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Abstract

Catastrophic forgetting remains a formidable001
obstacle to building an omniscient model in002
large language models (LLMs). Despite the003
pioneering research on task-level forgetting in004
LLM fine-tuning, there is scant focus on for-005
getting during pre-training. We systematically006
explored the existence and measurement of for-007
getting in pre-training, questioning traditional008
metrics such as perplexity (PPL) and introduc-009
ing new metrics to better detect entity memory010
retention. Based on our revised assessment011
of forgetting metrics, we explored low-cost,012
straightforward methods to mitigate forgetting013
during the pre-training phase. In addition, we014
carefully analyzed the learning curves, offering015
insights into the dynamics of forgetting. Exten-016
sive evaluations and analyses on forgetting of017
pre-training could facilitate future research on018
LLMs.019

1 Introduction020

Catastrophic forgetting (McCloskey and Cohen,021

1989; Ratcliff, 1990) poses a significant challenge022

to the development of models Traditionally, the023

challenge of catastrophic forgetting in neural net-024

works is especially pronounced when models are025

tasked with retaining knowledge across diverse026

datasets (Sun et al., 2020; Jin et al., 2021; de Mas-027

son D’Autume et al., 2019; Wang et al., 2020; Qin028

et al., 2022). This issue arises due to the shift in in-029

put distribution across different tasks, which leads030

to the model’s inability to remember past knowl-031

edge and capability effectively.032

Although pioneer efforts have explored the for-033

getting issue in LLM fine-tuning, which primar-034

ily addresses task-specific forgetting, there is a035

lack of research on finer-grained forgetting in pre-036

training. Luo et al. (2023), Wang et al. (2023b),037

and Wu et al. (2024) focused on forgetting in fine-038

tuning by measuring the performance of new tasks039

with continual tuning. Other efforts (Tirumala040

et al., 2022; Biderman et al., 2023a) studied sample- 041

level memorization, where some experiments im- 042

ply the existence of forgetting in LLM pre-training. 043

Nonetheless, these studies have devoted limited at- 044

tention to systematically exploring and quantifying 045

the forgetting in pre-training. 046

Forgetting in pre-training is a critical issue that 047

must be addressed. It is prevalent among current 048

LLMs and significantly affects their performance. 049

Usually, models are believed to acquire various fac- 050

tual knowledge during the pre-training phase, and 051

during the fine-tuning phase, they enhance their 052

task-related capabilities (Chang et al., 2024). In- 053

tuitively, LLMs may give unsatisfactory replies 054

to fact-relevant queries, even when the necessary 055

information was present in the pre-training data. 056

This indicates forgetting. Despite being easily no- 057

ticed, measuring this forgetting in pre-training is 058

very challenging. In contrast to works studying 059

fine-tuning that measure with specific task-related 060

metrics (e.g., QA accuracy), the pre-training data 061

is too diverse, inherently consisting of dozens of 062

tasks, making it almost impossible to use a specific 063

ability-related metric to reflect forgetting. More- 064

over, there’s almost no metrics designed for for- 065

getting. General metrics such as perplexity (PPL) 066

are also shown to be insensitive in measuring for- 067

getting in pre-training (Gupta et al., 2023). This 068

raises a pertinent question: (1) How to correctly 069

recognize and quantify forgetting in pre-training? 070

After correctly understanding and assessing the 071

phenomenon of forgetting, which we address by 072

introducing innovative metrics, we then shift our 073

focus to exploring lightweight methods aimed at 074

mitigating this issue. Inspired by the proven suc- 075

cess of memory replay methods in combating for- 076

getting during dataset shifts, as shown in (de Mas- 077

son D’Autume et al., 2019; Wang et al., 2020), we 078

delve into the inquiry: (2) Can these methods also 079

mitigate forgetting during the pre-training phase? 080

Then, following the above investigation, we pro- 081
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ceed to examine the interplay between memory082

replay and the learning dynamics. That is, we083

emphasis on elucidating the models’ forgetting084

curves. Inspired by the human learning premise085

that a higher review intensity can decelerate the086

forgetting rate (Loftus, 1985), we aim to observe087

whether the aspects of knowledge replay and learn-088

ing intensity in models exhibit similar phenomena089

on the learning curve as those inspired by human090

learning processes. This observation could, in turn,091

guide the design of memory replay methods. With092

this in mind, we pose the inquiries: (3) Do models093

display forgetting patterns akin to human learning?094

Can these patterns guide the design of memory re-095

play to further mitigate forgetting?096

To address the above questions, we conducted a097

series of explorations that progressively and deeply098

advance in logic. We first magnify the forgetting099

issue by building a didactic scenario, and scruti-100

nize the limitation of conventional metrics (e.g.,101

PPL) in identifying forgetting. Next, we focus102

on the recall ability of entity-related informa-103

tion, one of the most explicit and significant indi-104

cator of forgetting during pre-training. We propose105

four novel entity-related metrics and experimen-106

tally confirm the existence of forgetting during pre-107

training. Within a standard pre-training setting,108

we present several simple and lightweight memory109

replay strategies, and show that simple and cost-110

effective replay strategies can effectively mitigate111

forgetting. Finally, drawing an analogy to the hu-112

man memory curve, we examine how the metrics113

of recently learned samples evolve over the course114

of further learning. We then explore the impact of115

short-term, high-frequency learning on the model’s116

memory retention, shedding light on future pre-117

training designs aimed at mitigating forgetting.118

Our main contributions are: (1) We systemati-119

cally explore and quantify the phenomenon of pre-120

training forgetting through new entity-focused met-121

rics. (2) We examine the effectiveness of memory122

replay in reducing pre-training forgetting. (3) We123

further examine how short-term, high-frequency124

learning affects the forgetting curve.125

2 Related Work126

Catastrophic Forgetting in Language Models.127

Neural networks often experience catastrophic128

forgetting when changing data distribution (Mc-129

Closkey and Cohen, 1989; Ratcliff, 1990). Various130

strategies have been proposed, such as simultane-131

ous training of new and old tasks (Sun et al., 2020), 132

incremental lifelong pre-training (Jin et al., 2021), 133

and the incorporation of episodic memory (de Mas- 134

son D’Autume et al., 2019). Other approaches in- 135

clude meta-lifelong frameworks (Wang et al., 2020) 136

and function-preserved model expansion (Qin et al., 137

2022). However, most of these studies do not ex- 138

plore single data distribution scenarios. Our study 139

uniquely focuses the pre-training phase, offering 140

fresh insights into forgetting. 141

Example Forgetting and Forgetting During Pre- 142

training. Despite significant research on forget- 143

ting, there is limited investigation within the con- 144

text of a single task. Toneva et al. (2018) first de- 145

fined example forgetting. Tirumala et al. (2022) 146

explored forgetting dynamics in LLMs. Biderman 147

et al. (2023a) studied model behavior forecast- 148

ing, while Gupta et al. (2023) examined warm- 149

up strategies in continual pre-training. However, 150

a detailed formalization and quantification of for- 151

getting during pre-training using metrics has been 152

lacking—this is where our research steps in. 153

3 Existence of Pre-training Forgetting 154

3.1 Intuition on Pre-training Forgetting 155

First, to test if there is a forgetting trend, we explore 156

whether, after pre-trained, an LLM exhibits a pat- 157

tern of decreased performance on earlier seen sam- 158

ples. To test this, a direct approach is: after train- 159

ing, we obtain a checkpoint and then use this exact 160

checkpoint to test on samples in the sequence they 161

were encountered during training. This helps us 162

to assess the model’s retention of information over 163

time. We aim to assess if existing metrics like PPL 164

can monitor trends throughout training. 165

3.1.1 Setup and PPL 166

We uniformly sampled a subset with 4.9e8 tokens 167

from SlimPajama (Soboleva et al., 2023). Then 168

we conducted standard and memory-replay pre- 169

training. To reflect the model’s training progression, 170

a test set was created by sequentially segmenting 171

the training data according to the training steps and 172

uniformly sampling 1/100 of each segment. PPL 173

is plotted against the number of training tokens 174

processed, with the test set’s token count scaled to 175

match the model’s exposure. More details are in 176

Appendix C.1. 177

Results: The result is shown in Figure 1. This indi- 178

cate that: (1) The model shows stable performance 179

across early and late training data, with compara- 180
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Figure 1: Perplexity (PPL) of the GPT-2 XL model on
uniformly sampled 1/100 segments of the training data.
Considering forgetting does help the performance.

ble PPL, challenging the hypothesis of higher early181

training perplexity. This suggests either that forget-182

ting is not occurring, contrary to our understanding,183

or that forgetting exists but is not captured by PPL.184

(2) Model with replay during pre-training shows185

better performance, with a notable drop in average186

PPL (280.66 with replay vs. 303.63 without), indi-187

rectly confirming the existence of forgetting through188

performance gains from repeated learning.189

3.2 The Failure of Traditional Metrics190

In previous experiments, we realized that detecting191

forgetting was challenging in a single pre-training192

dataset due to the uniformity of the data. To tackle193

this, we build an A+B dual-dataset scenario, aim-194

ing for datasets A and B to be similar yet slightly195

different to magnify forgetting effects. With dataset196

A being much smaller than B, we aim to avoid over-197

fitting on it. This emulates the scenario in an actual198

single pre-training dataset where A represents a199

little portion of the early data at risk of being for-200

gotten as training advances with an ever-growing201

pool of data. Beyond practical convenience, this is202

also a common setting for continuing pre-training.203

Setup: We uniformly sample a subset from dataset204

A as a test set and then train on dataset B, eval-205

uating the model to observe forgetting of dataset206

A. We conduct two experiments, employing the207

OpenWebText (Aaron Gokaslan*, 2019) dataset208

(∼8B tokens) for dataset A in one experiment, and209

a uniformly sampled subset from the Pile (Gao210

et al., 2020) (∼ 13B) for the other. Dataset B211

is constituted by a uniformly sampled subset (∼212

49 B) tokens from SlimPajama. More details are213

in Appendix C.2. Our investigation into forget-214

ting in pre-training, while pioneering, is bounded215

by computational limitations. The requirements216

in the following sections, estimated at ∼10,000217

GPU hours on 8 NVIDIA A100 GPUs (40 GiB 218

VRAM), present a significant challenge. This in- 219

dicates that utilizing a 1.5B model to complete all 220

subsequent experiments would require 30,000 GPU 221

hours (∼150 days). Such computational costs are 222

prohibitive for a research exploration. To allocate 223

more computational resources towards exploration 224

of phenomena across dozens of experiments and to 225

gain a deeper understanding, we decided to conduct 226

all subsequent experiments on GPT-2. 227
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Figure 2: (a), (b): PPL of the eval of dataset A in rela-
tion to the number of trained tokens. A is a subset of
OpenWebText(a) or the Pile(b). The fluctuating PPL
is not a good indicator of forgetting. (c): M(f) of the
eval for the Pile. At the A-to-B dataset transition, M(f)
shows negligible changes, where we capture the subtle
signal of forgetting, and then consistently increases.
Results of PPL: The results in Figure 2 (a)(b) re- 228

veal an unexpected trend: contrary to expectations 229

of increasing PPL for dataset A as a sign of forget- 230

ting during dataset B’s training, the PPL for dataset 231

A actually decreased in both setups. Even during 232

the transition between datasets, PPL showed mini- 233

mal signs of forgetting. 234

3.2.1 M(f) Metric 235

Recognizing the shortcomings of PPL in accurately 236

measuring forgetting, we turned to the M(f) metric 237

introduced by Tirumala et al. (2022) for evaluation. 238

The detailed definition of M(f) is: 239

Definition 1 Let V denotes the vocabulary size. 240

The set C consists of contexts (s, y), s is an in- 241

complete text and y is the correct token index. 242

f : S → RV is a language model. A context 243

c is memorized if f(s)’s maximum value corre- 244

sponds to y, i.e., argmaxw∈RV f(s) = y. We 245

assess the fraction of contexts memorized using 246
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M(f) =
∑

(s,y)∈C 1{argmax(f(s))=y}
|C| .247

Results of M(f): In this experiment, we contin-248

ued to employ the A (the Pile) + B (SlimPajama)249

setup and evaluated the model throughout the en-250

tire training process. We also continue to use a251

uniformly sampled 1/1000 part of A as the test set.252

We observed that at the transition from dataset A to253

dataset B, M(f) exhibited subtle fluctuations. Sub-254

sequently, as training progressed on B, the test set’s255

performance, demonstrated a continuous improve-256

ment. The results are given in Figure 2.257

It is plausible to hypothesize that PPL’s proba-258

bilistic averaging inherent may not accurately re-259

flect forgetting for common tokens due to their high260

prediction accuracy, potentially masking informa-261

tion loss for less frequent elements. In contrast, the262

M(f) metric’s binary evaluation is more sensitive263

to memory errors, offering a clearer view of the264

model’s retention of critical information, essential265

for understanding catastrophic forgetting.266

3.2.2 Limitation Leads to Underestimate267

Certainly, it is important to acknowledge that both268

metrics have limitations in capturing forgetting.269

Our observations indicate that throughout the train-270

ing process, after the model completed training on271

dataset A and transitions to dataset B, both metrics272

show a continuous improvement, with subtle signs273

of forgetting at the transition point. This suggests274

a plausible hypothesis: The metrics’ inability to275

account for the token difficulty lead to an underes-276

timation of forgetting, as they are dominated by277

features that are inherently resistant to forget-278

ting, such as common tokens and simple, everyday279

text. These features may not exhibit significant280

prediction errors when the dataset changes, thereby281

obscuring the true extent of the model’s forgetting.282

Takeaway 1: PPL and M(f) metrics po-
tentially mask true forgetting, as their bias
towards easy-to-remember elements can un-
derestimate the model’s memory decline
across dataset shifts.283

4 New Entity-related Metrics for284

Measuring Pre-training Forgetting285

4.1 How to Understand Pre-training286

Forgetting287

Building upon the findings presented, a pertinent288

inquiry emerges: Which segments of the dataset289

should be scrutinized to gain a comprehensive un-290

derstanding of the forgetting phenomenon? 291

We argue that during pre-training, the focus 292

shouldbe on the forgetting associated with entity-293

related information. We posit that the capabilities 294

imparted to a model by a dataset can be broadly cat- 295

egorized into two components: information related 296

to entities and task-specific competencies. (1) As 297

demonstrated by Sorscher et al. (2022), the power 298

law scaling of error shows that many training ex- 299

amples are redundant, and in data-rich scenarios, 300

pruning should focus on retaining challenging ex- 301

amples. Entity-related information, which is less 302

frequent (Penedo et al., 2023), is crucial for users’ 303

perception of forgetting in LLMs, as it’s harder to 304

determine if the loss of abstract capabilities is due 305

to model limitations or forgetting, making entity 306

information key in pre-training. (2) We also con- 307

sidered the approach of Supervised Fine-Tuning 308

(SFT), which involves training on instructional data. 309

This phase of training enhances the model’s capa- 310

bilities for downstream tasks, and we view it as 311

a stage where the emphasis is on augmenting the 312

model’s competencies. Nevertheless, for the pre- 313

training phase, our focus is more directed towards 314

the acquisition of entity information. (3) Compar- 315

ing with the forgetting of entities, the forgetting of 316

other content, such as capabilities related to down- 317

stream tasks, is more challenging to define and 318

remains ambiguous. Entities serve as an optimal 319

vehicle for exploring the phenomenon of forgetting 320

within our cognitive framework. 321

4.2 Our Proposed Entity-related Metrics 322

To evaluate forgetting of entities, we follow the 323

memorization score (Biderman et al., 2023a) and 324

introduce new metrics. These new metrics resem- 325

ble entity-focused question answering. For further 326

elaboration on the design and illustrative examples 327

of our metrics, please refer to Appendix C.3. 328

(1) Min: Intuitively, this evaluates the model’s 329

capacity to output entity-related details given its 330

context. We select all samples S containing a set 331

of entities C. For each sample si ∈ S, we locate 332

the entities and use the 32 preceding tokens as 333

input, ensuring the entity cj ∈ C is at the end. 334

Given si, we then greedily decode 32 tokens ô = 335

(o1, o2, ..., o32). The original next 32 tokens of si 336

(t1, t2, ..., t32) is our target output. The accuracy is 337

defined as Min =

∑
sj∈S

∑32
i=1 1{oi=ti}
32|S| . 338

(2) Mex: Intuitively, this tests if the model can 339

recall an entity from the context where the en- 340
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Figure 3: Training dynamics (A (Pile) → B (SlimPa-
jama)): entity-focused evaluation set from A reveals
marked metric degradation during the A-to-B transition.
Besides, traditional metrics on entity-focused samples
such as PPLent and M(f)ent exhibit partial recovery dur-
ing training B. This implies that even for entity-related
samples, conventional metrics still focus on information
that is less related to entities, which can continue to
improve with further learning.

tity is implied but not directly mentioned. Simi-341

lar to Min, for a sample si containing entity cj,342

we use the preceding 32 tokens as input (exclud-343

ing cj). After greedy decoding of 32 tokens ô,344

we calculate Mex =

∑
si∈S is_substring(cj,ô)

|S| , where345

is_substring(a1,a2) returns 1 if a1 is a substring346

of a2 and 0 otherwise.347

Besides, we also adopt two entity-centric met-348

rics PPLent and M(f)ent, which measure existing349

metrics PPL and M(f) on entity-involved samples.350

Setup: We continue to leverage the A+B dataset351

configuration to accentuate the phenomenon of for-352

getting, employing the A (the Pile) + B (SlimPa-353

jama) dataset setup and training the model on both354

datasets. Given that A and B are commonly used355

general-purpose datasets with similar sources, they356

exhibit no significant differences in text style. Test-357

ing is conducted during the training of dataset B.358

We proceed by analyzing frequencies, identify-359

ing a set of entities more frequently found in A but360

less found in B. Using this set, we curated an test361

set from A and monitored its metrics during B’s362

training to measure the forgetting effect due to less363

exposure in B. See Appendix C.3 for more details.364

Results: In Figure 3, we have demonstrated the fol-365

lowing: (1) When evaluating forgetting on entity-366

related data, a significantly more pronounced de-367

cline is noted, with a notably slow recovery of 368

metrics even during continued training. (2) In eval- 369

uations focusing on a subset of data that is rich in 370

samples from source A compared to B, traditional 371

metrics like PPL and M(f) show a recovery. This 372

apparent recovery may be due to less forgettable 373

elements in the data. (3) Comparatively, the newly 374

proposed metrics Mex and Min exhibit a more dif- 375

ficult recovery, which aligns closely with our ex- 376

pected manifestation of forgetting. This makes 377

them more suitable for indicating forgetting. 378

Takeaway 2: Our newly proposed entity-
related metrics, Mex and Min, exhibit a
more noticeable decline and difficult re-
bound, offering a clearer reflection of the
forgetting phenomenon.

379

5 Explorations on Memory Replay 380

With the introduction of our new entity-related met- 381

rics, we proceed to an intuitive exploration, specifi- 382

cally investigating whether simple and lightweight 383

design approaches can alleviate this phenomenon. 384

Inspired by de Masson D’Autume et al. (2019), we 385

introduce novel methods for episodic memory re- 386

play. We incorporate a module that retains a record 387

of examples. During the learning period, we peri- 388

odically draw a uniform sample from the memory’s 389

stored examples to conduct gradient updates. 390

Although other types of methods to reduce 391

task-level forgetting during fine-tuning exist, like 392

BERT-based memory (de Masson D’Autume et al., 393

2019) and function-preserved expansion (Qin et al., 394

2022), they are computationally intensive and un- 395

suitable for pre-training with vast data. Consider- 396

ing the practical feasibility, we confine our explo- 397

ration to the realm of memory replay methods. 398

5.1 Key Factors in Memory Replay 399

We have considered several potential design dimen- 400

sions within the replay process: 401

• Replay Frequency. Following de Mas- 402

son D’Autume et al. (2019), we match the 403

size of our retrieved memory batches to our 404

training batches. We execute a retrieval and 405

gradient update every 100 steps, achieving an 406

efficient 1% replay rate. 407

• What to Store into Memory. We consider strate- 408

gies for memory sample storage: (1) including all 409

samples encountered during pre-training, (2) pri- 410

oritizing samples with entities, and (3) choosing 411
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high-loss samples that may be more susceptible412

to forgetting. Advanced selection methods are re-413

served for future research.414

• Retrieve Strategy. We’ve introduced two basic415

but impactful retrieval methods: random sampling416

and similarity-based sampling. Unlike de Mas-417

son D’Autume et al. (2019), who used a pre-trained418

BERT (Devlin et al., 2018) model for the similarity-419

based sampling, we opted for BM25 (Robertson420

et al., 2009) for its efficiency (Yao et al., 2022).421

• Exit Mechanism. Given the fixed intervals of422

memory replay, the number of replayable samples423

is inherently limited. Simple replay methods may424

lead to an imbalance in the samples being replayed,425

such as coincidentally focusing on a few samples426

every replay batch. Thus, limiting the maximum427

replay threshold of a sample may help.428

5.2 Experimental Settings429

In the previous section, we used two datasets, A430

and B, to study the forgetting effect. Now, to mimic431

a realistic pre-training setup, we’ve mixed and shuf-432

fled A with B into one complete set. We trained433

GPT2 from scratch using this combined set. To434

measure forgetting across the dataset, we took 1/5435

of A+B, selected samples with entities, and made436

an test set(∼ 200,000 samples). We then use the437

aforementioned 4 metrics to assess the results.438

Although the ability to relearn past samples is439

beneficial, a drawback of the replay method is its440

increased training cost. Considering realistic fea-441

sibility and the need for simplicity, we select the442

following straightforward strategies, while leaving443

more sophisticated replay methods for future work:444

• Vanilla pre-training The standard pre-training.445

• Upper Bound We train from the above pre-training446

checkpoint on the test set, evaluating immediately447

to determine the model’s peak memory retention.448

• BM25. We leverage Elasticsearch (Elasticsearch,449

2018) to maintain a memory of all encountered450

samples. At designated replay intervals, we use the451

current batch as queries to search for previously452

seen similar data for replay.453

• BM25 + Samples with entities only. During learn-454

ing, we only keep samples with the presence of455

entities in our memory.456

• Focused Stochasticity: Constrained Entity Sam-457

pling with Exit Limit. We shift from similarity-458

based retrieval to random sampling. We use the459

previously mentioned exit mechanism and exclude460

samples from the memory after they have been461

replayed 5 times. 462

• Intensive Focused Stochasticity: This variant of 463

Focused Stochasticity intensifies the replay process, 464

subjecting replayed samples to multiple epochs of 465

learning. The idea behind this method and further 466

details are elaborated in Section 6.2.2. 467

Let T0 denote the computational cost of vanilla pre- 468

training, T represent the interval between replays, 469

and f be the number of epochs conducted on the 470

replay batch. The computational cost for the In- 471

tensive Focused Stochasticity method is Treplay = 472

(1 + f/T )T0. We use f = 5 and T = 100 in this 473

experiment. Thus Treplay = 1.05T0, which is af- 474

fordable for practical use. More discussions are 475

presented in Appendix C. 476

Method PPLent M(f)ent Mex (×10−3) Min (×10−2)

Vanilla pre-training 26.03 0.4093 5.273 3.988
Upper Bound 23.74 0.4182 14.46 4.162
BM25 27.95 0.4015 4.586 3.895
BM25 + Samples with entities only 28.09 0.4013 4.575 3.941
Focused Stochasticity 25.79 0.4101 5.496 3.980
Intensive Focused Stochasticity 25.40 0.4121 5.450 4.003

Table 1: Evaluation results for replay strategies.

5.3 Effectiveness of Memory Replay 477

We display the evaluation in Table 1. The results 478

indicates that similarity-based replay methods do 479

not outperform the baseline, no matter if all sam- 480

ples or only those related to entities are kept in 481

memory. This might be due to the strategies don’t 482

spread replay evenly; replaying all samples might 483

focus too much on non-entity ones, while focusing 484

only on entity-related samples could lead to too 485

much attention on a specific subset, exaggerating 486

the forgetting of other samples. 487

On the other hand, a simple sampling method im- 488

proves upon the baseline, hinting that replay helps 489

reduce forgetting during pre-training. Nevertheless, 490

there’s still a gap between the replay methods and 491

the upperbound. 492

To further demonstrate the effectiveness of mem- 493

ory replay, we conducted an in-depth analysis of the 494

impact of sample-level forgetting on the model’s 495

performance across common benchmark datasets. 496

We utilized the following common benchmark 497

datasets for our analysis: Hellaswag (Zellers et al., 498

2019), MMLU (Hendrycks et al., 2020) and Wino- 499

grad (Levesque et al., 2012). We compared the 500

zero-shot accuracy between the vanilla pre-training 501

and our Intensive Focused Stochasticity. 502

The performance shows that Intensive Focused 503

Stochasticity method is generally superior to the 504

non-replay method. The MMLU dataset is rela- 505
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Method Hellaswag MMLU Winograd Avg.

Vanilla pre-training 27.46 23.20 53.47 34.71
Intensive Focused Stochasticity 27.75 23.00 55.68 35.48

Table 2: Results across common benchmark datasets.

tively more difficult, and the results may be subject506

to disturbances. The results indicates that intensi-507

fied memory replay methods offer improvements508

compared to the standard pre-training approach.509

Considering forgetting do help performance on510

downstream tasks.511

Takeaway 3: Our memory replay methods
show potential in alleviating forgetting in
the pre-training phase, while a gap persists
relative to the upper bound, signifying the
necessity for further research.

512

6 Explorations on Forgetting Curves513

In the preceding section, we demonstrated the ef-514

ficacy of memory replay methods. Recognizing515

that traditional memory replay methods (de Mas-516

son D’Autume et al., 2019; Wang et al., 2020) in-517

volve samples being learned uniformly and at equal518

intervals with low intensity. We now seek to ex-519

plore the impact of replay learning on subsequent520

learning processes, as well as investigate factors521

such as the intensity of replay and the effects of pe-522

riodic replay on learning curves. This exploration523

is motivated by the renowned forgetting curve from524

human psychology (Loftus, 1985), which under-525

scores the link between the intensity of learning526

and the pace of forgetting.527

We first focus on factors that we expect to mani-528

fest their influence on the model’s forgetting curve.529

After an in-depth observation, we aim to apply the530

phenomena observed on the forgetting curve to531

guide the design of memory replay methods during532

pre-training. This approach is intended to refine533

and understand our strategies for combating forget-534

ting, ensuring that they are informed by empirical535

insights into the model’s learning dynamics.536

6.1 Setup537

We focus on two critical factors: (1) Learning in-538

tensity’s impact: We explore the hypothesis that539

increased initial learning intensity may result in540

more robust memory retention, potentially flatten-541

ing the forgetting curve. (2) Memorability and542

memory durability: We determine if challenging543

samples, post-intensive learning, remain at risk of544

forgetting during pre-training.545

To tackle these inquiries, we first select sam- 546

ples related to entities of interest. After the model 547

undergoes an initial epoch of pre-training, we sub- 548

ject these samples to intensive training across sev- 549

eral epochs. The purpose of the initial pre-training 550

epoch is to ensure the model reaches a basic level 551

of language proficiency. This step is crucial to pre- 552

vent general language ability improvements from 553

confounding the experiment, allowing for a clear 554

focus on the forgetting phenomenon rather than 555

overall enhancement. 556

Post the intensive learning phase, these entity- 557

related samples serve as our test set. As we proceed 558

with pre-training, we continuously assess this set 559

using our established metrics to monitor the forget- 560

ting curve. This ongoing evaluation allows us to 561

track how the memory of these samples evolves and 562

to understand the interplay between initial learning 563

intensity and long-term retention within the context 564

of pre-training. For further details on the experi- 565

mental design, please refer to the Appendix C.4. 566

6.2 Results on LLMs’ Forgetting Curves 567

6.2.1 Forgetting Curves 568

As shown in Figure 4, experiments indicate that 569

(1) a significant decline is still observed even when 570

the dataset used for subsequent training is identi- 571

cal and uniformly distributed to the source of the 572

data in the initial epoch of pre-training. This re- 573

inforces our conclusions presented in Section 4.2, 574

reflecting that even under an identical data distri- 575

bution, forgetting is still remarkably pronounced. 576

(2) higher initial learning intensity results in better 577

performance across various metrics, yet as further 578

pre-training occurs, the results from experiments 579

with lower initial learning intensity tend to catch up. 580

This pattern mirrors human learning curves (Lof- 581

tus, 1985), and we offer a detailed comparison in 582

Appendix E. (3) Over the learning period, a diver- 583

gence is observed; experiments with a very high 584

initial learning intensity maintain a gap compared 585

to those with a lower initial intensity. This gap 586

is more pronounced for less difficult data. This 587

suggests that data that are more difficult to memo- 588

rize benefit from more intensive learning to achieve 589

enhanced memory retention. 590

6.2.2 Periodic Intensive Replay 591

Building on findings above, we recall the intuition 592

that human can reduce forgetting through periodic, 593

intense learning. We aim to (1) assess its impact on 594

a model’s forgetting curve, and (2) determine if this 595
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Figure 4: Forgetting curves on samples categorized by difficulty level. After sufficiently training, experiments
with varying degrees of replay intensity tend to converge, while there remains a gap between methods with higher
and lower replay intensities. Our key experiment, periodic replay method (red) demonstrates the ability to
achieve continuous performance improvement across the entire learning curve with a smaller computational cost.
Remarkably, even at the end of the curve, the upper and lower bounds of the periodic replay method remain
consistently better.

can enhance previous memory replay methods. To596

delve deeper into these effects, we focused our ex-597

periments on the more challenging samples. After598

the initial phase of high-intensity learning, we intro-599

duced a replay process in the ongoing pre-training.600

This process involves revisiting the samples every601

1000 steps, with each replay session consisting of602

5 epochs of learning.603

In this experiment, the replay intervals were rel-604

atively large, which was acceptable in terms of605

efficiency. Moreover, the periodic replay method606

outperformed the baseline. Although there was a607

temporary decline after each replay, the overall per-608

formance improves over time. We discovered that609

periodic, high-intensity replay on the forgetting610

curve leads to an enhancement of both the upper611

and lower bounds. Moreover, this approach proved612

more effective and cost-efficient than directly re-613

play with 100 epochs.614

6.2.3 Intensive Replay for Pre-training615

Thus, we believe that such human-like strategies616

could guide the design of replay mechanisms. To617

test this hypothesis, we conducted an experiment618

and enhanced the Focused Stochasticity method in619

Section 5.2. Specifically, we intensified the learn-620

ing process for each replay batch, with each batch621

undergoing 5 epochs of learning. The approach,622

referred to as Intensive Focused Stochasticity, has623

been included in Table 1 for ease of comparison 624

with other methods. Additionally, its performance 625

on general downstream tasks is presented in Table 2. 626

The results indicate that Intensive Focused Stochas- 627

ticity outperforms vanilla pre-training across all 628

metrics, suggesting its efficacy in mitigating forget- 629

ting during pre-training. 630

Takeaway 4: The forgetting patterns of
LLMs suggest that periodic, intensive re-
play could be key to mitigating memory
loss. Experiments of intensified memory
replay conducted during the pre-training
phase also confirmed this point.

631

7 Conclusion and Future Work 632

We aspire to capture the industry’s attention and 633

stimulate optimization efforts regarding the often- 634

overlooked potential danger within model develop- 635

ment. Our research sheds new light on catastrophic 636

forgetting in LLMs during pre-training. We scru- 637

tinized traditional metrics, introduced novel ones 638

for a clearer analysis of forgetting, and proposed 639

memory-replay techniques to bolster knowledge 640

retention. Additionally, we explored the forgetting 641

curve post-intense, short-term learning, uncovering 642

similarities with human memory decay, offering 643

insights into information retention dynamics. 644
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8 Limitations645

Our research into the occurrence of catastrophic646

forgetting during the pre-training of Large Lan-647

guage Models, though innovative, faces significant648

computational constraints. The necessity for a sub-649

stantial computational resource, such as 10,000650

GPU hours on 8 NVIDIA A100 GPUs equipped651

with 40 GiB of VRAM, presents a considerable652

barrier. The core contribution of our work is to em-653

phasize and delve deeply into an often-overlooked654

potential danger, with the hope of drawing the in-655

dustry’s attention to and optimizing the issue of656

pre-training forgetting in models.657

Informed by the scaling law (Kaplan et al., 2020),658

we recognize that our findings from a smaller659

model may provide valuable insights for larger-660

scale experiments. This framework indicates that661

our study could contribute to the design of future662

research, acknowledging the limitations in scaling663

our results.664

Our approach to memory replay has shown po-665

tential in alleviating catastrophic forgetting, but666

there is still room for improvement in terms of667

its effectiveness. Our investigation did not delve668

deeply into the granular effects of each variable669

on the experimental outcomes. The complexity of670

memory replay mechanisms requires a more nu-671

anced analysis to fully understand how different672

factors interplay and influence the results.673

Additionally, the concentrated learning of mem-674

ory replay, while beneficial, may engender trade-675

offs that affect the model’s generalizability. We676

hypothesize that the focused emphasis of certain677

data subsets could lead to a diminished capacity678

for the model to adapt to tasks beyond the focused679

areas, such as numerical data processing or other680

cognitively distinct downstream tasks.681

We recognize that forgetting in pre-training dif-682

fers from that in SFT, each requiring distinct met-683

rics and methods for mitigation. Yet, there are684

connections between them. In future work, we685

also aim to explore the impact of our methods on686

forgetting in downstream tasks.687

Despite these limitations, our study exemplifies688

the scientific endeavor to confront complex prob-689

lems with rigor and without reservation. Our work690

is a courageous step towards understanding the691

intricate processes of memory retention and forget-692

ting in LLMs, reflecting a sincere commitment to693

advancing our collective knowledge, even in the694

face of substantial challenges.695
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A TL;DR: Main Contributions869

In this work, our focus is on exploring an issue870

that developers and researchers in the industry871

have frequently noticed: large models, despite their872

widespread use, are susceptible to errors in factual873

domains, particularly regarding entity-related in-874

formation (Wang et al., 2023a). While the erosion875

of knowledge retention during pre-training is ac-876

knowledged, no previous work has addressed the877

issue of forgetting in pre-training, nor provided a878

clear definition, analysis, or methods to address it.879

Our core contributions in this work are:880

• We are the first to identify the problem of forgetting881

during pre-training.882

• Within an affordable computational range, we con-883

ducted dozens of experiments to carefully explore884

the existence of the pre-training forgetting issue,885

the metrics for measurement, the forgetting curve,886

and the design of replay methods guided by the887

forgetting curve to provide feasible methods for888

mitigating pre-training forgetting.889

Although the issue of forgetting is important and890

has been extensively studied during the SFT phase,891

no one is willing to tackle such a challenging prob-892

lem in pre-training. The pretrain data is extremely893

vast and complex, inherently containing thousands894

of tasks. It cannot be characterized by task-level895

metrics, and such metrics also cannot reflect the896

general factual forgetting. Moreover, represent-897

ing the forgetting of task-specific capabilities is898

too vague and elusive. In pre-training, most ef-899

forts have focused on synthetic data (Gunasekar900

et al., 2023) and model structures (Allingham et al.,901

2021), with too little research on the phenomenon902

itself.903

We hope that the explorations and conclusions904

presented in this paper can facilitate the design of905

pre-training in the industry. We also aim to conduct906

experiments on larger models and more diverse907

datasets to provide more detailed conclusions.908

B Further Discussions on Pre-training909

Forgetting910

In this section, we discuss the intuition and method-911

ology behind the paper, as well as potential issues.912

1. Why should we be concerned about model913

forgetting at the sample level during pre-914

training?915

Developers and researchers have frequently916

observed that large models, despite their exten-917

sive deployment, are prone to errors in factual 918

domains, especially concerning entity-related 919

information (Wang et al., 2023a). These dis- 920

crepancies can substantially affect user per- 921

ception and trust. However, there is a scarcity 922

of research on the influence of learning during 923

the pre-training phase on this type of infor- 924

mation, and even less on how models remem- 925

ber and forget information during pre-training. 926

The phenomenon of sample-level forgetting in 927

pre-training is also difficult to define clearly, 928

analyze, and further explore. 929

2. How should we understand entity-related 930

metrics, and why is it important to focus on 931

forgetting at the entity level? 932

(1) Forgetting across the entire pre-training 933

dataset is extremely difficult to define and 934

study, hence we concentrate on a specific 935

subset. Errors related to entity information 936

are easily noticeable in model applications 937

and significantly impact user experience. (2) 938

Beyond the model’s memory of entity infor- 939

mation, we also consider its capabilities dur- 940

ing pre-training, especially since the Super- 941

vised Fine-Tuning (SFT) phase places more 942

emphasis on instructional data. This phase 943

enhances the model’s competencies for down- 944

stream tasks, and we see it as a stage for aug- 945

menting the model’s capabilities. Therefore, 946

we believe the pre-training phase should place 947

greater emphasis on exploring entity informa- 948

tion. (3) In Section 3.2, we demonstrate that 949

overall data forgetting is hard to evaluate, as 950

there is no clear decline in model performance 951

when switching training data (we deliberately 952

selected parts of data from A to ensure mini- 953

mal repetition in B), and almost no change in 954

metrics is observed during the switch. Instead, 955

during training in B, the model’s capabilities 956

continue to improve, even surpassing the met- 957

rics achieved during training in A, which con- 958

tradicts the intuition of forgetting. PPL does 959

not intuitively reflect the model’s forgetting; 960

in contrast, the metrics concentrated on enti- 961

ties show significant changes on entity-related 962

data, with almost no recovery, facilitating the 963

direct study of the forgetting phenomenon. 964

3. Why the proposed metrics better reflect for- 965

getting? Might the decreased performance 966

on the metric be attributed to the applica- 967

tion of a more stringent metric? 968

Attempting to identify the phenomenon of for- 969
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getting during pre-training and to indicate it970

with a reasonably sound metric poses a con-971

siderable challenge. However, this question972

has never been explored in the past. We have973

extensively reviewed previous work and have974

adopted the PPL and M(f) metrics, while also975

proposing two novel metrics.976

The A and B datasets in Section 4.2, as general977

pre-training datasets, show no significant dif-978

ferences in text style. Besides, in Section 6.2,979

we showed that a significant decline in met-980

rics is still observed, even the dataset used for981

subsequent training is identical and uniformly982

distributed to the source of the data in the ini-983

tial epoch of pre-training. This indicates that984

forgetting detected by our metrics does not985

stem from a shift in text styles.986

Regarding the difficulty of metrics, in the ex-987

periment shown in Figure 3, we observe that988

even metrics that are simple by design, such989

as PPL and M(f), show a significant decline.990

This suggests that the forgetting phenomenon991

is unrelated to the difficulty of the metric. Be-992

sides, for M(f), which involves calculating the993

accuracy of the subsequent 32 tokens for each994

decoded token using teacher forcing, it is not995

simpler. However, we can see that PPL and996

M(f) slowly recover during subsequent train-997

ing, indicating they are not sensitive enough998

to capture the forgetting phenomenon. While999

the Mex and Min, though more complex, are1000

more sensitive. We believe that by combin-1001

ing a range of metrics with varying degrees1002

of design complexity and sensitivity, we can1003

provide as comprehensive a portrayal of the1004

phenomenon of forgetting as possible.1005

4. Since the model may leak verbatim se-1006

quences of personal information, is sample-1007

level forgetting harmful?1008

In our study, we focus on learning and the1009

retention of factual information related to enti-1010

ties, which models should not forget and that1011

is prevalent in the pre-training data. We di-1012

verge from concerns about leaking verbatim1013

personal information. There is extensive liter-1014

ature on machine unlearning (Wu et al., 2020;1015

Bourtoule et al., 2021; Chen et al., 2022),1016

which typically addresses scenarios involving1017

privacy protection and changes in user infor-1018

mation. These scenarios fall outside the scope1019

of our work, although our research might offer1020

insights into the design of machine unlearning1021

methods. 1022

5. Is this study primarily addressing halluci- 1023

nations, or is it actually more focused on the 1024

model’s tendency to forget entity-related in- 1025

formation rather than producing false out- 1026

puts? 1027

Our research concentrates on the model’s in- 1028

clination to forget information pertaining to 1029

entities, diverging from the generation of er- 1030

roneous outputs, commonly known as hallu- 1031

cinations. However, it is true that our work 1032

offers a perspective on the concept of halluci- 1033

nations, where the two newly designed met- 1034

rics, Mex and Min, can be interpreted as po- 1035

tential false negatives and false positives in 1036

the pre-training model’s responses: the model, 1037

given relevant information, fails to identify 1038

the correct entity; or the model provides an 1039

entity and some information but is unable to 1040

supply the related context. 1041

6. Should we expect an LLM to reproduce 1042

exact training text, given it’s not a lossless 1043

compression model? 1044

In our study, we do not anticipate LLMs to 1045

reproduce the exact training text. Specifically, 1046

our Mex metric solely assesses whether the 1047

ground truth entity is included in the output; 1048

while capturing the formalization of informa- 1049

tion related to the entity presents challenges. 1050

For the Min metric, we follow the design of Bi- 1051

derman et al. (2023a), calculating accuracy 1052

for each token. We consider that alternative 1053

design schemes might be possible, such as uti- 1054

lizing a BERT model (Devlin et al., 2018) to 1055

calculate the similarity between the generated 1056

tokens and the ground truth tokens. We have 1057

reserved this exploration for future research. 1058

7. Analysis of computational costs for replay 1059

methods. To discuss the computational cost 1060

of replay methods, let T0 denote the compu- 1061

tational cost of vanilla pre-training, T repre- 1062

sent the interval between replays, and f be 1063

the number of epochs conducted on the re- 1064

play batch. (1 + f/T )T0. Every T training 1065

steps, the model gets a replay batch and under- 1066

goes f epochs of training on that batch. There- 1067

fore, training T batches of unique data, replay 1068

methods necessitate T + f steps of training, 1069

whereas vanilla pre-training requires training 1070

with just T batches. This indicates that the 1071

computational cost for the Intensive Focused 1072

Stochasticity method is Treplay = (1+f/T )T0. 1073
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Setting f = 1, the Intensive Focused Stochas-1074

ticity will degenerate to Focused Stochastic-1075

ity. For instance, if f = 5, T = 100, and1076

Treplay = 1.05T0, such computational cost is1077

deemed acceptable.1078

C Setup Details1079

In this section, we outline our experimental setup.1080

We selected a batch size of 576, informed by our1081

use of 8 NVIDIA A100 GPUs with 40 GiB VRAM,1082

and aligned with GPT-2‘s (Radford et al., 2019) hy-1083

perparameter recommendations for optimal perfor-1084

mance on our hardware configuration. A consistent1085

sequence length of 1024 was applied across all ex-1086

periments. Training is executed in half-precision1087

format using BF16, and we capitalize on the Zero1088

Redundancy Optimizer (ZeRO) Stage 2 (Rajbhan-1089

dari et al., 2020) to enable efficient scaling across1090

multiple machines. We draw inspiration from the1091

works of Biderman et al. (2023b); Gupta et al.1092

(2023); Radford et al. (2019), employing a cosine1093

learning rate decay that reduces to a minimum of1094

0.1 times the Maximum Learning Rate (MaxLr),1095

with the MaxLr itself set at 6× 10−4.1096

C.1 Setup for Section 3.11097

We utilized the GPT-2 XL model (1.5B) (Radford1098

et al., 2019) and trained it on a dataset sampled1099

from SlimPajama (Soboleva et al., 2023), consist-1100

ing of 4.9e8 tokens. Prior to training, we shuf-1101

fled the data to ensure that the order of training1102

instances was consistent across different experi-1103

ments. We conducted two experiments: a stan-1104

dard pre-training and a pre-training with a replay1105

mechanism that retrieves a batch of data, equiva-1106

lent in size to the training batch. (where we stored1107

all trained data using Elasticsearch (Elasticsearch,1108

2018) and performed a replay every 10 steps). At1109

each replay step, we use the current batch‘s training1110

data to uniformly sample an equal amount of data1111

from the completed training data based on similar-1112

ity. This ensures a uniform replay throughout the1113

entire data training process, with an additional 1/101114

increase in computational budget. For evaluation,1115

we constructed a test set by sequentially segment-1116

ing the training data according to the training steps1117

and uniformly sampling 1/100 of each segment.1118

The samples were then reassembled in their orig-1119

inal stepwise order to ensure uniform distribution1120

across the training steps, thus creating a test set that1121

mirrors the model‘s training progression. We plot-1122

ted perplexity (PPL) against the number of training 1123

tokens processed, with the evaluation set‘s token 1124

count scaled proportionally to reflect the model‘s 1125

exposure to the training data. 1126

C.2 Setup for Section 3.2 1127

To ensure computational feasibility in our experi- 1128

ments, we choose GPT-2 (0.1B) in this section. We 1129

uniformly sample 1/1000 of dataset A to consti- 1130

tute a eval set, and perform evaluations every 1000 1131

training steps during the training process of dataset 1132

B. 1133

C.3 Setup for Section 4.2 1134

We followed Biderman et al. (2023a), selecting a 1135

sequence length of 32 for both the input and output 1136

of our Mex and Min metrics. We collected enti- 1137

ties from English Wikipedia dataset (Foundation). 1138

Some randomly sampled entities are shown in Ta- 1139

ble 5. 1140

To spotlight entity-level forgetting, we evenly 1141

sampled 400,000 English Wikipedia entries, com- 1142

paring entity frequencies in datasets A and B. We 1143

selected the intersection C of entities that were top 1144

1/2 frequent in A and bottom 1/2 in B to accentuate 1145

the distribution disparity. Samples from A with 1146

entities in C constituted our evaluation set. Follow- 1147

ing the approach of Biderman et al. (2023a), we 1148

retained a subset where Mex = 1 post A’s training 1149

to scrutinize their forgetting during B’s training. 1150

We provide illustrative examples in Table 3 and 1151

Table 4 to provide clearer explanations of Min and 1152

Mex. 1153

C.4 Setup for Section 6.2 1154

It is evident that Mex assigns a binary label to each 1155

sample: a label of 1 is given if the ground truth 1156

entity appears within the generated 32 tokens, and 1157

a 0 is assigned otherwise. Utilizing the challenging 1158

metric of Mex, we can categorize the difficulty of 1159

data memorization as follows: We performed an 1160

evaluation on the portion of the pre-training data 1161

that includes entities, recorded each entity along- 1162

side the samples that received labels of 1 or 0, and 1163

then calculated the accuracy rate for each entity 1164

based on these labels. We then divided the entities 1165

into groups with roughly equal accuracy rates, en- 1166

suring that during the phase of intensive, short-term 1167

learning, the related samples for certain entities are 1168

the focus of concentrated study. For the data cate- 1169

gorized into different difficulty levels, we carried 1170

out experiments with varying degrees of learning 1171
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Prompt True Continuation Greedily Generated Sequence Min

The Amazon Rainforest , known as the Earth’s lungs known as the Moon’s lungs 1+1+1+0+1
5 = 0.8

The Amazon Rainforest , known as the Earth’s lungs known as the Moon’s legs 1+1+1+0+1
5 = 0.6

The Colosseum in Rome, also known as the Flavian Amphitheatre , is an iconic symbol of the Roman Empire’s architectural prowess. is an iconic symbol of the Russian Federation’s scientific prowess . 1+1+1+1+1+1+0+0+0+1
10 = 0.7

Table 3: Examples of Min calculation with different prompts. These samples are provided for illustrative purposes
and are not from the real training data.

Entity Prompt True Continuation Greedily Generated Sequence Mex

Leonardo da Vinci The Mona Lisa, painted by Leonardo da Vinci , is renowned for its elusive Leonardo da Vinci , is renowned for its elusive 1

Leonardo da Vinci The Mona Lisa, painted by Leonardo da Vinci , is renowned for its elusive a man called Leonardo da Vinci , is renowned for 1

Leonardo da Vinci The Mona Lisa, painted by Leonardo da Vinci , is renowned for its elusive Donald Trump , is renowned for its elusive 0

the United States The Statue of Liberty, a gift from France to the United States , stands as a symbol the world, mysteriously appeared on an uninhabited island 0

the United States The Statue of Liberty, a gift from France to the United States , stands as a symbol tell the enduring friendship with the United States 1

Table 4: Examples of Mex calculation with different prompts. These samples are provided for illustrative purposes
and are not from the real training data.

intensity—specifically, by adjusting the number of1172

epochs dedicated to this phase of learning.1173

D Performance across Various Entity1174

Types1175

To further enhance the effectiveness of replay meth-1176

ods and the new metrics, an analysis is presented1177

on how these metrics perform with different types1178

of entities.1179

The entities employed for evaluation in Table 11180

have been systematically categorized into four dis-1181

tinct classes: MISC (miscellaneous entities), PER1182

(person names), LOC (location) and ORG (organi-1183

zation). We compare Intensive Focused Stochas-1184

ticity in Table 1 with the standard pre-training, the1185

results are shown in Table 6 below.1186

The Intensive Focused Stochasticity method1187

demonstrates superior performance over vanilla1188

pre-training across a broad spectrum of entity types,1189

indicating that the replay approach and its asso-1190

ciated metrics are broadly applicable to various1191

linguistic contexts.1192

E Comparison of Forgetting Curves1193

between Humans and LLMs1194

The reproduced human forgetting curve, originally1195

reported by Craig et al. (1972), is illustrated below,1196

reflecting the typical decline in memory retention1197

over time. In their study, 180 undergraduates par-1198

ticipated in an experiment involving exposure to1199

magazine advertisements under controlled condi-1200

tions. They were categorized into three groups1201

based on the extent of learning: 100%, 200%, and1202

300%, determined by the number of 5-second rep-1203

etitions of 12 ads. Following exposure, 15 partic-1204

ipants from each group were assigned to one of1205

four retention tests occurring at immediate, 1-day,1206

7-day, or 28-day intervals. The study utilized a 31207

× 4 factorial design, assessing the impact of learn-1208

ing intensity and retention intervals on the recall1209

of brand names. It can be observed that there are 1210

similarities between the model’s forgetting curve 1211

and the human forgetting curve, with higher initial 1212

learning intensity resulting in a relatively slower 1213

rate of forgetting.
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Figure 5: Human forgetting curve from Craig et al.
(1972). 1214
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Sampled entities

‘ Terrel Bell‘, ‘ BIST‘, ‘ The Great Hunt‘, ‘ Best in
Drag Show‘, ‘ Stella Maris‘, ‘ William Knighton‘,
‘ Italian campaign‘, ‘ The Octopus Project‘, ‘ Light
Cycle‘, ‘ Clark Street‘, ‘ Paulette Hamilton‘, ‘
Robert Mack‘, ‘ Nusrat‘, ‘ Soul Catcher‘, ‘ Lord
of Light‘, ‘ Bieger‘, ‘ Foreach loop‘, ‘ Choruss‘,
‘ Screen space ambient occlusion‘, ‘ Florida De-
partment of Environmental Protection‘, ‘ USA Ul-
timate‘, ‘ Historical Association‘, ‘ Robert Holt‘,
‘ Willie Nile‘, ‘ Fiordland National Park‘, ‘ Star
Wars: The Clone Wars‘, ‘ Crouch End‘, ‘ Tracy
Ham‘, ‘ Jimmy Chamberlin‘, ‘ Journal of Food Sci-
ence‘, ‘ Comet Tempel‘, ‘ AirMed International‘, ‘
CanWaCH‘, ‘ Pumapunku‘, ‘ Pre-law‘, ‘ Arovane‘,
‘ Diex‘, ‘ Her Escape‘, ‘ Voltige‘, ‘ Triadelphia‘,
‘ Florian Zeller‘, ‘ The Busy World of Richard
Scarry‘, ‘ Texting while driving‘, ‘ Amir Wilson‘, ‘
Julie White‘, ‘ Lenox‘, ‘ GNPDA2‘, ‘ Cammie Dun-
away‘, ‘ Session Man‘, ‘ Charoen Krung Road‘, ‘
James Raine‘, ‘ Archie Andrews‘, ‘ The Picture
of Dorian Gray‘, ‘ Theresa Caputo‘, ‘ Schauins-
landbahn‘, ‘ Japanese relocation‘, ‘ O.C. Handa‘, ‘
Afula‘, ‘ The Secrets‘, ‘ Sonnet 61‘, ‘ Daniel Bell‘, ‘
The Dawn‘, ‘ Bob Berry‘, ‘ Bigger Life‘, ‘ Jamaica
Wine House‘, ‘ Conica‘, ‘ Renuar‘, ‘ Plantation,
Florida‘, ‘ Fasser‘, ‘ Al-Qadi‘, ‘ Vassy‘, ‘ Tom
Dempsey‘, ‘ Department of Agriculture, Environ-
ment and Rural Affairs‘, ‘ Abdallah Djaballah‘, ‘
Silent Hill 2‘, ‘ Bill Ayres‘, ‘ Jeremy Howe‘, ‘ J15‘,
‘ Jake Ryan‘, ‘ Black Mafia‘, ‘ Nicholas Fox‘, ‘
Interstate 78‘, ‘ Mark Stein‘, ‘ Pietro Torri‘, ‘ Wet
sump‘, ‘ Centre national des arts plastiques‘, ‘ Nitro
Express‘, ‘ Wyvill‘, ‘ WSRA‘, ‘ Whitewater River‘,
‘ Merry Christmas Mr. Lawrence‘, ‘ Jon Jansen‘, ‘
Le Message‘, ‘ Mavrommati‘, ‘ Tourouvre‘, ‘ Bob
Peterson‘, ‘ America Again‘, ‘ Livernois‘, ‘ The
Shepherd Express‘, ‘ Hypercalcaemia‘

Table 5: Sampled entities from English Wikipedia.

Method Entity Type PPLent M(f)ent Mex (×10−3) Min (×10−2)

Vanilla pre-training

MISC 27.24 0.4045 5.685 3.786
PER 27.47 0.4008 3.530 3.760
LOC 25.30 0.4126 3.336 4.282
ORG 25.13 0.4144 7.070 3.832

Intensive Focused Stochasticity

MISC 26.46 0.4071 6.464 3.861
PER 26.55 0.4044 3.544 3.774
LOC 24.41 0.4164 4.776 4.303
ORG 24.24 0.4183 6.637 3.850

Table 6: The evaluation results of replay strategies
across different subsets of entities.
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