Under review as a conference paper at ICLR 2026

EXECUTABLE FUNCTIONAL ABSTRACTIONS: INFER-
RING GENERATIVE PROGRAMS FOR ADVANCED MATH
PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientists often infer abstract procedures from specific instances of problems and
use the abstractions to generate new, related instances. For example, programs en-
coding the formal rules and properties of a system have been useful in fields ranging
from reinforcement learning (procedural environments) to physics (simulation en-
gines). These programs can be seen as functions which execute to different outputs
based on their parameterizations (e.g., gridworld configuration or initial physical
conditions). We introduce the term EFA (Executable Functional Abstraction) to de-
note such programs for math problems. EFA-like constructs have been shown to be
useful for mathematical reasoning as problem generators for stress-testing models.
However, prior work has been limited to automatically constructing abstractions
for grade-school math (whose simple rules are easy to encode in programs), while
generating EFAs for advanced math has thus far required human engineering. We
explore the automatic construction of EFAs for advanced mathematics problems
by developing EFAGen, which operationalizes the task of automatically inferring
an EFA for a given seed problem and solution as a program synthesis task. We first
formalize the properties of any valid EFA as executable unit tests. Using execution
feedback from the unit tests, we search over candidate programs sampled from a
large language model (LLM) to find EFA programs that are faithful to the general-
ized problem and solution class underlying the seed problem. We then apply the
tests as a reward signal, training LLMs to become better writers of EFAs. We show
that EFAs inferred by EFAGen are faithful to the seed problems, produce learnable
problem variations, and that EFAGen can infer EFAs across diverse sources of
competition-level math problems. Finally, we show uses of model-written EFAs,
such as finding problem variations that are harder or easier for a learner to solve, as
well as data generation.'

1 INTRODUCTION

In many fields, experts abstract specific instances into general procedures that can generate a wide
range of related cases. For example, physicists distill observations of falling objects into equations
of motion capable of predicting trajectories under varying initial conditions (Smith, 2024). This
ability is not limited to certain domain experts: in fact, the ability to infer underlying compositional
structures from surface forms is a core component of human language and intelligence (Chomsky,
1957; Montague et al., 1970; Partee, 2008; Lake et al., 2017). The outcome of this process of
abstraction is often a data-generating program whose execution is controlled by parameters, such as a
gridworld generator that produces different world layouts given different configuration files. In fields
such as reinforcement learning, notable instances of data generating programs such as Holodeck
(Yang et al., 2024) and BabyAlI (Chevalier-Boisvert et al., 2018) have become important parts of the
research ecosystem for their capability to endlessly generate well-formed randomized task instances.

We introduce Executable Functional Abstraction (EFA), a programmatic abstraction that encapsu-
lates the logic of a math problem in a parameterized form and enables the automated sampling
of problems variants. Although similar abstractions have been used in other domains, automatic

'We will open-source the code and data upon acceptance.

Under review as a conference paper at ICLR 2026

A General Abstraction Underlies Specific Math Problems Inference of an EFA from a Math Problem

'
'
1
'
'
Executable Functional Abstraction (EFA) '
= 4 3 p— lor P H Math Quesllon:_T_he greate§t_
unction f arameter sampler ' common divisor of positive
' problem N .
' integers mandn is 6
1, 1
pis sampled 1 N
during dataset construction wes P ~ P : Infer
' & parameter constraints
1
Question: The greatest common Question: The greatest common Question: The greatest common '
divisor of positive integers m and divisor of positive integers m and divisor of positive integers m and ' Executable Functional Abstraction (EFA)
nis |1E| The least common nis m The least common nis . The least common !
multiple of n and n is [126| multiple of 7n and n is . ven | muttipleof m andnis [42]. : . eter Sampler P
What is the least possible value of What is the least possible value of What is the least possible value of ' Function
m+n? m+n? m+n? . RelPrime(GCD,
. LCM) == False
Answer: The final answer is 60 . Answer: The final answer is[10]. Answer: The final answer is '
'
, .
f(pl) f@Z) f(pN) ! Automated tests to ensure EFA is correct l
'
Specific problem Novel variants that are solved by the same general ' []
. . . N fi Test 1 Test 2 Test 3
included in a dataset technique (not included in dataset) : l v l I v I l v l

Figure 1: Left: The generative process underlying computational math problems, where the different
instances share the same underlying problem-solving logic (function) but differ in parameter values.
We introduce executable functional abstractions (EFAs) to model this latent structure. Right:
we study the task of inferring EFAs; i.e., recovering the underlying problem-solving function and
parameters from math problems expressed in natural language.

construction of EFAs for generating fresh, diverse math problems remains largely unexplored. The
property enabling the construction of EFAs for mathematics is that many math problems are a
surface form of a more abstract deep structure. For example, consider the problem in Fig. 1 (left),
which asks for positive integers m and n with a greatest common divisor (GCD) of 6 and a least
common multiple (LCM) of 126, seeking the minimum value of m + n, which we denote as
LcmGedMinSum (ged=6, lcm=126). This specific problem is a special case of a more general
problem LcmGedMinSum (ged=¢g, lcm=l) where l,g € N can be any natural numbers. Infer-
ring an EFA requires transforming the LemGedMinSum (gcd=6, lcm=126) problem about a
specific pair of numbers into a program that generates valid LcmGcdMinSum problems with varying
parameters while implementing a general solution procedure that solves any specific instances of
the general problem, such as LemGedMinSum (gcd=7, lcm=42). In this paper, we explore the
automatic creation of EFAs for higher-level math problems. Our central research question is:

How can we automatically transform static math problems into their corresponding
executable functional abstractions (EFAs)?

The task of automatically transforming static math problems into an EFA is nontrivial. Recent work
has made progress with grade-school level math problems (Zhang et al., 2024; Mirzadeh et al., 2025)
by taking advantage of the simple computational graphs of their solutions. Higher-level problems with
more complex computational graphs have thus far required human involvement to lift problems into
functional forms (Shah et al., 2024; Srivastava et al., 2024). An automated approach for mathematical
problems more complex than grade-school arithmetic has not been developed. Such automatic
construction of EFAs requires simultaneously solving multiple subproblems: identifying which
numerical values should be parameterized, discovering the constraints between these parameters to
maintain problem validity, abstracting the solution procedure to handle all valid parameterizations,
and ensuring mathematical correctness across the entire parameter space. For example, in Fig. 1,
m and n are not parameters of the problem despite already being abstract variables, as they are
dependent on the values of the gcd and 1cm given. Nor can the gcd or 1cm values be allowed to
vary arbitrarily. Some parameterizations of the gcd and 1cm may yield trivial problems (if the gcd
is 1 and the 1cm is a prime), while other parameterizations are simply invalid (such as gcd > lcm
or gcd and 1cm being relatively prime).

We operationalize the task of inferring EFAs as a program synthesis task using large language
models (LLMs). Our method, EFAGen, conditions an LLM on a static seed math problem and
its step-by-step solution to generate candidate programs implementing an EFA for the seed math
problem. To generate a correct EF A, the program synthesizer must identify which numerical values in
the static problem should be treated as parameters, determine appropriate sampling distributions for
these parameters, and encode the constraints between them to ensure problem validity (Fig. 1). We
formalize mathematical properties a well-formed EFA must possess as unit tests that can automatically
detect violations of these properties. We can then adopt an overgenerate-then-filter approach (Li

Under review as a conference paper at ICLR 2026

On Arithmetic Word Problems
(Grade School)
When Sophie watches her nephew, she gets out a variety
of toys for him. The bag of building blocks has 31 blocks
in it. The bin of stuffed animals has 8 stuffed animals

On More Complex Problems
Suppose you are given the matrix:

]
1
L}
1
1
' 210
] A=11 3 1
! 01 4
1
L}
1

inside. The tower of stacking rings has 9 multicolored
rings on itSophie recently bought a tube of bouncy balls,
bringing her total number of toys for her nephew up to

62. How many bouncy balls came in the tube? Find the eigenvalues of the matrix.

1
1
1
1
1
1
1
1
1
1
! (]
T T
.] 1 !
Prior Work ' "
1 1
]
for ! 1
1
arithmetic word problems : : 1 x
« allows only in ! :
fixed computation graph ' Specifically designed for generating ! Not applicable to generating instances of
¢ use 1 arithmetic math word problems. 1 : more complex math problems beyond
to specify constraint + ' Yy predefined templates.
solver ' 'y
1 1
1 ! 1
1 L !
1 1 :
EFAGen (Ours) . "
'
1 1
* infers abstractions underlying a 1 !
problem to generate new variants 1 1 :
¢ allows arbitrary computations to ' L
construct problems and solutions | . . "1 Can generate instances of complex math
« uses general-purpose Can also generate arithmetic math word L .

P . " 1 roblorms, but is general-purnose. [problems due to greater expressive power
programming language to specity 1 P g 8 purpose. ', and automatic inference of abstractions.
constraints + solver 1 '

\ Z

Figure 2: EFAGen generalizes prior work on constructing arithmetic word problems to auto-
matically constructing more complex, higher-level math problems. Given a math problem and
solution, EFAGen infers an underlying abstraction whose construction and general solution may
involve arbitrary computations beyond fixed sequences of arithmetic operations. For example, the
abstraction underlying the eigenvalue problem on the right is that of a tridiagonal 3 x 3 matrix. The
general solution requires a symbolic computation composed with a numerial root-finding procedure.
Details of inferred EF A code in Fig. 6.

et al., 2022), first generating a large number of candidate programs implementing EFAs for a seed
problem, and then rejecting EFAs that fail our tests. Finally, we conduct a series of experiments
probing properties of the EFAs constructed by EFAGen, demonstrating the utility of model-written
EFAs and testing whether LLMs can be trained to be more successful writers of EFAs.

We first show that EFAs have properties signaling their coherence. EFAs are faithful to the seed
problem they were derived from: the verifiable problems sampled from an EFA help a model solve
the seed problem the EFA was constructed from. Similarly, the verifiable problems produced by an
EFA are learnable: when sampling a train and test set from the same EFA, a model is able to improve
on the test set when given step-by-step solutions of the training problems.

Because EFAs allow us to sample a large number of verified problems, we can also use them to
create more instances of a problem that a model struggles with, or to refresh a static dataset by
first constructing an EFA from a problem that the model already can solve, and then sampling fresh
variants using the EFA that the model struggles with, thereby stress-testing models on similar data.
We show that EFAGen can be applied to multiple sources of competition-level mathematics problems
to automatically construct EFAs. This applicability to multiple kinds of problems allows us to use
EFAs as a data augmentation for mathematical problem solving on MATH-500 (Hendrycks et al.,
2021) and FnEval (Srivastava et al., 2024), where we show EF A-based augmentation yields consistent
improvements. Finally, we show that models can improve at inducing EFAs from math problems
by using the execution feedback from automatic tests in EFAGen as rewards in a simple reinforced
self-training scheme (Zelikman et al., 2022; Singh et al., 2023; Dong et al., 2023).

Our contributions in this paper as illustrated in Fig. 2 are as follows:

* We formalize the notion of Executable Functional Abstractions (EFASs) in Sec. 2.2, and develop
EFAGen (Sec. 2.3, Fig. 3), an approach that automatically infers EFAs from advanced math
problems, providing a scalable approach to generate verifiable problem variants with automatic
tests for validity and correctness.

* We show that these tests can be used as a reward signal for training LLMs to improve at the task of
inferring EF As from static problems (Sec. 3.1).

Under review as a conference paper at ICLR 2026

EFA as a Python Class EFAGen: Inferring EFAs from Math Problems

\
(a) Over-generate Candidates (c) Sample New Problems from EFA
%) -

fbest (pnew)
where p"" ~ P

class EFABase:

class Problen(EFABase):

'
'
'
'
'
'
'
' a i
1 uestion: The greatest LM > b
def sample(self): ' common divisor of
return new_param i positive integers m and Il
'
'
'
1
1
'
'
'
'
'
'
'

nis 6. The least

common multiple of m - ' . g
andm 16 126, What is the (b) Filter Invalid Candidates

for _ in range(N):
p = efa.sample()
q = efa.render(p)
a = efa.solve(p)

def render(self, param):
return question

':Lai' E:’,fs'ble value of [Test1]| Test2 [Tests |-
7 v X X
Final Answer: The final 7 X v v

answer is [60].

def solve(self, param):

return answer
.append((q,a))

. J/

Figure 3: Left: Representation of an executable functional abstraction (EFA) as a Python
class. Right: Overview of EFAGen, a method for automatically inferring EFAs from a math
problem. In EFAGen, we (a) over-generate multiple EFA candidates with an LLM and (b) filter out
invalid candidates that fail automated tests. The EFA can generate new problem variants by sampling
parameters and executing the solver. Full code is in Appendix G.

* We show that EFAGen generates faithful (Sec. 3.2) and learnable (Sec. 3.3) EFAs and can automat-
ically infer EFAs from diverse sources of math data (Appendix C), and that EFAs can be used as a
data augmentation (Sec. 3.4).

2 EXECUTABLE FUNCTIONAL ABSTRACTIONS (EFAS)

Our goal is to automatically convert math problems with static numerical values into parameterized
abstractions that can generate variants of the original problems. We refer to these parameterized
abstractions as Executable Functional Abstractions (EFAs). EFAs enable the systematic generation
of new problem instances by varying numerical parameters while preserving the underlying problem-
solving logic. We operationalize the task of inferring an EFA for a static math problem as a program
synthesis task where the goal is to write a class implementing the EFA. We use LLMs to generate
many candidate EFA implementations for a static problem and use a suite of automatic unit tests
to filter the candidates by rejecting mathematically unsound ones. Below, we describe the desired
properties of EFAs (Sec. 2.1), how an EFA is represented as a Python class (Sec. 2.2), and how we
infer EFAs from static math problems using LLMs (Sec. 2.3).

2.1 DESIRED PROPERTIES OF ABSTRACTIONS

An effective abstraction of a math problem must support variation, preserve validity, and enable
automated problem-solving. We identify three core properties of an EFA:

* Structured parameter space: The abstraction should define a set of parameters that character-
ize the problem and specify valid relationships among them. This includes identifying which
parameters are independent, how dependent parameters are derived, and what constraints must be
satisfied to ensure valid problem instances. Such structure enables systematic variation, ensuring
that changes to parameters yield meaningful variants with potentially different solutions.

* Procedural generation of instances: The abstraction should support random sampling of a set
of valid parameters (e.g., EFA.sample () in Sec. 2.2) and converting the abstract problem into
natural language form (e.g., EFA. render () in Sec. 2.2), to help users generate valid problem
instances by sampling parameter values within defined constraints. These constraints are problem-
specific and crucial for generating diverse but coherent examples.

» Executable solution logic: The abstraction should include a method (e.g., EFA.solve () in
Sec. 2.2) that computes the correct answer for any valid parameter configuration. This solution
logic is typically derived from the chain-of-thought (Wei et al., 2022) used for the static version of
the problem and can be implemented as an executable program.

2.2 EFA AS A PYTHON CLASS

As shown in Fig. 3(a), each EFA is implemented as a Python class that contains the logic of a math
problem in a parameterized form. The class defines a list of parameters along with three key methods:

Under review as a conference paper at ICLR 2026

* EFA.sample () — parameters: Samples a valid set of parameters representing problem
variants, respecting all constraints specified in the abstraction.

* EFA.render (parameters) — question: Provides a natural language problem state-
ment, given a specific (sampled) parameter set. This ensures that each generated instance is
presented in a format suitable for human or model consumption. In most cases, this involves
reusing the problem statement of the seed instruction and mutating the numerical values to be
consistent with the given parameters.

* EFA.solve (parameters) — answer: Computes the correct answer for a given parameter
configuration. The solution is expressed as a numerical expression derived through deterministic
computations over the parameters. The solver does not need to access the natural language problem
statement, as the solution is only dependent on the parameterization of the problem, which is a
structured object.

These methods operationalize the abstraction and enable automated generation, rendering, and
evaluation of math problems.

2.3 EFAGEN: INFERRING EFAS FROM MATH PROBLEMS

We introduce EFAGen, a framework for automatically constructing EFAs from static math problems.
Given a problem statement and its solution procedure (typically expressed as chain-of-thought
reasoning), EFAGen uses a large language model (LLM) to generate a candidate EF A implementation
that captures the logic and structure of the original problem. This process relies on supervision that is
readily available in many math datasets.

Since generating correct and robust code is challenging for LLMs, EFAGen adopts an overgenerate-
and-filter approach inspired by AlphaCode (Li et al., 2022). As described in Fig. 3 (a), for each
problem, we sample N (e.g., 50) EFA candidates and apply a suite of automated tests to discard
invalid abstractions. EFAGen uses the following tests to validate candidate EFAs, as illustrated in
Fig. 3 (b):

* is_ extractable (response): Verifies that the class contains all required methods.

* is_executable (EFA): Confirms that the class can be instantiated and executed without errors,
and methods like EFA . sample () and EFA.solve () can be called without errors.

* has_dof (EFA) : Ensures that sampled parameters differ, rejecting EFAs with zero degrees of
freedom that cannot produce new problems.

* is_single_valued (EFA): Confirms that identical parameters yield equivalent solutions, re-
jecting impermissible implementations including multivalued functions or incoherent abstractions.

* matches original (EFA, orig params, orig.sol): Validates that the abstraction,
when instantiated with the original parameters, produces the original problem and solution. This
serves as a cycle-consistency or soundness check.

Any program that fails these tests cannot logically be a valid implementation of an EFA. EFAGen
enables generation of EFAs at scale, as shown in Fig. 3 (c), as large numbers of candidate EFAs can
be generated and filtered automatically. Over time, these tests can also be used to fine-tune LLMs
toward better abstraction generation, such as with reinforced self-training (Singh et al., 2023; Dong
et al., 2023) or reinforcement learning with verifiable rewards (Lambert et al., 2024).

3 EXPERIMENTS & RESULTS

Below, we show experiments on self-improving at inferring EFAs (Sec. 3.1), faithfulness (Sec. 3.2)
and learnability (Sec. 3.3) of EFAs, the complementarity of EFAs with existing data generation meth-
ods (Sec. 3.4, Sec. 3.5). In the Appendix, we analyze the quality of EF A-generated data (Appendix B),
scaling experiments (Appendix E), applying EFAs to find hard variants of problems (Appendix D),
ablations (Appendix F), and EFAGen inference on olympiad-level problems (Appendix C).

Datasets. Throughout this section, we use the following datasets in our experiments:

* MATH (Hendrycks et al., 2021). Competition math dataset with a test set of Sk math problems
described in text comprising different categories and five levels of difficulty. We show in Sec. 3.1
that LLMs struggle with task of EFA generation and we improve their performance by training on
the EF A generation task using the MATH train set consisting of 7.5k problems.

Under review as a conference paper at ICLR 2026

R o 100 -
> 100 A >

] ¢ ——, Topic
% % 90 -// ‘\‘—:*j = Algebra
~ o Level [ad] 80 - - 1 o Counting
o 907 /:: -—1 o — ™ Probabilit
8 /'/ .,<= =2 % 70 - '/ » Geometryy
2 ./073/. == 3 A ‘/ Intermediate
45 80 1« ” -4 45 60 - == Algebra
[} 5 ()] @ Number Theory
= 9 = 50 4 D == Prealgebra
g 5 == Precalculus
m 709 H 40 -

0 1 2 3 4 0 1 2 3 4
Iteration Iteration

Figure 4: LLMs can use our tests to self-improve at inferring EFAs. We plot the percentage of
constructed EFAs passing all tests across iterations of self-training, grouped by MATH problem
difficulty (left) and by problem category (right). Harder difficulty levels and problem categories are
harder to infer EFAs for and improve more during training.

* FnEval (Srivastava et al., 2024). A functional version of the MATH benchmark designed to
evaluate generalization. It consists of multiple “snapshots”, each containing variations of problems
from the MATH dataset. These variations preserve the abstract reasoning structure of the original
problems. We use two snapshots to test if our method can capture the underlying abstractions of a
problem and generalize to unseen, related instances.

* MATH-Hard is a subset of MATH test problems of the highest difficulty (level 5) across all
categories (1387 problems).

Metrics. To evaluate the performance of LLMs we use the following metrics:

* EFA Success Rate. We measure the ability of LLMs to generate valid, high-quality EFAs (defined
in Sec. 2.1) as the frequency (%) of EFAs generated that past all the diagnostic tests (c.f. Sec. 2.3).
* Pass@Fk Rate (%). Following Chen et al. (2021), we measure the ability of LLMs to solve math
problems by sampling 25 generations with temperature sampling and estimating the unbiased
pass@k rate, i.e., the likelihood that out of & generated solutions any one yields the correct answer.

3.1 SELF-IMPROVEMENT: LMS IMPROVE AT EFA INFERENCE WITH EXECUTION FEEDBACK

Inferring valid EFAs across diverse math problems is challenging, especially as the difficulty and
complexity of topics increases. For instance, as shown in Fig. 4, Llama3.1-8B-Instruct (Llama Team,
2024) struggles to generate valid EFAs for Level 5 problems and for topics such as Precalculus in the
MATH dataset, where it is only able to infer valid EFAs for = 35% of Precalculus questions. In Sec. 2,
we introduce a number of unit tests (i.e., verifiable rewards) that indicate whether a generated EFA is
valid. Here, we show that we can train models to improve on inferring valid EFAs by self-training
according to these tests. Specifically, we use a rejection-finetuning approach (Zelikman et al., 2022;
Singh et al., 2023; Dong et al., 2023), in which we sample EFA candidates from a model and filter
according to our rewards to construct a training dataset of correct examples. We begin with the
MATH training set (7,500 problems) and sample 10 candidate EF As per problem. Candidates failing
any of the reward checks are discarded. The remaining valid examples form a dataset for supervised
fine-tuning. This process — sampling, filtering, and retraining — is repeated over 5 iterations (see
Appendix H.2 for details).

We report the EFA success rates across iterations in Fig. 4, where we group by difficulty levels (left)
and by annotated problem category (right). Success rates steadily improve over training iterations,
especially for harder problems. At iteration O (before training), we observe that harder problems (e.g.,
Level 5) are also harder to infer EFAs for, with EFA success rates ~ 17% lower for Level 5 than Level
1 problems. Similarly, certain categories like ‘Intermediate Algebra’, ‘Counting’ and ‘Probability’
are harder to infer EFAs for. These domains generally see the most significant increases from training.
Between iteration 1 and iteration 5, the Intermediate Algebra’s EFA success rate showed the most
significant increase, rising from 52.93% to 81.38%, and Geometry improved from 65.71% to 85.71%.

Under review as a conference paper at ICLR 2026

Table 1: EFAs faithfully capture the solutions of the problems they were derived from (left), and
problem variants constructed by EFAs share learnable structure (right). Left: Giving solutions
to problems variants from an EFA as in-context examples nearly doubles the solve rate of an LLM
on the seed problem the EFA was derived from. Right: Giving solutions to problem variants from an
EFA as in-context examples helps an LLM solve a holdout set of variants from the same EFA. See
Sec. 3.2 and Sec. 3.3 for details.

Faithfulness (Sec. 3.2): EFA helps on the original problem Learnability (Sec. 3.3): EFA helps on its variants

Initial Pass@1 +Data from EFA Sample Size Initial Pass@1 +Data from EFA Sample Size
15.66 38.73 (+23.07%) 307 14.58 31.23 (+16.65%) 1,000

Additionally, the pass rate for Level 5 problems increased from 65.95% to 78.73%. These changes
indicate substantial improvements in the model’s ability to infer EFA across these dataset slices. The
final model trained for 5 iterations becomes the basis for our EFAGen method.

3.2 FAITHFULNESS: EFAS CAPTURE THE REASONING REQUIRED TO SOLVE SEED PROBLEMS

To evaluate the faithfulness of EFAs, we ask: can the generated variant problems improve a model’s
solve rate on the original seed problem? We select all of problems from MATH-Hard for which
Llama3.1-8B-Instruct’s pass@5 rate < 50% and for which EFAGen can successfully infer an EFA
using the gold solution.?> For each problem, we sample additional problem variants (we ensure their
parameters differ from the seed problem) until Llama3.1-8B-Instruct solves one correctly. We then
check if Llama3.1-8B-Instruct can solve the original problem, given the variant and its solution as an
in-context example. Results in Table 1 (left) show a 23.07% absolute improvement in pass@1 rate,
i.e., EFA-generated variants can teach model the problem-solving needed for the seed problem.

3.3 LEARNABILITY: GENERATED PROBLEM PERFORMANCE INCREASES WITH EXPERIENCE

An effective problem abstraction should enable a model to solve both the original seed problem
and its variants. Thus, we test whether training on EF A-generated problem variants helps a model
solve additional variants that are drawn from the same EF A but are different from the seed problem.
We sample 1k EFAs inferred from the MATH-Hard test set and generate one new variant per EFA,
forming a held-out set. For each EFA, we also identify one variant that Llama3.1-8B-Instruct solves
correctly. We then test Llama3.1-8B-Instruct’s performance on the held-out set, with and without
access to that solved variant as an in-context example. As shown in Table 1, access to one correctly-
solved variant improves the model’s pass rate on other variants by 16.65% on average; demonstrating
that reasoning learned from one variant reliably transfers to others within the same abstraction.

3.4 AUGMENTATION: EFAS ARE EFFECTIVE AT EXPANDING STATIC MATH DATASETS

While high-quality math datasets exist, these are often expensive to construct. EFAGen offers a
scalable solution by generating diverse, faithful problem variants through EFAs, thereby augmenting
existing datasets. To demonstrate this, we fine-tune Llama3.1-8B-Base using EF A-generated data
derived from the MATH training set. Concretely, we annotate 7,500 training problems with step-by-
step reasoning from a teacher model (Llama3.1-8B-Instruct). We ensure that the reasoning is correct
by filtering out the reasoning that yields incorrect answers. Then, for each of the 7,500 problems, we
construct an EFA and sample one problem variant. We compare two training settings. In the first
setting, we use only the teacher-labeled seed data. In the second, we augment the seed data by adding
EFA-generated examples in a 1:1 ratio. We perform experiments with both 33% (2,500) and 100%
(7,500) of the seed data and evaluate performance on three benchmarks: MATH-500 split (Lightman
et al., 2023) and the November and December splits of FnEval, each containing perturbed versions of
MATH problems. See Appendix H.4 for hyperameter details.

Table 2 shows that EFA-based augmentation leads to consistent improvements across all evaluation
metrics: Pass@1, Pass@ 10 rate, and Majority @25 (Wang et al., 2022), e.g., in the 33% seed setting,

Based on the intuition that testing for faithfulness requires an EFA (i.e., requires a problem that can be
solved in principle) but improving requires a problem that is not solved 100% of the time.

Under review as a conference paper at ICLR 2026

Table 2: EFAs are effective at data augmentation. Comparison with and without synthetic data
augmentation using problems drawn from generated EFAs. The table shows performance across
MATH-500 and FnEval benchmarks (November and December snapshots). When augmenting, we
use a 1:1 ratio of examples drawn from training data vs. from an EFA, and report results using 33%
of the MATH train set and 100% of the train set.

MATH-500 FnEval (November Split) FnEval (December Split)

Training Data Pass @1 Pass @ 10 Maj @25 Pass@1 Pass@ 10 Maj @25 Pass@ 1 Pass @10 Maj @25
MATH (33%) 22.4 56.4 36.8 24.5 55.3 39.6 24.4 55.4 393
+EFA (1:1) 243 583 38.8 26.7 59.2 41.8 26.6 57.3 41.2

(+1.9%) (+1.9%) (+2.0%) (+2.2%) (+3.9%) (+2.2%) (+2.2%) (+1.9%) (+1.9%)
MATH (100%) 243 57.8 37.0 26.8 58.6 43.1 26.5 57.6 41.5
+EFA (1:1) 26.1 60.6 40.4 29.3 60.1 44.3 28.8 59.6 43.7

(+1.8%) (+2.8%) (+3.4%) (+2.5%) (+1.5%) (+1.2%) (+2.3%) (+2.0%) (+2.2%)

Pass@1 improves by +1.9 on MATH-500 and by +2.2 on both FnEval splits. In the 100% seed setting,
the gain still holds, underscoring the value of EFAs in enhancing data quality and model performance.

3.5 EFAGEN COMPLEMENTS EXISTING SYNTHETIC DATA GENERATION APPROACHES

EFAs are designed to complement, not replace, existing synthetic data generation approaches. To
demonstrate this complementary relationship, we conduct experiments with high-quality synthetic
data from NuminaMath (Li et al., 2024), which aggregates synthetic data from various sources,
showing that EFAGen can infer EFAs for synthetic data and use these EFAs to augment synthetic
datasets at different scales.

We sample 1k, 2.5k, and 5k problems with step-by-step solutions from the synthetic_math and
synthetic_amc sources in NuminaMath. For each sample, we apply EFAGen to infer EFAs,
generate one problem variant from each EFA, and use rejection sampling to create training data
from the EFAs. We train three models at each scale: one trained only on the NuminaMath synthetic
data (NuminaMath Synthetic), one trained only on data derived from EFAs (EFA Generated), and
one trained on the NuminaMath synthetic data augmented with our EFA-derived data (NuminaMath
Synthetic + EFA Generated).

Results on MATH-500 are shown in Table 3. At each scale, the model trained on synthetic data
augmented with EF A-generated data performs best across most metrics. Notably, the EF A-generated
data typically outperforms the original synthetic NuminaMath data, suggesting that the EFA infer-
ence process produces high-quality problem variants that enhance model learning. These results
demonstrate that EFAGen provides a scalable approach for augmenting existing synthetic datasets,
effectively complementing current synthetic data generation methods.

4 RELATED WORK

Symbolic Approaches to Math Reasoning. A distinct line of prior work has focused on assessing
the true mathematical reasoning capabilities of LLMs, specifically by measuring the “reasoning gap”
or the drop in math reasoning performance after perturbing questions in existing datasets (Shi et al.,
2023; Zhou et al., 2025; Huang et al., 2025; Ye et al., 2025). One prominent approach is to generate
different or difficult math questions conditioned on an existing question but test skills by employing
frontier models (Zhang et al., 2024; Patel et al., 2025) or human annotators (Srivastava et al., 2024;
Shah et al., 2024; Huang et al., 2025). For instance, Srivastava et al. (2024) propose FnEval dataset
by manually functionalizing select problems from the MATH dataset (Hendrycks et al., 2021) that
can be subsequently used to sample multiple distinct math problems testing similar skills (albeit
with different numerical variables). Similarly, Mirzadeh et al. (2025) release the GSM-Symbolic
dataset that augments the existing GSM8K dataset (Cobbe et al., 2021) with templates containing
placeholders for several numeric and textual variables and can be used to sample distinct math word
problems for a robust evaluation of LLM’s reasoning abilities. In contrast, to this line of work
requiring expensive annotations from humans or frontier models (thereby, hindering scalability) and
tailored to specific, predefined math datasets (c.f. Fig. 2); we propose EFAGen that automatically
functionalizes any math problem using relatively small language models making it widely-applicable
and scalable, i.e., able to sample a potentially infinite number of related math problems from any

Under review as a conference paper at ICLR 2026

Table 3: EFAGen complements existing synthetic data generation approaches. Performance
comparison across different data scales (1k, 2.5k, 5k) when training models on: NuminaMath
synthetic data alone, EFA-generated data alone, and both combined. The combined approach
typically performs best, with EF A-generated data generally outperforming the original synthetic data.
The (+%) values show absolute improvements over the NuminaMath Synthetic baseline within each
scale. 1st-place is bold, 2nd is italicized.

MATH-500 Performance

Scale Data Mix Pass@1 Pass@5 Pass@10 MYV Acc
NuminaMath Synthetic 20.8 45.6 56.4 38.6
1k EFA Generated 24.0 48.5 58.7 38.6
NuminaMath Synthetic + EFA Generated 24.4 48.5 58.2 40.6
(+3.7%) (+2.9%) (+1.8%) (+2.0%)
NuminaMath Synthetic 23.0 47.6 58.5 38.8
2.5k EFA Generated 23.1 47.0 57.2 35.8
NuminaMath Synthetic + EFA Generated 24.9 50.5 61.1 41.6
+1.9%) (+2.9%) (+2.6%) (+2.8%)
NuminaMath Synthetic 20.9 46.3 57.0 39.8
Sk EFA Generated 23.6 48.6 59.2 39.8
NuminaMath Synthetic + EFA Generated 26.7 51.9 62.1 44.0

(+5.8%) (+5.6%) (+5.0%) (+4.2%)

distribution or dataset. Moreover, the prior work only focuses on the evaluation of LLMs, whereas
we extend the concept of abstraction for downstream applications via training, as shown in Sec. 3.4.

Data and Environment Generation. Past work has generally approached improving models on
reasoning tasks like math by generating large amounts of broad-coverage training data. This trend
builds on work in generating instruction-tuning data (Wang et al., 2023), where model-generated
instructions have been used to teach models to follow prompts. Luo et al. (2023) introduced generation
method based on Evol-Instruct (Xu et al., 2023), which augmented a seed dataset of math problems
by generating easier and harder problems. Related lines of work have sought to expand datasets
by augmenting existing math datasets (Yu et al., 2024), adding multiple reasoning strategies (Yue
et al., 2024), covering challenging competition problems (Li et al., 2024), or curating responses (Liu
et al., 2024). The data generated in these settings differs from our data in a number of respects:
first, it is generally broad-coverage, focusing on large-scale diverse data, as opposed to targeted,
instance-specific data. This direction was also explored by Khan et al. (2025), who define data
generation agents that can generate specific data based on a particular model’s weaknesses, covering
math and several other domains. Finally, past work that has augmented a seed dataset (e.g., Yu et al.
(2024); Yue et al. (2024)) has done so by modifying problems in the surface form, whereas our
method first infers a latent structure and then creates problems by sampling from the structure. In
contrast, EFAGen focuses on generating similar examples of existing data by inferring an underlying
structure from an example; we show that this has applications to data generation for augmentation
but also for stress-testing or measuring the performance gap of models on similar problems.

5 CONCLUSION

We introduce Executable Functional Abstractions (EF2), a representation of the abstracted logic of a
math problem in a parameterized form, enabling the automated sampling of variant problems. We
then propose EFAGen, a framework that infers EFAs via program synthesis using large language
models (LLMs) that we train using rewards from EFA execution. Our approach over-generate EFA
candidates with an LLM and filters them using a suite of property tests that verify their validity. We
show that EFAGen successfully infers EFAs for diverse math problems and incorporating execution
feedback as a reward in a simple self-training scheme further improves its performance. Models
trained on EFA-generated math problems not only perform better on the generated variants but also
improve accuracy on the original seed problems. Finally, we show that EFAs provide a scalable
solution for augmenting diverse problem variants across various math datasets.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In this work, we propose an inference-time method, EFAGen that can be used sample additional
math problems for training or testing. Consequently, the LLMs utilized by EFAGen may still exhibit
stereotypes, biases, and other negative traits inherent in their pre-training data (Weidinger et al.,
2021), over which we have no control. Therefore, the outputs produced by EFAGen carry the same
potential for misuse as those from other test-time methods. Further research is necessary to assess
and mitigate these biases in LLMs. Additionally, care must be taken when executing LLM-generated
code which can be erroneous and cause unrecoverable changes to the system files.

REPRODUCIBILITY STATEMENT

We will open source our code and data to aid replication of our findings. We also provide implemen-
tation details of EFAGen in Sec. 2 and prompts in Appendix H. The math datasets we use are all
publicly available.

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Noam Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun Shum, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=m7p507zblY.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking 1lms’ math reasoning abilities
against hard perturbations. arXiv preprint arXiv:2502.06453, 2025.

Zaid Khan, Elias Stengel-Eskin, Jaemin Cho, and Mohit Bansal. Dataenvgym: Data generation
agents in teacher environments with student feedback. In The Thirteenth International Conference
on Learning Representations, 2025.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:€253, 2017.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing Frontiers in Open Language Model Post-Training, December 2024. URL http://
arxiv.org/abs/2411.15124. arXiv:2411.15124 [cs].

10

https://openreview.net/forum?id=m7p5O7zblY
http://arxiv.org/abs/2411.15124
http://arxiv.org/abs/2411.15124

Under review as a conference paper at ICLR 2026

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing
frontier math reasoning with post-training and reward modeling. arXiv preprint arXiv:2412.15084,
2024.

Llama Team. The Llama 3 Herd of Models, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations,
2025.

Richard Montague et al. Universal grammar. 1974, pp. 222-46, 1970.
Barbara H Partee. Compositionality in formal semantics: Selected papers. John Wiley & Sons, 2008.

Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
problems for evaluation. arXiv preprint arXiv:2502.14678, 2025.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Curtis Mozer, Yoshua
Bengio, Sanjeev Arora, and Anirudh Goyal. Al-assisted generation of difficult math questions. In
The 4th Workshop on Mathematical Reasoning and Al at NeurlPS’24, 2024.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schirli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
International Conference on Machine Learning, pp. 31210-31227. PMLR, 2023.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaechoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

George Smith. Newton’s Philosophiae Naturalis Principia Mathematica. In Edward N. Zalta and Uri
Nodelman (eds.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Winter 2024 edition, 2024.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince, and
Sooraj Thomas. Functional benchmarks for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models. 2022. URL http://arxiv.org/abs/2203.11171.

11

http://arxiv.org/abs/2203.11171

Under review as a conference paper at ICLR 2026

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484—13508, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38—45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos. 6.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied
ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16227-16237, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Tn5B6Udg3E.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via
adaptive reasoning graph. arXiv preprint arXiv:2406.17271, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How

do your llms behave over infinitely increasing context length and reasoning complexity? arXiv
preprint arXiv:2502.05252, 2025.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=Tn5B6Udq3E
https://openreview.net/forum?id=Tn5B6Udq3E
http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

Table 4: Low-quality EFAs are naturally filtered out during rejection sampling. We compare the
training data yield rates (percentage of responses that receive non-zero rewards) between good and
bad EFAs. Bad EFAs are identified using LLM-based heuristics that flag trivial problems, extraneous
variables, or hard-coded values. The low yield rates of bad EFAs mean they contribute minimally to
training data.

Good EFAs Bad EFAs Good to Bad Data Ratio

Training Data Yield Rate (1 Answer Attempt) 27.0% 5.04% 5.36t01
Training Data Yield Rate (5 Answer Attempts) 39.9% 8.85% 451to1

A APPENDIX

The section Adversarial Search (Fig. 7) outlines how EFAs can generate challenging problem variants
to probe model weaknesses. The Scaling section (Appendix E) investigates the effect of the number
of sampled variants per EFA, showing how performance trends with increased augmentation. The
Ablation section (Appendix F) analyzes the impact of applying unit tests during EFA generation
on downstream data quality. Qualitative Examples (Appendix G) presents representative EFAS
spanning several MATH domains, including algebra, number theory, and probability, illustrating
the range and structure captured by the method. The Experimental Details section describes all
data generation, augmentation, and model training settings—EFA generation (box H.1), rejection
finetuning and variant sampling protocols (Appendix H.2), math inference configuration, and details
for math-specific training (Appendix H.4).

B QUALITY ANALYSIS: LOW-QUALITY EFAS ARE NATURALLY FILTERED
out

A potential concern with EFAGen is that the automated EFA generation process may produce low-
quality abstractions that could negatively impact training. To address this, we analyze how rejection
sampling naturally filters out problematic EFAs during the training data generation process.

We identify “bad” EFAs using an LLM with heuristics that flag abstractions exhibiting common
failure modes: trivial problems, extraneous variables, or hard-coded values. We then compare the
training data yield rates (the percentage of responses that receive non-zero rewards during rejection
sampling) between good and bad EFAs.

As shown in Table 4, low-quality EFAs have significantly lower yield rates compared to good EFAs.
With a single answer attempt, bad EFAs contribute training data only 5.04% of the time, compared
to 27.0% for good EFAs — a ratio of over 5 to 1 in favor of good data. Even when allowing up to 5
answer attempts, the ratio remains favorable at 4.51 to 1. This demonstrates that as long as rejection
sampling or reinforcement learning is used, noisy EFAs naturally filter themselves out, ensuring that
good data significantly outnumbers bad data in the final training set.

To further validate the quality of EFA-generated data, we conduct a direct comparison between
training exclusively on problem variants generated by EFAs versus training exclusively on real
problems from the MATH training set. As shown in Table 5, despite potential noise in rejection-
sampled EFA data, models trained on synthetic data achieve nearly identical performance to those
trained on real data (22.6% vs 22.4% Pass@1 on MATH-500). This shows that EFA-generated data
is as effective as existing math data for model training.

C GENERALITY: EFAGEN CAN WORK ACROSS DIVERSE MATH DOMAINS

Importantly, EFAGen generalizes beyond the distribution of questions in the MATH dataset. As
detailed in Fig. 5, our approach successfully infers EFAs across various math sources from the
NuminaMath dataset (Li et al., 2024) — ranging from grade-school problems (GSM8K) to nation-
al/international competitions (e.g., AMC, AIME, IMO). This demonstrates the broad applicability
of EFAs for structuring and scaling math data across diverse domains. We generally see that easier

13

Under review as a conference paper at ICLR 2026

Table 5: EFA-generated data performs comparably to real data. Direct comparison of training
exclusively on problem variants generated by EFAs versus training exclusively on real problems from
the MATH training set. Despite potential noise in rejection-sampled EFA data, models trained on
synthetic data achieve nearly identical performance to those trained on real data.

MATH-500 FnEval (November) FnEval (December)
Training Data Pass @1 Pass @10 Maj @25 Pass@1 Pass@ 10 Maj@25 Pass@1 Pass@ 10 Maj @25
Real Data Only 224 56.4 36.8 24.4 55.4 393 245 55.3 39.6
Synthetic Data Only 22.6 58.0 37.8 24.9 56.6 383 25.5 57.2 40.0

BZA EFA Success Rate I Number of Problems

1500 2
% 80 IS
I 1250 7
n 60 o
0 1000 &
9]
Y G
S 40 +750 o
"

L Q
< . 500 =
w 3

250 =

Lo

X0 AL X0) C X0 Q% O e
ac S ° X . ° " @ K2 S @ & 950(\) «\c?\m
5\1(\“\6 o o 6\"\{(\ 20" G

NuminaMath Source

Figure 5: EFAGen can infer EFAs for diverse sources of math problems. Here, we show the results
of applying EFAGen to infer EFAs for the NuminaMath (Li et al., 2024) dataset, which contains a
mix of math problems from a diversity of sources ranging from grade school mathematics (GSM8K)
to national/international olympiads (olympiads). EFAGen achieves a nonzero success rate across all
sources of problems.

math domains like GSM8K are easier to infer EFAs for than harder domains like AIME or Olympiad
problems; nevertheless, EFAGen can infer some successful EFAs even on the hardest domain.

To further demonstrate the scalability of EFAGen, we evaluate its performance on a larger set of
10,000 competition-level math problems from NuminaMath. As shown in Table 6, we are able to
successfully infer EFAs at rates of 38.4%, 50.9%, and 40.6% for the Olympiads, Synthetic AMC, and
AMC-AIME sources in NuminaMath, respectively. The 95% confidence intervals for each source are
significantly above 0% (the lowest is 33.7%), demonstrating that EFAGen can reliably infer EFAs
for the hardest problems in large math training datasets.

D ADVERSARIAL SEARCH: EFAGEN CAN FIND HARD PROBLEM VARIANTS

EFAs can also be used for evaluation or as a source of targeted training data by finding hard instances
that models struggle with.

To demonstrate this, we randomly sample problems from the MATH training that are correctly solved
by a strong model (GPT-40); we sample N = 20 of both Level 1 (easiest) and Level 5 (hardest)
problems. For each problem, we construct an EFA using EFAGen and then sample 50 variants from
the EFA. We attempt to solve each variant with GPT-40, and measure for what fraction of problems
we are able to find variants among the 50 samples that GPT-40 cannot solve. This is an estimate
of the probability that we can use an EFA to sample problems that cannot be solved by the model,
even when the seed problem is solvable. The results are shown in Fig. 7 where we see that there is a
non-zero probability of finding hard variants to a given problem, even for easy problems (i.e., Level 1
in MATH) and with a strong model like GPT-4o.

14

Under review as a conference paper at ICLR 2026

EFA for Arithmetic Word Problem EFA for Tridiagonal Matrix Eigenvalue Problem

| Original Problem |

| Original Problem |

. Suppose you are given the matrix:
When Sophie watches her nephew, she gets out a

variety of toys for him. The bag of building blocks 21 0
has 31blocks in it. The bin of stuffed animals has 8 A=11 3 1
stuffed animals inside. The tower of stacking rings o oL 4

has 9 multicolored rings on it.Sophie recently
bought a tube of bouncy balls, bringing her total
number of toys for her nephew up to 62. How many
bouncy balls came in the tube?

Find the eigenvalues of the matrix.

a e 0
class Problem(BaseModel): class Problem(BaseModel): A=le1 b e
blocks: int di: int 0 e c

animals: int Int

rings: int int

total: int ?": EFAGen identifies a tridiagonal matrix where a,
tin

aclassmethod b, ¢, e1,and ez are real numbers and e, e3 # 0

aAclassmethod as a suitable abstraction to create variants.
def original(cls) — Self:
return cls(d1=2, d2=3, d3=4, el=1, e2=1)

def original(cls) — Self:
return cls(blocks=31, animals=8, rings=9, total=62)

aclassmethod

def sample(cls) — Self: @classmethod
blocks = random.randint(20, 50) def sample(cls) — Self:
animals = random.randint(5, 15) while True:

rings = random.randint(5, 15) d1 = random.randint(1, 6)

balls = random.randint(10, 40) d2 = random.randint(1, 6)

total = blocks + animals + rings + balls d3 = random.randint(1, 6) sample(...) constructs valid 3x3

return cls(blocks=blocks, animals=animals, rings=rings, el = random.randint(-3, 3) tridiagonal matrices
total=total) e2 = random.randint(-3, 3)

if el = 0 or e2 = 0:

def render(self) — str: continue
return if len(set([d1, d2, d3])) < 3:
f"When Sophie watches her nephew, she gets out a variety continue
of toys for him. " break

f"The bag of building blocks has {self.blocks} blocks in
it. "
f"The bin of stuffed animals has {self.animals} stuffed

return cls(dl=d1, d2=d2, d3=d3, el=el, e2=e2)

def render(self) — str:

animals inside. " return (
f"The tower of stacking rings has {self.rings} "Suppose you are given the matrix:\n\n"
multicolored rings on it." "\[\n"

f"A = \begin{{bmatrix}}\n"

f'{self.d1} & {self.el} & 0 \\\n"
f'{self.el} & {self.d2} & {self.e2} \\\n"
"0 & {self.e2} & {self.d3}\n"
"\end{bmatrix}\n"

"\I\m\n"

"Find the eigenvalues of the matrix."

"Sophie recently bought a tube of bouncy balls, bringing
her total number of toys "

f"for her nephew up to {self.total}. How many bouncy
balls came in the tube?"

def solve(self) — str:

known = self.blocks + self.animals + self.rings)
balls = self.total - known
return str(balls) def solve(self) — str: solve(...) symbolically finds solutions
lam = sympy.Symbol('lambda’) to any 3x3 tridiagonal matrix
A = sympy.Matrix([
[self.d1, self.el, 0],
[self.el, self.d2, self.e2],
[o, self.e2, self.d3]
n

char_poly = A.charpoly(lam)
roots = sympy.solve(char_poly.as_expr(), lam)
def pretty_latex(x):
if hasattr(x, 'is_number') and x.is_number:
return sympy.latex(sympy.N(x, 6))
else:
return sympy.latex(x)
roots_str = ',\ '.join(pretty_latex(r) for r in roots)
return f"The eigenvalues are: $\boxed{{{roots_str}}}$"

Figure 6: EFAs inferred for problems shown in Fig. 2. On the left is an EFA for a grade-school
level math word problem. On the right is an EFA for the tridiagonal matrix eigenvalue problem.
EFAs are able to represent both types of problems, despite the wide gap in problem complexity. The
samp le method constructs mathematical objects with required properties, while the solve method
implements a generalized solution for any object constructible by the sample method. See Sec. 2.2
for a more detailed explanation.

15

Under review as a conference paper at ICLR 2026

Table 6: EFAGen can infer EFAs for large-scale competition-level mathematics. Across 10,000
competition-level problems in NuminaMath, we successfully infer EFAs at substantial rates across
different sources. The 95% confidence intervals are significantly above 0% (lowest is 33.7%),
demonstrating that EFAGen can reliably infer EFAs for the hardest problems available in large math
training datasets.

Source Functionalization Rate (%) 95% CI (%) Num Problems
Olympiads 38.4 [37.2%, 39.5%] 6,950
Synthetic AMC 50.9 [49.0%, 52.7%] 2,881
AMC-AIME 40.6 [33.7%, 48.4%] 169

100 1 Difficulty

N Level 1 I Level 5

80.0%

801 70.0%
65.0%

601 [R

40 | pammeaat SRR EEEEEEERSSSSSS

20 T

% of Problems for which
Hard Variant Found

k=1 k=50
Variants Generated

Figure 7: EFAs can find harder variants of problems. We infer an EFA for a sample of Level 1
(easiest) and Level 5 (hardest) seed problems GPT-4o solves correctly, and generate k variants of each
problem. We plot the percentage of seed problems for which a variant that GPT-40 solved incorrectly
was found.

E SCALING: EFAGEN SCALES EFFECTIVELY UP TO 16 EXAMPLES PER EFA

To understand the scaling behavior of EFA-based data augmentation, we investigate how performance
varies with the number of problem variants generated per EFA. We sample 100 unique EFAs from the
MATH training set and vary the number of problem variants generated by each EFA from 1 to 64. For
each scaling setting, we train Llama3.1-8B-Base on the generated data and evaluate on MATH-500.

As shown in Table 7, we observe smooth scaling improvements as we increase the number of variants
from 1 to 16 examples per EF A, with performance gains plateauing beyond 16 examples. Specifically,
Pass@1 improves from 14.1% with 1 example per EFA to 23.8% with 16 examples, while Pass@10
increases from 48.5% to 57.6% over the same range. However, scaling begins to saturate at 32 and
64 examples per EFA, suggesting that sampling too many problem variants from each EFA uniformly
may hurt diversity and lead to diminishing returns. The optimal scaling point appears to be around 16
examples per EFA, where three of the four metrics achieve their peak performance.

F ABLATION: UNIT TESTS IMPROVE EFA-BASED DATA AUGMENTATION
QUALITY

Despite some errors in EFA generation, we find that the current EFAs are effectively improving
performance. When we lower the quality by removing our unit tests, the performance gains from
augmentation also decrease. As shown in Table 8, applying unit tests consistently improves perfor-
mance across all benchmarks and metrics. The unit tests provide an average improvement of 2.2
percentage points on MATH-500 Pass@1, 1.7 percentage points on FnEval November Pass@1, and
2.9 percentage points on FnEval December Pass@1.

16

Under review as a conference paper at ICLR 2026

Table 7: EFAGen scales effectively up to 16 examples per EFA. We train Llama3.1-8B-Base
on varying numbers of problem variants generated from each EFA and evaluate on MATH-500.
Performance improves smoothly from 1 to 16 examples per EFA, with diminishing returns beyond
that point. Bold numbers indicate the best performance for each metric.

Training Data per EFA Pass@1 Pass@5 Pass@10 Majority Vote Accuracy

1 14.1 37.2 48.5 29.6
2 19.1 42.8 53.3 34.0
4 21.9 45.1 54.7 35.4
8 229 46.9 574 35.6
16 23.8 47.6 57.6 374
32 24.3 46.6 56.4 37.2
64 23.9 45.6 55.2 36.2

Table 8: Unit tests improve EFA-based data augmentation quality. We compare the performance
of EFA-based data augmentation with and without the unit tests that filter out low-quality EFAs. The
unit tests consistently improve performance across all benchmarks, demonstrating their effectiveness
in maintaining data quality.

MATH-500 FnEval (November) FnEval (December)
Unit Tests Pass @1 Pass @ 10 Maj @25 Pass@ 1 Pass@ 10 Maj@25 Pass@1 Pass @10 Maj @ 25
False 20.4 55.2 354 24.1 54.7 35.7 22.0 55.2 37.1
True 22.6 58.0 37.8 24.9 56.6 38.3 25.5 57.2 40.0
A (+2.2%) (+2.8%) (+2.4%) (+0.8%) (+1.9%) (+2.6%) (+3.5%) (+2.0%) (+2.9%)

In general, we believe there is a tradeoff between the level of noise in generated data and the cost of
data generation, and EFAs occupy a generally useful point on the tradeoff curve. We can change the
tradeoff and reduce noise by increasing the cost of filtering and data generation. These same issues
occur with synthetic data generation approaches. The value of our approach is that data generation
can be replaced with program execution rather than a call to a frontier LLM.

G QUALITATIVE EXAMPLES

In this section, we display qualitative examples of EFAs across the MATH training set which were
validated by our tests.

Box G.1| EFA (Algebra)

Original Problem
Solve the equation:

15
Vir —4+ —— =8
Vor —4

Original Solution
Let u = v/bz — 4. We can rewrite the equation in terms of « :

15
u+— =28
u

Multiply through by u to remove the fraction:

u® + 15 = 8u
Reorganize into a standard quadratic form:

v’ —8u+15=0
Factorize the quadratic:

17

Under review as a conference paper at ICLR 2026

(u—>5)(u—3)=0
Thus, u =50oru=3.Foru=5:

29
\/5x74:5:>5x74:25:>5x:29:>9::g

Foru =3:
13
Vor — =3:>5x—4:9:>5x=13:>x=€
Therefore, the solutions are z = 2, 13, Conclusion: The possible values of z are 22 and %2,

which satisfy the original equation when we substitute back, confirming the correctness of
our solution.

Inferred EFA

class Problem (BaseModel) :
coefficient: int
constant: int
term: int

@classmethod
def original (cls) ->Self:
return cls (coefficient=5, constant=4, term=15)

@classmethod
def sample(cls) —>Self:
coefficient = random.randint (3, 10)
constant = random.randint (1, 5)
term = random.randint (10, 20)
return cls(coefficient=coefficient, constant=constant, term=
term)
def render (self) ->str:
return f"""Solve the equation:

\\[\\sgrt{{{self.coefficient}x—{self.constant}}} + \\frac{{{self.
term}}}{{\\sqrt{{{self.coefficient}x—{self.constant}}}}} = 8.
\\] mmw

def solve(self) —->str:
u = sympy.symbols ('u’)
equation = sympy.Eq(u + self.term / u, 8)
u_values = sympy.solve (equation, u)
x_solutions = []
for u_val in u_values:

x_equation = sympy.Eq(u_val %% 2, self.coefficient x sympy.
symbols ("x’) - self.constant)
x_solution = sympy.solve (x_equation, sympy.symbols (’x’))

x_solutions.extend (x_solution)
return ', ’.join(
f’\\frac{{{sol.as_numer_denom() [0]}}}{{{sol.as_numer_denom
() [11}})}

for sol in x_solutions)

Variant generated by EFA

Solve the equation:

14
c—5+ —— =8
. Vir —5

23 — 8v/2 82+ 23
7 7

Solution:

18

Under review as a conference paper at ICLR 2026

Box G.2| EFA (Number Theory)

Original Problem

How many positive divisors does 8! have?

Original Solution

First, calculate 8! : 8! =1 x2x3 x4 x5 x6x7x 8= 40320. Next, find the prime
factorization of 40320 : 40320 = 27 x 3% x 5! x 71. Now, apply the formula for counting
the divisors: If n = p® x ¢° x r® x .. ., then the number of divisors ¢(n) is given by:

tn) = (@a+1)(b+1)(c+1)...

Here a = 7,0 = 2,c = 1,d = 1 for the primes 2, 3,5, and 7 respectively. Applying the
formula:

t(40320) = (7+ 12+ 1)1 +1)(1+1)=8x3x2x2=96

Conclusion: The result is consistent with the factorial and prime factorization, providing a
logically correct count of divisors.

Inferred EFA

class Problem (BaseModel) :
n: int

@classmethod
def original (cls) —->Self:
return cls (n=8)

@classmethod

def sample(cls) —->Self:
n = random.randint (4, 10)
return cls (n=n)

def render (self) ->str:
return f’How many positive divisors does {self.n}! have?’

def solve(self) —->str:
factorial_value = math.factorial (self.n)
factors = sympy.factorint (factorial_value)
divisor_count = 1
for exponent in factors.values():
divisor_count *= exponent + 1
return str (divisor_count)

Variant generated by EFA
How many positive divisors does 9! have?

Solution:
160

Box G.3| EFA (Probability)

Original Problem

Two 8-sided dice are tossed. What is the probability that the sum of the numbers shown on
the dice is a prime number? Express your answer as a common fraction.

Original Solution

Let d; and d5 be the outcomes of the two 8-sided dice, where dy,ds € {1,2,...,8}.

The total number of possible outcomes in the sample space is:

|2 =8 x 8 =64
We want to find the number of outcomes where the sum S = d; + d is a prime number. The

smallest possible sum is 1 4+ 1 = 2 and the largest is 8 + 8 = 16. The prime numbers in this
range are 2,3,5,7,11, and 13.

19

Under review as a conference paper at ICLR 2026

Sum =2: {(1,1)}

Sum =3: {(1,2),(2,1)}

Sum =5: {(1,4),(4,1),(2,3),(3,2)}

Sum =7: {(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}
Sum = 11: {(3,8),(8,3), (4,7), (7,4), (5,6), (6,5)}
Sum =13: {(5,8),(8,5),(6,7),(7,6)}

Nfavorable:1+2+4+6+6+4:23

outcomes:
Nravorable _ 23

P ooy Niworable 23
(Sum is prime) Ql o

The final answer is:

23

64

Inferred EFA

class Problem (BaseModel) :
sides: int

@classmethod
def original(cls) ->Self:
return cls(sides=8)

@classmethod

def sample(cls) —->Self:
sides = random.randint (4, 20)
return cls(sides=sides)

def solve(self) —->str:
total_outcomes = self.sides * self.sides

def is_prime(n: int) ->bool:
if n <= 1:
return False
if n % i ==
return False
return True
primal_sum_occurrences = 0
for diel in range(l, self.sides + 1):
for die2 in range(l, self.sides + 1):
sum_of_dice = diel + die2
if is_prime (sum_of_dice):
primal_sum_occurrences += 1

We enumerate the pairs (d;, d2) corresponding to each prime sum:

The total number of favorable outcomes is the sum of the ways for each prime:

for i in range (2, int (math.sqgrt(n)) + 1):

def render (self)
return (

probability = primal_sum_occurrences / total_outcomes

fraction = sympy.Rational (primal_sum_occurrences,
total_outcomes)

return f’\\frac{{{fraction.numerator}}}{{{fraction.
denominator}}}’

—>str:

(1 way)
(2 ways)
(4 ways)
(6 ways)
(6 ways)
(4 ways)

The probability is the ratio of the number of favorable outcomes to the total number of

f’Two {self.sides}-sided dice are tossed. What 1is the
probability that the sum of the numbers shown on the
dice is a prime number? Express your answer as a common
fraction.’

20

Under review as a conference paper at ICLR 2026

)

Variant generated by EFAGen Two 19-sided dice are tossed. What is the probability that
the sum of the numbers shown on the dice is a prime number? Express your answer as a
common fraction.

Solution:
105

361

H EXPERIMENTAL DETAILS

H.1 GENERATING EFAS

When generating EFAs, we use the prompt in box H.1. To sample multiple candidates for EFAs,
we use beam search with a temperature of 0.7 and a max generation length of 4096. We extract the
resulting EFAs from the LLMs response by looking for a markdown code block and extracting all
markdown code blocks that have the necessary class structure.

Box H.1| Prompt for Inferring EFAs

Instructions for Math Problem Functionalization

Your task is to convert a mathematical problem and its solution
into a reusable Python class that can generate similar problems.
Follow these steps:

1. Create a Python class that inherits from BaseModel with
parameters that can vary in the problem. These parameters should
capture the core numerical or mathematical values that could be

changed while maintaining the same problem structure.

2. Implement the following required methods:

- ‘original() ‘: A class method that returns the original problem’
s parameters

— ‘sample() ‘: A class method that generates valid random
parameters for a similar problem

— ‘render () ‘: An instance method that produces the problem
statement as a formatted string

- ‘solve() ‘: An instance method that computes and returns the
solution

3. For the ‘sample () method:

— Generate random parameters that maintain the problem’s
mathematical validity

— Include appropriate constraints and relationships between
parameters

— Use reasonable ranges for the random values

4. For the ‘render () ' method:
- Format the problem statement using f-strings
— Include proper mathematical notation using LaTeX syntax where
appropriate
— Maintain the same structure as the original problem

5. For the ‘solve () ' method:
— Implement the solution logic using the instance parameters
— Return the final answer in the expected format (string,
typically)
— Include any necessary helper functions within the method

21

Under review as a conference paper at ICLR 2026

6. Consider edge cases and validity:
- Ensure generated problems are mathematically sound
- Handle special cases appropriately
— Maintain reasonable complexity in generated problems

7. Do not import any libraries! The following libraries have been
imported. Use fully qualified names for all imports:
- pydantic.BaseModel is imported as ‘BaseModel’
- random is imported as ‘random’
- math is imported as ‘math?
- numpy 1is imported as ‘np‘
- sympy 1is imported as ‘sympy'
- typing.Self is imported as ‘Self‘

Example usage:

‘Y'python

problem = MyMathProblem.original () # Get original problem
variant = MyMathProblem.sample () # Generate new variant
question = variant.render () # Get problem statement
answer = variant.solve () # Compute solution

AN

The goal is to create a class that can both reproduce the original
problem and generate mathematically valid variations of the same
problem type.

Example 1
Problem Statement
Evaluate $i"5+i"{-25}+i"{45}S$.

Solution

We have $i°5 = i174\\cdot i = 1\\cdot (i) = i$. We also have $Si
“{-25} = 1/17{25} = 1/(1i"{24}\\cdot i) = 1/[1\\cdot (i)] = 1/1 =
\\fracl{i}\\cdot\\frac{i}{i} = 1i/(-1) = -i$ and $i" {45} =

(1°{44})\\cdot i= 1\\cdot i =i$, and . So, adding these three
results gives $1i°5 + 1°{-25} + i7" {45} = i+-i+i = \\boxed{i}$.\
nFinal Answer: The final answer is $\\boxed{ i }S.

Functionalization

‘Y 'python

class Problem(BaseModel) :
exponentl: int
exponent2: int
exponent3: int

@classmethod
def original (cls) —-> Self:
return cls (exponentl=5, exponent2=-25, exponent3=45)

@classmethod

def sample(cls) —> Self:
exponentl = random.randint (=100, 100)
exponent2 = random.randint (=100, 100)
exponent3 = random.randint (=100, 100)

return cls (exponentl=exponentl, exponent2=exponent2,
exponent3=exponent3)

def render(self) -> str:
return f"Evaluate $i"{{{self.exponentl}}} + i~ {{{self.
exponent2}}} + 1" {{{self.exponent3}}}$."

def solve(self) -> str:
Compute the values of i"n mod 4 cycle

22

Under review as a conference paper at ICLR 2026

def compute_i_power (exp: int) -> complex:
cycle = [1, 13, -1, -131 # 1, 1, -1, -1

)

return cyclel[exp % 4]

Compute each term

terml = compute_i_power (self.exponentl)
term2 = compute_i_power (self.exponent?2)
term3 = compute_1i_power (self.exponent3)

Calculate the sum
result = terml + term2 + term3

Express as LaTeX
result_latex = (
f"{result:.0£f}" if result.imag == 0 else str(result).
replace ("3j", "i")
)

return f"{result_latex}"

Example 2

Problem Statement

Altitudes \overline{AX} and \overline{BY} of acute triangle
SABCS intersect at $HS. If $\angle BAC = 437°\circ$ and $\angle
ABC = 677\circ$, then what is $\angle HCAS?

Solution

First, we build a diagram:

size (150); defaultpen(linewidth(0.8));

pair B = (0,0), ¢ = (3,0), A= (1.2,2), P = foot(A,B,C), Q = foot (B,
A,C),H = intersectionpoint (B—-Q,A--P);

draw (A——B--C--cycle);

draw (A—--P~ "B--0Q) ;

pair Z;

Z = foot (C,A,B);

draw (C--2) ;

label ("S$SAS",A,N); label ("SBS",B,W); label("CS",C,E); label ("SXS",P,
S); label ("YS",Q,E); label ("$HS",H+(0,-0.17),SW);

label ("$2z$", 2, NW) ;

draw (rightanglemark (B, Z, H, 3

draw (rightanglemark (C,P,H, 3

draw (rightanglemark (H,Q,C, 3

rilr

’ .

r~r

Since altitudes \overline{AX} and \overline{BY} intersect at
HS, point HS is the orthocenter of $\triangle ABCS$. Therefore,
the line through C and HS is perpendicular to

side \overline{AB}, as shown. Therefore, we have $\angle HCA = \
angle ZCA = 90°\circ - 437\circ = \boxed{47 \circ}$.

Functionalization

‘Y '‘python

class Problem (BaseModel) :
angle_BAC: int # angle BAC in degrees
angle_ABC: int # angle ABC in degrees

@classmethod
def original (cls) —-> Self:
return cls (angle_BAC=43, angle_ABC=67)

@classmethod
def sample(cls) —> Self:

23

Under review as a conference paper at ICLR 2026

Generate random acute angles that form a valid triangle
Sum of angles must be less than 180
anglel = random.randint (30, 75) # Keep angles acute
angle2 = random.randint (30, 75)
Ensure the third angle is also acute
if anglel + angle2 >= 150:
anglel = min(anglel, 60)
angle2 = min(angle2, 60)
return cls(angle_BAC=anglel, angle_ABC=angle2)

def solve(self) -> str:
The angle HCA is complementary to angle BAC
This is because H is the orthocenter and CH is
perpendicular to AB
angle_HCA = 90 - self.angle_BAC
return f"{angle_HCA}"

def render(self) -> str:
return (

f"Altitudes $\\overline{{AX}}$ and $\\overline{{BY}}$ of
acute triangle S$ABCS "

f"intersect at S$HS. If $\\angle BAC = {self.angle_BAC} \\
circ$ and "

f"$\\angle ABC = {self.angle_ABC} \\circ$, then what is $\\
angle HCAS?"

Example 3

Problem Statement

On a true-—-false test of 100 items, every question that is a
multiple of 4 is true, and all others are false. If a student
marks every item that is a multiple of 3 false and all others
true, how many of the 100 items will be correctly answered?

Solution

The student will answer a question correctly if

Case 1: both the student and the answer key say it is true. This
happens when the answer is NOT a multiple of 3 but IS a multiple
of 4.

Case 2. both the student and the answer key say it is false. This
happens when the answer IS a multiple of 3 but is NOT a multiple
of 4.

Since the LCM of 3 and 4 is 12, the divisibility of numbers (in our
case, correctness of answers) will repeat in cycles of 12. In
the first 12 integers, 4 and 8 satisfy Case 1

and $3,6,$ and 9 satisfy Case 2, so for every group of 12, the
student will get 5 right answers. Since there are 8 full groups
of 12 in 100, the student will answer at least $8

\cdot 5 = 40$ questions correctly. However, remember that we must
also consider the leftover numbers 97, 98, 99, 100 and out of
these, 99 and 100 satisfy one of the cases. So

our final number of correct answers is $40 + 2 = \boxed{42}S.

Functionalization

‘Y 'python

class Problem(BaseModel) :
total questions: int # Total number of questions
multiplel: int # First multiple (4 in original problem)
multiple2: int # Second multiple (3 in original problem)

24

Under review as a conference paper at ICLR 2026

@classmethod
def original (cls) —> Self:
return cls(total_questions=100, multiplel=4, multiple2=3)

@classmethod
def sample(cls) —> Self:
Generate reasonable random parameters
total = random.randint (50, 200) # Reasonable test length
Choose coprimes or numbers with small LCM for interesting

results

multl = random.randint (2, 6)

mult2 = random.randint (2, 6)

while multl == mult2: # Ensure different numbers
mult2 = random.randint (2, 6)

return cls(total_gquestions=total, multiplel=multl, multiple2=
mult?2)

def solve(self) —-> str:

def lcm(a: int, b: int) -> int:
def gcd(x: int, y: int) -> int:
while y:

X, Y =Y, X5Y
return x

return abs(a * b) // gcd(a, b)

Find cycle length (LCM)
cycle_length = lcm(self.multiplel, self.multiple2)

Count correct answers in one cycle

correct_per_cycle = 0

for i in range(l, cycle_length + 1):
answer_key_true = i % self.multiplel == 0
student_true = i $ self.multiple2 != 0
if answer_key_true == student_true:

correct_per_cycle += 1

Calculate complete cycles and remainder
complete_cycles = self.total_questions // cycle_length
remainder = self.total_questions % cycle_length

Calculate total correct answers
total_correct = complete_cycles x correct_per_cycle

Add correct answers from remainder
for i in range(l, remainder + 1):

answer_key_true = 1 % self.multiplel == 0
student_true = i % self.multiple2 != 0
if answer_key_true == student_true:

total_correct += 1
return str(total_correct)

def render(self) -> str:
return (
f"On a true-false test of {self.total_questions} items, "
f"every question that is a multiple of {self.multiplel} is

true, "
f"and all others are false. If a student marks every item
that is "
f"a multiple of {self.multiple2} false and all others true,
how "

25

Under review as a conference paper at ICLR 2026

f"many of the {self.total_questions} items will be
correctly answered?"

Your Turn
Functionalize the following problem:

Problem Statement
[% problem_statement %]

Solution

)

[$ solution %]

Functionalization

H.2 EFAGEN TRAINING DETAILS

When doing rejection finetuning, we sample 20 candidate EFAs programs from the LLM for each
seed problem during the rejection sampling phase. We sample 20 variants from each EFA in order
to run the has_dof (EFA) and is_single_valued (EFA) tests. When finetuning on the EFAs
that pass all tests, we use the the same prompt box H.1 as the instruction and the extracted code
of the EFA as the response. We use Transformers (Wolf et al., 2020) and Llama-Factory (Zheng
et al., 2024) libraries for training. We format all data in the Alpaca format (Taori et al., 2023) as
instruction-response pairs. We use the Adam optimizer with a batch size of 16 and a cosine learning
rate scheduler with a warmup ratio of 0.1 and train for 3 epochs in the FP16 datatype. We apply
LoRA to all linear layers with a rank of 16 and an alpha of 32, no bias, and a dropout of 0.05. We
truncate all training examples to a maximum length of 4096 tokens with a batch size of 32.

H.3 MATH INFERENCE SETTINGS

When doing 0-shot inference with Llama3.1-8B-Instruct, we use the official Llama3.1 prompt in
box H.2. When doing few-shot inference with Llama3.1-8B-Instruct, we use a modified version of
the official prompt, shown in box H.3. When sampling multiple responses, we use beam search with
a temperature of 0.7 and a max generation length of 2048. When sampling a single response, we use
beam search with a temperature of 0.0 and a max generation length of 2048. In all cases, we check
for equality of answers using the math-verify library.

Box H.2| Llama3.1 0-shot MATH Prompt

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1l: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

Regardless of the approach, always conclude with:

26

https://github.com/huggingface/Math-Verify

Under review as a conference paper at ICLR 2026

Therefore, the final answer is: \boxed{answer}. I hope it is
correct.

Where [answer] 1is Jjust the final number or expression that solves
the problem.

Problem: {{ instruction }}

Box H.3| Llama3.1 N-shot MATH Prompt

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

\#\# Step 1: [Concise description]
[Brief explanation and calculations]

\#\# Step 2: [Concise description]
[Brief explanation and calculations]

Regardless of the approach, always conclude with:

Therefore, the final answer is: \boxed{answer}. I hope it is
correct.

Where [answer] is Jjust the final number or expression that solves
the problem.

Here are some examples:

{% for few_shot_example in few_shot_examples %}
Problem: {{ few_shot_example.instruction }}

{{ few_shot_example.response }}

{% endfor %}

Problem: {{ instruction }}

H.4 MATH TRAINING DETAILS

We use the same hyperparameters and chat data format as in Appendix H.2, except we cutoff training
data over 2048 tokens. However, we use a simpler prompt template, shown in box H.4 to format the
teacher responses. When annotating with a Llama3.1-8B-Instruct teacher, we sample 5 responses per
math problem with a temperature of 0.7. We check for equality of answers using the math-verify
library.

Box H.4| Minimal instruction-tuning prompt used for augmentation experiments

Question: {{ question }}
Step-by-step Answer

27

https://github.com/huggingface/Math-Verify

	Introduction
	Executable Functional Abstractions (EFAs)
	Desired Properties of Abstractions
	EFA as a Python Class
	EFAGen: Inferring EFAs from Math Problems

	Experiments & Results
	Self-Improvement: LMs Improve at EFA Inference With Execution Feedback
	Faithfulness: EFAs Capture the Reasoning Required to Solve Seed Problems
	Learnability: Generated Problem Performance Increases with Experience
	Augmentation: EFAs Are Effective at Expanding Static Math Datasets
	EFAGen Complements Existing Synthetic Data Generation Approaches

	Related Work
	Conclusion
	Appendix
	Quality Analysis: Low-Quality EFAs Are Naturally Filtered Out
	Generality: EFAGen Can Work Across Diverse Math Domains
	Adversarial Search: EFAGen Can Find Hard Problem Variants
	Scaling: EFAGen Scales Effectively Up to 16 Examples per EFA
	Ablation: Unit Tests Improve EFA-Based Data Augmentation Quality
	Qualitative Examples
	Experimental Details
	Generating EFAs
	EFAGen Training Details
	Math Inference Settings
	Math Training Details

