Scaling Laws vs Model Architectures: How does Inductive Bias Influence
Scaling? An Extensive Empirical Study on Language Tasks

Anonymous ACL submission

Abstract

There have been a lot of interest in the scal-
ing properties of Transformer models (Kaplan
et al.,, 2020). However, not much has been
done on the front of investigating the effect
of scaling properties of different inductive bi-
ases and model architectures. Do model ar-
chitectures scale differently? If so, how does
inductive bias affect scaling behaviour? How
does this influence upstream (pretraining) and
downstream (transfer)? This paper conducts
a systematic study of scaling behaviour of ten
diverse model architectures such as Transform-
ers, Switch Transformers, Universal Trans-
formers, Dynamic convolutions, Performers,
and recently proposed MLP-Mixers. Via ex-
tensive experiments, we show that (1) archi-
tecture is an indeed an important considera-
tion when performing scaling and (2) the best
performing model can fluctuate at different
scales. We believe that the findings outlined in
this work has significant implications to how
model architectures are currently evaluated in
the community.

1 Introduction

There have been a lot recent interest in the scaling
properties of Transformer language models (Ka-
plan et al., 2020; Hernandez et al., 2021; Bahri
et al., 2021; Henighan et al., 2020). However, not
much is understood about the scaling properties
of different inductive biases imposed by model ar-
chitectures. Improvements at a a specific scale
(compute, size etc) are often assumed to transfer
to different scales and compute regions (So et al.,
2019; Choromanski et al., 2020; Lan et al., 2019;
Dehghani et al., 2018) and new research is often
presented in a point-wise fashion with respect to
scale. In short, it is not uncommon for new meth-
ods to be presented with data points at very specific
or limited compute regions (e.g., base size). We
believe that understanding the interaction between
architecture and scaling laws is crucial as design-

ing models that perform well at diverse scales will
likely have significant impact.

This paper is an attempt to understand the ef-
fect of inductive bias (architecture) on scaling laws
of language models. To this end, we pre-train and
finetune over ten diverse model architectures across
multiple compute region and scales (e.g., from 15M
to 40 Billion parameters). In total, we pre-train and
finetune over 100 different models of different ar-
chitectures and sizes and present insights and chal-
lenges at scaling these ten diverse architectures.

We consider a broad spectrum of models in
our extensive experiments. Concretely, we con-
sider several well-established Transformer vari-
ants (Vaswani et al., 2017) such as Evolved Trans-
former (So et al., 2019), Universal Transformers
(Dehghani et al., 2018) and Switch Transformers
(Fedus et al., 2021). We also consider lightweight
models such as ALBERT (Lan et al., 2019) and/or
efficient Transformers (Tay et al., 2020) such as
Performer (Choromanski et al., 2020) and Funnel
Transformers (Dai et al., 2020). In our comparison,
we are also interested in finding out if general im-
provements to the Transformer architectures such
as Mixture-of-Softmax (Yang et al., 2017) and/or
Gated Linear Units (Dauphin et al., 2017; Shazeer,
2020) influence the scaling behaviour of models.
Finally, we also evaluate models outside the fam-
ily of Transformers including Lightweight convo-
lutions (Wu et al., 2019), Dynamic convolutions
(Wu et al., 2019) and the recently proposed MLP-
Mixers (Tolstikhin et al., 2021). Figure 1 illustrates
an overview about the experiments we run.

We also note that scaling these models is not as
straightforward as it seems, i.e., there are intricate
details of scale that are intertwined with architec-
tural choices which we study in detail in this pa-
per. For example, a distinct feature of Universal
Transformers (and ALBERT) is parameter sharing.
Hence, compared with standard Transformers, this
architectural choice significantly warps the scaling

2.0+
&

2.2

Negatlive Log-PerpIexityl

2.6 T et e

-2.8-

-3.0

1.1e+12.2e+12 4.4e+12 8.8e+12 1.8e+13 3.5e+13 7.0e+1B.4e+14

FLOPS

(a) Upstream: Negative Log-Perplexity

85

80

~N
a

~
=]

SuperGlue Accuracy
(o)) [=))
o w

4]
a

50

T T T T T T 1
l.1e+12.2e+12 4.4e+12 8.8e+12 1.8e+13 3.5e+13 7.0e+1B.4e+14

FLOPS

(b) Downstream: Accuracy

Figure 1: An overview compute-performance (FLOPs vs performance) plot of all the diverse models and archi-
tectures we pretrained and finetuned in this study. Colors represent different model architectures and size of the

circles represent the size of the model (parameters).

behaviour not only with respect to performance
but also amongst compute metrics such as FLOPs,
speed and number of parameters. Conversely, mod-
els such as Switch Transformers are on the other
end of the spectrum with an uncommon relation-
ship between FLOPs and number of parameters,
i.e., they have high parameter to FLOPs ratio. This
difficulty makes navigating this landscape challeng-
ing.

Our Contributions and Insights The key con-
tributions of this paper are as follows:

e For the first time, we derive scaling laws for
different inductive biases and model architec-
tures. We find that this scaling coefficient dif-
fers greatly from model to model. We believe
this is an important consideration in model
development. It turns out that amongst all
ten architectures that we consider, the vanilla
Transformer has the best scaling behaviour,
even if its absolute performance at each com-
pute region is not the greatest.

e We observe that models that operate well in
one compute-scale region is not necessarily
the best in another compute-region. Moreover,
we find that certain models have difficulty scal-
ing despite performing decently (comparably)
at lower-compute regions. This has implica-
tions, since it is difficult to get the fulll picture

of a model’s scalability with pointwise com-
parisons at a certain compute-region.

e We find that when it comes to scaling differ-
ent model architectures, upstream pre-training
perplexity might not correlate well with down-
stream transfer. Hence, the underlying archi-
tecture and inductive bias is also crucial for
downstream transfer.

e We highlight the difficulties of scaling with
certain architectures and show that some mod-
els do not scale (or scale with a negative trend).
We also find concerning trends where linear-
time attention models such as Performer strug-
gle with scaling up.

2 Related Work

Kaplan et al. (2020) studied empirical scaling laws
of the decoder-only Transformer language mod-
els. They focused on the standard left-to-right lan-
guage modeling objective with the cross-entropy
loss as the performance metric. One of the main
findings is that the loss scales as a power-law with
three major characteristics of the model training:
model size, dataset size and the training compute.
Another somewhat surprising finding is that the
model shapes such as width or depth of the Trans-
former network have minimal effects on the cross-
entropy loss for a wide range of scales. Subsequent

works (Henighan et al., 2020; Hernandez et al.,
2021) made similar conclusions for autoregressive
generative modeling and for transfer learning, re-
spectively.

Raffel et al. (2019) studied the effect of pre-
training objectives, model structures (e.g., encoder-
decoder, decoder-only), pre-training dataset size
and training strategy on the transfer learning. They
showed that the downstream performance mono-
tonically increases with the model scale (from 60M
to 11B parameters). While they studied several
model structures, the Transformer implementation
is mostly the same as the original Transformer
by Vaswani et al. (2017). Conneau et al. (2020);
Goyal et al. (2021) scaled-up multilingual encoder-
only architectures up to 11B parameters while
maintaining the original Transformer implemen-
tation. They found that scaling the model improves
its cross-lingual ability. Fedus et al. (2021) scaled
a sparse model based on Mixture of Experts (MoE)
models up to trillion parameters.

While previous studies have repeatedly shown
the benefits of scale for language understanding
tasks for both dense and sparse Transformers and
cross-lingual abilities, all of these used the same
Transformer implementation within each studies.
With a plethora of improved Transformer archi-
tectures proposed in the literature, it is timely to
investigate which of these improved architecture
has the best scaling properties. The main goal of
this paper is to systematically study how inductive
biases imposed by these Transformer variants af-
fect the scaling behavior in a shared software and
hardware settings.

3 Methods

This section outlines our experimental setup.

3.1 Models

This section describes the models we evaluate
in our experiments. Our models are largely im-
plemented in a sequence to sequence framework
(Sutskever et al., 2014) following the convention of
T5 (Raffel et al., 2019). Encoder-decoder models
are a natural choice for this experimentation be-
cause they can universally express both encoding
and decoding tasks.

Transformer Variants We consider several stan-
dard Transformer variants.

e Transformers (Vaswani et al., 2017) - The
basic vanilla Transformer architecture. Our

basic setup considers the T5-style of Trans-
formers (Raffel et al., 2019), which largely
follows the vanilla Transformer except that
it uses relative attention instead of sinusoidal
position embeddings and pre-layer normaliza-
tion, i.e. layer normalization is applied before
each sublayer.

e Evolved Transformers (So et al., 2019) - A
transformer architecture learned via AutoML.
The architecture comprises of convolutions
and attention. We scale Evolved Transformers
following the same pattern as vanilla Trans-
formers.

e Universal Transformers (UT) (Dehghani
etal., 2018) - A Transformer architecture with
shared parameters and recurrent-like com-
putation for transform layers. Scaling UTs
are challenging because of parameter shar-
ing. While we are able to also increase dpp
or dynodel, the increase in parameters is of
magnitude Nigyers than standard Transform-
ers. Another axis of exploration is to scale r
the number of repeated computation at each
UT layer - this increases computation (number
of FLOPs) but does not increase the parameter
size of the model.

e Switch Transformer (Fedus et al., 2021) -
a sparsely activated mixture-of-experts archi-
tecture. The Sparse Transformer is another
model with an unusual relationship between
number of parameters and compute. When
we scale this model uniformly, the number of
parameters easily reaches the ballpark of 40B.

Efficient Transformer Variants These class of
models are mainly concerned at reducing computa-
tional costs, memory usage, or parameter count of
models.

e Performer (Choromanski et al., 2020) - A lin-
ear time attention model using generalizable
kernel attention. For simplicity, we adopt the
relu kernel variant for our experiments. We
scale Performer in the similar fashion (i.e.,
uniform scaling) as vanilla Transformers.

e Funnel Transformer (FT) (Dai et al., 2020)
A Transformer architecture that downsamples
the input sequence across the layer stack. Our
implementation uses FT only in the encoder

and reverts to vanilla Transfomrmer in the
decoder following Narang et al. (2021).

e ALBERT (Lan et al., 2019) - A lightweight
transformer architecture that shares parame-
ters across all layers and factorizes the em-
bedding and output softmax layers. For our
seq2seq ALBERT, we also share the weights
of encoder and decoder.

General Improvements We consider general
improvements that are not necessarily tied to Trans-
formers. We select candidates that have shown to
do well in Narang et al. (2021).

e Mixture of Softmaxes (Yang et al., 2017) -
A transformer architecture adopting the MoS
method at the Softmax layer.

e Gated Linear Units with GeLU (GLU-
Transformer) - Replacing position-wise feed-
forward-networks in Transformers with Gated
Linear Units (Dauphin et al., 2017).

Non-Transformer Architectures We are inter-
ested in the scaling behaviour of non-Transformer
based architectures such as convolutions and/or
mixer architectures.

o Lightweight Convolutions (Wu et al., 2019) -
Lightweight depthwise convolutions that have
shown promise over Transformer architec-
tures.

e Dynamic Convolutions (Wu et al., 2019) -
An extension of the Lightweight Convolution
to create time-dependent kernels.

e MLP-Mixers (Tolstikhin et al., 2021) - Mix-
ers are recently proposed architectures that
learn a lightweight mixing of tokens. Since
Mixers have not been used in autoregressive
decoding, we only use token-mixers on the
input encoder.

3.2 Experiment Setup

Our setup, along with all models, are implemented
in Mesh TensorFlow (Shazeer et al., 2018), a li-
brary with similar interface to TensorFlow but en-
ables distributed model parallelism across multiple
workers. For fair comparison, all models are pre-
trained for 2'Y steps on the english C4 corpus op-
timized using an inverse square root learning rate
with Adafactor (Shazeer and Stern, 2018). All mod-
els use the same SentencePiece tokenizer (Kudo

and Richardson, 2018) containing 32K subwords.
This closely follows the setup in the TS paper (Raf-
fel et al., 2019). Finetuning is performed for 100K
steps on a mixture of GLUE (Wang et al., 2018),
SuperGLUE (Wang et al., 2019) and SQuAD (Ra-
jpurkar et al., 2016). We evaluate on both upstream
(pre-training) validation perplexity as well as down-
stream transfer for NLU tasks (GLUE + Super-
GLUE + SQuAD) after fine-tuning. We pretrain
and finetune our models with 16 TPU-v3 chips with
data parallelism. All large models have a model
parallelism of 2 and XL models have a model par-
allelism of 8.

Model Sizes We consider several different model
sizes for each architecture. For models that are
straightforward to scale, we simply follow the stan-
dard convention in Raffel et al. (2019), moving
from small to base, to large and XL. We include a
tiny version of each model to observe how differ-
ent models behave at lower compute regions. For
models where it was not straightforward to scale
(e.g., Universal Transformers, ALBERT), we tried
to scale them in a similar fashion but faced obvi-
ous limitations such as getting ALBERT to have
the same number of parameters as TS XL without
incurring a huge number of cost in terms of FLOPs.
For convolutional models, we consider dp,ogel tO
be the hidden size (i.e., channel depth) for the one-
dimensional convolution layers. Values such as
dyv, N then become redundant. Details on scal-
ing details of each architecture can be found in the
supplementary material.

3.3 Main Results

We report the main results of this paper in Table
1. We report the number of trainable parameters,
FLOPs (of a single forward pass) and speed (steps
per second). We also report on validation perplex-
ity (on upstream pre-training) and results on 17
downstream tasks. The results are reported aggre-
gates of GLUE, SuperGLUE and SQuAD. While
we use the same Mesh TensorFlow-based codebase
used by Raffel et al. (2019) and hence expect our
experimental results to match theirs, we verify that
our T5 base does achieve similar results to what is
reported in Raffel et al. (2019).

3.4 Do all models scale the same way?

This section investigates if all model architectures
scale in the same way.

b
Negative Log-Perplexity

Negative Log-Perplexity

12 88er12 186413 350413
FLOPS

(b) DConv

4ade1z BBerI2 180413 350+137.00013
FLOPS

(a) ALBERT

B

Negative Log-Perplexity
Negative Log-Perplexity

Negative Log-Perplexity

12 884112 180413 350013
FLOPS

(f) LConv

FLOPS

(e) Transformer-GLU

g-Perplexity

Negative Log-Perplexity

g
z
2

FLOPS

(1) Performer

N

FLOPS

(j) Switch Transformer

Negative Log-Perplexity

Negative Log-Perplexity

4adi2 8ser2 1ees3 3s
FLOPS

(d) Funnel

12 8812 1813 35413 7.06+1BActid
FLOPS

(c) Evolved

s

FLOPS

(g) MLP Mixer

Negative Log-Perplexity

12 sseriz 18er13 35013
FLOPS

(h) MoS Transformer

o

Negative Log-Perplexity

2 esez sy s
FLOPS

(k) Universal Transformer

Figure 2: Upstream Negative Log-Perplexity of vanilla Transformer compared to other models.

Upstream Perplexity Figure 2 reports the scal-
ing behaviour of all models as we increase the
number of FLOPs. We observe that the scaling be-
haviour of all models are quite unique and distinct,
i.e., most of them are quite different from standard
Transformers. Perhaps the biggest finding here is
that most models (e.g., LConv, Evolved) all seem to
be on-par or better than standard Transformers but
fail to scale with a higher compute budget. Another
interesting trend is that “linear” Transformers such
as Performer fail to scale as shown in Figure 2i.
The pre-training perplexity metric only decreases
by 2.7% going from base to large scale compared
to 8.4% of the vanilla Transformer.

Downstream Transfer Figure 3 reports the scal-
ing curves of all models on downstream transfer.
The overall finding that most models have distinct
scaling curves compared to Transformers is also
evident in downstream tasks. It is also noteworthy
that most models have a different upstream and
downstream scaling curve. We find that some mod-

els such as Funnel Transformer and LConvs that
seem to hold out pretty well on upstream but suffer
substantially on downstream. As for Performer, the
performance (disparity) seems to be even greater
in downstream as compared to upstream. Notably,
the SuperGLUE downstream tasks generally re-
quire pseudo cross-attention on the encoder, which
models such as convolutions are not equipped to
handle (Tay et al., 2021). To this end, we find
that certain models may have difficulty learning
the downstream tasks despite good upstream per-
formance.

3.5 Are the best models at each scale
different?

Figure 1 shows the Pareto-frontier when plotting
compute against upstream and downstream perfor-
mance. Since the colors of the plot represent dif-
ferent models, we can observe that the best model
for every scale and compute region might be differ-
ent. Moreover, from Figure 3, we can also observe
this. For example, the Evolved Transformer seems

SuperGlue Accuracy
SuperGlue Accuracy

12 BBz 18es13 35641370
FLOPS

(a) ALBERT

SuperGlue Accuracy
SuperGlue Accuracy

SuperGlue Accuracy

SuperGlue Accuracy

SuperGlue Accuracy

a1z seeriz 1serns
FLOPS

(d) Funnel

12 Gseri2 180013 356013 7.
FLOPS

(c) Evolved

SuperGlue Accuracy

12 88eri2 186013 3ser1d
FLOPS

(f) LConv

2 esenz 1sin
FLOPS

(e) Transformer-GLU

SuperGlue Accuracy
SuperGlue Accuracy

e e 225

2 ez 18013 356413708013
FLOPS

(1) Performer

FLOPS

(j) Switch Transformer

44012 B8ar12 180413 350413 706418
FLOPS

(h) MoS Transformer

‘2 sseri2 Lser3 3seriazoesss
FLOPS

(g) MLP Mixer

FLOPS

SuperGlue Accuracy

(k) Universal Transformer

Figure 3: Downstream accuracy of vanilla Transformer compared to other models.

to do well against the standard Transformer at
tiny to small region (downstream) but this quickly
changes when scaling the model up. We also ob-
serve this with MoS-Transformer where it clearly
outperforms vanilla Transformers at some regions
but not at others.

3.6 Scaling Law for Each Model

Table 2 presents the slope of the fitted linear line
a for each model across multiple scenarios. We
derive a by plotting F' (FLOPs), U (upstream per-
plexity), D (downstream accuracy), P (number of
parameters). In general, most values of a depict
how well a model scales. For example o f 1 is plot-
ting FLOPs against Upstream performance. The
only exception is oy, p which is a measure of up-
stream vs downstream performance. A high ay p
value means that the transfer to the downstream
tasks is better as a model scales. Overall, the «
value is a metric that represents how well a model
performs relatively across all scales

Analysis of Slope for each Model In general,
we find that the vanilla Transformer has the highest
values of a. Models such as Evolved Transformer,
GLU-Transformer, MoS-Transformer and Funnel
Transformer tend to have similar scaling properties
to the vanilla Transformer. The GLU-Transformer
has similar and slightly worse scaling properties
to the vanilla Transformer, even if it was observed
to do better in absolute sense on some compute-
regions. On the other hand, we also observe that
there are models which are difficult to scale such
as LConv, UT, MLP-Mixer and Performer. This is
even more evident on downstream task. We also
note that ALBERT scales (trends) negatively' (gets
worse) as we scale the model up. On the other hand,
the metric ay, p measures how the downstream per-
formance scales with upstream performance. Over-
all, the Switch Transformer does the best on this
metric where downstream performance scales well

IThis version of ALBERT shares parameters across en-
coder and decoder which may partially explain why we had a
hard time scaling up.

Table 1: Results on pre-training and finetuning ten different model architectures. Full results (further varying
hyperparameters of these models) can be found in the Appendix.

Model #Params FLOPs Speed | Neg LogPpl GLUE SGLUE SQuAD
Transformer Tiny 16M 1.21 38.4 -2.47 69.3 56.9 73.6
Transformer Small 60M 3.70 22.7 -2.02 78.1 65.3 81.9
Transformer Base 223M 114 9.3 -1.75 83.8 74.0 86.3
Transformer Large 738M 343 3.6 -1.61 86.4 78.3 88.6
Transformer XL 2.9B 63.8 1.3 -1.49 87.8 81.5 89.5
Evolved Transformer Tiny 19M 1.31 39.7 -2.45 69.6 57.1 69.6
Evolved Transformer Small 79M 4.23 23.7 -2.04 75.7 66.2 80.2
Evolved Transformer Base 218M 10.2 8.9 -1.79 83.0 70.5 84.8
Evolved Transformer Large 1.0B 49.3 2.1 -1.62 86.2 77.1 88.0
Evolved Transformer XL 2.2B 71.3 0.8 -1.55 87.0 78.3 88.2
Universal Transformer Tiny 11M 1.77 38.1 -2.73 69.8 56.1 62.3
Universal Transformer Small 52M 7.30 18.3 -2.12 76.8 64.2 75.4
Universal Transformer Base 127M 20.3 8.4 -1.91 80.0 67.9 80.1
Universal Transformer Large 283M 27.6 1.6 -1.67 84.0 73.4 854
Switch Transformer Tiny 174M 3.25 29.7 -2.01 78.2 63.8 80.7
Switch Transformer Small 460M 4.63 22.3 -1.85 80.3 68.0 82.9
Switch Transformer Base 2.0B 12.7 8.4 -1.66 84.2 74.1 86.5
Switch Transformer Large 3.9B 23.0 4.1 -1.56 84.6 75.8 87.9
Switch Transformer XL 29.6B 433 0.8 -1.62 84.0 75.2 87.5
Performer Tiny 16M 1.14 42.0 -2.88 50.5 48.8 15.0
Performer Small 61M 3.50 39.0 -2.44 57.8 51.1 31.1
Performer Base 224M 10.8 11.7 -2.23 61.4 53.4 37.8
Performer Large 739M 32.8 4.4 -2.16 62.4 52.4 30.8
Funnel Transformer Tiny 16M 1.10 39.9 -2.58 63.4 49.4 54.6
Funnel Transformer Small 61M 2.96 32.7 2,11 70.0 58.5 75.1
Funnel Transformer Base 223M 8.10 11.9 -1.83 76.3 62.9 81.6
Funnel Transformer Large 739M 22.6 5.0 -1.69 79.8 67.1 83.8
Funnel Transformer XL 2.9B 40.3 1.89 -1.61 79.8 68.0 83.7
ALBERT Small 15M 3.57 42.0 -2.36 73.7 62.0 77.1
ALBERT Base 21IM 9.40 16.4 -2.28 69.0 57.2 64.3
ALBERT Large 34M 31.6 5.1 -2.20 62.9 54.1 27.3
MoS-Transformer Tiny 2T 1.29 39.7 -2.37 70.6 57.9 74.1
MoS-Transformer Small 81M 3.70 26.3 -1.98 79.7 67.1 83.1
MoS-Transformer Base 257TM 114 8.6 -1.70 84.5 73.9 86.8
MoS-Transformer Large 800M 35.0 34 -1.56 86.5 79.7 89.1
MoS-Transformer XL 2.9B 112 1.2 -1.45 88.2 81.4 90.0
GLU-Transformer Tiny 26M 1.29 31.7 -2.35 70.5 57.0 74.2
GLU-Transformer Small 7TM 3.70 26.4 -1.97 79.1 67.4 83.0
GLU-Transformer Base 248M 114 8.6 -1.71 84.6 74.5 87.2
GLU-Transformer Large 748M 35.0 34 -1.56 84.2 74.3 86.2
GLU-Transformer XL 2.85B 61.3 1.0 -1.49 87.6 82.9 89.4
LConv Tiny 17M 1.20 31.2 -2.50 51.1 51.3 49.5
LConv Small 67M 3.80 12.8 -2.10 71.8 59.9 64.7
LConv Base 210M 10.6 12.8 -1.95 73.8 63.6 70.3
LConv Large 741M 41.0 3.0 -1.76 76.8 65.6 76.3
LConv XL 2.3B 77.0 1.0 -1.75 73.3 64.1 72.9
DConv Tiny 22M 1.39 27.3 -2.46 51.1 48.9 30.2
DConv Small 96M 4.97 19.8 -2.08 68.6 57.4 64.3
DConv Base 324M 15.3 7.6 -1.90 72.9 60.1 63.7
DConv Large 1.2B 78.0 1.1 -1.82 70.8 58.5 58.2
MLP-Mixer Small 67M 3.83 22.3 -2.15 65.4 55.1 58.7
MLP-Mixer Base 233M 12.4 10.7 -1.90 64.4 58.1 60.5
MLP-Mixer Large 739M 38.3 3.9 -1.73 52.2 47.8 60.9
MLP-Mixer XL 2.86B 48.3 1.2 -1.61 57.3 58.9 65.7

Table 2: Slope of a fitted linear line for each model,
when we compare FLOPs vs. upstream performance
(F,U), FLOPs vs. downstream performance (F, D),
parameter size vs. upstream performance (£, U), pa-
rameter size vs. downstream performance (P, D), and
finally upstream performance vs. downstream perfor-
mance (U, D).

Model afFU QF,D QpU QpD QU,D
Transformer | 0.54 0.28 0.47 0.24 0.49
GLU-Trans. | 0.49 0.24 0.42 0.22 0.46

LConv 032 013 029 0.11 0.48
Funnel 047 022 038 0.18 046
Switch 023 014 013 0.08 0.58

Universal 0.50 0.20 0.56 0.22 0.35
ALBERT 0.08 -0.12 0.13 -021 -1.67
Evolved 0.44 0.22 0.42 0.21 0.47
Performer 0.25 0.05 0.24 0.05 0.24
MoS-Trans. 0.43 0.21 0.43 0.20 0.47
MLP-Mixer | 0.32 -0.03 0.26 0.65 -0.02

with upstream performance. Generally, models
that make less changes to the main Transformer ar-
chitecture (GLU-Transformer, MoS-Transformer)
tend to retain similar scaling behaviours and chang-
ing the inductive bias also significantly alters the
scaling property of the model.

3.7 Do Scaling Protocols influence model
architectures in the same way?

We are interested in how different scaling protocols
influence the model architectures. Figure 4 shows
the effect of scaling depth of four model archi-
tectures (MoS-Transformer, Transformer, Evolved
Transformer and LConv). Figure 5 shows the ef-
fect of scaling width on the same four architec-
tures. Firstly, on upstream (negative log perplex-
ity) curves, we note that while different architec-
tures have a distinct difference in absolute perfor-
mance, the scaling trend remains quite similar. On
downstream, depth scaling (Figure 4) seems to act
equally on most architectures with the exception of
LConv. Meanwhile, for width scaling, it seems that
Evolved Transformers scale slightly better when
applying width-scaling. It is also interesting to
note that depth-scaling has a much more substan-
tial impact on downstream scaling as opposed to
width-scaling.

3.8 Epilogue and Conclusion

In this paper, we conducted extensive experiments,
pretraining and finetuning of up to 100 models
ranging from 10 well-established Transformer and
non-Transformer architectures. We showed that
different model architectures can have different

_ SuperGlue Accuracy

FLops Saen asden e

(a) Upstream Neg. Log-PPL. (b) Downstream Accuracy.

Figure 4: Scaling depth

SuperGlue Accurac

3 L6 8001 | 2a0rt 28ee13 320013 oD TG LD LeeTiEens A s e
FLOPS FLOPS

(a) Upstream Neg. Log-PPL. (b) Downstream Accuracy.

Figure 5: Scaling width of FFN

scaling behaviours and models performing well in
one compute region (or model size) may not do
identically well in another compute region. We
also showed that model architectures may do well
on upstream perplexity but fail to transfer to down-
stream tasks. Hence, practitioners should be cau-
tious about developing architectures that not only
scale well with respect to the upstream perplexity,
but also based on downstream performance. While
we certainly do not expect researchers to always
report model performance across all scales (espe-
cially large-scale), we believe that it is good to
keep in mind that architectures can perform quite
differently at different compute regions. Hence,
this might be a good dimension to consider when
designing new inductive biases. As such, perform-
ing evaluation at a certain compute region may be
insufficient to capture the full picture. We also
showed that different model architectures may re-
act differently to different scaling protocols, which
further expands on the narrative that comparing
and benchmarking these models can be very chal-
lenging. Finally, we acknowledge that not every
practitioner or researcher would require models
that are able to scale to billion of parameters. In
that case, inductive biases that are tailored to small
or low compute will be sufficient.

References

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jachoon
Lee, and Utkarsh Sharma. 2021. Explaining neural
scaling laws. arXiv preprint arXiv:2102.06701.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. arXiv
preprint arXiv:2006.03236.

Yann N. Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2017. Language modeling with
gated convolutional networks. In Proceedings of the
34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pages 933-941. PMLR.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Univer-
sal transformers. arXiv preprint arXiv:1807.03819.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-Scale
Transformers for Multilingual Masked Language
Modeling. arXiv e-prints, page arXiv:2105.00572.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B Brown, Prafulla Dhariwal, Scott Gray, et al.
2020. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Sharan Narang, Hyung Won Chung, Yi Tay, William
Fedus, Thibault Fevry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong
Lan, et al. 2021. Do transformer modifications trans-
fer across implementations and applications? arXiv
preprint arXiv:2102.11972.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Noam Shazeer. 2020. Glu variants improve trans-
former. arXiv preprint arXiv:2002.05202.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning
for supercomputers. In Advances in Neural Informa-
tion Processing Systems, pages 10414-10423.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,

pages 4596-4604. PMLR.

David So, Quoc Le, and Chen Liang. 2019. The
evolved transformer. In International Conference on
Machine Learning, pages 5877-5886. PMLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732.

Yi Tay, Mostafa Dehghani, Jai Gupta, Dara Bahri,
Vamsi Aribandi, Zhen Qin, and Donald Met-
zler. 2021. Are pre-trained convolutions better

than pre-trained transformers? arXiv preprint
arXiv:2105.03322.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov,
Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Daniel Keysers, Jakob Uszkoreit,
Mario Lucic, et al. 2021. Mlp-mixer: An

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://proceedings.mlr.press/v70/dauphin17a.html
http://proceedings.mlr.press/v70/dauphin17a.html
http://proceedings.mlr.press/v70/dauphin17a.html
http://arxiv.org/abs/2105.00572
http://arxiv.org/abs/2105.00572
http://arxiv.org/abs/2105.00572
http://arxiv.org/abs/2105.00572
http://arxiv.org/abs/2105.00572

all-mlp architecture for vision.
arXiv:2105.01601.

arXiv preprint

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Felix Wu, Angela Fan, Alexei Baevski, Yann N
Dauphin, and Michael Auli. 2019. Pay less attention
with lightweight and dynamic convolutions. arXiv
preprint arXiv:1901.10430.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W Cohen. 2017. Breaking the softmax bot-
tleneck: A high-rank rnn language model. arXiv
preprint arXiv:1711.03953.

10

4 Appendix
4.1 Scaling Details for Individual Models

For most models, it was reasonable to follow the
uniform scaling method in the main TS5 sizes. At
each size, the hyperparameters are as follows:

Model NL dff dmodel d}m, NH #Params
Tiny 4/4 1024 256 32 4 16M
Small 6/6 2048 512 32 8 60M
Base 12/12 3072 768 64 12 220M
Large 24/24 4096 1024 64 16 738M
XL 24/24 16384 1024 128 32 3B

Table 3: Table of model configurations. N, is the num-
ber of layers, dy is the size of the MLP, d;,04; is the
hidden size of the model. dy, is the size of each key-
value vector. N is the number of heads.

Scaling for Switch Transformer For Switch
Transformers, we use the following scaling:

Model Ny dff dmodet diw Nu Ng #Params
Tiny 4 1024 512 64 12 32 173M
Small 6 2048 512 64 12 32 460M
Base 12 3072 768 64 12 32 2B
Large 24 3072 768 64 12 32 8B
XL 48 3072 768 64 12 128 30B

Table 4: Scaling for Switch Transformer. Npg is the
number of experts.

Scaling for Universal Transformer Scaling
UTs are generally difficult as described in the main
text. There were two main considerations for scal-
ing UTs. Initially we tried scaling the number of
recurrent operations. However, we found that even
with an increase of FLOPS, this does not lead to
improved performance. Overall, the UT model
might be pretty slow and therefore a model with
the same hparams as vanilla XL might be infeasible
to run. Hence, we explored increasing the width of
the MLPs to 32K to see if UTs would scale in this
manner.

Model Ngr dss dmodel dry Ny #Params
UT Tiny 3/3 1024 128 32 8 11M
UT Small 3/3 2048 512 32 8 52M
UT Base 3/3 3072 768 64 12 127M
UT Large 3/3 32768 1024 64 16 283M

Table 5: Table of model configurations. Ng is the num-
ber of recurrent operations, dy is the size of the MLP,
dmodel 18 the hidden size of the model. dj, is the size
of each key-value vector. N is the number of heads.

Negae togperlenty

Mesauve og ety
Negatve Log Perpiesty R

g i T
Leony ML Mixer Performer

NesyeLog-Perpledy,

Nessuveog ety
Negatve Log-pergesty R

" MRops T T

ur

g T
Switeh

Jesotre LopPeglexty,
Jeowyelogepledty,

Jometogreney,

FLOPS - " ros. P s

Abert oconv

Negatie Log-perpleity

Mesaetogperienty

MLP Mixer

Mo og ety
Nesatve togpeenty

TransformerGLy

Nesatvelogpepiensy
Negative Log-Perplexty.

(b) Number of Parameters

Abert ocony Evolved Funnel

Negave Logpergexty

‘imvoushout iniassnout
Switeh, ur

caty

Negatve Log-perple

mrougheut mhvassnout

(c¢) Throughput

Figure 6: Quality-cost trade of for the upstream Negative Log-Perplexity of vanilla Transformer compared to other
models, with respect to FLOPs, number of parameters, and throughput.

11

Abert ocony Evolved Funnel

§~

e s
Performer

P

g

§

Fos Flops
ur

‘SuperGlue Accuracy
PO e

Aber ocon "
Eo é.» 6» 6.»
i E £ k.

SuperGiue Accuracy
SuperGiue Accuracy
SuperGiue Accuracy

M e

(b) Number of Parameters
8 i i
En N ER

mvoushout
MLP Mixer

Supersiue Accursey
Superciue Accurscy

Thvasgnput

Supercheacersey
Supertive Accuracy

Vmroughont

(c) Throughput

Figure 7: Quality-cost trade of for the downstream SuperGlue Accuracy of vanilla Transformer compared to other
models, with respect to FLOPs, number of parameters, and throughput.

12

Abert ocony Evolved Funnel

(b) Number of Parameters

Albert cow e @ Fumel

Guedcey

1Tvougnput Ymvaugheut mhvauhout .

(c) Throughput

Figure 8: Quality-cost trade of for the downstream Glue Accuracy of vanilla Transformer compared to other
models, with respect to FLOPs, number of parameters, and throughput.

13

Evolved Funnel

Albert DConv

Large Xt

. Base Large . Base
Smail Smail
w0 M0l Smal) Mok
Tind T

™ Abert Base ” DConv Smaicony Base
ze B OCotv Large 2
H H H H
» Abertlage = » »
e T S T g T T

Lconv MLP Mixer Mos-Transformer performer

arge XL arge XL prgeMbs- Large MOS- 38 arge XL
o Base 219 = Base Larg < o oL B Base Lory:
Small Smail oMo Small
o] Mini o taro ol M o Mot | Ml
oo B L ot Tio

s i 5 » LD Mixer 38 7 »
. . s sl sty e N
i g i g
g g g g
N g N IR
i. R i i petdmes sse
- - - | peormer Tiny
suieh TronstormerGiy or
“ Bpse. GLU Bl oy - Bpse .
SmaiGL h Small T Large
T oy Tin ur
Feo- Feo. Zeo-
3 H H
i i i

FLOPS. FLOPS

(a) FLOPs

FLOPS

» - ase 2roe X . sose. 2198 elboiod 38
/‘” ,,,,, -
T Teo- DConv Large T T
g g g g
arge. XL arge. XL arge MoSXkarghioS- 36 arge XL

= Base 2 - Bose 21 - Base ol SHogt . Bose | U

o Small - MLP Mixer 38 - »

T oo LP Mi o o

Eo 2. . kN

- - " " rormer Tiny

Params Params. Params Params

suten P—
» BBWS.\MM - /j&%ewm .
(b) Number of Parameters

DConv SmaBCon Base

Abert Base
?n gw DConv Large E‘n gm
g L g g
3 b 3 H
- 7 3= 3
» Abert targe » » »
Y T Iy e o e R I
Lcon MLP Mixer Performer
1aup gt tlire g Ze
3 3
3o Fe Petormr Bose
T T I o TR o
Switch TransformerGLU ur
" oo ki o Swichx3 ¥ " oo WO Mg
%
Zu Feo. Zu
g g g
i § §
. . §.
3 3 3
e Fe Fe

; 1/Throughput 1/Throughput.

(c¢) Throughput

Figure 9: Quality-cost trade of for the downstream Squad Accuracy of vanilla Transformer compared to other
models, with respect to FLOPs, number of parameters, gngd throughput.

