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Abstract001

The ubiquity of social media platforms fa-002
cilitates malicious linguistic steganography,003
posing significant security risks. Steganaly-004
sis is profoundly hindered by the challenge005
of identifying subtle cognitive inconsisten-006
cies arising from textual fragmentation and007
complex dialogue structures, and the diffi-008
culty in achieving robust aggregation of multi-009
dimensional weak signals, especially given010
extreme steganographic sparsity and sophis-011
ticated steganography. These core detec-012
tion difficulties are compounded by signifi-013
cant data imbalance. This paper introduces014
GSDFuse, a novel method designed to sys-015
tematically overcome these obstacles. GSD-016
Fuse employs a holistic approach, synergisti-017
cally integrating hierarchical multi-modal fea-018
ture engineering to capture diverse signals,019
strategic data augmentation to address spar-020
sity, adaptive evidence fusion to intelligently021
aggregate weak signals, and discriminative em-022
bedding learning to enhance sensitivity to sub-023
tle inconsistencies. Experiments on social me-024
dia datasets demonstrate GSDFuse’s state-of-025
the-art (SOTA) performance in identifying so-026
phisticated steganography within complex di-027
alogue environments. The source code for028
GSDFuse is available at https://anonymous.029
4open.science/r/GSDFuse-B1E7.030

1 Introduction031

Steganography, the art of covert communication by032

embedding secret data within innocuous carriers033

(Cox et al., 2007), presents a dual-use dilemma,034

vital for privacy, yet a potent tool for illicit activities035

like cyberattacks and disinformation (Bieniasz and036

Szczypiorski, 2018). As steganographic techniques037

grow in sophistication, robust steganalysis becomes038

crucial for safeguarding digital ecosystems.039

Text’s ubiquity, malleability, and persistence040

in information sharing establish it as a prevalent041

steganographic medium. The rise of social me-042

dia, with its vast user base and high volume of043

Weekend soon! Any plans? (Cover)

User A

@A Beach sounds good! You joining? (Cover)

User B

@B Count me in for beach! BBQ later?  (Cover) 

User D

@A Nice! Maybe a movie. Zootopia. (Steg)

User C

Figure 1: An illustrative example of a social media di-
alogue tree. A steganographic message (Steg, User C)
is subtly embedded among benign messages (Cover).
This scenario highlights key challenges such as textual
fragmentation, steganographic sparsity, and complex
message interactions that contribute to systemic distor-
tions and latent multi-faceted imperceptibility in social
media steganalysis.

interactive content, has further amplified text’s util- 044

ity as a covert communication channel (Li et al., 045

2018), creating ideal environments for steganogra- 046

phy. Modern linguistic steganography is increas- 047

ingly dominated by generative approaches (Yang 048

et al., 2018, 2020a). These methods leverage lan- 049

guage models to generate cover texts, embedding 050

information by subtly altering token probabilities 051

during generation. Notably, recent advancements 052

have pushed towards provably secure steganogra- 053

phy (Zhang et al., 2021; Ding et al., 2023), where 054

the conditional probability distribution of stegano- 055

graphic texts becomes virtually indistinguishable 056

from that of benign texts. Offering high embedding 057

capacity and flexibility in cover generation, these 058

methods also achieve great imperceptibility. 059

Steganalysis, crucial for maintaining the security 060

of public cyberspace, aims to find differences be- 061

tween steganographic and cover texts. Early deep 062

learning models showed promise analyzing isolated 063

texts (Yang et al., 2019b; Wu et al., 2021; Zou et al., 064

2020). However, social media’s fragmented dia- 065
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logues (e.g., short posts, threaded replies) severely066

limit extractable statistical features from single067

messages. This greatly hinders reliable detection068

based only on isolated text statistics, especially as069

steganography nears perfect statistical impercepti-070

bility. This challenge drove a key shift in steganal-071

ysis: moving from breaking single-text statistical072

imperceptibility to using broader context to spot073

cognitive anomalies (Yang et al., 2021a,b). The074

core idea is that isolated benign-looking messages,075

when viewed within larger conversational or re-076

lational structures, can reveal subtle, "unnatural"077

patterns. Initial progress involved integrating im-078

mediate context (Yang et al., 2022). Later work fur-079

ther leveraged network topology and complex fea-080

ture interactions, such as by modeling connection081

awareness (Pang et al., 2023) or using advanced082

graph architectures with attention for richer context083

from dialogue structures (Lu et al., 2025).084

Despite these advancements in leveraging con-085

text, two profound challenges remain central to ro-086

bust steganalysis in social media dialogues. Firstly,087

modern steganography increasingly aims for Cog-088

nitive Imperceptibility, especially within the frag-089

mented and interactive nature of online conversa-090

tions, illustrated in Figure 1. This means stegano-091

graphic signals are designed to be indistinguishable092

from benign content, not just statistically at a lo-093

cal level, but also in terms of their naturalness and094

coherence within the broader dialogue flow and095

relational patterns. Detecting such deeply embed-096

ded content requires moving beyond surface-level097

features to identify subtle cues that disrupt this098

cognitive consistency, often only apparent when099

assessing the overall contextual fabric. Secondly,100

the difficulty of breaking this cognitive impercep-101

tibility is compounded by the need to Aggregate102

Multi-dimensional Weak Signals. Steganography103

disperses faint steganographic traces across vari-104

ous dimensions, from deep semantic nuances and105

local message interactions to global dialogue struc-106

tures. Effectively identifying steganography thus107

requires a method capable of not only construct-108

ing contextual abstracts but also of synthesizing109

these often sparse and individually inconclusive110

signals from multiple sources into a coherent judg-111

ment. Addressing these intertwined challenges is112

the primary motivation for our work.113

The challenge of detecting steganography in so-114

cial media dialogues is two-fold: while steganogra-115

phy achieves remarkable perceptual and statistical116

imperceptibility, subtle yet detectable Cognitive117

Inconsistencies can emerge within the complex 118

conversational context. However, exploiting these 119

inconsistencies requires overcoming the difficulty 120

of Aggregating Multi-dimensional Weak Signals 121

that indicate their presence. To address this, this 122

paper introduces the following contributions: 123

• We propose GSDFuse, a novel, multi- 124

component collaborative method designed 125

to exploit subtle cognitive inconsistencies 126

and enable robust aggregation of multi- 127

dimensional weak signals by systematically 128

extracting and adaptively fusing diverse fea- 129

tures to identify deeply embedded, multi- 130

dimensional anomalies within social media 131

dialogue trees. 132

• The proposed GSDFuse method systemati- 133

cally dismantles this multi-faceted challenge 134

by synergistically integrating hierarchical fea- 135

ture representation from semantic node pro- 136

filing to topological contextualization, adap- 137

tive cross-modal feature fusion, discriminative 138

embedding optimization, and robust learning 139

strategies for imbalanced and sparse data. 140

• Experiments on large-scale, real-world so- 141

cial media datasets (Reddit, X [Twitter], 142

Weibo) against mainstream steganographic al- 143

gorithms (AC, HC, ADG) at various embed- 144

ding rates and sparsity levels demonstrate that 145

GSDFuse achieves SOTA performance. 146

2 Related Works 147

Linguistic steganalysis aims to detect steganogra- 148

phy by identifying distinctions between stegano- 149

graphic and cover texts. Initial methods (Chen 150

et al., 2011; Xiang et al., 2014) relied on aggre- 151

gating statistical cues from n-grams or lexical fea- 152

tures. The rise of generative steganography, pro- 153

ducing more natural texts, spurred a shift towards 154

deep neural networks for feature extraction from 155

individual texts (Yang et al., 2019a; Zou et al., 156

2020; Yang et al., 2019b, 2020b; Peng et al., 2023). 157

However, these models just struggled with statis- 158

tical imperceptible, but steganography evolved to 159

achieve statistical and perceptual naturalness. To 160

address this, Yang et al. (2023) proposed leverag- 161

ing external knowledge for recognizing cognitively 162

subtle steganography, highlighting the limitations 163

of purely internal textual features. Recognizing 164

these limitations, a crucial paradigm shift towards 165
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context-aware steganalysis has emerged. Early ef-166

forts by Yang et al. (2022) initiated this shift by167

highlighting the necessity of integrating contextual168

information with textual features to move beyond169

isolated text analysis. Subsequently, to better har-170

ness relational data, Pang et al. (2023) focused on171

enhancing "connection-awareness" through graph172

representation learning and introduced interaction-173

based mechanisms for more effective fusion of174

textual and graph-derived features, addressing the175

challenge of simply concatenating disparate infor-176

mation. Recently, to tackle the intrinsic limitations177

of standard GNNs in processing complex graph-178

text data, Lu et al. (2025) incorporated Transformer179

and cross-attention mechanisms, aiming to refine180

feature aggregation from broader and more intri-181

cate social network contexts. These works repre-182

sent significant steps towards more sophisticated183

contextual modeling in steganalysis.184

Existing methods, while improving context cap-185

ture, often fall short in holistically synthesizing186

faint, dispersed cues across diverse textual and187

structural dimensions, especially under extreme188

steganographic sparsity. This necessitates a more189

discriminative method capable of unveiling such190

elusive, context-dependent patterns, motivating GS-191

DFuse.192

3 Preliminaries and Methodology193

3.1 Key Challenges in Linguistic Steganalysis194

Modern linguistic steganography’s primary goal195

is achieving both statistical and perceptual im-196

perceptibility. Statistical Imperceptibility, de-197

fined by Cachin (2004) via KL divergence ,198

DKL(PC ||PS) = 0 for perfect security. Further-199

more, perceptual naturalness is as critical as statis-200

tical similarity. As Yang et al. (2020a) highlighted201

with the "Psic Effect", statistical closeness does not202

guarantee perceptual naturalness, and vice versa.203

This inherent tension means steganographic indica-204

tors frequently manifest as dispersed, weak signals205

across multiple linguistic feature facets. Conse-206

quently, effective steganalysis must not only iden-207

tify these cognitive inconsistencies but also achieve208

robust aggregation of multi-dimensional weak sig-209

nals.210

3.2 Problem Formulation and Task Definition211

We address steganalysis in social media dialogues,212

modeled as tree structures T = (V, E). Here, V =213

{v1, . . . , vN} is the set of N message nodes, each214

containing textual content xi, and E represents the 215

reply-to relationships between them. Each node vi 216

is associated with a binary label yi ∈ {0, 1}, where 217

yi = 1 indicates a steganographic text (S) and 218

yi = 0 a benign cover text (C). Steganographic 219

content is typically sparse within these dialogue 220

trees. 221

The task is to develop a steganalysis model f 222

that, for a given dialogue tree T and all its node 223

texts {xk}Nk=1, predicts the label yi for each node 224

vi ∈ V . This is formulated as a node-level clas- 225

sification problem on the graph. For each vi, the 226

model f outputs probabilities P (Y = S|vi, T ) and 227

P (Y = C|vi, T ). A node vi is then classified as 228

steganographic (S) if P (Y = S|vi, T ) > P (Y = 229

C|vi, T ) . 230

3.3 Overall Model Architecture 231

Our proposed GSDFuse, depicted in Figure 2, is a 232

modular, multi-stage pipeline designed to system- 233

atically identify cognitive inconsistencies by effec- 234

tively aggregating multi-dimensional weak signals 235

inherent in social media steganalysis. 236

The Hierarchical Feature Representation 237

module serves as the foundation, constructing ini- 238

tial node embeddings. Its primary goal is to capture 239

both the nuanced semantic meaning of individual 240

messages and their local relational context within 241

the dialogue tree. This dual focus is crucial for 242

initially exposing signals related to both perceptual 243

naturalness and subtle structural deviations. 244

To address the broader, non-local nature of cog- 245

nitive inconsistencies, the Global Structural Con- 246

textualization module complements these local- 247

ized features. It derives graph-level or subgraph- 248

level structural summaries, enabling the method 249

to understand overarching topological patterns and 250

anomalies that isolated node analysis would miss. 251

The Adaptive Feature Fusion module is then 252

tasked with intelligently integrating the diverse set 253

of features, spanning semantic content, local in- 254

teractions, and global structure. Recognizing that 255

steganographic indicators often manifest as multi- 256

dimensional weak signals that are subtle, dispersed, 257

and require effective aggregation, this module adap- 258

tively weighs and combines information to high- 259

light the most salient indicators of steganography. 260

Finally, two critical challenges are addressed: 261

steganographic sparsity and the need for clear 262

class separation. The Data Augmentation for Im- 263

balanced Learning module employs techniques 264

like oversampling to mitigate the effects of sparse 265
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Cross Entropy 
Loss
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Real Augmented
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Steg

Result

Are you 
OK ?

How are 
you ?

You are
right.

I don't 
think so

I don't 
like it

Are you 
sure ?

OK, I 
Sure !

Tree 1

(M1) Hi! 

├─ (M2) Hello.        

└─ (M3) How are you?              

└─ (M4) Fine.

Tree 2

(M1) What's up?  

├─ (M2) Not much.  

│ └─  (M3) Where?  

└─  (M4) Nothing.

Tree N

(M1) Any plans?

├─ (M2) Beach.

│   └─ (M3) BBQ later?

└─ (M4) Maybe movie.

… … … …

Tree 3

(M1) Are you OK?  

├─ (M2) Fine.  

├─ (M3) Tired.

└─ (M4) Fine now.

Conversation Tree

Figure 2: Our proposed GSDFuse architecture. This multi-stage pipeline is designed to identify cognitive inconsis-
tencies by effectively aggregating multi-dimensional weak signals in social media steganalysis, leveraging diverse
feature representations and optimized learning strategies.

steganographic instances. Subsequently, the Opti-266

mization for Discriminative Embeddings mod-267

ule utilizes specialized loss functions. Its objective268

is to sculpt an embedding space where stegano-269

graphic samples are maximally separable from be-270

nign ones, directly enhancing the model’s ability271

to detect faint and ambiguous signals.272

This multi-stage, modular architecture provides273

a comprehensive approach to steganalysis and of-274

fers flexibility for future enhancements and adap-275

tations within each component to tackle evolving276

steganographic techniques.277

3.4 Detailed Components278

3.4.1 Hierarchical Feature Representation279

Semantic Node Profiling Each message node280

within the dialogue tree, denoted as a sentence x, is281

initially represented as a sequence of token identi-282

fiers x = (w1, w2, . . . , wL), where L is the length283

of the sentence. These discrete token IDs are first284

mapped to dense vector representations through an285

optimizable embedding lookup table E, resulting286

in a sequence of token embeddings. Subsequently,287

a Semantic Composition Aggregator (SCA) mod-288

ule processes these token embeddings to produce a289

fixed-length semantic vector sx ∈ Rds that encap-290

sulates the core meaning of the individual message.291

This process can be formally expressed as:292

sx = SCA(E(w1), E(w2), . . . , E(wL)). (1)293

Various models can serve as the SCA; for ex- 294

ample, Convolutional Neural Networks (CNNs) 295

capture n-gram linguistic correlations, an approach 296

demonstrated in TS-CSW (Yang et al., 2020b). 297

Topological Contextualization To incorporate 298

structural information from the dialogue tree G = 299

(V,A), where V denotes message nodes and A 300

the adjacency matrix of reply-to relationships, we 301

employ GNNs. These networks iteratively refine 302

a node’s representation by processing information 303

from its local neighborhood. Starting with an initial 304

node representation h
(0)
v = sv , GNNs operate in 305

layers. At each layer k, an aggregated message 306

m
(k)
N (v) is first computed from the representations 307

of node v’s neighbors N (v): 308

m
(k)
N (v) = AGG(k)

(
{h(k−1)

u : u ∈ N (v)}
)
. (2) 309

This message is then used to update node v: 310

h(k)
v = UPDATE(k)

(
h(k−1)
v ,m

(k)
N (v)

)
, (3) 311

where AGG(k) and UPDATE(k) are layer-specific 312

aggregator and update functions. 313

To effectively capture fine-grained structural dis- 314

tinctions critical for steganalysis, we can leverage 315

powerful GNN architectures. For instance, Graph 316

Isomorphism Network (GIN) (Xu et al., 2018) 317

is known for its strong discriminative power, ap- 318

proaching the theoretical limit of the Weisfeiler- 319

Lehman (WL) test for graph isomorphism. A GIN 320
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layer updates node representations using a sum ag-321

gregator and a Multi-Layer Perceptron (MLP):322

a(k)v = (1 + ϵ(k)) · h(k−1)
v +

∑
u∈N (v)

h(k−1)
u . (4)323

This aggregated representation a
(k)
v is then trans-324

formed by a Multi-Layer Perceptron (MLP) spe-325

cific to the k-th layer:326

h(k)
v = MLP(k)

(
a(k)v

)
, (5)327

where ϵ(k) is a learnable parameter or a fixed scalar.328

Through stacking such layers, the GNN produces329

topologically-aware node embeddings hv that re-330

flect both semantic content and structural context331

within the dialogue tree.332

3.4.2 Data Augmentation for Imbalanced333

Learning334

A primary challenge in steganalysis is the inher-335

ent steganographic signal sparsity, where instances336

of steganography (stego) are significantly outnum-337

bered by benign cover messages. This pronounced338

class imbalance biases models towards the majority339

class, hampering their ability to detect the subtle340

cognitive inconsistencies introduced by advanced341

steganographic techniques. To address this, we342

employ data augmentation strategies, specifically343

oversampling techniques, to rebalance the training344

distribution and enhance the model’s exposure to345

minority class characteristics.346

One widely adopted method is the Synthetic Mi-347

nority Over-sampling Technique. SMOTE (Sun348

et al., 2024) operates by generating new synthetic349

minority samples in the feature space. For a given350

minority sample xi, a new sample xnew is created351

by interpolating between xi and one of its randomly352

selected k-nearest minority neighbors, xj :353

xnew = xi + λ · (xj − xi), (6)354

where λ is a random scalar in [0, 1]. By applying355

SMOTE, typically within the learned embedding356

space to ensure semantic coherence of synthetic357

samples, we enrich the training set with diverse yet358

plausible stego instances.359

3.4.3 Cross-Modal Feature Integration360

Detecting steganography in social media requires361

effective aggregation of multi-dimensional weak362

signals, which are often subtly dispersed. Naive363

fusion methods (e.g., concatenation or averaging)364

for features like semantic profiles sv, topological 365

embeddings hv, and global structure summaries gv 366

often fail to resolve these nuanced and potentially 367

conflicting indicators. 368

To address this, our method employs Gated At- 369

tention Unit (GAU) (Hua et al., 2022) for Adaptive 370

Feature Fusion. Given the concatenated multi- 371

modal feature vector for a node v, xconcat,v = 372

[sv;hv;gv], where [·] denotes concatenation, the 373

GAU produces an integrated feature fv: 374

fv = GAU(xconcat,v). (7) 375

The GAU utilizes learnable gating and attention 376

mechanisms to dynamically weigh input features 377

and interactions per instance. This allows it to 378

effectively arbitrate how semantic, local topologi- 379

cal, and global structural information is combined. 380

Adaptive fusion is crucial for the aggregation of 381

multi-dimensional weak signals to identify subtle 382

cognitive inconsistencies indicative of steganogra- 383

phy, when signals are conflicting or dispersed. 384

3.4.4 Optimization for Discriminative 385

Embeddings 386

Despite adaptive fusion, feature embeddings fv of 387

steganographic (stego) and benign messages may 388

remain close, especially when subtle cognitive in- 389

consistencies arise from multi-dimensional weak 390

signals. To enhance separability, we optimize for 391

highly discriminative embeddings using a special- 392

ized loss function. 393

Our approach incorporates Triplet Loss (Schroff 394

et al., 2015), a metric learning technique. It struc- 395

tures the embedding space by pulling same-class 396

samples together and pushing different-class sam- 397

ples apart. For an anchor fa (e.g., cover), a positive 398

fp (e.g., another cover), and a negative fn (e.g., 399

stego), Triplet Loss aims to satisfy: 400

D(fa, fp) + α < D(fa, fn), (8) 401

where D(·, ·) is a distance function and α is a pre- 402

defined margin. The loss is: 403

Ltriplet = max(0, D(fa, fp)−D(fa, fn)+α), (9) 404

where the margin α compels the model to distin- 405

guish subtle steganographic traces. This focus on 406

hard-to-separate pairs improves sensitivity. 407

Triplets are selected via semi-hard negative min- 408

ing. For both discriminative embeddings and accu- 409

rate classification, Ltriplet is combined with Cross- 410

Entropy LCE: 411

Ltotal = LCE + β · Ltriplet, (10) 412
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Table 1: F1 scores of steganalysis methods on the Sina, Tweet, and Reddit datasets using classic steganography

Algorithm HC AC

Dataset Sina Tweet Reddit Sina Tweet Reddit

BPW 1.00 2.59 1.00 4.35 2.63 3.42 2.00 3.27 5.68 6.94 0.45 4.69

SRS=10%

TS-ATT[IWDW’21] 65.78 21.39 68.41 70.89 84.79 80.93 36.46 14.86 64.69 44.02 88.88 72.88
CATS[ICONIP’23] 51.07 15.63 68.44 60.27 75.13 68.18 30.96 21.89 56.09 49.29 86.77 62.22
TGCA[ICASSP’25] 63.16 31.78 70.26 71.17 86.52 81.08 43.08 24.38 65.64 52.20 89.05 73.23
ours 73.24 46.13 73.84 72.16 86.86 82.65 55.23 36.93 67.48 55.35 90.86 75.33

SRS=20%

TS-ATT[IWDW’21] 68.24 47.75 79.21 77.37 90.25 84.20 55.17 24.79 70.34 61.35 91.89 76.05
CATS[ICONIP’23] 65.01 47.91 80.27 74.25 86.16 76.67 53.59 36.06 66.78 58.51 91.87 66.80
TGCA[ICASSP’25] 71.67 54.05 81.06 76.88 90.32 85.13 57.90 41.87 72.69 67.03 91.46 78.81
ours 80.10 60.46 80.84 78.80 90.71 85.30 67.28 45.03 72.28 71.64 92.18 77.66

SRS=30%

TS-ATT[IWDW’21] 75.40 59.07 86.28 81.49 90.91 85.72 55.20 33.28 77.60 66.45 91.51 82.45
CATS[ICONIP’23] 75.95 59.10 86.41 78.43 85.98 79.80 62.09 48.11 78.38 68.52 90.61 78.30
TGCA[ICASSP’25] 77.62 64.35 87.61 82.83 91.13 86.42 60.40 56.11 79.76 68.45 92.30 82.86
ours 83.40 73.23 87.72 83.01 91.24 86.92 75.54 64.54 80.59 72.18 92.56 84.72

SRS=40%

TS-ATT[IWDW’21] 82.89 58.71 90.36 87.08 92.64 88.68 67.33 40.41 84.93 71.72 93.18 84.44
CATS[ICONIP’23] 83.66 72.84 90.85 84.19 89.61 85.35 68.53 62.79 82.65 76.37 93.27 81.38
TGCA[ICASSP’25] 85.92 73.04 91.98 88.53 93.09 88.99 72.44 65.77 85.65 77.09 94.13 86.49
ours 88.80 79.64 91.58 87.18 93.10 89.43 79.72 66.43 86.13 76.94 94.19 87.37

SRS=50%

TS-ATT[IWDW’21] 84.76 63.97 93.01 89.43 92.64 92.07 69.97 44.08 87.88 81.04 95.31 88.15
CATS[ICONIP’23] 87.66 79.28 93.39 88.16 90.77 88.61 81.03 73.77 87.51 80.32 95.22 85.75
TGCA[ICASSP’25] 88.18 77.79 94.12 90.45 93.64 92.51 77.41 73.27 88.67 83.75 96.09 88.98
ours 91.91 84.36 94.30 90.85 94.59 92.93 83.98 76.57 89.23 85.04 96.17 90.76

where β balances the loss components.413

4 Experiments414

4.1 Dataset Construction and Description415

We evaluate GSDFuse on Stego-Sandbox (Yang416

et al., 2022), a public social media linguistic ste-417

ganalysis dataset. It offers dialogue from Twitter,418

Reddit, and Sina Weibo. It features steganogra-419

phy from three algorithms: Huffman Coding (HC),420

Arithmetic Coding (AC), and Adaptive Dynamic421

Grouping (ADG). Steganographic payload is mea-422

sured by average Bits Per Word (BPW). Stego-423

Sandbox provides platform-specific sub-datasets,424

each split into training, validation, and test sets425

at approximately a 7:1:1 ratio. A key feature is426

its simulation of varying steganographic ratios via427

Sparsity Ratios of Stegos (SRS), ranging from 10%428

to 50%. SRS indicates the percentage of eligible429

texts that are steganographic. Detailed statistics430

can be Appendix A.1.431

4.2 Experimental Setup432

Experiments ran on 10 NVIDIA L20 GPUs, taking433

about 2 days. Each individual model was trained434

for a maximum of 200 epochs. An early stopping435

mechanism, with a patience of 20 epochs based436

on the F1-score on the validation set, was em-437

ployed to select the optimal model checkpoint. Fig-438

ure 3 shows how average training time per epoch439

varies with SRS across the datasets. We use the F1-440

score as our metric, ideal for imbalanced detection441

tasks with sparse stego data. Model performance442

10 20 30 40 50

SRS (%)

160

180

200

220

240

260 Reddit
Tweet
Sina

Figure 3: Average training time (s) per epoch as a func-
tion of SRS for the Reddit, Tweet, and Sina datasets.

was tested with Sparsity Ratios of Stegos (SRS) 443

from 10% to 50%. Key model components include 444

SMOTE over-sampling during training. GAU for 445

adaptive feature fusion, GIN for global graph struc- 446

ture capture, and Triplet Loss as an auxiliary loss 447

for more discriminative embeddings. Mini-batch 448

subgraphs were sampled via a random walk strat- 449

egy (Zeng et al., 2020). The best model checkpoint 450

was chosen by F1-score on a validation set. All 451

reported F1-scores are averages from 3 runs. Full 452

component-specific hyperparameter details for all 453

components are in Appendix B. 454

4.3 Baseline Methods 455

We compared our proposed method with four rep- 456

resentative linguistic steganalysis baselines: TS- 457

ATT (Zou et al., 2020), LSTSN (Yang et al., 2022), 458

CATS (Pang et al., 2023), and TGCA (Lu et al., 459

2025). TS-ATT uses LSTM and attention for lo- 460
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Table 2: Additive Component Analysis for LSTSN Baseline: F1 Scores (%) and Performance Deltas

Algorithm HC AC

Dataset Sina Tweet Reddit Sina Tweet Reddit
BPW 3.23 4.35 4.17 4.52 6.94 5.82

LSTSN[TIFS’22] 34.27 70.84 77.83 9.99 50.28 58.79
+GAU 41.42 (↑7.15) 71.36 (↑0.52) 79.16 (↑1.33) 12.03 (↑2.04) 50.77 (↑0.49) 63.02 (↑4.23)
+GIN 35.23 (↑0.96) 71.74 (↑0.90) 77.74 13.73 (↑3.74) 50.11 60.89 (↑2.10)
+Triplet Loss 45.38 (↑11.11) 71.29 (↑0.45) 78.03 (↑0.20) 17.13 (↑7.14) 52.84 (↑2.56) 61.80 (↑3.01)

SRS=10%

+SMOTE 32.65 70.40 79.13 (↑1.30) 10.72 (↑0.73) 54.49 (↑4.21) 58.12
LSTSN[TIFS’22] 74.24 88.95 88.68 53.63 81.39 82.16
+GAU 80.45 (↑6.21) 90.90 (↑1.95) 90.83 (↑2.15) 53.70 (↑0.07) 83.20 (↑1.81) 83.65 (↑1.49)
+GIN 77.67 (↑3.43) 89.71 (↑0.76) 89.31 (↑0.63) 58.59 (↑4.96) 82.27 (↑0.88) 83.47 (↑1.31)
+Triplet Loss 71.81 88.54 88.89 (↑0.21) 60.01 (↑6.38) 81.31 83.07 (↑0.91)

SRS=50%

+SMOTE 74.90 (↑0.66) 89.41 (↑0.46) 89.40 (↑0.72) 55.74 (↑2.11) 82.71 (↑1.32) 82.40 (↑0.24)

cally discordant textual features. LSTSN integrates461

linguistic features with social connection context;462

we adopted its best configuration. CATS captures463

graph-based social connections and employs an464

interaction module for deep feature integration.465

TGCA enhances GNN-derived topological features466

using Transformers to expand receptive fields and467

cross-attention for improved text-structure fusion.468

4.4 Experimental Results and Analysis469

4.4.1 Steganalysis of Classic Steganography470

Table 1 presents the F1 scores of various steganal-471

ysis methods against classic steganographic al-472

gorithms (HC and AC) across different datasets473

and Steganographic Ratio of Sparsity (SRS) lev-474

els. From these results, we can get the following475

conclusions. Firstly, isolated text models like TS-476

ATT (Zou et al., 2020) primarily address statistical477

deviations within single messages. Their consis-478

tent underperformance highlights an inability to479

aggregate multi-dimensional signals from broader480

conversational contexts, thus failing to detect sub-481

tle cognitive inconsistencies crucial in social media482

dialogues. Secondly, context-aware models such483

as CATS (Pang et al., 2023) and TGCA (Lu et al.,484

2025), while leveraging graph structures for im-485

provement, exhibit inconsistent performance. This486

suggests limitations in the robust aggregation of all487

available multi-dimensional weak signals (textual488

and structural), hindering their consistent identi-489

fication of nuanced cognitive inconsistencies that490

demand a holistic understanding of dialogue inter-491

play. Thirdly, our proposed GSDFuse consistently492

achieves superior F1 scores. Its design synergis-493

tically integrates hierarchical features with global494

structural contextualization, enabling effective ag-495

gregation of multi-dimensional weak signals. Fur-496

thermore, its adaptive feature fusion and discrimi- 497

native embedding optimization are pivotal for un- 498

veiling subtle cognitive inconsistencies, even under 499

high sparsity or when steganography achieves sig- 500

nificant statistical and perceptual imperceptibility. 501

This approach ensures robust detection of complex, 502

context-dependent steganographic patterns. 503

4.4.2 Additive Component Analysis 504

Table 2 evaluates the performance impact of indi- 505

vidually adding GSDFuse’s core components to 506

the LSTSN baseline. From these results, we can 507

get the following conclusion. Adding individual 508

components such as GAU (feature fusion), GIN 509

(structural features), and Triplet Loss (discrimina- 510

tive embeddings) generally improves the LSTSN 511

baseline performance. GAU and GIN consistently 512

enhance results, highlighting the benefits of ad- 513

vanced feature integration and contextual infor- 514

mation derived from dialogue structure. Triplet 515

Loss demonstrates particular effectiveness at lower 516

steganographic sparsity (SRS=10%), aiding in the 517

separation of subtle signals. SMOTE (data augmen- 518

tation) shows more varied impact but contributes 519

positively in several scenarios. These observations 520

affirm the individual contribution of each compo- 521

nent designed for GSDFuse in tackling distinct 522

facets of the steganalysis challenge. 523

4.4.3 Steganalysis of Provably Secure 524

Steganography 525

From the results in Table 3, which details perfor- 526

mance against the provably secure ADG stegano- 527

graphic algorithm, we can get the following con- 528

clusion. Detecting ADG steganography presents 529

a significantly greater challenge for all evaluated 530

methods, as evidenced by generally lower F1 scores 531

compared to those achieved against classic algo- 532
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Table 3: F1 scores (%) on the Sina, Tweet, and Reddit datasets under ADG steganography.

Method TS-ATT[IWDW’21] LSTSN[TIFS’22] GSDFuse

Dataset Sina Reddit Tweet Sina Reddit Tweet Sina Reddit Tweet

SRS (%)

10 2.25 4.70 7.85 12.61 8.22 14.07 13.46 13.85 17.85
20 2.62 13.74 16.58 18.62 20.10 31.76 20.53 36.41 33.43
30 6.21 22.59 27.81 22.33 41.82 45.11 49.13 47.04 48.22
40 9.84 31.39 41.31 39.09 51.69 56.29 60.36 59.47 58.12
50 11.14 41.01 50.85 43.61 54.52 67.41 55.80 67.37 68.31

Table 4: F1 scores (%) for the ablation study of GSDFuse on the Sina, Tweet, and Reddit datasets with varying SRS
levels under classic steganography.

Algorithm HC AC

Dataset Sina Tweet Reddit Sina Tweet Reddit

BPW 1.00 2.59 1.00 4.35 2.63 3.42 2.00 3.27 5.68 6.94 0.45 4.69

All Components 73.24 46.13 73.84 72.16 86.86 82.65 55.23 36.93 67.48 55.35 90.86 75.33
w/o Triplet Loss 72.28 36.20 73.59 70.06 86.61 81.75 52.68 30.62 66.91 52.18 90.69 74.43
w/o SMOTE 68.11 38.83 72.98 72.04 86.60 82.23 47.42 22.54 66.32 50.69 90.36 72.89
w/o GIN 71.82 36.53 72.67 70.28 86.78 82.17 52.32 19.52 65.90 54.00 89.81 74.73

SRS=10%

w/o GAU 73.22 37.42 73.29 70.44 86.11 81.20 54.98 25.39 65.71 51.14 90.65 74.00

All Components 91.91 84.36 94.30 90.85 94.59 92.93 83.98 76.57 89.23 85.04 96.17 90.76
w/o Triplet Loss 91.25 84.05 92.12 90.78 94.26 92.58 82.28 75.66 88.96 84.37 95.41 90.16
w/o SMOTE 91.66 84.10 94.26 90.33 93.69 92.91 82.30 67.30 89.15 83.04 95.91 89.12
w/o GIN 91.70 83.89 94.04 89.58 93.69 92.28 83.29 67.51 88.89 79.53 95.61 90.09

SRS=50%

w/o GAU 90.87 81.04 93.71 88.51 93.97 92.38 82.51 71.61 88.63 83.09 95.50 89.11

rithms. This is expected, given ADG’s design aims533

for stronger security guarantees. However, despite534

this increased difficulty, our proposed GSDFuse535

model consistently and substantially outperforms536

both TS-ATT and LSTSN across all datasets (Sina,537

Reddit, Tweet) and at every SRS level from 10% to538

50%. This consistent superiority, even when faced539

with a theoretically more robust steganographic540

technique, underscores GSDFuse’s enhanced ca-541

pability to effectively aggregate multi-dimensional542

weak signals and identify subtle cognitive incon-543

sistencies. While the absolute performance is nat-544

urally impacted by ADG’s sophistication, GSD-545

Fuse’s robust relative performance demonstrates546

its advanced capacity to discern elusive stegano-547

graphic traces that other methods miss.548

4.5 Ablation Studies549

Table 4 presents of GSDFuse on the Sina, Tweet,550

and Reddit datasets with varying SRS(10 % and551

50%) under classic steganography. From these re-552

sults, we can get the following conclusion. Remov-553

ing any single component, Triplet Loss, SMOTE,554

GIN, or GAU, degrades F1 scores across all555

datasets compared to the complete GSDFuse model.556

This underscores that each module, whether for op-557

timizing discriminative embeddings (Triplet Loss),558

addressing data imbalance (SMOTE), capturing559

structural graph features (GIN), or enabling adap- 560

tive feature fusion (GAU), contributes positively 561

and is integral to achieving the overall robust per- 562

formance of GSDFuse. 563

5 Conclusion 564

This paper addresses the challenges of identify- 565

ing subtle cognitive inconsistencies and achieving 566

aggregation of multi-dimensional weak signals in 567

social media steganalysis. We proposed GSDFuse, 568

a novel method designed to tackle these issues. GS- 569

DFuse integrates hierarchical multi-modal feature 570

representation, employs data augmentation to coun- 571

teract signal sparsity, and utilizes adaptive feature 572

fusion to intelligently combine diverse textual and 573

structural cues. Crucially, it optimizes for highly 574

discriminative embeddings through a composite 575

loss strategy, enhancing sensitivity to faint stegano- 576

graphic traces from both authentic and augmented 577

data. Our extensive experiments demonstrate that 578

GSDFuse achieves SOTA, significantly advancing 579

the capability to detect steganography within com- 580

plex conversational environments. Future work 581

could explore extending GSDFuse to other types of 582

covert communication or investigating its resilience 583

against adaptive steganographic adversaries. 584
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Limitations585

Despite GSDFuse’s strong performance, its evalua-586

tion is primarily constrained by the datasets used.587

The Stego-Sandbox dataset, for instance, provides588

only token ID sequences, limiting nuanced seman-589

tic understanding by precluding raw text analysis590

with advanced language models. Furthermore, cur-591

rent public benchmarks generally lack comprehen-592

sive user-specific behavioral histories, hindering593

the modeling of individual communication patterns594

crucial for distinguishing sophisticated steganogra-595

phy from benign idiosyncrasies. Broader general-596

izability to emerging platforms, truly multimodal597

content, diverse cross-lingual scenarios, and low-598

resource environments also necessitates future eval-599

uations on more varied and feature-rich datasets.600

Addressing these data-centric limitations is key for601

more robust steganalysis assessments.602
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A Dataset Details733

This section delineates the structure and statisti-734

cal properties of the Stego-Sandbox dataset (Yang735

et al., 2022) as employed in our research, offering736

a thorough account to support the main paper’s737

findings.738

A.1 Dataset Construction and Description 739

Based on the methodology detailed in Yang et al. 740

(2022), the construction of the Stego-Sandbox 741

dataset, designed to simulate real-world social net- 742

work environments for linguistic steganalysis, can 743

be outlined through several key stages. The overall 744

procedure involved the following steps: 745

Firstly, the process began with data acquisition 746

and preprocessing. Raw textual data along with 747

their relational information, primarily in the form 748

of comments and replies indicating inter-text con- 749

nections, were gathered from three prominent so- 750

cial media platforms: Twitter, Reddit, and Sina 751

Weibo. Following collection, these raw data un- 752

derwent a standard preprocessing regimen. This 753

included essential denoising tasks such as the re- 754

moval of HTTP links and hashtags, and the con- 755

version of emojis into their corresponding tex- 756

tual descriptions, thereby preparing clean corpora 757

for subsequent stages. The connections between 758

texts, established through comments and replies, 759

were meticulously recorded to preserve the network 760

structure. 761

Secondly, the subsequent stage was dedicated 762

to the generation of steganographic texts. To en- 763

sure the steganographic content was consistent 764

with genuine social network scenarios, stegano- 765

graphic models were initially trained using the pre- 766

processed corpora derived from each platform. Uti- 767

lizing these trained models, steganographic texts 768

were then generated by employing three state-of- 769

the-art generative linguistic steganography algo- 770

rithms: HC (Yang et al., 2022), AC (Ziegler et al., 771

2019), and ADG (Zhang et al., 2021). These al- 772

gorithms were specifically chosen for their pro- 773

ficiency in minimizing the discernible statistical 774

differences between steganographic texts and their 775

benign counterparts. For the HC and AC algo- 776

rithms, texts were also generated under a range of 777

different embedding payloads, typically measured 778

in BPW. 779

Thirdly, the next critical stage involved simulat- 780

ing the transmission of these steganographic texts 781

within a modeled social network environment. This 782

simulation was operationalized by randomly substi- 783

tuting a predetermined portion of the preprocessed, 784

benign texts with the previously generated stegano- 785

graphic texts. A key constraint in this replace- 786

ment process was that only texts which had not 787

yet received any comments or replies were consid- 788

ered eligible for substitution, to reflect a scenario 789
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where the steganographic message had not yet been790

"delivered" or observed through interaction. Cru-791

cially, the original connection relationships of the792

replaced texts were preserved within the dataset’s793

graph structure. To account for varying densities of794

concealed information that might be encountered795

in real-world networks, this substitution was per-796

formed at several distinct SRS, ranging from 10%797

to 50% in 10% increments.798

Finally, upon completion of these generation and799

simulation processes, the Stego-Sandbox dataset800

was structured and partitioned for experimental use.801

It was organized into three sub-datasets correspond-802

ing to Twitter, Reddit, and Sina Weibo, with each803

containing a specific number of total texts as de-804

tailed in the original paper (e.g., 15,639 for Twitter,805

19,700 for Reddit, and 19,998 for Weibo). Each of806

these platform-specific sub-datasets was then ran-807

domly divided into training (comprising approxi-808

mately 75% of the data), validation (approximately809

12.5%), and testing (approximately 12.5%) sets.810

An important characteristic of this partitioning was811

that only the connection information between texts812

within the designated training set was made ac-813

cessible during the model training phase, thereby814

simulating a realistic learning environment where815

future interactions are unknown.816

Concrete information about Stego-Sandbox can817

be found in Table 5 of the original paper (Yang818

et al., 2022). The authors use average hidden BPW819

to denote the embedding payload.820

A.2 Introduction to Steganographic821

Algorithms822

HC As implemented for Stego-Sandbox, the HC823

steganographic method draws from approaches like824

RNN-Stega (Yang et al., 2022) and is specifically825

based on Huffman coding. This technique adapts826

Huffman coding for textual data by conditioning on827

language models to embed secret information. The828

primary objective is to minimize statistical disrup-829

tion, achieved by aligning the encoding of secret830

bits with the conditional probabilities of words, as831

detailed in (Yang et al., 2022).832

AC In the context of its use for Stego-Sandbox,833

AC based steganography, such as described in meth-834

ods like Neural Linguistic Steganography (Ziegler835

et al., 2019), encodes secret messages by mapping836

them to an interval based on the cumulative condi-837

tional probabilities derived from a language model.838

This allows for highly efficient embedding that can839

Table 5: CONCRETE ITEMS ABOUT STEGO-SANDBOX

A. Items about the Steganographic Text Sets.

Steganalysis Payload (BPW) Average Lengths
Twitter Reddit Weibo Twitter Reddit Weibo

HC

1.00 1.00 1.00 5.88 10.37 7.81
1.90 1.82 1.86 7.55 13.78 8.16
2.72 2.63 2.59 10.13 15.31 8.40
3.57 3.42 3.23 12.50 16.75 8.78
4.35 4.17 3.82 13.77 17.55 9.03

AC

0.37 0.45 0.24 6.69 11.12 6.10
1.39 1.46 1.17 6.84 13.54 7.62
2.40 2.38 2.00 9.11 15.03 8.17
3.23 3.23 2.66 11.32 16.64 8.48
4.18 4.00 3.27 12.96 17.45 8.81
4.96 4.69 3.76 14.26 17.60 9.25
5.68 5.30 4.20 14.98 17.48 9.57
6.33 5.82 4.52 15.19 17.32 9.67
6.94 6.28 4.88 15.37 16.83 9.84
7.54 6.71 5.09 15.00 16.48 10.04

ADG 6.93 8.91 4.13 12.33 15.91 9.93

B. Items about Processed Data
Platform Number of texts Number of connections
Twitter 15,639 11,880
Reddit 19,700 9,996
Weibo 19,998 14,815

closely approximate the entropy of the language, 840

thereby striving for minimal statistical detectabil- 841

ity (Yang et al., 2022). 842

ADG As employed for the Stego-Sandbox 843

dataset, ADG is a provably secure generative 844

linguistic steganography technique (Zhang et al., 845

2021). It operates by dynamically partitioning the 846

conditional probability distribution of the next to- 847

ken into several groups or ’buckets’ such that the 848

sum of probabilities in each bucket is as close to 849

equal as possible, which has been mathematically 850

shown to achieve a theoretical minimum in statisti- 851

cal difference between cover and stego texts (Yang 852

et al., 2022). 853

B Experimental Setup and 854

Hyperparameter Details 855

B.1 Software Environment 856

Our experiments were conducted utilizing a hard- 857

ware setup featuring ten NVIDIA L20 (48GB) 858

GPUs. The software environment was based on 859

Python 3.8.20, with PyTorch 2.4.1 serving as the 860

core deep learning method and PyTorch Geometric 861

(PyG) 2.3.1 for graph neural network functional- 862

ities. GPU computations were accelerated using 863

CUDA 12.1. The comprehensive set of experi- 864

ments involving multiple runs and configurations 865

spanned approximately two days. 866

11



B.2 Hyperparameter Configuration867

B.2.1 General Training Parameters868

The key general parameters used throughout the869

training process are detailed in Table 6. To prevent870

overfitting and optimize training duration, an early871

stopping mechanism was also employed. Specif-872

ically, training was halted if the F1-score on the873

validation set did not show any improvement for874

20 consecutive epochs.875

Table 6: General Training Parameters
Parameter Value
Optimizer Adam
Initial Learning Rate 0.01
Weight Decay 0.0
SMOTE Batch Size 64
Total Training Epochs 200
General Dropout Rate 0.2
Random Seed 42

876

B.2.2 Model Architecture and Component877

Parameters878

GNN Core The model’s core GNN was defined879

with specific dimensions and operational character-880

istics. For feature representation, GNN intermedi-881

ate layers utilized a feature dimension of 192, while882

sentence embeddings (when derived using the de-883

fault CNN method) served as a 384-dimensional884

input to the GNN. The GNN architecture itself fol-885

lowed a ‘1-0-1-0’ pattern, effectively comprising886

two GNN layers performing graph convolutions.887

For attention mechanisms within GAT-like layers,888

8 attention heads were employed, and ReLU was889

used as the internal activation function.890

Subgraph Sampling Subgraph sampling for891

training, based on the GraphSAINT methodology,892

was configured to use a random walk-based sam-893

pler (‘rw’). This process initiated from 1000 root894

nodes per sampling iteration, with a random walk895

depth of 2. The target node budget per subgraph,896

dictating the approximate subgraph size, was set to897

2000, and a sample coverage of 50 was maintained.898

SMOTE To address class imbalance, SMOTE899

could be utilized. When active, SMOTE was con-900

figured with 5 k-nearest neighbors and a random901

state seed of 42. It generated 64 synthetic sam-902

ples per mini-batch, and the loss contribution from903

these SMOTE-generated samples was weighted by904

a factor of 0.5.905

GAU GAU included setting the internal query906

and key dimension ratio to input feature dimen-907

sion at 1/4 and an MLP expansion factor of908

2. Laplacian Attention was activated, and other 909

GAU hyperparameters (e.g., number of attention 910

heads, dropout) utilized default values from the 911

flash_pytorch.GAU library. 912

GIN GIN was configured with 2 GIN convolu- 913

tion layers, an internal dropout rate of 0.1 per layer, 914

an enabled learnable epsilon parameter, and used 915

sum aggregation. 916

Triplet Loss For experiments employing Triplet 917

Loss, the margin α was set to 1.0, using Euclidean 918

distance (p = 2). The default sample mining 919

strategy involved no specific hard sample mining or 920

a semi-hard strategy, though hard negative/positive 921

mining could be enabled via command-line 922

arguments (–use_hard_mining=True and – 923

mining_strategy=‘hard’). The weighting factor 924

for the Triplet Loss component in the total loss 925

computation λtriplet was 0.1. 926

B.3 Other Implementation Details 927

B.3.1 Loss Function Composition 928

The total loss function, Ltotal, is formulated as a 929

weighted sum of three distinct components.The 930

precise composition is given by the equation below: 931

Ltotal = LCE+λSMOTE ·LSMOTE_CE+λtriplet ·Ltriplet 932

In this formulation, LCE represents the standard 933

classification loss, which is typically the Cross- 934

Entropy loss. The term LSMOTE_CE denotes the 935

classification loss computed specifically on syn- 936

thetic samples generated by the SMOTE, and this 937

component is weighted by λSMOTE, set to 0.5. Fi- 938

nally, Ltriplet signifies the Triplet Loss, incorporated 939

to enhance the learning of discriminative feature 940

embeddings, with its corresponding weighting fac- 941

tor λtriplet set to 0.1. 942
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