UNIREC: UNIFIED MULTIMODAL ENCODING FOR LLM-BASED RECOMMENDATIONS

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

034

036

037

038

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Large language models (LLMs) have recently shown promise for multimodal recommendation, particularly with text and image inputs. Yet real-world recommendation signals extends far beyond these modalities. To reflect this, we formalize recommendation features into four modalities: text, images, categorical features, and numerical attributes, and emphasize unique challenges this heterogeneity poses for LLMs in understanding multimodal information. In particular, these challenges arise not only across modalities but also within them, as attributes (e.g., price, rating, time) may all be numeric yet carry distinct meanings. Beyond this intra-modality ambiguity, another major challenge is the nested structure of recommendation signals, where user histories are sequences of items, each carrying multiple attributes. To address these challenges, we propose UniRec, a unified multimodal encoder for LLM-based recommendation. UniRec first employs modality-specific encoders to produce consistent embeddings across heterogeneous signals. It then applies a triplet representation—comprising attribute name, type, and value—to separate schema from raw inputs and preserve semantic distinctions. Finally, a hierarchical Q-Former models the nested structure of user interactions while maintaining their layered organization. On multiple real-world benchmarks, UniRec outperforms state-of-the-art multimodal and LLM-based recommenders by up to 15%, while extensive ablation studies further validate the contributions of each component.

1 Introduction

Large language models (LLMs) have recently transformed recommender systems by reframing recommendation as a language modeling task (Geng et al., 2022; Li et al., 2023a; Zhang et al., 2023; Bao et al., 2023). Leveraging world knowledge and reasoning ability, LLM-based recommenders can capture rich semantic representations of users and items, enabling zero-shot prediction and explainable recommendations (Hou et al., 2023; Wang et al., 2025). However, most existing approaches primarily operate in text-centric settings, or at best combine text with images, where descriptive content such as reviews, metadata, or product visuals is abundant. While text and visual modalities are important, real-world recommendation data is far more heterogeneous, encompassing numerical, categorical, temporal, and geographical attributes that current LLM-based systems are ill-equipped to handle. Therefore, an open challenge remains: how can we design a unified framework that enables LLMs to effectively understand and reason over heterogeneous multimodal recommendation signals?

Addressing this challenge requires encoders that can faithfully represent such heterogeneous data. An effective encoder must be *schema-aware*, distinguishing attributes like price versus timestamp even when both are numeric; *hierarchy-aware*, capturing the nested structure of user histories as sequences of items with multiple attributes; and *modality-aware*, balancing signals across text, images, categorical fields, and numerical values. Naïve serialization into text or simple concatenation of embeddings discards these structural cues, obscures cross-feature interactions, and fails to capture sequential or relational patterns (Zhou et al., 2023a; Hou et al., 2023; Liu et al., 2023b; Singh et al., 2023; Bao et al., 2023).

While recent studies have begun exploring multimodal foundation models for recommendation (Geng et al., 2023; Luo et al., 2024), and vision-language models such as BLIP-2 demonstration.

strate how Q-Formers can bridge modalities (Li et al., 2023b), these approaches are still limited in not tailoring to specific modality pairs or tasks and not providing a general solution for arbitrary heterogeneous recommendation inputs. A unified framework is still missing—one that can preserve schema, modality, and structural information while making heterogeneous signals accessible to LLM reasoning.

To fill this gap, we propose UniRec, a unified multimodal encoder that enables LLMs to leverage heterogeneous recommendation signals. UniRec employs modality-specific encoders to produce aligned embeddings for text, image, categorical, and numerical features. Each attribute is represented as a triplet—(attribute name, type, value)—to disentangle schema from raw inputs and preserve semantic distinctions. A hierarchical Query-Former then aggregates these representations, first into item-level embeddings and subsequently into user-level histories, explicitly maintaining the layered structure of interactions. Integrated with a pretrained LLM, UniRec enables reasoning over multimodal signals without losing structural context, thereby improving recommendation accuracy.

We validate UniRec on a suite of benchmark datasets spanning diverse recommendation scenarios with differing combinations of textual, visual, numerical, categorical, temporal, and geographical attributes. Across all settings, UniRec consistently outperforms state-of-the-art multimodal and LLM-based baselines and demonstrates robustness across datasets with varying attribute compositions, underscoring its effectiveness in both conventional and richly multimodal recommendation tasks.

2 Preliminaries

In this section, we first introduce the preliminaries of multimodal recommendation and formally define the problem setup. We then discuss the limitations of existing methods in this setting, which motivates the design of our proposed UniRec encoder.

2.1 PROBLEM SETUP

We begin by formalizing the task of multimodal sequential recommendation, where users interact with items over time and items are described by heterogeneous attributes across multiple modalities.

Users and Items. Let $\mathcal{U}=\{u_1,\ldots,u_{|\mathcal{U}|}\}$ be the set of users and $\mathcal{I}=\{i_1,\ldots,i_{|\mathcal{I}|}\}$ the set of items. Each user $u\in\mathcal{U}$ generates a chronological interaction history

$$\mathcal{H}_u = [(t_1, \ell_1, i_1), (t_2, \ell_2, i_2), \dots, (t_T, \ell_T, i_T)],$$

where t_j is the timestamp, ℓ_j an optional location, and $i_j \in \mathcal{I}$ the item at step j. The next-item prediction task is to model the conditional distribution

$$p(i_{T+1} \mid \mathcal{H}_u),$$

and use it to rank candidate items for recommendation.

Attributes and Modalities. Each item $i \in \mathcal{I}$ is described by a heterogeneous collection of attributes spanning multiple modalities, such as textual descriptions, images, categorical labels, numerical values, or spatiotemporal information. Formally, let \mathcal{N} denote the attribute namespace and $\{\mathcal{V}_a\}_{a\in\mathcal{N}}$ the corresponding value domains. Then an item is associated with

$$\mathcal{A}(i) = \{(a, v) \mid a \in \mathcal{N}, v \in \mathcal{V}_a\},\$$

where a is the attribute name and v its observed value. Different attributes may share the same value format (e.g., both price and rating are numerical) yet carry distinct semantics.

2.2 Limitations of Existing Methods

Although prior work has made progress by leveraging textual and visual signals, existing approaches still face fundamental shortcomings when applied to heterogeneous multimodal recommendation.

Loss of Schema and Structural Semantics. Text-only LLM-based recommenders (Geng et al., 2022; Li et al., 2023a; Ye et al., 2024) flatten multimodal signals into text prompts. This process

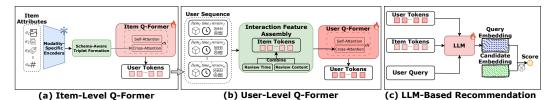


Figure 1: UniRec Model Architecture: (a) Item-Level Q-Former: Raw item attributes across heterogeneous modalities (text, categorical, image, numerical) are processed by modality-specific encoders and triplet formation. These generate schema-aware attribute embeddings, which are then aggregated by the Item Q-Former to produce a fixed-length item representation (\mathbf{z}_t). (b) User-Level Q-Former: A user's chronological interaction history, consisting of learned item tokens (\mathbf{z}_t), multimodal review contexts (\mathbf{c}_t), and timestamp embeddings (\mathbf{p}_t), is processed by an Interaction Feature Assembly module. The resulting sequence of combined interaction embeddings is then distilled by the User Q-Former into a unified user representation (U). The arrow passing the Learned Item Tokens from (a) to (b) explicitly models the nested structure of recommendation signals—where a user's history is a sequence of items, and each item is a collection of heterogeneous attributes. (c) LLM-Based Recommendation: The learned user representation and item representations are projected as soft prompts to condition the LLM for next-item prediction, ranking against a corpus of candidate item embeddings.

erases distinctions between different attribute roles and obscures the nested structure of interactions, making it difficult to preserve schema semantics or accurately model structured data.

Shallow Fusion of Modalities. Conventional multimodal recommenders (He & McAuley, 2016a; Wei et al., 2019b; Tao et al., 2022b) typically combine auxiliary signals such as images or reviews through simple concatenation or late fusion. Such shallow integration limits the model's ability to capture fine-grained cross-modal dependencies or hierarchical structures within user–item interactions.

Limited Generalization Across Modalities. Recent LLM–multimodal hybrids (Geng et al., 2023; Luo et al., 2024; Zhang et al., 2025a; López-Ávila & Du, 2025) demonstrate improved multimodal reasoning but are usually tailored to specific modality pairs and lack explicit schema-awareness. This reduces their generalizability across diverse recommendation settings with heterogeneous attribute types.

3 UNIREC: UNIFIED MULTIMODAL ENCODING FOR LLM-BASED RECOMMENDATIONS

To address the limitations identified in the previous section, we propose UniRec for multimodal LLM-based recommendation. We first formalize heterogeneous signals into four modalities with modality-specific encoders to obtain reliable feature representations. On top of these, we design a schema-preserving triplet representation and a hierarchical Q-Former aggregation mechanism, enabling LLMs to effectively understand heterogeneous recommendation signals for next-item prediction. The details are introduced as follows.

3.1 MODALITY-SPECIFIC ENCODERS

Robust modality-wise encoders and dense, comparable representations are crucial for stable multi-modal fusion (Li et al., 2024; Vouitsis et al., 2024; Xu et al., 2022). To this end, we map all inputs into 1024-dimensional embeddings using modality-specific encoders. For **text** (e.g., titles, reviews), we employ Qwen3-0.6B Embedding¹. **Categorical labels** (e.g., product categories) are encoded with the same model using category-aware instructions, avoiding the mixing of sparse one-hot features with dense vectors—a practice known to cause semantic misalignment and training instability (Guan et al., 2022; Li et al., 2022; Cheng et al., 2022). For **images**, we use CLIP ViT-L/14 (Rad-

¹https://huggingface.co/Qwen/Qwen3-Embedding-0.6B

ford et al., 2021b)², followed by a projection layer that maps the native 768D representations to 1024D. For **numerical features**, we adopt a Fourier-based Math-Aware Number Encoder (Zhou et al., 2025; Cao et al., 2025), which integrates Fourier components (sine/cosine with log-spaced frequencies), raw magnitude/sign values, and a small learned projection. The encoder is trained with objectives enforcing additivity, invertibility, and distance preservation, while domain-specific adaptations handle temporal cycles (e.g., hour-of-day, month-of-year) and geospatial coordinates projected onto the unit sphere. Implementation details are provided in Appendix A.

3.2 HIERARCHICAL Q-FORMER ENCODER

To model the nested structure of user-item interactions, we introduce a two-stage Hierarchical Q-Former. This architecture first distills an item's raw multimodal attributes into a fixed-size *item* representation, and then aggregates a sequence of item interactions into a final user representation.

Schema-Aware Attribute Representation. To preserve the semantic meaning of each attribute (e.g., knowing that "19.99" is a "price"), we represent it as a triplet of its (name, type, value). We obtain embeddings for the attribute's name (\mathbf{a}_j) , its modality type (\mathbf{t}_j) , and its value (\mathbf{v}_j) . These are fused via summation into a single *schema-aware attribute embedding* \mathbf{h}_j :

$$\mathbf{h}_j = \mathbf{a}_j + \mathbf{t}_j + \mathbf{v}_j$$

The complete set of attribute embeddings for an item i is denoted by $\mathbf{H}_i = \{\mathbf{h}_1, \dots, \mathbf{h}_{N_i}\}$, which serves as the input for the first stage of our hierarchy.

Two-Stage Hierarchical Aggregation. Our aggregation process uses two sequential Q-Formers.

First, an **Item Q-Former** processes the variable-length set of an item's attribute embeddings, \mathbf{H}_{i_t} . Using a set of learnable queries \mathbf{Q}_{item} , it distills this information into a fixed-length item representation, \mathbf{z}_t :

$$\mathbf{z}_t = \operatorname{QFormer}_{\operatorname{item}}(\mathbf{Q}_{\operatorname{item}}, \mathbf{H}_{i_t}) \in \mathbb{R}^{K_{\operatorname{item}} imes d}$$

Next, a **User Q-Former** aggregates the sequence of interactions over time. For each step t, the item representation \mathbf{z}_t is combined with its associated *review context* embedding \mathbf{c}_t and a *timestamp embedding* \mathbf{p}_t to preserve chronological order. A new set of queries, \mathbf{Q}_{user} , processes this entire sequence to yield the final user representation \mathbf{U} :

$$\mathbf{U} = \operatorname{QFormer}_{\operatorname{user}}(\mathbf{Q}_{\operatorname{user}}, \{\operatorname{Concat}(\mathbf{z}_t, \mathbf{c}_t) + \mathbf{p}_t\}_{t=1}^T) \in \mathbb{R}^{K_{\operatorname{user}} \times d}$$

This design yields rich, multi-token representations for both items (\mathbf{z}_t) and the user (\mathbf{U}) , capturing more granular information than a single aggregated vector.

3.3 UniRec Training and Inference

Our training strategy decouples representation learning from LLM adaptation in a two-stage process. First, we pretrain the UniRec encoder with a frozen LLM to learn aligned representations. Second, we fine-tune the encoder and the LLM jointly for the next-item prediction task.

Pretraining Stage. The objective of this stage is to train the modality-specific encoders and the Hierarchical Q-Former to produce a well-structured latent space while the LLM remains frozen. We employ a multi-task learning framework that combines two objectives. The first is a *reconstruction loss* (\mathcal{L}_{recon}), which ensures the Q-Former's output retains modality-specific details by using an MLP head to reconstruct the original attribute embeddings from the output tokens. The second is a *contrastive loss* ($\mathcal{L}_{contrast}$), which uses InfoNCE (van den Oord et al., 2018) to learn semantic item similarity by treating adjacent items in user histories as positive pairs. The final pretraining objective is a weighted sum of these two losses:

$$\mathcal{L}_{\text{pretrain}} = \mathcal{L}_{\text{contrast}} + \lambda_{\text{recon}} \mathcal{L}_{\text{recon}}$$

where λ_{recon} is a balancing hyperparameter. This approach ensures the encoder learns representations that are both comprehensive and semantically aligned.

Fine-Tuning Stage. In the second stage, we adapt the system for recommendation by jointly training the Hierarchical Q-Former and the LLM's Low-Rank Adaptation (LoRA) weights (Hu et al., 2021),

https://huggingface.co/openai/clip-vit-large-patch14

Table 1: Detailed summarization of user and item attributes in Beauty, Baby and Yelp datasets.

Dataset	Level	Attributes
Beauty	User	timestamp, rating, title, text, image
Zounty	Item	main_category, title, average_rating, features, description, price, image, store, categories, details
Baby	User	timestamp, rating, title, text, image
	Item	main_category, title, average_rating, features, description, price, image, store, categories, details
Yelp	User	review_date, review_text, review_star
Тогр	Item	name, latitude, longitude, stars, review_count, attributes, categories, image, image_caption, image_label

while keeping the core modality encoders frozen. The final user representation is projected into the LLM's word embedding space, functioning as a *soft prompt* that conditions the LLM on the user's multimodal history.

The fine-tuning objective is the InfoNCE loss, applied to the next-item prediction task. The model learns to distinguish the ground-truth next item from a set of in-batch negative samples:

$$\mathcal{L}_{\text{finetune}} = -\log \frac{\exp(\text{sim}(\mathbf{u}, \mathbf{z}_{T+1})/\tau)}{\exp(\text{sim}(\mathbf{u}, \mathbf{z}_{T+1})/\tau) + \sum_{j=1}^{N} \exp(\text{sim}(\mathbf{u}, \mathbf{z}_{j}^{-})/\tau)}$$

This joint training allows the Q-Former to refine its representations for the recommendation task while teaching the LLM to interpret the injected soft prompts.

Inference and Ranking. During inference, a final user representation $\mathbf u$ is generated by processing the user's interaction history and mean-pooling the LLM's final hidden state. To produce a ranked list, this user embedding is used to compute a relevance score via dot product similarity against a corpus of pre-computed item embeddings, $s(u,i) = \mathbf u \cdot \mathbf z_i$. Candidate items are then ranked in descending order of this score.

4 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments on diverse and heterogeneous recommendation datasets to evaluate the performance of UniRec, and perform detailed ablation studies to validate the contribution of each design component.

4.1 EXPERIMENT SETUP

Tasks and Datasets. Table 1 summarizes the attributes available in the datasets used for evaluation. We consider three benchmarks: the *Beauty* and *Baby* categories from the Amazon Product Reviews corpus (McAuley et al., 2015), and the Yelp Review dataset (Yelp Inc., 2018). Following common practice, we apply 5-core filtering to retain only users and items with at least five interactions. Each training sample is constructed by extracting 20 consecutive interactions as the historical sequence, with the 21st interaction designated as the ground-truth item. For evaluation, we adopt the leave-one-out strategy: the held-out ground-truth item is ranked against 99 randomly sampled negatives, yielding a candidate set of 100 items per user.

As shown in Table 1, user-side interactions include timestamps, ratings, and review text, with the Amazon datasets also containing review images. Item-side information covers textual descriptions, categorical labels, numerical values, and images. Amazon data thus provides multimodal signals at both user and item levels, combining product metadata with user-contributed visuals, while Yelp emphasizes spatiotemporal and categorical attributes, such as latitude—longitude coordinates, business categories, and review counts, alongside textual reviews and star ratings. This organization

284

286 287

288 289

290

291

292

293

294

295

296 297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318 319

320

321

322

323

272 273

Table 2: Performance comparison on 3 datasets using MRR, Hit@10, and NDCG@10. Baseline models are grouped into three categories: multimodal-feature sequential, multimodal recommendation, and LLM-based multimodal. **Bold** and underline denote best and second-best results.

	Beauty		Baby			Yelp			
Model	MRR	Hit@10	NDCG@10	MRR	Hit@10	NDCG@10	MRR	Hit@10	NDCG@10
Multimodal-Feature Sequential Models									
GRU4Rec	0.2087	0.4215	0.2478	0.1365	0.2780	0.1532	0.4120	0.7815	0.4920
BERT4Rec	0.2215	0.4391	0.2605	0.1422	0.2919	0.1605	0.4182	0.7890	0.4975
SASRec	0.2549	0.4598	0.2890	0.1610	0.3387	0.1860	0.4335	0.8012	0.5128
Multimodal Recommendation Models									
VBPR	0.2476	0.4503	0.2818	0.1469	0.3413	0.1773	0.4605	0.8390	0.5433
MMGCN	0.3130	0.5045	0.3465	0.1848	0.3849	0.2170	0.5222	0.8769	0.6018
BM3	0.3305	0.5628	0.3864	0.2166	0.4365	0.2501	0.5405	0.8912	0.6187
LGMRec	0.3433	0.5861	0.4025	0.2279	0.4522	0.2668	0.5530	0.9025	0.6261
LLM-based Multimodal Recommenders									
IISAN	0.2513	0.4492	0.2851	0.1476	0.3398	0.1784	0.4627	0.8426	0.5462
MLLM-MSR	0.3249	0.5713	0.3976	0.2084	0.4341	0.2495	<u>0.5561</u>	0.9014	0.6352
UniRec	0.3737	0.6270	0.4449	0.2635	0.4673	0.2977	0.5622	0.9150	0.6489

reflects the nested structure of recommendation signals, where each user history is a sequence of items, and each item is described by multiple heterogeneous attributes.

Baselines and Metrics. We evaluate a variety of baseline methods across three scenarios, grouped into (a) Feature-based sequential recommenders, (b) Multimodal recommendation models, and (c) LLM-based multimodal recommenders. For evaluation, we follow the next-item prediction setup with leave-one-out strategy: for each user, the ground-truth item is ranked against 99 randomly sampled negatives. Performance is reported using three standard top-K ranking metrics: Mean Reciprocal Rank (MRR) (Voorhees & Tice, 1999; Cremonesi et al., 2010), Hit Rate at 10 (Hit@10), and Normalized Discounted Cumulative Gain at 10 (NDCG@10) (Järvelin & Kekäläinen, 2002; Burges et al., 2005; Liu, 2009), where higher values indicate better recommendation quality.

- Multimodal-Feature Sequential Models. This group adapts classical sequential recommenders by enriching item embeddings with multimodal features. Specifically, GRU4Rec (Hidasi et al., 2016), BERT4Rec (Sun et al., 2019), and SASRec (Kang & McAuley, 2018) are implemented using representations extracted from a pre-trained CLIP ViT-B/32 model (Radford et al., 2021a). CLIP encodes product text and images into a shared embedding space, which replaces ID embeddings while leaving the original model architectures unchanged.
- Multimodal Recommendation Models. These approaches are explicitly designed to integrate multimodal signals into recommendation. VBPR (He & McAuley, 2016a) augments matrix factorization with visual preference vectors derived from product images. MMGCN (Wei et al., 2019b) builds modality-specific user-item graphs and aggregates them with graph neural networks. BM3 (Zhou et al., 2023b) introduces a self-supervised learning framework that applies dropout to generate contrastive views without explicit negative sampling, improving robustness. LGMRec (Guo et al., 2024) decouples collaborative filtering and content modeling by combining local modality-specific graphs with global hypergraph-based embeddings, achieving stronger alignment between content and interaction signals.
- LLM-based Multimodal Recommenders. Recent methods leverage large language models to reason over multimodal content. IISAN (Fu et al., 2024) adopts a parameter-efficient fine-tuning framework that decouples intra- and inter-modal adaptation, improving both training efficiency and scalability while maintaining accuracy. MLLM-MSR (Ye et al., 2025) takes a summarization approach: it converts product images into textual descriptions, uses an LLM to summarize user histories, and fine-tunes the model for sequential recommendation. These models highlight the emerging trend of directly coupling multimodal inputs with LLM.

Implementation Details. We implement UniRec on top of the Qwen3-Embedding-0.6B model with LoRA adaptation and integrated Q-Formers. All modalities are mapped into a unified 1024dimensional space. Training updates Q-Former and LoRA parameters using the AdamW optimizer $(\beta_1 = 0.9, \beta_2 = 0.999, \text{ learning rate } 1 \times 10^{-4}, \text{ weight decay } 0.01) \text{ with linear warm-up (20)}$ steps) followed by cosine decay. We employ the InfoNCE loss with temperature 0.07, training for 50 epochs with batch size 16 (accumulation step 1), and evaluate with batch size 32. LoRA is

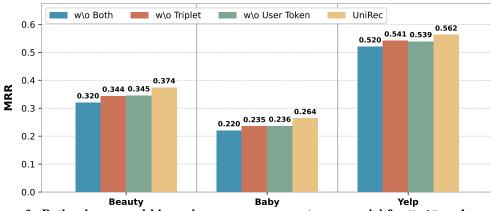


Figure 2: Both schema- and hierarchy-aware components are crucial for UniRec's performance. Results are shown on Beauty, Baby, and Yelp datasets (measured in MRR). Performance improves step by step as components are added: starting from the minimal configuration (w/o Both), introducing either triplet representation or user-level tokens yields clear gains, while combining both achieves the highest performance.

applied to attention and feed-forward layers with rank 16, $\alpha=32$, and dropout 0.1. To stabilize and accelerate training, we enable FP16 precision, gradient clipping (norm 1.0), gradient checkpointing, and sequence length grouping. All experiments are conducted on a single NVIDIA A6000 GPU.

4.2 Unirec Outperforms State-of-the-Art Baselines

In the Beauty, Baby, and Yelp datasets, we compare UniRec against multimodal-feature sequential models, multimodal recommendation models, and recent LLM-based multimodal recommenders, as shown in Table 2. Across all three datasets, UniRec consistently outperforms the strongest baselines by relative margins of up to 16% in MRR, establishing a new state-of-the-art.

In the product recommendation setting on Beauty and Baby, where specialized multimodal models such as LGMRec dominate, UniRec delivers notable improvements—8.8% on Beauty and 15.6% on Baby in MRR—highlighting that its schema- and hierarchy-aware design provides clear advantages in modeling complex multimodal attributes. In the point-of-interest recommendation setting on Yelp, which emphasizes spatiotemporal and categorical diversity, UniRec further surpasses the strongest LLM-based competitor MLLM-MSR with a 1.1% gain in MRR, demonstrating robustness beyond product domains. Together, these results confirm that UniRec generalizes effectively across heterogeneous recommendation scenarios, ranging from multimodal product domains to geographic and categorical POI recommendation, consistently outperforming both classical multimodal architectures and modern LLM-based methods.

4.3 ABLATION STUDIES VALIDATE THE DESIGN OF UNIREC

We perform a comprehensive set of ablation studies to validate the effectiveness of UniRec 's design. By systematically removing or varying its core components, we isolate their individual contributions and assess how each choice impacts the overall performance.

Schema- and Hierarchy-Aware Design Matters. This ablation examines the importance of UniRec 's schema- and hierarchy-aware components: the triplet representation at the item level and the user-level summarization tokens at the sequence level. By selectively removing these elements, we isolate their individual and joint contributions to recommendation performance.

- w/o Both. Neither triplet representation nor user-level tokens are used, representing the minimal
 configuration.
- w/o Triplet. Removes triplet decomposition of item attributes, while retaining user-level tokens.
- w/o User Token. Keeps triplet representation for items but discards user-level summarization tokens.

Table 3: **Query-based hierarchical fusion achieves the strongest results.** Ablation on fusion mechanisms across Beauty, Baby, and Yelp datasets. All models share identical encoders, training schedules, and candidate sets; only the *fusion strategy* differs. **Bold** and <u>underline</u> denote the best and second-best results.

	Beauty			Baby			Yelp		
Fusion Mechanism	MRR	Hit@10	NDCG@10	MRR	Hit@10	NDCG@10	MRR	Hit@10	NDCG@10
Pure Text	0.3025	0.5016	0.3358	0.1857	0.3941	0.2179	0.4870	0.8643	0.5710
MLP	0.2980	0.4950	0.3301	0.1830	0.3865	0.2135	0.4825	0.8570	0.5655
CLIP	0.3150	0.5205	0.3482	0.1915	0.4040	0.2230	0.4962	0.8725	0.5795
Self-attention	0.3330	0.5635	0.3920	0.2140	0.4365	0.2520	0.5288	0.8955	0.6120
UniRec	0.3737	0.6270	0.4449	0.2635	0.4673	0.2977	0.5622	0.9150	0.6489

As shown in Figure 2, performance improves consistently as each component is introduced. Starting from the minimal setting (*wlo Both*), adding either triplet representation or user-level tokens yields notable gains, showing that each contributes independently. The best performance is achieved when both are enabled, confirming their complementary roles: triplet representation structures multimodal item attributes effectively, while user-level tokens capture nested dependencies across interaction histories. Together, these design choices allow UniRec to better exploit schema- and hierarchyrich recommendation data.

Query-Based Fusion Outperforms Alternatives. We ablate the *fusion mechanism* used to combine modality-specific embeddings, with results reported in Table 3. All variants adopt the same Qwen3-0.6B embedding LLM as backbone and share identical candidate sets, modality-specific encoders, and training schedules. The only difference lies in the fusion design, for which we compare the following:

- **Pure Text.** Uses only item textual descriptions (e.g., titles/reviews) as content features, discarding other modalities. This text-only setup is a common baseline in multimodal recommendation studies (Zhou et al., 2023a; Liu et al., 2023a).
- MLP Fusion. Concatenates embeddings from all modalities into a single vector and processes them with a multilayer perceptron ("early fusion"), a simple but shallow cross-modal strategy (Baltrušaitis et al., 2019).
- CLIP-Style Projection. Maps each modality into a shared latent space through modality-specific linear layers, with alignment guided by a contrastive objective, following dual-encoder vision—language paradigms such as CLIP and ALIGN (Radford et al., 2021b; Jia et al., 2021).
- **Self-Attention Fusion.** Treats modality embeddings as tokens and applies a Transformer-style self-attention layer to capture pairwise interactions (Vaswani et al., 2017).

The results show that *Pure Text* already forms a strong baseline, highlighting the informativeness of textual signals. *MLP Fusion* slightly underperforms, suggesting that naive concatenation introduces noise without modeling schema distinctions. *CLIP-Style Projection* offers modest gains by better aligning text and image, yet its design is limited to pairwise modality alignment and struggles with heterogeneous attributes. *Self-Attention Fusion* achieves stronger results, confirming the value of richer cross-modal interactions, but still fails to capture hierarchical user–item structures. In contrast, UniRec consistently surpasses all alternatives across datasets and metrics, demonstrating that schema-aware, hierarchical query-based fusion provides a principled and robust solution for multimodal recommendation.

Token Count Sensitivity Reveals a Sweet Spot.

We examine how the number of latent tokens in the item-level and user-level Q-Formers affects performance (Figure 3). The results show that token count is crucial for balancing expressiveness and generalization. At the item level, accuracy peaks at 4 tokens, after which additional tokens yield diminishing or even negative returns, suggesting that a compact set of latent tokens suffices to capture key multimodal attributes. In contrast, the user-level Q-Former benefits from a slightly larger capacity, with optimal performance around 4–8 tokens, reflecting the greater complexity of modeling long interaction histories.

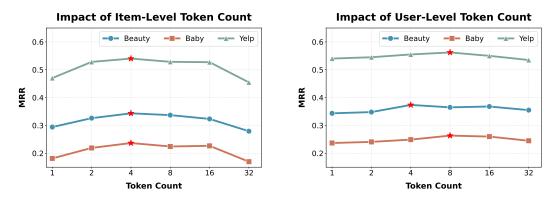


Figure 3: Optimal token counts emerge for both item- and user-level Q-Formers. Left: item-level tokens. Right: user-level tokens. Each curve shows MRR on one dataset, and the red star (\star) marks the token count achieving the highest performance.

Overall, the trends reveal a trade-off: too few tokens underfit the data, while too many introduce redundancy, overfitting, or unstable training. These findings highlight the importance of careful token calibration at both item and user levels to ensure robust hierarchical representation learning.

5 RELATED WORK

Multimodal Recommendation. A large body of research has shown that incorporating auxiliary modalities such as text, images, or reviews can substantially enrich user and item representations and alleviate data sparsity (He & McAuley, 2016b; Wei et al., 2019a; Tao et al., 2022a; Zhou et al., 2023a; Liu et al., 2023b; Yu et al., 2025). These works established that multimodal signals carry complementary semantics beyond ID-based interactions and can improve personalization in various domains. More recent efforts have begun to align multimodal content with pretrained language models, as in VIP5 (Geng et al., 2023), demonstrating the promise of combining vision, language, and recommendation. Collectively, these advances highlight multimodality as a powerful driver for next-generation recommender systems.

LLM-based Recommendation. The rise of large language models has introduced a new paradigm where recommendation is formulated as a language modeling problem (Geng et al., 2022; Li et al., 2023a; Zhang et al., 2023; Bao et al., 2023; Hou et al., 2023). By unifying diverse tasks into a text-to-text format, LLM-based recommenders benefit from pretrained world knowledge, zero-shot generalization, and explainability. Recent surveys further consolidate their versatility across domains (Hou et al., 2023; Wang et al., 2025). In parallel, multimodal LLMs such as BLIP-2 (Li et al., 2023b) illustrate how vision—language pretraining enables cross-modal reasoning, suggesting new opportunities for recommendation scenarios that span heterogeneous signals. These developments collectively point to unifying multimodal content with LLM reasoning as a natural and promising next step.

6 Conclusion

We presented UniRec, a unified multimodal encoder that models heterogeneous user—item—attribute signals through schema-aware triplet representations and a hierarchical Q-Former, enabling LLMs to reason effectively for recommendation. Experiments on multiple benchmarks showed consistent state-of-the-art performance with notable improvements over multimodal and LLM-based baselines, while ablations confirmed the value of hierarchical fusion and compact tokenization. Although UniRec depends on clean attribute schemas and was tested primarily in offline next-item prediction, it opens promising directions for incorporating richer modalities, handling schema noise, adapting to online and continual settings, and addressing fairness and efficiency concerns. We hope this framework inspires future progress toward general-purpose and trustworthy multimodal recommendation systems.

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. Our work does not involve human subjects, personal data, or sensitive attributes. We followed best practices for data usage, ensured compliance with licensing terms, and considered potential risks of bias or misuse.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Details of the model architecture, training settings, and hyperparameters are described in Section 4. All datasets we used are publicly available. The training scripts and evaluation code will be released upon publication to facilitate replication.

REFERENCES

- Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning: A survey and taxonomy. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(2): 423–443, 2019.
- Yu Bao, Yujie Li, Hu Xu, Xiangnan He, et al. Tallrec: Teaching large language models to recommend. *arXiv preprint arXiv:2305.12366*, 2023.
- Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. In *ICML*, 2005.
- Defu Cao, Zijie Lei, Jiao Sun, and Yan Liu. Speaking numbers to llms: Multi-wavelet number embeddings for time series forecasting. In *ICML Workshop on Foundations and Modelings of Sequential Data (FMSD)*, 2025.
- Y. Cheng et al. Representation learning for tabular and multimodal data: A survey. *arXiv preprint arXiv:2207.08815*, 2022.
- Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on top-n recommendation tasks. In *RecSys*, 2010.
- Junchen Fu, Xuri Ge, Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Jie Wang, and Joemon M Jose. Iisan: Efficiently adapting multimodal representation for sequential recommendation with decoupled peft. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 687–697, 2024.
- Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In *Proceedings of the 16th ACM Conference on Recommender Systems (RecSys 2022)*, pp. 299–315. ACM, 2022.
- Shijie Geng, Juntao Tan, Shuchang Liu, Zuohui Fu, and Yongfeng Zhang. VIP5: Towards multimodal foundation models for recommendation. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 9606–9620. Association for Computational Linguistics, 2023.
- J. Guan et al. A survey on multimodal recommender systems: Taxonomy, methods, and future directions. ACM Transactions on Recommender Systems, 2022.
- Xiaoxiao Guo, Jian Xu, Xin Li, and Yongfeng Zhang. Glmrec: Global and local graph learning for multimodal recommendation. *TKDE*, 2024.
- Ruining He and Julian McAuley. VBPR: Visual bayesian personalized ranking from implicit feedback. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 2016a.
- Ruining He and Julian McAuley. Vbpr: Visual bayesian personalized ranking from implicit feedback. In AAAI, 2016b.

- Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommendations with recurrent neural networks. In *International Conference on Learning Representations (ICLR)*, 2016.
- Yuwei Hou et al. A survey on large language models for recommendation. *arXiv preprint* arXiv:2305.19860, 2023.
 - Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2021.
 - Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *Proceedings of the 38th International Conference on Machine Learning (ICML)*, 2021.
 - Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. *ACM Transactions on Information Systems (TOIS)*, 20(4):422–446, 2002.
 - Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *Proceedings* of the 2018 IEEE International Conference on Data Mining (ICDM), pp. 197–206, 2018.
 - Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. GPT4Rec: A generative framework for personalized recommendation and user interests interpretation. In *SIGIR eCom*, 2023a.
 - Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. *arXiv* preprint *arXiv*:2301.12597, 2023b.
 - Xintong Li, Kai Zhang, Zixuan Liu, Tianyu Yang, Liang Wang, Tianyu Wu, and Dong Yu. Multi-modal alignment and fusion: A survey. *arXiv preprint arXiv:2411.17040*, 2024.
 - Y. Li et al. Bridging modality gaps for multimodal recommendation. In *Proceedings of the ACM Web Conference*, 2022.
 - Qidong Liu, Jiaxi Hu, Yutian Xiao, Jingtong Gao, and Xiangyu Zhao. Multimodal recommender systems: A survey. *arXiv preprint arXiv:2302.03883*, 2023a.
 - Tie-Yan Liu. Learning to rank for information retrieval. In *Foundations and Trends in Information Retrieval*, 2009.
 - Xiao Liu et al. Mmrec: Bridging language and vision for recommendation with multimodal language models. *arXiv preprint arXiv:2304.03667*, 2023b.
 - Alejo López-Ávila and Jinhua Du. A survey on large language models in multimodal recommender systems. *arXiv preprint arXiv:2505.09777*, 2025.
 - Yucong Luo, Qitao Qin, Hao Zhang, Mingyue Cheng, Ruiran Yan, Kefan Wang, and Jie Ouyang. Molar: Multimodal llms with collaborative filtering alignment for enhanced sequential recommendation. *arXiv preprint arXiv:2412.18176*, 2024.
 - Julian McAuley, Chris Targett, Qinfeng Shi, and Anton van den Hengel. Image-based recommendations on styles and substitutes. In *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)*, pp. 43–52, 2015.
 - Alec Radford, Jong Wook Kim, Aditya Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *Proceedings of the 38th International Conference on Machine Learning (ICML)*, pp. 8748–8763, 2021a.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021b.

- Abhishek Singh et al. Gill: Generative image-llm for recommendation. In *NeurIPS*, 2023.
 - Fei Sun, Jun Liu, Jian Wu, Chaochao Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In *CIKM*, 2019.
 - Wei Tao et al. M3r: Memory-augmented multi-modal recommendation. In CIKM, 2022a.
 - Zhiwei Tao, Xiao Liu, Yingxue Xia, Xiang Wang, Ling-Yu Yang, Xiangnan Huang, and Tat-Seng Chua. Self-supervised learning for multimedia recommendation. *IEEE Transactions on Multimedia*, 2022b.
 - Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
 - Ellen M. Voorhees and Dawn M. Tice. The trec-8 question answering track evaluation. In *TREC*, 1999.
 - Andreas Vouitsis, Konstantinos Drossos, and Tuomas Virtanen. Fusemix: Data-efficient multimodal fusion on a single gpu. In *Proceedings of the 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*. IEEE, 2024.
 - Zhaoliang Wang, Baisong Liu, Weiming Huang, Tingting Hao, Huiqian Zhou, Yuxin Guo, et al. Leveraging multimodal large language model for multimodal sequential recommendation. *Scientific Reports*, 15:28960, 2025. doi: 10.1038/s41598-025-14251-1.
 - Chunfeng Wei, Liqiang Nie, Xiang Li, and et al. Mmgcn: Multi-modal graph convolution network for personalized recommendation. In *SIGIR*, 2019a.
 - Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng Chua. Mmgcn: Multi-modal graph convolution network for personalized recommendation of micro-video. In *Proceedings of the 27th ACM International Conference on Multimedia (MM)*, pp. 1437–1445, 2019b.
 - Pengchuan Xu, Xiaowei Li, Weizhu Lu, and Lawrence Carin. Bridgetower: Building bridges between encoders in vision-language representation learning. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2022.
 - Jiacheng Ye et al. Harnessing multimodal large language models for multimodal sequential recommendation. arXiv preprint arXiv:2408.09698, 2025.
 - Yuyang Ye, Zhi Zheng, Yishan Shen, Tianshu Wang, Hengruo Zhang, Peijun Zhu, Runlong Yu, Kai Zhang, and Hui Xiong. Harnessing multimodal large language models for multimodal sequential recommendation. *arXiv preprint arXiv:2408.09698*, 2024.
 - Yelp Inc. Yelp open dataset. https://www.yelp.com/dataset, 2018.
 - Penghang Yu, Zhiyi Tan, Guanming Lu, and Bing-Kun Bao. Mind individual information! principal graph learning for multimedia recommendation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 13096–13105, 2025.
 - Chao Zhang, Haoxin Zhang, Shiwei Wu, Di Wu, Tong Xu, Xiangyu Zhao, Yan Gao, Yao Hu, and Enhong Chen. NoteLLM-2: Multimodal large representation models for recommendation. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '25)*, 2025a.
 - Sheng Zhang et al. Prompt4rec: Pre-train and prompt for sequential recommendation. *arXiv* preprint *arXiv*:2304.13277, 2023.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025b.

Hongyu Zhou, Xin Zhou, Zhiwei Zeng, Lingzi Zhang, and Zhiqi Shen. A comprehensive survey on multimodal recommender systems: Taxonomy, evaluation, and future directions. *CoRR*, abs/2302.04473, 2023a.

Tianyi Zhou, Deqing Fu, Mahdi Soltanolkotabi, Robin Jia, and Vatsal Sharan. Fone: Precise single-token number embeddings via fourier features. *arXiv preprint arXiv:2502.09741*, 2025.

Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chunyan Miao, Pengwei Wang, Yuan You, and Feijun Jiang. Bootstrap latent representations for multi-modal recommendation. In *Proceedings of the ACM web conference 2023*, pp. 845–854, 2023b.

A ENCODER IMPLEMENTATION DETAILS

TEXT ENCODER

We employ the Qwen3-0.6B embedding model (Zhang et al., 2025b), an instruction-tuned encoder. For categorical inputs, we prepend descriptors (e.g., "Category:"), which stabilizes training and prevents semantic drift between categorical fields and free-form textual descriptions.

IMAGE ENCODER

Images are processed with CLIP ViT-L/14 (Radford et al., 2021b), which produces 512-dimensional embeddings aligned with text through large-scale contrastive pretraining. This backbone offers a strong balance between representational quality and computational efficiency, enabling reliable multimodal alignment.

NUMERICAL ENCODER

We design a Mathematical-Aware Numerical Encoder inspired by recent work on Fourier- and wavelet-based numerical embeddings (Zhou et al., 2025; Cao et al., 2025). Given a scalar input, the Mathematical-Aware Numerical Encoder generates a high-dimensional embedding using:

- Fourier features: sine and cosine components with logarithmically spaced frequencies, capturing periodic structure across scales;
- Raw value features: two dimensions encoding magnitude and sign, preserving linear ordering;
- Learned projection: residual nonlinear features for task-specific representational capacity.

The encoder is trained with a multi-objective loss that enforces:

- 1. Additivity: $E(a+b) \approx E(a) + E(b)$, encouraging arithmetic structure in the embedding space;
- 2. **Invertibility:** a small decoder reconstructs the original scalar, ensuring information preservation;
- Distance preservation: triplet loss enforces that embedding distances reflect numeric differences.

Normalization is performed conservatively with bounded scaling factors to maintain these mathematical properties during training.

DOMAIN-SPECIFIC NUMERICAL FEATURES

Temporal features are decomposed into secular and cyclical components. Secular time normalizes absolute timestamps, while cyclical features (hour-of-day, day-of-week, day-of-year, month-of-year) are encoded with sine/cosine functions, ensuring continuity across cycle boundaries (e.g., 23:59 and 00:01 map to nearby embeddings).

Geospatial coordinates are projected to the unit sphere and represented in 3D Cartesian coordinates $(x = \cos(\tan)\cos(\sin), y = \cos(\tan)\sin(\sin), z = \sin(\tan))$. This preserves great-circle distances, which are more faithful to real-world geography than raw latitude/longitude. A small neural projection refines these representations for downstream use.

B DETAILED RATIONALE FOR TRIPLET REPRESENTATION AND Q-FORMER INTERACTION

B.1 LIMITATIONS OF NAIVE SERIALIZATION

A primary limitation of many existing LLM-based recommenders is the loss of schema semantics, which occurs when heterogeneous features are naively serialized into a single text string. For example, an item might be represented as "Title: Running Shoes, Brand: Nike, Price: 99.99, Rating: 4.5". While readable to humans, this format obscures the crucial distinction between attributes that may share a data type but carry vastly different meanings. The numerical value "99.99" for a price has a different semantic role and scale than the value "4.5" for a rating. When tokenized by an LLM, these distinctions are often lost, forcing the model to re-learn fundamental schema concepts from unstructured text, which is inefficient and error-prone. Our triplet representation avoids this by explicitly disentangling the name, type, and value of each attribute before they are embedded, preserving this critical structural information.

B.2 MECHANISM OF SCHEMA-AWARE ATTENTION IN Q-FORMER

The triplet-based design is foundational for the subsequent hierarchical aggregation performed by the Q-Former. The core of the Q-Former is a cross-attention mechanism, which can be formulated as:

$$\operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

In our Item Q-Former, the learnable queries \mathbf{Q} are fixed, while the keys \mathbf{K} and values \mathbf{V} are linear projections of the input attribute representations $\{\mathbf{h}_i\}_{i=1}^{N_i}$.

If the input were an unstructured collection of embeddings from naive concatenation, the keys and values would lack the necessary semantic cues for the queries to perform meaningful summarization. The model would struggle to differentiate an embedding for "price" from an embedding for "rating".

However, by using our triplet-based representation $\mathbf{h}_j = \mathbf{e}_{a_j} + \mathbf{e}_{t_j} + \mathbf{e}_{v_j}$, we provide a structured and disentangled input space. Each vector \mathbf{h}_j explicitly encodes the attribute's name, type, and value. Consequently, the keys \mathbf{K} derived from these vectors are rich with schema information. This allows the learnable queries in \mathbf{Q} to specialize. For instance, one query might learn to assign high attention scores to keys corresponding to "price" attributes, effectively becoming a "price expert" that extracts cost-related information from items. Another query might specialize in "brand" or "category" information. This specialization is only possible because the triplet representation provides the semantic scaffolding necessary for the Q-Former to effectively identify, prioritize, and aggregate information based on its role and content, rather than just its raw value.

C CONCEPTUAL GENERALIZATION AND CONFIGURATION OF THE Q-FORMER

C.1 From Modality Bridge to Hierarchical Summarizer

The Querying Transformer (Q-Former), as introduced in vision-language models like BLIP-2 (Li et al., 2023b), was originally conceived as a lightweight bridge between two powerful, frozen encoders (e.g., vision and language). It functions as an information bottleneck, using a small, fixed set of learnable query vectors to extract a fixed-size representation from one modality (vision) that is most relevant to the other (language).

Our work presents a significant conceptual generalization of this role. Instead of bridging two different modalities, we repurpose the Q-Former as a versatile primitive for hierarchical data summa-

rization within the single, complex domain of recommendation. This is achieved through a nested application:

- Item Q-Former as a Heterogeneous Set Aggregator: At the lower level, the Item Q-Former operates on an unordered *set* of heterogeneous attribute representations for a single item. Its function is many-to-one aggregation, learning to distill the most salient features from a variable collection of multimodal attributes into a single, canonical item embedding.
- User Q-Former as a Sequential Aggregator: At the higher level, the User Q-Former performs a more traditional sequence modeling task. It takes the time-ordered sequence of item embeddings and summarizes them into a single user representation, capturing temporal dynamics and evolving preferences.

This hierarchical application showcases that the query-based attention mechanism is a flexible and effective tool for learning to summarize complex data structures, extending its utility far beyond its initial vision-language application.

C.2 TUNING Q-FORMER CAPACITY VIA TOKEN COUNT

A key design choice in our hierarchical architecture is the number of learnable queries, K_{item} and K_{user} , used in the Item and User Q-Formers, respectively. These values directly determine the number of output latent tokens and thus control the capacity of the information bottleneck at each level of the hierarchy. This token count is a critical hyperparameter that balances representational expressiveness and model complexity.

A small number of tokens forces the model to learn a highly compressed, dense representation, which may be efficient but could fail to capture the full richness of the input data (underfitting). Conversely, a large number of tokens increases the model's capacity but may introduce redundancy, capture noise, and increase the risk of overfitting, in addition to raising computational costs. The optimal token count may also differ between the item and user levels, given that one summarizes a set of static attributes while the other summarizes a dynamic sequence of interactions. As such, we conduct a detailed ablation study in our experiments (Section 4.3) to identify the optimal "sweet spot" for both K_{item} and K_{user} , ensuring robust and effective representation learning.

D BENEFITS OF DECOUPLED PRETRAINING

Our two-stage training strategy is critical for the model's success. Attempting to train the entire system end-to-end from scratch would require the LLM to simultaneously learn to interpret noisy, unaligned multimodal signals while also mastering the recommendation task. This process is both computationally prohibitive and prone to instability.

By first pretraining the UniRec encoder with a carefully designed multi-objective loss, we create a well-structured latent space where user and item embeddings are meaningfully aligned **before** the LLM is engaged. The reconstruction loss ensures that the Q-Former's compressed representations do not discard vital information from any modality, while the contrastive loss organizes the latent space according to semantic similarity. This provides the LLM with clean, "pre-digested," and semantically rich inputs during the fine-tuning stage, simplifying its adaptation task. This paradigm of decoupling representation learning from generative fine-tuning mirrors the effective training strategies of state-of-the-art vision-language models like BLIP-2 (Li et al., 2023b).

E DATASET DETAILS

Below is the detailed statistics for Dataset used in our training and evaluation, the number of users, items and sparsity is reported in 4, while a sample of each dataset is reported in 5, 6, 7 and 8

Table 4: Statistics of the benchmark datasets used for the next-item prediction task.

Dataset	# Users	# Items	Sparsity
Beauty	22,363	12,101	99.9267%
Baby	19,445	7,050	99.8827%
Yelp-2018	77,278	45,639	99.9403%

Table 5: An example of a multimodal item from the **Amazon** dataset, showcasing the variety of attributes available for a single product.

Attribute	Value
parent_asin	B07G9GWFSM
title	Lurrose 100Pcs Full Cover Fake Toenails Artificial Transparent
main aataaamu	Nail Tips Nail Art for DIY
main_category store	All Beauty Lurrose
average_rating	3.7
rating_number	35
price	\$6.99
eatures	
	• The false toenails are durable with perfect length. You have
	the option to wear them long or clip them short, easy to trim and file them to in any length and shape you like.
	• ABS is kind of green environmental material, and makes the
	nails durable, breathable, light even no pressure on your own nails.
	• Fit well to your natural toenails. Non toxic, no smell, no harm
	to your health.
	 Wonderful as gift for girlfriend, family and friends.
	• The easiest and most efficient way to do your toenail tips for
	manicures or nail art designs
description	
	 Description: The false toenails are durable with perfect length Plus, ABS is kind of green environmental material
	• Feature: - Color: As Shown Material: ABS Size: 14.3 x 7.2 x 1cm.
	• Package Including: 100 x Pieces fake toenails
details	
	• Color: As Shown
	• Size: Large
	• Material: Acrylonitrile Butadiene Styrene (ABS)
	• Brand: Lurrose
	• Style: French
	• Product Dimensions : 5.63 x 2.83 x 0.39 inches; 1.9 Ounces
	• UPC: 799768026253
	• Manufacturer: Lurrose
images	Present (2 images, MAIN variant shown)
Lillages	Flescht (2 images, WAIIV variant shown)

Table 6: An example of a user interaction from the **Amazon** dataset. This includes the user's review, rating, and associated metadata for a specific item.

Attribute	Value
user_id	AEYORY2AVPMCPDV57CE337YU5LXA
parent_asin	B08BBQ29N5
asin	B088SZDGXG
sort_timestamp	1634275259292 (2021-10-15)
rating	3.0 / 5.0
verified_purchase	Yes
helpful_votes	0
title	Meh
text	These were lightweight and soft but much too small for my lik-
	ing. I would have preferred two of these together to make one
	loc. For that reason I will not be repurchasing.
images	Present (1 image)

F LLM WRITING USAGE DISCLOSURE

An LLM was utilized solely as a writing assistant to refine grammar and improve sentence readability. Its role was limited to enhancing linguistic clarity, with no involvement in shaping the research design, conducting data analysis, or influencing the interpretation of results.

Table 7: An example of a multimodal item from the **Yelp** dataset, showcasing the variety of attributes available for a single business.

Attribute	Value
business_id	tnhfDv5Il8EaGSXZGiuQGg
name	Garaje
address	475 3rd St
city	San Francisco
state	CA
postal_code	94107
coordinates	latitude = 37.7817529521, longitude = -122.39612197
stars	4.5 / 5.0
review_count	1198
is_open	Yes (1)
attributes	
	RestaurantsTakeOut = true
	• BusinessParking: garage = false, street = true, validated
	= false, lot = false, valet = false
categories	Mexican, Burgers, Gastropubs
hours	
	• Monday: 10:00–21:00
	• Tuesday: 10:00–21:00
	• Wednesday: 10:00–21:00
	• Thursday: 10:00–21:00
	• Friday: 10:00–21:00
	• Saturday: 10:00–21:00
	•
	• Sunday: 11:00–18:00
	.nN .DhLXkfwEkwPNxne9hw
photo id	
photo_id	
<pre>photo_id photo.business_id caption</pre>	

Table 8: An example of a user profile and associated review from the **Yelp** dataset, illustrating user activity and interaction with a business.

Attribute	Value
user_id	Ha3iJu77CxlrFm-vQRs_8g
name	Sebastien
review_count	56
yelping_since	2011-01-01
friends	
	 wqoXYLWmpkEH0YvTmHBsJQ
	 KUXLLiJGrjtSsapmxmpvTA
	• 6e9rJKQC3n0RSKyHLViL-Q
	0071011Q0011011011J112112 Q
useful (given)	21
review id	zdSx SD6obEhz9VrW9uAWA
funny (given)	88
cool (given)	15
fans	1032
elite	1002
	• 2012
	• 2013
	2013
business_id	tnhfDv5II8EaGSXZGiuQGg
stars	4/5
date	2016-03-09
text	Great place to hang out after work: the prices are decent, and
	the ambience is fun. It's a bit loud, but very lively. The staff
	is friendly, and the food is good. They have a good selection of
	drinks.
useful	0
(received)	
funny (received)	0
cool (received)	0