
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXECUTABLE FUNCTIONAL ABSTRACTIONS: INFER-
RING GENERATIVE PROGRAMS FOR ADVANCED MATH
PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Abstract Interpretation provides a framework for approximating the behavior of dis-
crete systems by establishing a correspondence between concrete execution traces
and abstract properties. We apply this framework to mathematics to address the
inverse problem: automatically synthesizing a general program (the abstraction)
from a single concrete example, which executes to produce specific, valid problem
instances (the concretization). Prior approaches to capturing this structure rely
on hand-crafted templates, a labor-intensive process that restricts the technique to
arithmetic word problems or small datasets. We introduce EFAGen, a method that
operationalizes this inference as a program synthesis task, generating Executable
Functional Abstractions (EFAs) that encode the parameters, constraints, and so-
lution procedure of the seed problem. Because formal verification of synthesized
code is intractable, we filter candidates using executable unit tests that enforce
necessary properties. We demonstrate that these inferred abstractions enable data
augmentation that complements existing strong data mixes for math reasoning and
facilitate adversarial search to discover problem variants that models fail to solve.

1 INTRODUCTION

Abstract Interpretation (Cousot & Cousot, 1977) provides a rigorous framework for approximating
the behavior of discrete systems. It establishes a correspondence between a concrete domain of
specific execution traces and an abstract domain of general properties. In the context of mathematics,
we can view a specific problem instance (e.g., “Find the GCD of 6 and 126”) as a point in the concrete
domain. The underlying general logic (variables, constraints, and solution procedure) serves as its
representation in the abstract domain. We term this programmatic representation an Executable
Functional Abstraction (EFA). Possessing the EFA for a problem is powerful. It allows one to analyze
the general class of the problem rather than a single instance and enables the generation of infinite
valid variants through concretization functions. These variants have the potential to be useful as a
source of training data or to construct challenging benchmarks for evaluation.

However, a reliable “abstraction function”, a mechanism to automatically lift a concrete problem
into a valid EFA, does not exist for complex mathematics. Current approaches to obtaining these
abstractions, such as GSM-Symbolic (Mirzadeh et al., 2025) and FnEval (Srivastava et al., 2024),
rely heavily on manual engineering. Humans must painstakingly identify variables, define domains,
and write code for every problem template. This manual reliance restricts the abstractions to simple
grade-school arithmetic or small, curated datasets is not scalable. Constructing an abstraction function
for complex mathematics poses two fundamental challenges. First, synthesis is difficult: identifying
the correct parameters, discovering non-trivial constraints, and generalizing the solution logic must
all succeed simultaneously. Getting any component wrong yields an invalid abstraction. Second,
verification is intractable: formally proving correctness of these synthesized programs is beyond
current capabilities.

Our key insight is to reformulate this open-ended inference problem as a tractable search problem de-
fined by executable code and operational verification. We introduce EFAGen, which operationalizes
the Abstract Interpretation relationship as a program synthesis task. Our inference pipeline acts as an
abstraction function α. It takes a concrete problem instance x as input and synthesizes an EFA that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Inference of an EFA from a Math Problem

Function Parameter Sampler

Executable Functional Abstraction (EFA)

...

...

Specific problem
included in a dataset

Novel variants that are solved by the same general
technique (not included in dataset)

 is sampled
during dataset construction

Math
problem

Function
Parameter Sampler

Executable Functional Abstraction (EFA)

Infer underlying

function & parameter constraints

Question: The greatest common
divisor of positive integers and

 is . The least common
multiple of and is .
What is the least possible value of

?

Answer: The final answer is .

1
378

10

Question: The greatest common
divisor of positive integers and

 is . The least common
multiple of and is .
What is the least possible value of

?

Answer: The final answer is .

7
42

70

Question: The greatest common
divisor of positive integers and

 is . The least common
multiple of and is .
What is the least possible value of

?

Answer: The final answer is .

6
126

60

Question: The greatest
common divisor of positive
integers and is 6

A General Abstraction Underlies Specific Math Problems

...

Automated tests to ensure EFA is correct

Test 1 Test 3 Test 2

GCD < LCM RelPrime(GCD,
LCM) == False

Figure 1: Left: We view math problems through the lens of Abstract Interpretation: specific
problem instances with concrete values lie in the concrete domain, while executable functional
abstractions (EFAs) represent the abstract domain of parameterized logic and constraints. The
concretization function γ (via sample()) generates valid concrete instances from an EFA. Right:
We study the task of automating the abstraction function α that lifts a concrete problem instance
into its corresponding EFA, automatically inferring parameters, constraints, and general solution
procedures from natural language problems. We approach this as a program synthesis task, and show
the validity of the inferred EFAs as well as their utility in downstream tasks.

transforms specific numerical values into typed parameters, encodes constraints between them, and
implements a general solution procedure valid for any parameterization satisfying these constraints.
Each synthesized EFA implements a concretization function γ via its sample() method, which
instantiates the abstract schema into concrete problem instances. Rather than formal verification, we
implement operational soundness checks as executable unit tests that verify necessary conditions for
validity. These checks ensure that x ∈ γ(α(x))—the abstraction can reproduce the original instance—
but also that sampled variants are non-trivial (distinct from the seed), solvable (match expected
answers), and valid (satisfy domain constraints). We generate multiple candidate programs using an
overgenerate-and-filter approach (Li et al., 2022), treating each EFA as a hypothesis and selecting
those that pass all operational checks. This search procedure enables us to discover abstractions that
are operationally sound with respect to the seed problem.

We confirm the internal validity of the inferred EFAs by measuring the faithfulness of the generated
variants to the seed problem and their utility in training models. We then demonstrate the applications
of EFAs to two downstream tasks. Specifically, we show that EFAs can be used for adversarial
search to discover harder problem variants and for data augmentation. In the latter, we demonstrate
that EFA-generated data is high quality and complementary to existing data augmentation methods.
Our experiments show that EFA-based augmentation combined with NuminaMath (?) yields better
performance than using NuminaMath alone. This suggests that the inferred abstractions capture
structural patterns distinct from those in standard corpora.

We make the following contributions.

• We formalize EFAs and develop EFAGen, an automated approach to infer executable abstractions
from competition-level math problems by treating abstraction as a synthesis and verification task.

• We demonstrate that the execution feedback from our validity tests acts as a reward signal. This
enables LLMs to self-improve at the abstraction task via reinforcement learning.

• We empirically show that inferred EFAs provide a complementary data source to strong baselines
like NuminaMath. Data augmentation with EFAs improves performance on MATH-500 and FnEval,
and EFAs can be used to search for easier harder or easier variants of problems.

2 EXECUTABLE FUNCTIONAL ABSTRACTIONS (EFAS)

Our goal is to automatically convert math problems with static numerical values into parameterized
abstractions that can generate variants of the original problems. We refer to these parameterized
abstractions as Executable Functional Abstractions (EFAs). EFAs enable the systematic generation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

On Arithmetic Word Problems
(Grade School)

When Sophie watches her nephew, she gets out a variety

of toys for him. The bag of building blocks has 31 blocks

in it. The bin of stuffed animals has 8 stuffed animals

inside. The tower of stacking rings has 9 multicolored

rings on it.Sophie recently bought a tube of bouncy balls,

bringing her total number of toys for her nephew up to

62. How many bouncy balls came in the tube?

On More Complex Problems
Suppose you are given the matrix:

Find the eigenvalues of the matrix.

Specifically designed for generating

arithmetic math word problems.

Can also generate arithmetic math word

problems, but is general-purpose.

Prior Work

predefined templates for
arithmetic word problems

allows only arithmetic operations in
fixed computation graph
use bespoke domain-specific

languages to specify constraint +
solver

EFAGen (Ours)

infers abstractions underlying a
problem to generate new variants

allows arbitrary computations to
construct problems and solutions
uses general-purpose

programming language to specify
constraints + solver

Not applicable to generating instances of

more complex math problems beyond
predefined templates.

Can generate instances of complex math

problems due to greater expressive power
and automatic inference of abstractions.

✅

✅

✅

❌

Figure 2: EFAGen generalizes prior work on constructing arithmetic word problems to auto-
matically constructing more complex, higher-level math problems. Given a math problem and
solution, EFAGen infers an underlying abstraction whose construction and general solution may
involve arbitrary computations beyond fixed sequences of arithmetic operations. For example, the
abstraction underlying the eigenvalue problem on the right is that of a tridiagonal 3× 3 matrix. The
general solution requires a symbolic computation composed with a numerial root-finding procedure.
Details of inferred EFA code in Fig. 7.

of new problem instances by varying numerical parameters while preserving the underlying problem-
solving logic. We operationalize the task of inferring an EFA for a static math problem as a program
synthesis task where the goal is to write a class implementing the EFA. We use LLMs to generate
many candidate EFA implementations for a static problem and use a suite of automatic unit tests
to filter the candidates by rejecting mathematically unsound ones. Below, we describe the desired
properties of EFAs (Sec. 2.1), how an EFA is represented as a Python class (Sec. 2.2), and how we
infer EFAs from static math problems using LLMs (Sec. 2.3).

2.1 DESIRED PROPERTIES OF ABSTRACTIONS

An effective abstraction of a math problem must support variation, preserve validity, and enable
automated problem-solving. We identify three core properties of an EFA:

• Structured parameter space: The abstraction should define a set of parameters that character-
ize the problem and specify valid relationships among them. This includes identifying which
parameters are independent, how dependent parameters are derived, and what constraints must be
satisfied to ensure valid problem instances. Such structure enables systematic variation, ensuring
that changes to parameters yield meaningful variants with potentially different solutions.

• Procedural generation of instances: The abstraction should support random sampling of a set
of valid parameters (e.g., EFA.sample() in Sec. 2.2) and converting the abstract problem into
natural language form (e.g., EFA.render() in Sec. 2.2), to help users generate valid problem
instances by sampling parameter values within defined constraints. These constraints are problem-
specific and crucial for generating diverse but coherent examples.

• Executable solution logic: The abstraction should include a method (e.g., EFA.solve() in
Sec. 2.2) that computes the correct answer for any valid parameter configuration. This solution
logic is typically derived from the chain-of-thought (Wei et al., 2022) used for the static version of
the problem and can be implemented as an executable program.

2.2 EFA AS A PYTHON CLASS

As shown in Fig. 3(a), each EFA is implemented as a Python class that contains the logic of a math
problem in a parameterized form. The class defines a list of parameters along with three key methods:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Over-generate Candidates

class EFABase:

def sample(self):
return new_param

def render(self, param):
return question

def solve(self, param):
return answer

EFA as a Python Class

(c) Sample New Problems from EFA

new_problems = []
for _ in range(N):
 p = efa.sample()
 q = efa.render(p)
 a = efa.solve(p)

new_problems.append((q,a))

class Problem(EFABase):

...

class Problem(EFABase):

...

(b) Filter Invalid Candidates

where

EFAGen: Inferring EFAs from Math Problems

...

...

Test 1 Test 3Test 2 ...

LMQuestion: The greatest
common divisor of
positive integers and

 is 6. The least
common multiple of
and is 126. What is the
least possible value of

?

Final Answer: The final
answer is .

Original Math Problem

class Problem(EFABase):

...

Figure 3: Left: Representation of an executable functional abstraction (EFA) as a Python
class. Right: Overview of EFAGen, a method for automatically inferring EFAs from a math
problem. In EFAGen, we (a) over-generate multiple EFA candidates with an LLM and (b) filter out
invalid candidates that fail automated tests. The EFA can generate new problem variants by sampling
parameters and executing the solver. Full code is in Appendix E.

• EFA.sample() → parameters: Samples a valid set of parameters representing problem
variants, respecting all constraints specified in the abstraction.

• EFA.render(parameters) → question: Provides a natural language problem state-
ment, given a specific (sampled) parameter set. This ensures that each generated instance is
presented in a format suitable for human or model consumption. In most cases, this involves
reusing the problem statement of the seed instruction and mutating the numerical values to be
consistent with the given parameters.

• EFA.solve(parameters) → answer: Computes the correct answer for a given parameter
configuration. The solution is expressed as a numerical expression derived through deterministic
computations over the parameters. The solver does not need to access the natural language problem
statement, as the solution is only dependent on the parameterization of the problem, which is a
structured object.

These methods operationalize the abstraction and enable automated generation, rendering, and
evaluation of math problems.

2.3 EFAGEN : INFERRING EFAS FROM MATH PROBLEMS

We introduce EFAGen, a framework for automatically constructing EFAs from static math problems.
Given a problem statement and its solution procedure (typically expressed as chain-of-thought
reasoning), EFAGen uses a large language model (LLM) to generate a candidate EFA implementation
that captures the logic and structure of the original problem. This process relies on supervision that is
readily available in many math datasets.

Since generating correct and robust code is challenging for LLMs, EFAGen adopts an overgenerate-
and-filter approach inspired by AlphaCode (Li et al., 2022). As described in Fig. 3 (a), for each
problem, we sample N (e.g., 50) EFA candidates and apply a suite of automated tests to discard
invalid abstractions. EFAGen uses the following tests to validate candidate EFAs, as illustrated in
Fig. 3 (b):

• is extractable(response): Verifies that the class contains all required methods.
• is executable(EFA): Confirms that the class can be instantiated and executed without errors,

and methods like EFA.sample() and EFA.solve() can be called without errors.
• has dof(EFA): Ensures that sampled parameters differ, rejecting EFAs with zero degrees of

freedom that cannot produce new problems.
• is single valued(EFA): Confirms that identical parameters yield equivalent solutions, re-

jecting impermissible implementations including multivalued functions or incoherent abstractions.
• matches original(EFA, orig params, orig sol): Validates that the abstraction,

when instantiated with the original parameters, produces the original problem and solution. This
serves as a cycle-consistency or soundness check.

Any program that fails these tests cannot logically be a valid implementation of an EFA. EFAGen
enables generation of EFAs at scale, as shown in Fig. 3 (c), as large numbers of candidate EFAs can

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 1 2 3 4
Iteration

70

80

90

100

E
FA

 T
es

t P
as

s
R

at
e

%
Level

1
2
3
4
5

0 1 2 3 4
Iteration

40

50

60

70

80

90

100

E
FA

 T
es

t P
as

s
R

at
e

%

Topic
Algebra
Counting
&
Probability
Geometry
Intermediate
Algebra
Number Theory
Prealgebra
Precalculus

Figure 4: LLMs can use our tests to self-improve at inferring EFAs. We plot the percentage of
constructed EFAs passing all tests across iterations of self-training, grouped by MATH problem
difficulty (left) and by problem category (right). Harder difficulty levels and problem categories are
harder to infer EFAs for and improve more during training.

be generated and filtered automatically. Over time, these tests can also be used to fine-tune LLMs
toward better abstraction generation, such as with reinforced self-training (Singh et al., 2023; Dong
et al., 2023) or reinforcement learning with verifiable rewards (Lambert et al., 2024).

3 EXPERIMENTS & RESULTS

Below, we show experiments on self-improving at inferring EFAs (Sec. 3.1), faithfulness (Sec. 3.2)
and learnability (Sec. 3.3) of EFAs, the complementarity of EFAs with existing data generation
methods (Sec. 3.4, Sec. 3.5). In the Appendix, we analyze the quality of EFA-generated data
(Appendix B), scaling experiments (Appendix C), applying EFAs to find hard variants of problems
(Sec. 3.7), ablations (Appendix D), and EFAGen inference on olympiad-level problems (Sec. 3.6).

Datasets. Throughout this section, we use the following datasets in our experiments:

• MATH (Hendrycks et al., 2021). Competition math dataset with a test set of 5k math problems
described in text comprising different categories and five levels of difficulty. We show in Sec. 3.1
that LLMs struggle with task of EFA generation and we improve their performance by training on
the EFA generation task using the MATH train set consisting of 7.5k problems.

• FnEval (Srivastava et al., 2024). A functional version of the MATH benchmark designed to
evaluate generalization. It consists of multiple “snapshots”, each containing variations of problems
from the MATH dataset. These variations preserve the abstract reasoning structure of the original
problems. We use two snapshots to test if our method can capture the underlying abstractions of a
problem and generalize to unseen, related instances.

• MATH-Hard is a subset of MATH test problems of the highest difficulty (level 5) across all
categories (1387 problems).

Metrics. To evaluate the performance of LLMs we use the following metrics:

• EFA Success Rate. We measure the ability of LLMs to generate valid, high-quality EFAs (defined
in Sec. 2.1) as the frequency (%) of EFAs generated that past all the diagnostic tests (c.f. Sec. 2.3).

• Pass@k Rate (%). Following Chen et al. (2021), we measure the ability of LLMs to solve math
problems by sampling 25 generations with temperature sampling and estimating the unbiased
pass@k rate, i.e., the likelihood that out of k generated solutions any one yields the correct answer.

3.1 SELF-IMPROVEMENT: LMS IMPROVE AT EFA INFERENCE WITH EXECUTION FEEDBACK

Inferring valid EFAs across diverse math problems is challenging, especially as the difficulty and
complexity of topics increases. For instance, as shown in Fig. 4, Llama3.1-8B-Instruct (Llama Team,
2024) struggles to generate valid EFAs for Level 5 problems and for topics such as Precalculus in the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: EFAs faithfully capture the solutions of the problems they were derived from (left), and
problem variants constructed by EFAs share learnable structure (right). Left: Giving solutions
to problems variants from an EFA as in-context examples nearly doubles the solve rate of an LLM
on the seed problem the EFA was derived from. Right: Giving solutions to problem variants from an
EFA as in-context examples helps an LLM solve a holdout set of variants from the same EFA. See
Sec. 3.2 and Sec. 3.3 for details.

Faithfulness (Sec. 3.2): EFA helps on the original problem Learnability (Sec. 3.3): EFA helps on its variants
Initial Pass@1 +Data from EFA Sample Size Initial Pass@1 +Data from EFA Sample Size

15.66 38.73 (+23.07%) 307 14.58 31.23 (+16.65%) 1,000

Table 2: EFAs are effective at data augmentation. Comparison with and without synthetic data
augmentation using problems drawn from generated EFAs. The table shows performance across
MATH-500 and FnEval benchmarks (November and December snapshots). When augmenting, we
use a 1:1 ratio of examples drawn from training data vs. from an EFA, and report results using 33%
of the MATH train set and 100% of the train set.

MATH-500 FnEval (November Split) FnEval (December Split)

Training Data Pass @ 1 Pass @ 10 Maj @ 25 Pass @ 1 Pass @ 10 Maj @ 25 Pass @ 1 Pass @ 10 Maj @ 25

MATH (33%) 22.4 56.4 36.8 24.5 55.3 39.6 24.4 55.4 39.3
+EFA (1:1) 24.3 58.3 38.8 26.7 59.2 41.8 26.6 57.3 41.2

(+1.9%) (+1.9%) (+2.0%) (+2.2%) (+3.9%) (+2.2%) (+2.2%) (+1.9%) (+1.9%)

MATH (100%) 24.3 57.8 37.0 26.8 58.6 43.1 26.5 57.6 41.5
+EFA (1:1) 26.1 60.6 40.4 29.3 60.1 44.3 28.8 59.6 43.7

(+1.8%) (+2.8%) (+3.4%) (+2.5%) (+1.5%) (+1.2%) (+2.3%) (+2.0%) (+2.2%)

MATH dataset, where it is only able to infer valid EFAs for ≈35% of Precalculus questions. In Sec. 2,
we introduce a number of unit tests (i.e., verifiable rewards) that indicate whether a generated EFA is
valid. Here, we show that we can train models to improve on inferring valid EFAs by self-training
according to these tests. Specifically, we use a rejection-finetuning approach (Zelikman et al., 2022;
Singh et al., 2023; Dong et al., 2023), in which we sample EFA candidates from a model and filter
according to our rewards to construct a training dataset of correct examples. We begin with the
MATH training set (7,500 problems) and sample 10 candidate EFAs per problem. Candidates failing
any of the reward checks are discarded. The remaining valid examples form a dataset for supervised
fine-tuning. This process – sampling, filtering, and retraining – is repeated over 5 iterations (see
Appendix F.2 for details).

We report the EFA success rates across iterations in Fig. 4, where we group by difficulty levels (left)
and by annotated problem category (right). Success rates steadily improve over training iterations,
especially for harder problems. At iteration 0 (before training), we observe that harder problems (e.g.,
Level 5) are also harder to infer EFAs for, with EFA success rates ≈ 17% lower for Level 5 than Level
1 problems. Similarly, certain categories like ‘Intermediate Algebra’, ‘Counting’ and ‘Probability’
are harder to infer EFAs for. These domains generally see the most significant increases from training.
Between iteration 1 and iteration 5, the Intermediate Algebra’s EFA success rate showed the most
significant increase, rising from 52.93% to 81.38%, and Geometry improved from 65.71% to 85.71%.
Additionally, the pass rate for Level 5 problems increased from 65.95% to 78.73%. These changes
indicate substantial improvements in the model’s ability to infer EFA across these dataset slices. The
final model trained for 5 iterations becomes the basis for our EFAGen method.

3.2 EFAS FAITHFULLY CAPTURE THE REASONING PATTERNS OF SEED PROBLEMS

We expect that valid EFAs should be able to capture the reasoning patterns of the seed problem, a
property we call faithfulness. We measure faithfulness by checking if seeing solutions to problem
variants generated from an EFA can improve a model’s solve rate on the original seed problem. If an
EFA is faithful, then seeing solutions to problem variants generated from it should improve a model’s
solve rate on the original seed problem. We select all of problems from MATH-Hard for which
Llama3.1-8B-Instruct’s pass@5 rate < 50% and for which EFAGen can successfully infer an EFA

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: EFAGen complements existing synthetic data generation approaches. Performance
comparison across different data scales (1k, 2.5k, 5k) when training models on: NuminaMath
synthetic data alone, EFA-generated data alone, and both combined. The combined approach
typically performs best, with EFA-generated data generally outperforming the original synthetic data.
The (+%) values show absolute improvements over the NuminaMath Synthetic baseline within each
scale. 1st-place is bold, 2nd is italicized.

MATH-500 Performance
Scale Data Mix Pass@1 Pass@5 Pass@10 MV Acc

1k
NuminaMath Synthetic 20.8 45.6 56.4 38.6
EFA Generated 24.0 48.5 58.7 38.6
NuminaMath Synthetic + EFA Generated 24.4 48.5 58.2 40.6

(+3.7%) (+2.9%) (+1.8%) (+2.0%)

2.5k
NuminaMath Synthetic 23.0 47.6 58.5 38.8
EFA Generated 23.1 47.0 57.2 35.8
NuminaMath Synthetic + EFA Generated 24.9 50.5 61.1 41.6

(+1.9%) (+2.9%) (+2.6%) (+2.8%)

5k
NuminaMath Synthetic 20.9 46.3 57.0 39.8
EFA Generated 23.6 48.6 59.2 39.8
NuminaMath Synthetic + EFA Generated 26.7 51.9 62.1 44.0

(+5.8%) (+5.6%) (+5.0%) (+4.2%)

using the gold solution.1 For each problem, we sample additional problem variants (we ensure their
parameters differ from the seed problem) until Llama3.1-8B-Instruct solves one correctly. We then
check if Llama3.1-8B-Instruct can solve the original problem, given the variant and its solution as an
in-context example. Results in Table 1 (left) show a 23.07% absolute improvement in pass@1 rate,
i.e., EFA-generated variants demonstrate faithfulness to the reasoning pattern required for the seed
problem.

3.3 EFAS ENCODE LEARNABLE, SHARED STRUCTURE

We expect that valid EFAs should generate problem variants that share common structure. While
this is hard to define formally, we can informally measure this by checking the learnability of the
EFAs. An EFA is learnable if seeing solutions to problem variants generated from it can improve
a model’s solve rate on other variants generated from the same EFA. We sample 1k EFAs inferred
from the MATH-Hard test set and generate one new variant per EFA, forming a held-out set. For
each EFA, we also identify one variant that Llama3.1-8B-Instruct solves correctly. We then test
Llama3.1-8B-Instruct’s performance on the held-out set, with and without access to that solved variant
as an in-context example. As shown in Table 1, access to one correctly-solved variant improves the
model’s pass rate on other variants by 16.65% on average. This provides evidence that the EFAs
encode learnable, shared structure.

3.4 AUGMENTATION: EFAS ARE EFFECTIVE AT EXPANDING STATIC MATH DATASETS

While high-quality math datasets exist, these are often expensive to construct. EFAGen offers a
scalable solution by generating diverse, faithful problem variants through EFAs, thereby augmenting
existing datasets. To demonstrate this, we fine-tune Llama3.1-8B-Base using EFA-generated data
derived from the MATH training set. Concretely, we annotate 7,500 training problems with step-by-
step reasoning from a teacher model (Llama3.1-8B-Instruct). We ensure that the reasoning is correct
by filtering out the reasoning that yields incorrect answers. Then, for each of the 7,500 problems, we
construct an EFA and sample one problem variant. We compare two training settings. In the first
setting, we use only the teacher-labeled seed data. In the second, we augment the seed data by adding

1Based on the intuition that testing for faithfulness requires an EFA (i.e., requires a problem that can be
solved in principle) but improving requires a problem that is not solved 100% of the time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: EFAGen can infer EFAs for large-scale competition-level mathematics. Across 10,000
competition-level problems in NuminaMath, we successfully infer EFAs at substantial rates across
different sources. The 95% confidence intervals are significantly above 0% (lowest is 33.7%),
demonstrating that EFAGen can reliably infer EFAs for the hardest problems available in large math
training datasets.

Source Success Rate (%) 95% CI (%) Num Problems
Olympiads 38.4 [37.2%, 39.5%] 6,950
Synthetic AMC 50.9 [49.0%, 52.7%] 2,881
AMC-AIME 40.6 [33.7%, 48.4%] 169

EFA-generated examples in a 1:1 ratio. We perform experiments with both 33% (2,500) and 100%
(7,500) of the seed data and evaluate performance on three benchmarks: MATH-500 split (Lightman
et al., 2023) and the November and December splits of FnEval, each containing perturbed versions of
MATH problems. See Appendix F.4 for hyperameter details.

Table 2 shows that EFA-based augmentation leads to consistent improvements across all evaluation
metrics: Pass@1, Pass@10 rate, and Majority@25 (Wang et al., 2022), e.g., in the 33% seed setting,
Pass@1 improves by +1.9 on MATH-500 and by +2.2 on both FnEval splits. In the 100% seed setting,
the gain still holds, underscoring the value of EFAs in enhancing data quality and model performance.

3.5 EFAGEN COMPLEMENTS EXISTING SYNTHETIC DATA GENERATION APPROACHES

EFAs are designed to complement, not replace, existing synthetic data generation approaches. To
demonstrate this complementary relationship, we conduct experiments with high-quality synthetic
data from NuminaMath (Li et al., 2024), which aggregates synthetic data from various sources,
showing that EFAGen can infer EFAs for synthetic data and use these EFAs to augment synthetic
datasets at different scales.

We sample 1k, 2.5k, and 5k problems with step-by-step solutions from the synthetic math and
synthetic amc sources in NuminaMath. For each sample, we apply EFAGen to infer EFAs,
generate one problem variant from each EFA, and use rejection sampling to create training data
from the EFAs. We train three models at each scale: one trained only on the NuminaMath synthetic
data (NuminaMath Synthetic), one trained only on data derived from EFAs (EFA Generated), and
one trained on the NuminaMath synthetic data augmented with our EFA-derived data (NuminaMath
Synthetic + EFA Generated).

Results on MATH-500 are shown in Table 3. At each scale, the model trained on synthetic data
augmented with EFA-generated data performs best across most metrics. Notably, the EFA-generated
data typically outperforms the original synthetic NuminaMath data, suggesting that the EFA infer-
ence process produces high-quality problem variants that enhance model learning. These results
demonstrate that EFAGen provides a scalable approach for augmenting existing synthetic datasets,
effectively complementing current synthetic data generation methods.

3.6 GENERALITY: EFAGEN CAN WORK ACROSS DIVERSE MATH DOMAINS

Importantly, EFAGen generalizes beyond the distribution of questions in the MATH dataset. As
detailed in Fig. 5, our approach successfully infers EFAs across various math sources from the
NuminaMath dataset (Li et al., 2024) – ranging from grade-school problems (GSM8K) to nation-
al/international competitions (e.g., AMC, AIME, IMO). This demonstrates the broad applicability
of EFAs for structuring and scaling math data across diverse domains. We generally see that easier
math domains like GSM8K are easier to infer EFAs for than harder domains like AIME or Olympiad
problems; nevertheless, EFAGen can infer some successful EFAs even on the hardest domain.

To further demonstrate the scalability of EFAGen, we evaluate its performance on a larger set of
10,000 competition-level math problems from NuminaMath. As shown in Table 4, we are able to
successfully infer EFAs at rates of 38.4%, 50.9%, and 40.6% for the Olympiads, Synthetic AMC, and
AMC-AIME sources in NuminaMath, respectively. The 95% confidence intervals for each source are
significantly above 0% (the lowest is 33.7%), demonstrating that EFAGen can reliably infer EFAs
for the hardest problems in large math training datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

synthetic_math
cn_k12

orca_math
olympiads

synthetic_amc
math

gsm8k

aops_forum
amc_aime

NuminaMath Source

0

20

40

60

80

EF
A

Su
cc

es
s R

at
e

0

250

500

750

1000

1250

1500

Nu
m

be
r o

f P
ro

bl
em

s

EFA Success Rate Number of Problems

Figure 5: EFAGen can infer EFAs for diverse sources of math problems. Here, we show the results
of applying EFAGen to infer EFAs for the NuminaMath (Li et al., 2024) dataset, which contains a
mix of math problems from a diversity of sources ranging from grade school mathematics (GSM8K)
to national/international olympiads (olympiads). EFAGen achieves a nonzero success rate across all
sources of problems.

k=1 k=50
Variants Generated

0

20

40

60

80

100

%
 o

f P
ro

bl
em

s
fo

r
w

hi
ch

H
ar

d
Va

ri
an

t F
ou

nd

40.0%

70.0%
65.0%

80.0%

Difficulty
Level 1 Level 5

Figure 6: EFAs can find harder variants of problems. We infer an EFA for a sample of Level 1
(easiest) and Level 5 (hardest) seed problems GPT-4o solves correctly, and generate k variants of each
problem. We plot the percentage of seed problems for which a variant that GPT-4o solved incorrectly
was found.

3.7 ADVERSARIAL SEARCH: EFAGEN CAN FIND HARD PROBLEM VARIANTS

EFAs can also be used for evaluation or as a source of targeted training data by finding hard instances
that models struggle with.

To demonstrate this, we randomly sample problems from the MATH training that are correctly solved
by a strong model (GPT-4o); we sample N = 20 of both Level 1 (easiest) and Level 5 (hardest)
problems. For each problem, we construct an EFA using EFAGen and then sample 50 variants from
the EFA. We attempt to solve each variant with GPT-4o, and measure for what fraction of problems
we are able to find variants among the 50 samples that GPT-4o cannot solve. This is an estimate
of the probability that we can use an EFA to sample problems that cannot be solved by the model,
even when the seed problem is solvable. The results are shown in Fig. 6 where we see that there is a
non-zero probability of finding hard variants to a given problem, even for easy problems (i.e., Level 1
in MATH) and with a strong model like GPT-4o.

4 RELATED WORK

Symbolic Approaches to Math Reasoning. A distinct line of prior work has focused on assessing
the true mathematical reasoning capabilities of LLMs, specifically by measuring the “reasoning gap”
or the drop in math reasoning performance after perturbing questions in existing datasets (Shi et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2023; Zhou et al., 2025; Huang et al., 2025; Ye et al., 2025). One prominent approach is to generate
different or difficult math questions conditioned on an existing question but test skills by employing
frontier models (Zhang et al., 2024; Patel et al., 2025) or human annotators (Srivastava et al., 2024;
Shah et al., 2024; Huang et al., 2025). For instance, Srivastava et al. (2024) propose FnEval dataset
by manually functionalizing select problems from the MATH dataset (Hendrycks et al., 2021) that
can be subsequently used to sample multiple distinct math problems testing similar skills (albeit
with different numerical variables). Similarly, Mirzadeh et al. (2025) release the GSM-Symbolic
dataset that augments the existing GSM8K dataset (Cobbe et al., 2021) with templates containing
placeholders for several numeric and textual variables and can be used to sample distinct math word
problems for a robust evaluation of LLM’s reasoning abilities. In contrast, to this line of work
requiring expensive annotations from humans or frontier models (thereby, hindering scalability) and
tailored to specific, predefined math datasets (c.f. Fig. 2); we propose EFAGen that automatically
functionalizes any math problem using relatively small language models making it widely-applicable
and scalable, i.e., able to sample a potentially infinite number of related math problems from any
distribution or dataset. Moreover, the prior work only focuses on the evaluation of LLMs, whereas
we extend the concept of abstraction for downstream applications via training, as shown in Sec. 3.4.

Data and Environment Generation. Past work has generally approached improving models on
reasoning tasks like math by generating large amounts of broad-coverage training data. This trend
builds on work in generating instruction-tuning data (Wang et al., 2023), where model-generated
instructions have been used to teach models to follow prompts. Luo et al. (2023) introduced generation
method based on Evol-Instruct (Xu et al., 2023), which augmented a seed dataset of math problems
by generating easier and harder problems. Related lines of work have sought to expand datasets
by augmenting existing math datasets (Yu et al., 2024), adding multiple reasoning strategies (Yue
et al., 2024), covering challenging competition problems (Li et al., 2024), or curating responses (Liu
et al., 2024). The data generated in these settings differs from our data in a number of respects:
first, it is generally broad-coverage, focusing on large-scale diverse data, as opposed to targeted,
instance-specific data. This direction was also explored by Khan et al. (2025), who define data
generation agents that can generate specific data based on a particular model’s weaknesses, covering
math and several other domains. Finally, past work that has augmented a seed dataset (e.g., Yu et al.
(2024); Yue et al. (2024)) has done so by modifying problems in the surface form, whereas our
method first infers a latent structure and then creates problems by sampling from the structure. In
contrast, EFAGen focuses on generating similar examples of existing data by inferring an underlying
structure from an example; we show that this has applications to data generation for augmentation
but also for stress-testing or measuring the performance gap of models on similar problems.

5 CONCLUSION

We introduce Executable Functional Abstractions (EFA), a representation of the abstracted logic of a
math problem in a parameterized form, enabling the automated sampling of variant problems. We
then propose EFAGen, a framework that infers EFAs via program synthesis using large language
models (LLMs) that we train using rewards from EFA execution. Our approach over-generate EFA
candidates with an LLM and filters them using a suite of property tests that verify their validity. We
show that EFAGen successfully infers EFAs for diverse math problems and incorporating execution
feedback as a reward in a simple self-training scheme further improves its performance. Models
trained on EFA-generated math problems not only perform better on the generated variants but also
improve accuracy on the original seed problems. Finally, we show that EFAs provide a scalable
solution for augmenting diverse problem variants across various math datasets.

ETHICS STATEMENT

In this work, we propose an inference-time method, EFAGen that can be used sample additional
math problems for training or testing. Consequently, the LLMs utilized by EFAGen may still exhibit
stereotypes, biases, and other negative traits inherent in their pre-training data (Weidinger et al.,
2021), over which we have no control. Therefore, the outputs produced by EFAGen carry the same
potential for misuse as those from other test-time methods. Further research is necessary to assess
and mitigate these biases in LLMs. Additionally, care must be taken when executing LLM-generated
code which can be erroneous and cause unrecoverable changes to the system files.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We will open source our code and data to aid replication of our findings. We also provide implemen-
tation details of EFAGen in Sec. 2 and prompts in Appendix F. The math datasets we use are all
publicly available.

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of Programming Languages, POPL ’77, pp. 238–252,
New York, NY, USA, 1977. ACM. doi: 10.1145/512950.512973.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun Shum, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=m7p5O7zblY.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking llms’ math reasoning abilities
against hard perturbations. arXiv preprint arXiv:2502.06453, 2025.

Zaid Khan, Elias Stengel-Eskin, Jaemin Cho, and Mohit Bansal. Dataenvgym: Data generation
agents in teacher environments with student feedback. In The Thirteenth International Conference
on Learning Representations, 2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing Frontiers in Open Language Model Post-Training, December 2024. URL http://
arxiv.org/abs/2411.15124. arXiv:2411.15124 [cs].

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing
frontier math reasoning with post-training and reward modeling. arXiv preprint arXiv:2412.15084,
2024.

11

https://openreview.net/forum?id=m7p5O7zblY
http://arxiv.org/abs/2411.15124
http://arxiv.org/abs/2411.15124

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Llama Team. The Llama 3 Herd of Models, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations,
2025.

Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
problems for evaluation. arXiv preprint arXiv:2502.14678, 2025.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Curtis Mozer, Yoshua
Bengio, Sanjeev Arora, and Anirudh Goyal. AI-assisted generation of difficult math questions. In
The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
International Conference on Machine Learning, pp. 31210–31227. PMLR, 2023.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince, and
Sooraj Thomas. Functional benchmarks for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models. 2022. URL http://arxiv.org/abs/2203.11171.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

12

http://arxiv.org/abs/2203.11171
https://www.aclweb.org/anthology/2020.emnlp-demos.6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Tn5B6Udq3E.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via
adaptive reasoning graph. arXiv preprint arXiv:2406.17271, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
do your llms behave over infinitely increasing context length and reasoning complexity? arXiv
preprint arXiv:2502.05252, 2025.

A APPENDIX

The section Adversarial Search (Fig. 6) outlines how EFAs can generate challenging problem variants
to probe model weaknesses. The Scaling section (Appendix C) investigates the effect of the number
of sampled variants per EFA, showing how performance trends with increased augmentation. The
Ablation section (Appendix D) analyzes the impact of applying unit tests during EFA generation
on downstream data quality. Qualitative Examples (Appendix E) presents representative EFAs
spanning several MATH domains, including algebra, number theory, and probability, illustrating
the range and structure captured by the method. The Experimental Details section describes all
data generation, augmentation, and model training settings—EFA generation (box F.1), rejection
finetuning and variant sampling protocols (Appendix F.2), math inference configuration, and details
for math-specific training (Appendix F.4).

B QUALITY ANALYSIS: LOW-QUALITY EFAS ARE NATURALLY FILTERED
OUT

A potential concern with EFAGen is that the automated EFA generation process may produce low-
quality abstractions that could negatively impact training. To address this, we analyze how rejection
sampling naturally filters out problematic EFAs during the training data generation process.

We identify “bad” EFAs using an LLM with heuristics that flag abstractions exhibiting common
failure modes: trivial problems, extraneous variables, or hard-coded values. We then compare the
training data yield rates (the percentage of responses that receive non-zero rewards during rejection
sampling) between good and bad EFAs.

As shown in Table 5, low-quality EFAs have significantly lower yield rates compared to good EFAs.
With a single answer attempt, bad EFAs contribute training data only 5.04% of the time, compared
to 27.0% for good EFAs – a ratio of over 5 to 1 in favor of good data. Even when allowing up to 5
answer attempts, the ratio remains favorable at 4.51 to 1. This demonstrates that as long as rejection

13

https://openreview.net/forum?id=Tn5B6Udq3E
https://openreview.net/forum?id=Tn5B6Udq3E
http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

When Sophie watches her nephew, she gets out a
variety of toys for him. The bag of building blocks

has 31 blocks in it. The bin of stuffed animals has 8
stuffed animals inside. The tower of stacking rings

has 9 multicolored rings on it.Sophie recently
bought a tube of bouncy balls, bringing her total

number of toys for her nephew up to 62. How many
bouncy balls came in the tube?

class Problem(BaseModel):
blocks: int
animals: int
rings: int
total: int

 @classmethod
def original(cls) -> Self:

 return cls(blocks=31, animals=8, rings=9, total=62)

 @classmethod
def sample(cls) -> Self:

 blocks = random.randint(20, 50)
 animals = random.randint(5, 15)
 rings = random.randint(5, 15)
 balls = random.randint(10, 40)
 total = blocks + animals + rings + balls
 return cls(blocks=blocks, animals=animals, rings=rings,
total=total)

def render(self) -> str:
 return (
 f"When Sophie watches her nephew, she gets out a variety
of toys for him. "
 f"The bag of building blocks has {self.blocks} blocks in
it. "
 f"The bin of stuffed animals has {self.animals} stuffed
animals inside. "
 f"The tower of stacking rings has {self.rings}
multicolored rings on it."
 "Sophie recently bought a tube of bouncy balls, bringing
her total number of toys "
 f"for her nephew up to {self.total}. How many bouncy
balls came in the tube?"
)

def solve(self) -> str:
 known = self.blocks + self.animals + self.rings
 balls = self.total - known
 return str(balls)

Suppose you are given the matrix:

Find the eigenvalues of the matrix.

Original Problem

class Problem(BaseModel):
 d1: int
 d2: int
 d3: int
 e1: int

e2: int

 @classmethod
def original(cls) -> Self:

 return cls(d1=2, d2=3, d3=4, e1=1, e2=1)

 @classmethod
def sample(cls) -> Self:

 while True:
 d1 = random.randint(1, 6)
 d2 = random.randint(1, 6)
 d3 = random.randint(1, 6)
 e1 = random.randint(-3, 3)
 e2 = random.randint(-3, 3)
 if e1 == 0 or e2 == 0:
 continue
 if len(set([d1, d2, d3])) < 3:
 continue
 break
 return cls(d1=d1, d2=d2, d3=d3, e1=e1, e2=e2)

def render(self) -> str:
 return (
 "Suppose you are given the matrix:\n\n"
 "\[\n"
 f"A = \begin{{bmatrix}}\n"
 f"{self.d1} & {self.e1} & 0 \\\n"
 f"{self.e1} & {self.d2} & {self.e2} \\\n"
 f"0 & {self.e2} & {self.d3}\n"
 "\end{bmatrix}\n"
 "\]\n\n"
 "Find the eigenvalues of the matrix."
)

def solve(self) -> str:
 lam = sympy.Symbol('lambda')
 A = sympy.Matrix([
 [self.d1, self.e1, 0],
 [self.e1, self.d2, self.e2],
 [0, self.e2, self.d3]
])
 char_poly = A.charpoly(lam)
 roots = sympy.solve(char_poly.as_expr(), lam)
 def pretty_latex(x):
 if hasattr(x, 'is_number') and x.is_number:
 return sympy.latex(sympy.N(x, 6))
 else:
 return sympy.latex(x)
 roots_str = ',\ '.join(pretty_latex(r) for r in roots)
 return f"The eigenvalues are: $\boxed{{{roots_str}}}$"

EFAGen identifies a tridiagonal matrix where ,
, , , and are real numbers and
as a suitable abstraction to create variants.

sample(...) constructs valid 3x3
tridiagonal matrices

solve(...) symbolically finds solutions
to any 3x3 tridiagonal matrix

Original Problem

EFA for Arithmetic Word Problem EFA for Tridiagonal Matrix Eigenvalue Problem

Figure 7: EFAs inferred for problems shown in Fig. 2. On the left is an EFA for a grade-school
level math word problem. On the right is an EFA for the tridiagonal matrix eigenvalue problem.
EFAs are able to represent both types of problems, despite the wide gap in problem complexity. The
sample method constructs mathematical objects with required properties, while the solve method
implements a generalized solution for any object constructible by the sample method. See Sec. 2.2
for a more detailed explanation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Low-quality EFAs are naturally filtered out during rejection sampling. We compare the
training data yield rates (percentage of responses that receive non-zero rewards) between good and
bad EFAs. Bad EFAs are identified using LLM-based heuristics that flag trivial problems, extraneous
variables, or hard-coded values. The low yield rates of bad EFAs mean they contribute minimally to
training data.

Good EFAs Bad EFAs Good to Bad Data Ratio

Training Data Yield Rate (1 Answer Attempt) 27.0% 5.04% 5.36 to 1
Training Data Yield Rate (5 Answer Attempts) 39.9% 8.85% 4.51 to 1

Table 6: EFA-generated data performs comparably to real data. Direct comparison of training
exclusively on problem variants generated by EFAs versus training exclusively on real problems from
the MATH training set. Despite potential noise in rejection-sampled EFA data, models trained on
synthetic data achieve nearly identical performance to those trained on real data.

MATH-500 FnEval (November) FnEval (December)

Training Data Pass @ 1 Pass @ 10 Maj @ 25 Pass @ 1 Pass @ 10 Maj @ 25 Pass @ 1 Pass @ 10 Maj @ 25

Real Data Only 22.4 56.4 36.8 24.4 55.4 39.3 24.5 55.3 39.6
Synthetic Data Only 22.6 58.0 37.8 24.9 56.6 38.3 25.5 57.2 40.0

sampling or reinforcement learning is used, noisy EFAs naturally filter themselves out, ensuring that
good data significantly outnumbers bad data in the final training set.

To further validate the quality of EFA-generated data, we conduct a direct comparison between
training exclusively on problem variants generated by EFAs versus training exclusively on real
problems from the MATH training set. As shown in Table 6, despite potential noise in rejection-
sampled EFA data, models trained on synthetic data achieve nearly identical performance to those
trained on real data (22.6% vs 22.4% Pass@1 on MATH-500). This shows that EFA-generated data
is as effective as existing math data for model training.

C SCALING: EFAGEN SCALES EFFECTIVELY UP TO 16 EXAMPLES PER EFA

To understand the scaling behavior of EFA-based data augmentation, we investigate how performance
varies with the number of problem variants generated per EFA. We sample 100 unique EFAs from the
MATH training set and vary the number of problem variants generated by each EFA from 1 to 64. For
each scaling setting, we train Llama3.1-8B-Base on the generated data and evaluate on MATH-500.

As shown in Table 7, we observe smooth scaling improvements as we increase the number of variants
from 1 to 16 examples per EFA, with performance gains plateauing beyond 16 examples. Specifically,
Pass@1 improves from 14.1% with 1 example per EFA to 23.8% with 16 examples, while Pass@10
increases from 48.5% to 57.6% over the same range. However, scaling begins to saturate at 32 and
64 examples per EFA, suggesting that sampling too many problem variants from each EFA uniformly
may hurt diversity and lead to diminishing returns. The optimal scaling point appears to be around 16
examples per EFA, where three of the four metrics achieve their peak performance.

D ABLATION: UNIT TESTS IMPROVE EFA-BASED DATA AUGMENTATION
QUALITY

Despite some errors in EFA generation, we find that the current EFAs are effectively improving
performance. When we lower the quality by removing our unit tests, the performance gains from
augmentation also decrease. As shown in Table 8, applying unit tests consistently improves perfor-
mance across all benchmarks and metrics. The unit tests provide an average improvement of 2.2
percentage points on MATH-500 Pass@1, 1.7 percentage points on FnEval November Pass@1, and
2.9 percentage points on FnEval December Pass@1.

In general, we believe there is a tradeoff between the level of noise in generated data and the cost of
data generation, and EFAs occupy a generally useful point on the tradeoff curve. We can change the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: EFAGen scales effectively up to 16 examples per EFA. We train Llama3.1-8B-Base
on varying numbers of problem variants generated from each EFA and evaluate on MATH-500.
Performance improves smoothly from 1 to 16 examples per EFA, with diminishing returns beyond
that point. Bold numbers indicate the best performance for each metric.

Training Data per EFA Pass@1 Pass@5 Pass@10 Majority Vote Accuracy

1 14.1 37.2 48.5 29.6
2 19.1 42.8 53.3 34.0
4 21.9 45.1 54.7 35.4
8 22.9 46.9 57.4 35.6
16 23.8 47.6 57.6 37.4
32 24.3 46.6 56.4 37.2
64 23.9 45.6 55.2 36.2

Table 8: Unit tests improve EFA-based data augmentation quality. We compare the performance
of EFA-based data augmentation with and without the unit tests that filter out low-quality EFAs. The
unit tests consistently improve performance across all benchmarks, demonstrating their effectiveness
in maintaining data quality.

MATH-500 FnEval (November) FnEval (December)

Unit Tests Pass @ 1 Pass @ 10 Maj @ 25 Pass @ 1 Pass @ 10 Maj @ 25 Pass @ 1 Pass @ 10 Maj @ 25

False 20.4 55.2 35.4 24.1 54.7 35.7 22.0 55.2 37.1
True 22.6 58.0 37.8 24.9 56.6 38.3 25.5 57.2 40.0
∆ (+2.2%) (+2.8%) (+2.4%) (+0.8%) (+1.9%) (+2.6%) (+3.5%) (+2.0%) (+2.9%)

tradeoff and reduce noise by increasing the cost of filtering and data generation. These same issues
occur with synthetic data generation approaches. The value of our approach is that data generation
can be replaced with program execution rather than a call to a frontier LLM.

E QUALITATIVE EXAMPLES

In this section, we display qualitative examples of EFAs across the MATH training set which were
validated by our tests.

Box E.1| EFA (Algebra)

Original Problem
Solve the equation:

√
5x− 4 +

15√
5x− 4

= 8

Original Solution
Let u =

√
5x− 4. We can rewrite the equation in terms of u :

u+
15

u
= 8

Multiply through by u to remove the fraction:

u2 + 15 = 8u

Reorganize into a standard quadratic form:

u2 − 8u+ 15 = 0

Factorize the quadratic:

(u− 5)(u− 3) = 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Thus, u = 5 or u = 3. For u = 5 :

√
5x− 4 = 5 ⇒ 5x− 4 = 25 ⇒ 5x = 29 ⇒ x =

29

5
For u = 3 :

√
5x− 4 = 3 ⇒ 5x− 4 = 9 ⇒ 5x = 13 ⇒ x =

13

5

Therefore, the solutions are x = 29
5 , 13

5 . Conclusion: The possible values of x are 29
5 and 13

5 ,
which satisfy the original equation when we substitute back, confirming the correctness of
our solution.

Inferred EFA
class Problem(BaseModel):

coefficient: int
constant: int
term: int

@classmethod
def original(cls) ->Self:

return cls(coefficient=5, constant=4, term=15)

@classmethod
def sample(cls) ->Self:

coefficient = random.randint(3, 10)
constant = random.randint(1, 5)
term = random.randint(10, 20)
return cls(coefficient=coefficient, constant=constant, term=

term)

def render(self) ->str:
return f"""Solve the equation:

\\[\\sqrt{{{self.coefficient}x-{self.constant}}} + \\frac{{{self.
term}}}{{\\sqrt{{{self.coefficient}x-{self.constant}}}}} = 8.
\\]"""

def solve(self) ->str:
u = sympy.symbols(’u’)
equation = sympy.Eq(u + self.term / u, 8)
u_values = sympy.solve(equation, u)
x_solutions = []
for u_val in u_values:

x_equation = sympy.Eq(u_val ** 2, self.coefficient * sympy.

symbols(’x’) - self.constant)
x_solution = sympy.solve(x_equation, sympy.symbols(’x’))
x_solutions.extend(x_solution)

return ’, ’.join(
f’\\frac{{{sol.as_numer_denom()[0]}}}{{{sol.as_numer_denom

()[1]}}}’
for sol in x_solutions)

Variant generated by EFA
Solve the equation:

√
7x− 5 +

14√
7x− 5

= 8

Solution:
23− 8

√
2

7
,
8
√
2 + 23

7

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Box E.2| EFA (Number Theory)

Original Problem
How many positive divisors does 8! have?
Original Solution
First, calculate 8! : 8! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 = 40320. Next, find the prime
factorization of 40320 : 40320 = 27 × 32 × 51 × 71. Now, apply the formula for counting
the divisors: If n = pa × qb × rc × . . ., then the number of divisors t(n) is given by:

t(n) = (a+ 1)(b+ 1)(c+ 1) . . .

Here a = 7, b = 2, c = 1, d = 1 for the primes 2, 3, 5, and 7 respectively. Applying the
formula:

t(40320) = (7 + 1)(2 + 1)(1 + 1)(1 + 1) = 8× 3× 2× 2 = 96

Conclusion: The result is consistent with the factorial and prime factorization, providing a
logically correct count of divisors.

Inferred EFA
class Problem(BaseModel):

n: int

@classmethod
def original(cls) ->Self:

return cls(n=8)

@classmethod
def sample(cls) ->Self:

n = random.randint(4, 10)
return cls(n=n)

def render(self) ->str:
return f’How many positive divisors does {self.n}! have?’

def solve(self) ->str:
factorial_value = math.factorial(self.n)
factors = sympy.factorint(factorial_value)
divisor_count = 1
for exponent in factors.values():

divisor_count *= exponent + 1
return str(divisor_count)

Variant generated by EFA
How many positive divisors does 9! have?
Solution:

160

Box E.3| EFA (Probability)

Original Problem
Two 8-sided dice are tossed. What is the probability that the sum of the numbers shown on
the dice is a prime number? Express your answer as a common fraction.
Original Solution
Let d1 and d2 be the outcomes of the two 8-sided dice, where d1, d2 ∈ {1, 2, . . . , 8}.
The total number of possible outcomes in the sample space is:

|Ω| = 8× 8 = 64

We want to find the number of outcomes where the sum S = d1 + d2 is a prime number. The
smallest possible sum is 1 + 1 = 2 and the largest is 8 + 8 = 16. The prime numbers in this
range are 2, 3, 5, 7, 11, and 13.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We enumerate the pairs (d1, d2) corresponding to each prime sum:
Sum = 2: {(1, 1)} (1 way)
Sum = 3: {(1, 2), (2, 1)} (2 ways)
Sum = 5: {(1, 4), (4, 1), (2, 3), (3, 2)} (4 ways)
Sum = 7: {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} (6 ways)

Sum = 11: {(3, 8), (8, 3), (4, 7), (7, 4), (5, 6), (6, 5)} (6 ways)
Sum = 13: {(5, 8), (8, 5), (6, 7), (7, 6)} (4 ways)

The total number of favorable outcomes is the sum of the ways for each prime:
Nfavorable = 1 + 2 + 4 + 6 + 6 + 4 = 23

The probability is the ratio of the number of favorable outcomes to the total number of
outcomes:

P (Sum is prime) =
Nfavorable

|Ω|
=

23

64
The final answer is:

23

64

Inferred EFA
class Problem(BaseModel):

sides: int

@classmethod
def original(cls) ->Self:

return cls(sides=8)

@classmethod
def sample(cls) ->Self:

sides = random.randint(4, 20)
return cls(sides=sides)

def solve(self) ->str:
total_outcomes = self.sides * self.sides

def is_prime(n: int) ->bool:
if n <= 1:

return False
for i in range(2, int(math.sqrt(n)) + 1):

if n % i == 0:
return False

return True
primal_sum_occurrences = 0
for die1 in range(1, self.sides + 1):

for die2 in range(1, self.sides + 1):
sum_of_dice = die1 + die2
if is_prime(sum_of_dice):

primal_sum_occurrences += 1
probability = primal_sum_occurrences / total_outcomes
fraction = sympy.Rational(primal_sum_occurrences,

total_outcomes)
return f’\\frac{{{fraction.numerator}}}{{{fraction.

denominator}}}’

def render(self) ->str:
return (

f’Two {self.sides}-sided dice are tossed. What is the
probability that the sum of the numbers shown on the
dice is a prime number? Express your answer as a common
fraction.’

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

)

Variant generated by EFAGen Two 19-sided dice are tossed. What is the probability that
the sum of the numbers shown on the dice is a prime number? Express your answer as a
common fraction.
Solution:

105

361

F EXPERIMENTAL DETAILS

F.1 GENERATING EFAS

When generating EFAs, we use the prompt in box F.1. To sample multiple candidates for EFAs, we
use beam search with a temperature of 0.7 and a max generation length of 4096. We extract the
resulting EFAs from the LLMs response by looking for a markdown code block and extracting all
markdown code blocks that have the necessary class structure.

Box F.1| Prompt for Inferring EFAs

Instructions for Math Problem Functionalization

Your task is to convert a mathematical problem and its solution
into a reusable Python class that can generate similar problems.
Follow these steps:

1. Create a Python class that inherits from BaseModel with
parameters that can vary in the problem. These parameters should
capture the core numerical or mathematical values that could be
changed while maintaining the same problem structure.

2. Implement the following required methods:
- ‘original()‘: A class method that returns the original problem’

s parameters
- ‘sample()‘: A class method that generates valid random

parameters for a similar problem
- ‘render()‘: An instance method that produces the problem

statement as a formatted string
- ‘solve()‘: An instance method that computes and returns the

solution

3. For the ‘sample()‘ method:
- Generate random parameters that maintain the problem’s

mathematical validity
- Include appropriate constraints and relationships between

parameters
- Use reasonable ranges for the random values

4. For the ‘render()‘ method:
- Format the problem statement using f-strings
- Include proper mathematical notation using LaTeX syntax where

appropriate
- Maintain the same structure as the original problem

5. For the ‘solve()‘ method:
- Implement the solution logic using the instance parameters
- Return the final answer in the expected format (string,

typically)
- Include any necessary helper functions within the method

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

6. Consider edge cases and validity:
- Ensure generated problems are mathematically sound
- Handle special cases appropriately
- Maintain reasonable complexity in generated problems

7. Do not import any libraries! The following libraries have been
imported. Use fully qualified names for all imports:
- pydantic.BaseModel is imported as ‘BaseModel‘
- random is imported as ‘random‘
- math is imported as ‘math‘
- numpy is imported as ‘np‘
- sympy is imported as ‘sympy‘
- typing.Self is imported as ‘Self‘

Example usage:
‘‘‘python
problem = MyMathProblem.original() # Get original problem
variant = MyMathProblem.sample() # Generate new variant
question = variant.render() # Get problem statement
answer = variant.solve() # Compute solution
‘‘‘

The goal is to create a class that can both reproduce the original
problem and generate mathematically valid variations of the same
problem type.

Example 1
Problem Statement
Evaluate $iˆ5+iˆ{-25}+iˆ{45}$.

Solution
We have $iˆ5 = iˆ4\\cdot i = 1\\cdot (i) = i$. We also have $i

ˆ{-25} = 1/iˆ{25} = 1/(iˆ{24}\\cdot i) = 1/[1\\cdot (i)] = 1/i =
\\frac1{i}\\cdot\\frac{i}{i} = i/(-1) = -i$ and $iˆ{45} =

(iˆ{44})\\cdot i= 1\\cdot i =i$, and . So, adding these three
results gives $iˆ5 + iˆ{-25} + iˆ{45} = i+-i+i = \\boxed{i}$.\
nFinal Answer: The final answer is $\\boxed{ i }$.

Functionalization
‘‘‘python
class Problem(BaseModel):

exponent1: int
exponent2: int
exponent3: int

@classmethod
def original(cls) -> Self:

return cls(exponent1=5, exponent2=-25, exponent3=45)

@classmethod
def sample(cls) -> Self:

exponent1 = random.randint(-100, 100)
exponent2 = random.randint(-100, 100)
exponent3 = random.randint(-100, 100)
return cls(exponent1=exponent1, exponent2=exponent2,

exponent3=exponent3)

def render(self) -> str:
return f"Evaluate $iˆ{{{self.exponent1}}} + iˆ{{{self.

exponent2}}} + iˆ{{{self.exponent3}}}$."

def solve(self) -> str:
Compute the values of iˆn mod 4 cycle

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

def compute_i_power(exp: int) -> complex:
cycle = [1, 1j, -1, -1j] # 1, i, -1, -i
return cycle[exp % 4]

Compute each term
term1 = compute_i_power(self.exponent1)
term2 = compute_i_power(self.exponent2)
term3 = compute_i_power(self.exponent3)

Calculate the sum
result = term1 + term2 + term3

Express as LaTeX
result_latex = (

f"{result:.0f}" if result.imag == 0 else str(result).
replace("j", "i")

)
return f"{result_latex}"

‘‘‘

Example 2
Problem Statement
Altitudes \overline{AX} and \overline{BY} of acute triangle

ABC intersect at H. If $\angle BAC = 43ˆ\circ$ and $\angle
ABC = 67ˆ\circ$, then what is $\angle HCA$?

Solution
First, we build a diagram:

size(150); defaultpen(linewidth(0.8));
pair B = (0,0), C = (3,0), A = (1.2,2), P = foot(A,B,C), Q = foot(B,

A,C),H = intersectionpoint(B--Q,A--P);
draw(A--B--C--cycle);
draw(A--PˆˆB--Q);
pair Z;
Z = foot(C,A,B);
draw(C--Z);
label("A",A,N); label("B",B,W); label("C",C,E); label("X",P,

S); label("Y",Q,E); label("H",H+(0,-0.17),SW);
label("Z",Z,NW);
draw(rightanglemark(B,Z,H,3.5));
draw(rightanglemark(C,P,H,3.5));
draw(rightanglemark(H,Q,C,3.5));

Since altitudes \overline{AX} and \overline{BY} intersect at
H, point H is the orthocenter of $\triangle ABC$. Therefore,
the line through C and H is perpendicular to

side \overline{AB}, as shown. Therefore, we have $\angle HCA = \
angle ZCA = 90ˆ\circ - 43ˆ\circ = \boxed{47ˆ\circ}$.

Functionalization
‘‘‘python
class Problem(BaseModel):

angle_BAC: int # angle BAC in degrees
angle_ABC: int # angle ABC in degrees

@classmethod
def original(cls) -> Self:

return cls(angle_BAC=43, angle_ABC=67)

@classmethod
def sample(cls) -> Self:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Generate random acute angles that form a valid triangle
Sum of angles must be less than 180
angle1 = random.randint(30, 75) # Keep angles acute
angle2 = random.randint(30, 75)
Ensure the third angle is also acute
if angle1 + angle2 >= 150:

angle1 = min(angle1, 60)
angle2 = min(angle2, 60)

return cls(angle_BAC=angle1, angle_ABC=angle2)

def solve(self) -> str:
The angle HCA is complementary to angle BAC
This is because H is the orthocenter and CH is

perpendicular to AB
angle_HCA = 90 - self.angle_BAC
return f"{angle_HCA}"

def render(self) -> str:
return (

f"Altitudes $\\overline{{AX}}$ and $\\overline{{BY}}$ of
acute triangle ABC "

f"intersect at H. If $\\angle BAC = {self.angle_BAC}ˆ\\
circ$ and "

f"$\\angle ABC = {self.angle_ABC}ˆ\\circ$, then what is $\\
angle HCA$?"

)
‘‘‘

Example 3
Problem Statement
On a true-false test of 100 items, every question that is a

multiple of 4 is true, and all others are false. If a student
marks every item that is a multiple of 3 false and all others
true, how many of the 100 items will be correctly answered?

Solution
The student will answer a question correctly if

Case 1: both the student and the answer key say it is true. This
happens when the answer is NOT a multiple of 3 but IS a multiple
of 4.

Case 2. both the student and the answer key say it is false. This
happens when the answer IS a multiple of 3 but is NOT a multiple
of 4.

Since the LCM of 3 and 4 is 12, the divisibility of numbers (in our
case, correctness of answers) will repeat in cycles of 12. In

the first 12 integers, 4 and 8 satisfy Case 1
and $3,6,$ and 9 satisfy Case 2, so for every group of 12, the

student will get 5 right answers. Since there are 8 full groups
of 12 in 100, the student will answer at least $8

\cdot 5 = 40$ questions correctly. However, remember that we must
also consider the leftover numbers 97, 98, 99, 100 and out of
these, 99 and 100 satisfy one of the cases. So

our final number of correct answers is $40 + 2 = \boxed{42}$.

Functionalization
‘‘‘python
class Problem(BaseModel):

total_questions: int # Total number of questions
multiple1: int # First multiple (4 in original problem)
multiple2: int # Second multiple (3 in original problem)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

@classmethod
def original(cls) -> Self:

return cls(total_questions=100, multiple1=4, multiple2=3)

@classmethod
def sample(cls) -> Self:

Generate reasonable random parameters
total = random.randint(50, 200) # Reasonable test length
Choose coprimes or numbers with small LCM for interesting

results
mult1 = random.randint(2, 6)
mult2 = random.randint(2, 6)
while mult1 == mult2: # Ensure different numbers

mult2 = random.randint(2, 6)
return cls(total_questions=total, multiple1=mult1, multiple2=

mult2)

def solve(self) -> str:
def lcm(a: int, b: int) -> int:

def gcd(x: int, y: int) -> int:
while y:

x, y = y, x % y
return x

return abs(a * b) // gcd(a, b)

Find cycle length (LCM)
cycle_length = lcm(self.multiple1, self.multiple2)

Count correct answers in one cycle
correct_per_cycle = 0
for i in range(1, cycle_length + 1):

answer_key_true = i % self.multiple1 == 0
student_true = i % self.multiple2 != 0
if answer_key_true == student_true:

correct_per_cycle += 1

Calculate complete cycles and remainder
complete_cycles = self.total_questions // cycle_length
remainder = self.total_questions % cycle_length

Calculate total correct answers
total_correct = complete_cycles * correct_per_cycle

Add correct answers from remainder
for i in range(1, remainder + 1):

answer_key_true = i % self.multiple1 == 0
student_true = i % self.multiple2 != 0
if answer_key_true == student_true:

total_correct += 1

return str(total_correct)

def render(self) -> str:
return (

f"On a true-false test of {self.total_questions} items, "
f"every question that is a multiple of {self.multiple1} is

true, "
f"and all others are false. If a student marks every item

that is "
f"a multiple of {self.multiple2} false and all others true,

how "

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

f"many of the {self.total_questions} items will be
correctly answered?"

)
‘‘‘

Your Turn
Functionalize the following problem:

Problem Statement
[% problem_statement %]

Solution
[% solution %]

Functionalization

F.2 EFAGEN TRAINING DETAILS

When doing rejection finetuning, we sample 20 candidate EFAs programs from the LLM for each
seed problem during the rejection sampling phase. We sample 20 variants from each EFA in order
to run the has dof(EFA) and is single valued(EFA) tests. When finetuning on the EFAs
that pass all tests, we use the the same prompt box F.1 as the instruction and the extracted code
of the EFA as the response. We use Transformers (Wolf et al., 2020) and Llama-Factory (Zheng
et al., 2024) libraries for training. We format all data in the Alpaca format (Taori et al., 2023) as
instruction-response pairs. We use the Adam optimizer with a batch size of 16 and a cosine learning
rate scheduler with a warmup ratio of 0.1 and train for 3 epochs in the FP16 datatype. We apply
LoRA to all linear layers with a rank of 16 and an alpha of 32, no bias, and a dropout of 0.05. We
truncate all training examples to a maximum length of 4096 tokens with a batch size of 32.

F.3 MATH INFERENCE SETTINGS

When doing 0-shot inference with Llama3.1-8B-Instruct, we use the official Llama3.1 prompt in
box F.2. When doing few-shot inference with Llama3.1-8B-Instruct, we use a modified version of the
official prompt, shown in box F.3. When sampling multiple responses, we use beam search with a
temperature of 0.7 and a max generation length of 2048. When sampling a single response, we use
beam search with a temperature of 0.0 and a max generation length of 2048. In all cases, we check
for equality of answers using the math-verify library.

Box F.2| Llama3.1 0-shot MATH Prompt

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

25

https://github.com/huggingface/Math-Verify

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Therefore, the final answer is: \boxed{answer}. I hope it is
correct.

Where [answer] is just the final number or expression that solves
the problem.

Problem: {{ instruction }}

Box F.3| Llama3.1 N-shot MATH Prompt

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

\#\# Step 1: [Concise description]
[Brief explanation and calculations]

\#\# Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: \boxed{answer}. I hope it is
correct.

Where [answer] is just the final number or expression that solves
the problem.

Here are some examples:
{% for few_shot_example in few_shot_examples %}
Problem: {{ few_shot_example.instruction }}
{{ few_shot_example.response }}
{% endfor %}

Problem: {{ instruction }}

F.4 MATH TRAINING DETAILS

We use the same hyperparameters and chat data format as in Appendix F.2, except we cutoff training
data over 2048 tokens. However, we use a simpler prompt template, shown in box F.4 to format the
teacher responses. When annotating with a Llama3.1-8B-Instruct teacher, we sample 5 responses per
math problem with a temperature of 0.7. We check for equality of answers using the math-verify
library.

Box F.4| Minimal instruction-tuning prompt used for augmentation experiments

Question: {{ question }}
Step-by-step Answer

26

https://github.com/huggingface/Math-Verify

	Introduction
	Executable Functional Abstractions (EFAs)
	Desired Properties of Abstractions
	EFA as a Python Class
	EFAGen: Inferring EFAs from Math Problems

	Experiments & Results
	Self-Improvement: LMs Improve at EFA Inference With Execution Feedback
	EFAs Faithfully Capture the Reasoning Patterns of Seed Problems
	EFAs Encode Learnable, Shared Structure
	Augmentation: EFAs Are Effective at Expanding Static Math Datasets
	EFAGen Complements Existing Synthetic Data Generation Approaches
	Generality: EFAGen Can Work Across Diverse Math Domains
	Adversarial Search: EFAGen Can Find Hard Problem Variants

	Related Work
	Conclusion
	Appendix
	Quality Analysis: Low-Quality EFAs Are Naturally Filtered Out
	Scaling: EFAGen Scales Effectively Up to 16 Examples per EFA
	Ablation: Unit Tests Improve EFA-Based Data Augmentation Quality
	Qualitative Examples
	Experimental Details
	Generating EFAs
	EFAGen Training Details
	Math Inference Settings
	Math Training Details

