
corpus of pre-computed item embeddings, s(u, i) = u · zi. Candidate items are then ranked in
descending order of this score.

4 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments on diverse and heterogeneous recom-
mendation datasets to evaluate the performance of UniRec, and perform detailed ablation studies
to validate the contribution of each design component.

4.1 EXPERIMENT SETUP

Tasks and Datasets. Table 1 summarizes the attributes available in the datasets used for evaluation.
We consider three benchmarks: the Beauty and Baby categories from the Amazon Product Reviews
corpus (McAuley et al., 2015), and the Yelp Review dataset (Yelp Inc., 2018). Following common
practice, we apply 5-core filtering to retain only users and items with at least five interactions. Each
training sample is constructed by extracting 20 consecutive interactions as the historical sequence,
with the 21st interaction designated as the ground-truth item. For evaluation, we adopt the leave-
one-out strategy: the held-out ground-truth item is ranked against 99 randomly sampled negatives,
yielding a candidate set of 100 items per user.

As shown in Table 1, user-side interactions include timestamps, ratings, and review text, with the
Amazon datasets also containing review images. Item-side information covers textual descriptions,
categorical labels, numerical values, and images. Amazon data thus provides multimodal signals
at both user and item levels, combining product metadata with user-contributed visuals, while Yelp
emphasizes spatiotemporal and categorical attributes, such as latitude–longitude coordinates, busi-
ness categories, and review counts, alongside textual reviews and star ratings. This organization

5
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Table 2: Performance comparison on 3 datasets using MRR, Hit@10, and NDCG@10. Baseline
models are grouped into three categories: multimodal-feature sequential, multimodal recommenda-
tion, and LLM-based multimodal. Bold and underline denote best and second-best results.

Beauty Baby Yelp
Model MRR Hit@10 NDCG@10 MRR Hit@10 NDCG@10 MRR Hit@10 NDCG@10

Multimodal-Feature Sequential Models
GRU4Rec 0.2087 0.4215 0.2478 0.1365 0.2780 0.1532 0.4120 0.7815 0.4920
BERT4Rec 0.2215 0.4391 0.2605 0.1422 0.2919 0.1605 0.4182 0.7890 0.4975

SASRec 0.2549 0.4598 0.2890 0.1610 0.3387 0.1860 0.4335 0.8012 0.5128

Multimodal Recommendation Models
VBPR 0.2476 0.4503 0.2818 0.1469 0.3413 0.1773 0.4605 0.8390 0.5433

MMGCN 0.3130 0.5045 0.3465 0.1848 0.3849 0.2170 0.5222 0.8769 0.6018
BM3 0.3305 0.5628 0.3864 0.2166 0.4365 0.2501 0.5405 0.8912 0.6187

LGMRec 0.3433 0.5861 0.4025 0.2279 0.4522 0.2668 0.5530 0.9025 0.6261

LLM-based Multimodal Recommenders
IISAN 0.2513 0.4492 0.2851 0.1476 0.3398 0.1784 0.4627 0.8426 0.5462

MLLM-MSR 0.3249 0.5713 0.3976 0.2084 0.4341 0.2495 0.5561 0.9014 0.6352

UniRec 0.3737 0.6270 0.4449 0.2635 0.4673 0.2977 0.5622 0.9150 0.6489

reflects the nested structure of recommendation signals, where each user history is a sequence of
items, and each item is described by multiple heterogeneous attributes.

Baselines and Metrics. We evaluate a variety of baseline methods across three scenarios, grouped
into (a) Feature-based sequential recommenders, (b) Multimodal recommendation models, and
(c) LLM-based multimodal recommenders. For evaluation, we follow the next-item prediction
setup with leave-one-out strategy: for each user, the ground-truth item is ranked against 99 randomly
sampled negatives. Performance is reported using three standard top-K ranking metrics: Mean
Reciprocal Rank (MRR) (Voorhees & Tice, 1999; Cremonesi et al., 2010), Hit Rate at 10 (Hit@10),
and Normalized Discounted Cumulative Gain at 10 (NDCG@10) (Järvelin & Kekäläinen, 2002;
Burges et al., 2005; Liu, 2009), where higher values indicate better recommendation quality.

• Multimodal-Feature Sequential Models. This group adapts classical sequential recommenders
by enriching item embeddings with multimodal features. Specifically, GRU4Rec (Hidasi et al.,
2016), BERT4Rec (Sun et al., 2019), and SASRec (Kang & McAuley, 2018) are implemented
using representations extracted from a pre-trained CLIP ViT-B/32 model (Radford et al., 2021a).
CLIP encodes product text and images into a shared embedding space, which replaces ID embed-
dings while leaving the original model architectures unchanged.

• Multimodal Recommendation Models. These approaches are explicitly designed to integrate
multimodal signals into recommendation. VBPR (He & McAuley, 2016a) augments matrix fac-
torization with visual preference vectors derived from product images. MMGCN (Wei et al.,
2019b) builds modality-specific user–item graphs and aggregates them with graph neural net-
works. BM3 (Zhou et al., 2023b) introduces a self-supervised learning framework that applies
dropout to generate contrastive views without explicit negative sampling, improving robustness.
LGMRec (Guo et al., 2024) decouples collaborative filtering and content modeling by combin-
ing local modality-specific graphs with global hypergraph-based embeddings, achieving stronger
alignment between content and interaction signals.

• LLM-based Multimodal Recommenders. Recent methods leverage large language models to
reason over multimodal content. IISAN (Fu et al., 2024) adopts a parameter-efficient fine-tuning
framework that decouples intra- and inter-modal adaptation, improving both training efficiency
and scalability while maintaining accuracy. MLLM-MSR (Ye et al., 2025) takes a summarization
approach: it converts product images into textual descriptions, uses an LLM to summarize user
histories, and fine-tunes the model for sequential recommendation. These models highlight the
emerging trend of directly coupling multimodal inputs with LLM.

Implementation Details. We implement UniRec on top of the Qwen3-Embedding-0.6B model
with LoRA adaptation and integrated Q-Formers. All modalities are mapped into a unified 1024-
dimensional space. Training updates Q-Former and LoRA parameters using the AdamW optimizer
(β1 = 0.9, β2 = 0.999, learning rate 1 × 10−4, weight decay 0.01) with linear warm-up (20
steps) followed by cosine decay. We employ the InfoNCE loss with temperature 0.07, training for
50 epochs with batch size 16 (accumulation step 1), and evaluate with batch size 32. LoRA is

6
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Figure 2: Both schema- and hierarchy-aware components are crucial for UniRec ’s perfor-
mance. Results are shown on Beauty, Baby, and Yelp datasets (measured in MRR). Performance
improves step by step as components are added: starting from the minimal configuration (w/o Both),
introducing either triplet representation or user-level tokens yields clear gains, while combining both
achieves the highest performance.

applied to attention and feed-forward layers with rank 16, α = 32, and dropout 0.1. To stabilize and
accelerate training, we enable FP16 precision, gradient clipping (norm 1.0), gradient checkpointing,
and sequence length grouping. All experiments are conducted on a single NVIDIA A6000 GPU.

4.2 UNIREC OUTPERFORMS STATE-OF-THE-ART BASELINES

In the Beauty, Baby, and Yelp datasets, we compare UniRec against multimodal-feature sequential
models, multimodal recommendation models, and recent LLM-based multimodal recommenders,
as shown in Table 2. Across all three datasets, UniRec consistently outperforms the strongest
baselines by relative margins of up to 16% in MRR, establishing a new state-of-the-art.

In the product recommendation setting on Beauty and Baby, where specialized multimodal models
such as LGMRec dominate, UniRec delivers notable improvements—8.8% on Beauty and 15.6%
on Baby in MRR—highlighting that its schema- and hierarchy-aware design provides clear advan-
tages in modeling complex multimodal attributes. In the point-of-interest recommendation setting
on Yelp, which emphasizes spatiotemporal and categorical diversity, UniRec further surpasses the
strongest LLM-based competitor MLLM-MSR with a 1.1% gain in MRR, demonstrating robust-
ness beyond product domains. Together, these results confirm that UniRec generalizes effectively
across heterogeneous recommendation scenarios, ranging from multimodal product domains to geo-
graphic and categorical POI recommendation, consistently outperforming both classical multimodal
architectures and modern LLM-based methods.

4.3 ABLATION STUDIES VALIDATE THE DESIGN OF UNIREC

We perform a comprehensive set of ablation studies to validate the effectiveness of UniRec ’s
design. By systematically removing or varying its core components, we isolate their individual
contributions and assess how each choice impacts the overall performance.

Schema- and Hierarchy-Aware Design Matters. This ablation examines the importance of
UniRec ’s schema- and hierarchy-aware components: the triplet representation at the item level
and the user-level summarization tokens at the sequence level. By selectively removing these ele-
ments, we isolate their individual and joint contributions to recommendation performance.

• w/o Both. Neither triplet representation nor user-level tokens are used, representing the minimal
configuration.

• w/o Triplet. Removes triplet decomposition of item attributes, while retaining user-level tokens.
• w/o User Token. Keeps triplet representation for items but discards user-level summarization

tokens.

7
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Table 3: Query-based hierarchical fusion achieves the strongest results. Ablation on fusion
mechanisms across Beauty, Baby, and Yelp datasets. All models share identical encoders, training
schedules, and candidate sets; only the fusion strategy differs. Bold and underline denote the best
and second-best results.

Beauty Baby Yelp
Fusion Mechanism MRR Hit@10 NDCG@10 MRR Hit@10 NDCG@10 MRR Hit@10 NDCG@10

Pure Text 0.3025 0.5016 0.3358 0.1857 0.3941 0.2179 0.4870 0.8643 0.5710
MLP 0.2980 0.4950 0.3301 0.1830 0.3865 0.2135 0.4825 0.8570 0.5655
CLIP 0.3150 0.5205 0.3482 0.1915 0.4040 0.2230 0.4962 0.8725 0.5795
Self-attention 0.3330 0.5635 0.3920 0.2140 0.4365 0.2520 0.5288 0.8955 0.6120

UniRec 0.3737 0.6270 0.4449 0.2635 0.4673 0.2977 0.5622 0.9150 0.6489

As shown in Figure 2, performance improves consistently as each component is introduced. Starting
from the minimal setting (w/o Both), adding either triplet representation or user-level tokens yields
notable gains, showing that each contributes independently. The best performance is achieved when
both are enabled, confirming their complementary roles: triplet representation structures multimodal
item attributes effectively, while user-level tokens capture nested dependencies across interaction
histories. Together, these design choices allow UniRec to better exploit schema- and hierarchy-
rich recommendation data.

Query-Based Fusion Outperforms Alternatives. We ablate the fusion mechanism used to combine
modality-specific embeddings, with results reported in Table 3. All variants adopt the same Qwen3-
0.6B embedding LLM as backbone and share identical candidate sets, modality-specific encoders,
and training schedules. The only difference lies in the fusion design, for which we compare the
following:

• Pure Text. Uses only item textual descriptions (e.g., titles/reviews) as content features, discard-
ing other modalities. This text-only setup is a common baseline in multimodal recommendation
studies (Zhou et al., 2023a; Liu et al., 2023a).

• MLP Fusion. Concatenates embeddings from all modalities into a single vector and processes
them with a multilayer perceptron (“early fusion”), a simple but shallow cross-modal strat-
egy (Baltrušaitis et al., 2019).

• CLIP-Style Projection. Maps each modality into a shared latent space through modality-
specific linear layers, with alignment guided by a contrastive objective, following dual-encoder
vision–language paradigms such as CLIP and ALIGN (Radford et al., 2021b; Jia et al., 2021).

• Self-Attention Fusion. Treats modality embeddings as tokens and applies a Transformer-style
self-attention layer to capture pairwise interactions (Vaswani et al., 2017).

The results show that Pure Text already forms a strong baseline, highlighting the informativeness
of textual signals. MLP Fusion slightly underperforms, suggesting that naive concatenation intro-
duces noise without modeling schema distinctions. CLIP-Style Projection offers modest gains by
better aligning text and image, yet its design is limited to pairwise modality alignment and strug-
gles with heterogeneous attributes. Self-Attention Fusion achieves stronger results, confirming the
value of richer cross-modal interactions, but still fails to capture hierarchical user–item structures.
In contrast, UniRec consistently surpasses all alternatives across datasets and metrics, demonstrat-
ing that schema-aware, hierarchical query-based fusion provides a principled and robust solution for
multimodal recommendation.

Token Count Sensitivity Reveals a Sweet Spot.

We examine how the number of latent tokens in the item-level and user-level Q-Formers affects
performance (Figure 3). The results show that token count is crucial for balancing expressiveness
and generalization. At the item level, accuracy peaks at 4 tokens, after which additional tokens
yield diminishing or even negative returns, suggesting that a compact set of latent tokens suffices
to capture key multimodal attributes. In contrast, the user-level Q-Former benefits from a slightly
larger capacity, with optimal performance around 4–8 tokens, reflecting the greater complexity of
modeling long interaction histories.
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Figure 3: Optimal token counts emerge for both item- and user-level Q-Formers. Left: item-
level tokens. Right: user-level tokens. Each curve shows MRR on one dataset, and the red star (⋆)
marks the token count achieving the highest performance.

Overall, the trends reveal a trade-off: too few tokens underfit the data, while too many introduce
redundancy, overfitting, or unstable training. These findings highlight the importance of careful
token calibration at both item and user levels to ensure robust hierarchical representation learning.

5 RELATED WORK

Multimodal Recommendation. A large body of research has shown that incorporating auxiliary
modalities such as text, images, or reviews can substantially enrich user and item representations
and alleviate data sparsity (He & McAuley, 2016b; Wei et al., 2019a; Tao et al., 2022a; Zhou et al.,
2023a; Liu et al., 2023b; Yu et al., 2025). These works established that multimodal signals carry
complementary semantics beyond ID-based interactions and can improve personalization in various
domains. More recent efforts have begun to align multimodal content with pretrained language
models, as in VIP5 (Geng et al., 2023), demonstrating the promise of combining vision, language,
and recommendation. Collectively, these advances highlight multimodality as a powerful driver for
next-generation recommender systems.

LLM-based Recommendation. The rise of large language models has introduced a new paradigm
where recommendation is formulated as a language modeling problem (Geng et al., 2022; Li et al.,
2023a; Zhang et al., 2023; Bao et al., 2023; Hou et al., 2023). By unifying diverse tasks into a
text-to-text format, LLM-based recommenders benefit from pretrained world knowledge, zero-shot
generalization, and explainability. Recent surveys further consolidate their versatility across do-
mains (Hou et al., 2023; Wang et al., 2025). In parallel, multimodal LLMs such as BLIP-2 (Li et al.,
2023b) illustrate how vision–language pretraining enables cross-modal reasoning, suggesting new
opportunities for recommendation scenarios that span heterogeneous signals. These developments
collectively point to unifying multimodal content with LLM reasoning as a natural and promising
next step.

6 CONCLUSION

We presented UniRec, a unified multimodal encoder that models heterogeneous
user–item–attribute signals through schema-aware triplet representations and a hierarchical
Q-Former, enabling LLMs to reason effectively for recommendation. Experiments on multiple
benchmarks showed consistent state-of-the-art performance with notable improvements over
multimodal and LLM-based baselines, while ablations confirmed the value of hierarchical fusion
and compact tokenization. Although UniRec depends on clean attribute schemas and was tested
primarily in offline next-item prediction, it opens promising directions for incorporating richer
modalities, handling schema noise, adapting to online and continual settings, and addressing fairness
and efficiency concerns. We hope this framework inspires future progress toward general-purpose
and trustworthy multimodal recommendation systems.
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A ENCODER IMPLEMENTATION DETAILS

TEXT ENCODER

We employ the Qwen3-0.6B embedding model (Zhang et al., 2025b), an instruction-tuned encoder.
For categorical inputs, we prepend descriptors (e.g., “Category:”), which stabilizes training and
prevents semantic drift between categorical fields and free-form textual descriptions.

IMAGE ENCODER

Images are processed with CLIP ViT-L/14 (Radford et al., 2021b), which produces 512-dimensional
embeddings aligned with text through large-scale contrastive pretraining. This backbone offers a
strong balance between representational quality and computational efficiency, enabling reliable mul-
timodal alignment.

NUMERICAL ENCODER

We design a Mathematical-Aware Numerical Encoder inspired by recent work on Fourier- and
wavelet-based numerical embeddings (Zhou et al., 2025; Cao et al., 2025). Given a scalar input,
the Mathematical-Aware Numerical Encoder generates a high-dimensional embedding using:

• Fourier features: sine and cosine components with logarithmically spaced frequencies, captur-
ing periodic structure across scales;

• Raw value features: two dimensions encoding magnitude and sign, preserving linear ordering;
• Learned projection: residual nonlinear features for task-specific representational capacity.

The encoder is trained with a multi-objective loss that enforces:

1. Additivity: E(a+ b) ≈ E(a) +E(b), encouraging arithmetic structure in the embedding space;
2. Invertibility: a small decoder reconstructs the original scalar, ensuring information preservation;
3. Distance preservation: triplet loss enforces that embedding distances reflect numeric differ-

ences.

Normalization is performed conservatively with bounded scaling factors to maintain these mathe-
matical properties during training.

DOMAIN-SPECIFIC NUMERICAL FEATURES

Temporal features are decomposed into secular and cyclical components. Secular time normal-
izes absolute timestamps, while cyclical features (hour-of-day, day-of-week, day-of-year, month-
of-year) are encoded with sine/cosine functions, ensuring continuity across cycle boundaries (e.g.,
23:59 and 00:01 map to nearby embeddings).
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Geospatial coordinates are projected to the unit sphere and represented in 3D Cartesian coordinates
(x = cos(lat) cos(lon), y = cos(lat) sin(lon), z = sin(lat)). This preserves great-circle distances,
which are more faithful to real-world geography than raw latitude/longitude. A small neural projec-
tion refines these representations for downstream use.

B DETAILED RATIONALE FOR TRIPLET REPRESENTATION AND Q-FORMER
INTERACTION

B.1 LIMITATIONS OF NAIVE SERIALIZATION

A primary limitation of many existing LLM-based recommenders is the loss of schema semantics,
which occurs when heterogeneous features are naively serialized into a single text string. For ex-
ample, an item might be represented as ”Title: Running Shoes, Brand: Nike, Price: 99.99, Rating:
4.5”. While readable to humans, this format obscures the crucial distinction between attributes that
may share a data type but carry vastly different meanings. The numerical value ”99.99” for a price
has a different semantic role and scale than the value ”4.5” for a rating. When tokenized by an
LLM, these distinctions are often lost, forcing the model to re-learn fundamental schema concepts
from unstructured text, which is inefficient and error-prone. Our triplet representation avoids this
by explicitly disentangling the name, type, and value of each attribute before they are embedded,
preserving this critical structural information.

B.2 MECHANISM OF SCHEMA-AWARE ATTENTION IN Q-FORMER

The triplet-based design is foundational for the subsequent hierarchical aggregation performed by
the Q-Former. The core of the Q-Former is a cross-attention mechanism, which can be formulated
as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V

In our Item Q-Former, the learnable queries Q are fixed, while the keys K and values V are linear
projections of the input attribute representations {hj}Ni

j=1.

If the input were an unstructured collection of embeddings from naive concatenation, the keys and
values would lack the necessary semantic cues for the queries to perform meaningful summarization.
The model would struggle to differentiate an embedding for ”price” from an embedding for ”rating”.

However, by using our triplet-based representation hj = eaj+etj+evj , we provide a structured and
disentangled input space. Each vector hj explicitly encodes the attribute’s name, type, and value.
Consequently, the keys K derived from these vectors are rich with schema information. This allows
the learnable queries in Q to specialize. For instance, one query might learn to assign high attention
scores to keys corresponding to ”price” attributes, effectively becoming a ”price expert” that extracts
cost-related information from items. Another query might specialize in ”brand” or ”category” infor-
mation. This specialization is only possible because the triplet representation provides the semantic
scaffolding necessary for the Q-Former to effectively identify, prioritize, and aggregate information
based on its role and content, rather than just its raw value.

C CONCEPTUAL GENERALIZATION AND CONFIGURATION OF THE
Q-FORMER

C.1 FROM MODALITY BRIDGE TO HIERARCHICAL SUMMARIZER

The Querying Transformer (Q-Former), as introduced in vision-language models like BLIP-2 (Li
et al., 2023b), was originally conceived as a lightweight bridge between two powerful, frozen en-
coders (e.g., vision and language). It functions as an information bottleneck, using a small, fixed set
of learnable query vectors to extract a fixed-size representation from one modality (vision) that is
most relevant to the other (language).

Our work presents a significant conceptual generalization of this role. Instead of bridging two dif-
ferent modalities, we repurpose the Q-Former as a versatile primitive for hierarchical data summa-
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rization within the single, complex domain of recommendation. This is achieved through a nested
application:

• Item Q-Former as a Heterogeneous Set Aggregator: At the lower level, the Item Q-
Former operates on an unordered set of heterogeneous attribute representations for a single
item. Its function is many-to-one aggregation, learning to distill the most salient features
from a variable collection of multimodal attributes into a single, canonical item embedding.

• User Q-Former as a Sequential Aggregator: At the higher level, the User Q-Former per-
forms a more traditional sequence modeling task. It takes the time-ordered sequence of
item embeddings and summarizes them into a single user representation, capturing tempo-
ral dynamics and evolving preferences.

This hierarchical application showcases that the query-based attention mechanism is a flexible and
effective tool for learning to summarize complex data structures, extending its utility far beyond its
initial vision-language application.

C.2 TUNING Q-FORMER CAPACITY VIA TOKEN COUNT

A key design choice in our hierarchical architecture is the number of learnable queries, Kitem and
Kuser, used in the Item and User Q-Formers, respectively. These values directly determine the
number of output latent tokens and thus control the capacity of the information bottleneck at each
level of the hierarchy. This token count is a critical hyperparameter that balances representational
expressiveness and model complexity.

A small number of tokens forces the model to learn a highly compressed, dense representation,
which may be efficient but could fail to capture the full richness of the input data (underfitting).
Conversely, a large number of tokens increases the model’s capacity but may introduce redundancy,
capture noise, and increase the risk of overfitting, in addition to raising computational costs. The
optimal token count may also differ between the item and user levels, given that one summarizes a
set of static attributes while the other summarizes a dynamic sequence of interactions. As such, we
conduct a detailed ablation study in our experiments (Section 4.3) to identify the optimal ”sweet
spot” for both Kitem and Kuser, ensuring robust and effective representation learning.

D BENEFITS OF DECOUPLED PRETRAINING

Our two-stage training strategy is critical for the model’s success. Attempting to train the entire
system end-to-end from scratch would require the LLM to simultaneously learn to interpret noisy,
unaligned multimodal signals while also mastering the recommendation task. This process is both
computationally prohibitive and prone to instability.

By first pretraining the UniRec encoder with a carefully designed multi-objective loss, we create a
well-structured latent space where user and item embeddings are meaningfully aligned before the
LLM is engaged. The reconstruction loss ensures that the Q-Former’s compressed representations
do not discard vital information from any modality, while the contrastive loss organizes the latent
space according to semantic similarity. This provides the LLM with clean, ”pre-digested,” and se-
mantically rich inputs during the fine-tuning stage, simplifying its adaptation task. This paradigm of
decoupling representation learning from generative fine-tuning mirrors the effective training strate-
gies of state-of-the-art vision-language models like BLIP-2 (Li et al., 2023b).

E DATASET DETAILS

Below is the detailed statistics for Dataset used in our training and evaluation, the number of users,
items and sparsity is reported in 4, while a sample of each dataset is reported in 5, 6, 7 and 8
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Table 4: Statistics of the benchmark datasets used for the next-item prediction task.
Dataset # Users # Items Sparsity

Beauty 22,363 12,101 99.9267%
Baby 19,445 7,050 99.8827%
Yelp-2018 77,278 45,639 99.9403%

Table 5: An example of a multimodal item from the Amazon dataset, showcasing the variety of
attributes available for a single product.

Attribute Value
parent asin B07G9GWFSM
title Lurrose 100Pcs Full Cover Fake Toenails Artificial Transparent

Nail Tips Nail Art for DIY
main category All Beauty
store Lurrose
average rating 3.7
rating number 35
price $6.99

features
• The false toenails are durable with perfect length. You have

the option to wear them long or clip them short, easy to trim
and file them to in any length and shape you like.

• ABS is kind of green enviromental material, and makes the
nails durable, breathable, light even no pressure on your own
nails.

• Fit well to your natural toenails. Non toxic, no smell, no harm
to your health.

• Wonderful as gift for girlfriend, family and friends.
• The easiest and most efficient way to do your toenail tips for

manicures or nail art designs...

description
• Description: The false toenails are durable with perfect

length... Plus, ABS is kind of green enviromental material...
• Feature: - Color: As Shown.- Material: ABS.- Size: 14.3 x

7.2 x 1cm.
• Package Including: 100 x Pieces fake toenails

details
• Color: As Shown
• Size: Large
• Material: Acrylonitrile Butadiene Styrene (ABS)
• Brand: Lurrose
• Style: French
• Product Dimensions: 5.63 x 2.83 x 0.39 inches; 1.9 Ounces
• UPC: 799768026253
• Manufacturer: Lurrose

images Present (2 images, MAIN variant shown)
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Table 6: An example of a user interaction from the Amazon dataset. This includes the user’s review,
rating, and associated metadata for a specific item.

Attribute Value
user id AEYORY2AVPMCPDV57CE337YU5LXA
parent asin B08BBQ29N5
asin B088SZDGXG
sort timestamp 1634275259292 (2021-10-15)
rating 3.0 / 5.0
verified purchase Yes
helpful votes 0

title Meh
text These were lightweight and soft but much too small for my lik-

ing. I would have preferred two of these together to make one
loc. For that reason I will not be repurchasing.

images Present (1 image)

F LLM WRITING USAGE DISCLOSURE

An LLM was utilized solely as a writing assistant to refine grammar and improve sentence readabil-
ity. Its role was limited to enhancing linguistic clarity, with no involvement in shaping the research
design, conducting data analysis, or influencing the interpretation of results.
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Table 7: An example of a multimodal item from the Yelp dataset, showcasing the variety of attributes
available for a single business.

Attribute Value
business id tnhfDv5Il8EaGSXZGiuQGg
name Garaje
address 475 3rd St
city San Francisco
state CA
postal code 94107
coordinates latitude = 37.7817529521, longitude = -122.39612197
stars 4.5 / 5.0
review count 1198
is open Yes (1)

attributes
• RestaurantsTakeOut = true
• BusinessParking: garage = false, street = true, validated

= false, lot = false, valet = false

categories Mexican, Burgers, Gastropubs

hours
• Monday: 10:00–21:00
• Tuesday: 10:00–21:00
• Wednesday: 10:00–21:00
• Thursday: 10:00–21:00
• Friday: 10:00–21:00
• Saturday: 10:00–21:00
• Sunday: 11:00–18:00

photo id nN DhLXkfwEkwPNxne9hw
photo.business id tnhfDv5Il8EaGSXZGiuQGg
caption carne asada fries
label food
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Table 8: An example of a user profile and associated review from the Yelp dataset, illustrating user
activity and interaction with a business.

Attribute Value
user id Ha3iJu77CxlrFm-vQRs 8g
name Sebastien
review count 56
yelping since 2011-01-01
friends

• wqoXYLWmpkEH0YvTmHBsJQ
• KUXLLiJGrjtSsapmxmpvTA
• 6e9rJKQC3n0RSKyHLViL-Q

useful (given) 21

review id zdSx SD6obEhz9VrW9uAWA
funny (given) 88
cool (given) 15
fans 1032
elite

• 2012
• 2013

business id tnhfDv5Il8EaGSXZGiuQGg
stars 4 / 5
date 2016-03-09
text Great place to hang out after work: the prices are decent, and

the ambience is fun. It’s a bit loud, but very lively. The staff
is friendly, and the food is good. They have a good selection of
drinks.

useful
(received)

0

funny (received) 0
cool (received) 0

19


	Introduction
	Preliminaries
	Problem Setup
	Limitations of Existing Methods

	UniRec: Unified Multimodal Encoding for LLM-Based Recommendations
	Modality-Specific Encoders
	Hierarchical Q-Former Encoder
	UniRec Training and Inference

	Experiments
	Experiment Setup
	UniRec Outperforms State-of-the-Art Baselines
	Ablation Studies Validate the Design of UniRec

	Related Work
	Conclusion
	Encoder Implementation Details
	Detailed Rationale for Triplet Representation and Q-Former Interaction
	Limitations of Naive Serialization
	Mechanism of Schema-Aware Attention in Q-Former

	Conceptual Generalization and Configuration of the Q-Former
	From Modality Bridge to Hierarchical Summarizer
	Tuning Q-Former Capacity via Token Count

	Benefits of Decoupled Pretraining
	Dataset Details
	LLM Writing Usage Disclosure

