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Abstract

Catastrophic forgetting remains a formidable
obstacle to building an omniscient model in
large language models (LLMs). Despite the
pioneering research on task-level forgetting in
LLM fine-tuning, there is scant focus on for-
getting during pre-training. We systematically
explored the existence and measurement of for-
getting in pre-training, questioning traditional
metrics such as perplexity (PPL) and introduc-
ing new metrics to better detect entity memory
retention. Based on our revised assessment
of forgetting metrics, we explored low-cost,
straightforward methods to mitigate forgetting
during the pre-training phase. In addition, we
carefully analyzed the learning curves, offering
insights into the dynamics of forgetting. Exten-
sive evaluations and analyses on forgetting of
pre-training could facilitate future research on
LLMs.

1 Introduction

Catastrophic forgetting (McCloskey and Cohen,
1989; Ratcliff, 1990) poses a significant challenge
to the development of models Traditionally, the
challenge of catastrophic forgetting in neural net-
works is especially pronounced when models are
tasked with retaining knowledge across diverse
datasets (Sun et al., 2020; Jin et al., 2021; de Mas-
son D’ Autume et al., 2019; Wang et al., 2020; Qin
et al., 2022). This issue arises due to the shift in in-
put distribution across different tasks, which leads
to the model’s inability to remember past knowl-
edge and capability effectively.

Although pioneer efforts have explored the for-
getting issue in LLLM fine-tuning, which primar-
ily addresses task-specific forgetting, there is a
lack of research on finer-grained forgetting in pre-
training. Luo et al. (2023), Wang et al. (2023b),
and Wu et al. (2024) focused on forgetting in fine-
tuning by measuring the performance of new tasks
with continual tuning. Other efforts (Tirumala

et al., 2022; Biderman et al., 2023a) studied sample-
level memorization, where some experiments im-
ply the existence of forgetting in LLM pre-training.
Nonetheless, these studies have devoted limited at-
tention to systematically exploring and quantifying
the forgetting in pre-training.

Forgetting in pre-training is a critical issue that
must be addressed. It is prevalent among current
LLMs and significantly affects their performance.
Usually, models are believed to acquire various fac-
tual knowledge during the pre-training phase, and
during the fine-tuning phase, they enhance their
task-related capabilities (Chang et al., 2024). In-
tuitively, LLMs may give unsatisfactory replies
to fact-relevant queries, even when the necessary
information was present in the pre-training data.
This indicates forgetting. Despite being easily no-
ticed, measuring this forgetting in pre-training is
very challenging. In contrast to works studying
fine-tuning that measure with specific task-related
metrics (e.g., QA accuracy), the pre-training data
is too diverse, inherently consisting of dozens of
tasks, making it almost impossible to use a specific
ability-related metric to reflect forgetting. More-
over, there’s almost no metrics designed for for-
getting. General metrics such as perplexity (PPL)
are also shown to be insensitive in measuring for-
getting in pre-training (Gupta et al., 2023). This
raises a pertinent question: (1) How to correctly
recognize and quantify forgetting in pre-training?

After correctly understanding and assessing the
phenomenon of forgetting, which we address by
introducing innovative metrics, we then shift our
focus to exploring lightweight methods aimed at
mitigating this issue. Inspired by the proven suc-
cess of memory replay methods in combating for-
getting during dataset shifts, as shown in (de Mas-
son D’ Autume et al., 2019; Wang et al., 2020), we
delve into the inquiry: (2) Can these methods also
mitigate forgetting during the pre-training phase?

Then, following the above investigation, we pro-



ceed to examine the interplay between memory
replay and the learning dynamics. That is, we
emphasis on elucidating the models’ forgetting
curves. Inspired by the human learning premise
that a higher review intensity can decelerate the
forgetting rate (Loftus, 1985), we aim to observe
whether the aspects of knowledge replay and learn-
ing intensity in models exhibit similar phenomena
on the learning curve as those inspired by human
learning processes. This observation could, in turn,
guide the design of memory replay methods. With
this in mind, we pose the inquiries: (3) Do models
display forgetting patterns akin to human learning?
Can these patterns guide the design of memory re-
play to further mitigate forgetting?

To address the above questions, we conducted a
series of explorations that progressively and deeply
advance in logic. We first magnify the forgetting
issue by building a didactic scenario, and scruti-
nize the limitation of conventional metrics (e.g.,
PPL) in identifying forgetting. Next, we focus
on the recall ability of entity-related informa-
tion, one of the most explicit and significant indi-
cator of forgetting during pre-training. We propose
four novel entity-related metrics and experimen-
tally confirm the existence of forgetting during pre-
training. Within a standard pre-training setting,
we present several simple and lightweight memory
replay strategies, and show that simple and cost-
effective replay strategies can effectively mitigate
forgetting. Finally, drawing an analogy to the hu-
man memory curve, we examine how the metrics
of recently learned samples evolve over the course
of further learning. We then explore the impact of
short-term, high-frequency learning on the model’s
memory retention, shedding light on future pre-
training designs aimed at mitigating forgetting.

Our main contributions are: (1) We systemati-
cally explore and quantify the phenomenon of pre-
training forgetting through new entity-focused met-
rics. (2) We examine the effectiveness of memory
replay in reducing pre-training forgetting. (3) We
further examine how short-term, high-frequency
learning affects the forgetting curve.

2 Related Work

Catastrophic Forgetting in Language Models.
Neural networks often experience catastrophic
forgetting when changing data distribution (Mc-
Closkey and Cohen, 1989; Ratcliff, 1990). Various
strategies have been proposed, such as simultane-

ous training of new and old tasks (Sun et al., 2020),
incremental lifelong pre-training (Jin et al., 2021),
and the incorporation of episodic memory (de Mas-
son D’ Autume et al., 2019). Other approaches in-
clude meta-lifelong frameworks (Wang et al., 2020)
and function-preserved model expansion (Qin et al.,
2022). However, most of these studies do not ex-
plore single data distribution scenarios. Our study
uniquely focuses the pre-training phase, offering
fresh insights into forgetting.

Example Forgetting and Forgetting During Pre-
training. Despite significant research on forget-
ting, there is limited investigation within the con-
text of a single task. Toneva et al. (2018) first de-
fined example forgetting. Tirumala et al. (2022)
explored forgetting dynamics in LLMs. Biderman
et al. (2023a) studied model behavior forecast-
ing, while Gupta et al. (2023) examined warm-
up strategies in continual pre-training. However,
a detailed formalization and quantification of for-
getting during pre-training using metrics has been
lacking—this is where our research steps in.

3 Existence of Pre-training Forgetting

3.1 Intuition on Pre-training Forgetting

First, to test if there is a forgetting trend, we explore
whether, after pre-trained, an LLM exhibits a pat-
tern of decreased performance on earlier seen sam-
ples. To test this, a direct approach is: after train-
ing, we obtain a checkpoint and then use this exact
checkpoint to test on samples in the sequence they
were encountered during training. This helps us
to assess the model’s retention of information over
time. We aim to assess if existing metrics like PPL
can monitor trends throughout training.

3.1.1 Setup and PPL

We uniformly sampled a subset with 4.9e8 tokens
from SlimPajama (Soboleva et al., 2023). Then
we conducted standard and memory-replay pre-
training. 7o reflect the model’s training progression,
a test set was created by sequentially segmenting
the training data according to the training steps and
uniformly sampling 1/100 of each segment. PPL
is plotted against the number of training tokens
processed, with the test set’s token count scaled to
match the model’s exposure. More details are in
Appendix C.1.

Results: The result is shown in Figure 1. This indi-
cate that: (1) The model shows stable performance
across early and late training data, with compara-
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Figure 1: Perplexity (PPL) of the GPT-2 XL model on
uniformly sampled 1/100 segments of the training data.
Considering forgetting does help the performance.

ble PPL, challenging the hypothesis of higher early
training perplexity. This suggests either that forget-
ting is not occurring, contrary to our understanding,
or that forgetting exists but is not captured by PPL.
(2) Model with replay during pre-training shows
better performance, with a notable drop in average
PPL (280.66 with replay vs. 303.63 without), indi-
rectly confirming the existence of forgetting through
performance gains from repeated learning.

3.2 The Failure of Traditional Metrics

In previous experiments, we realized that detecting
forgetting was challenging in a single pre-training
dataset due to the uniformity of the data. To tackle
this, we build an A+B dual-dataset scenario, aim-
ing for datasets A and B to be similar yet slightly
different to magnify forgetting effects. With dataset
A being much smaller than B, we aim to avoid over-
fitting on it. This emulates the scenario in an actual
single pre-training dataset where A represents a
little portion of the early data at risk of being for-
gotten as training advances with an ever-growing
pool of data. Beyond practical convenience, this is
also a common setting for continuing pre-training.
Setup: We uniformly sample a subset from dataset
A as a test set and then train on dataset B, eval-
uating the model to observe forgetting of dataset
A. We conduct two experiments, employing the
OpenWebText (Aaron Gokaslan*, 2019) dataset
(~8B tokens) for dataset A in one experiment, and
a uniformly sampled subset from the Pile (Gao
et al., 2020) (~ 13B) for the other. Dataset B
is constituted by a uniformly sampled subset (~
49 B) tokens from SlimPajama. More details are
in Appendix C.2. Our investigation into forget-
ting in pre-training, while pioneering, is bounded
by computational limitations. The requirements
in the following sections, estimated at ~10,000

GPU hours on 8 NVIDIA A100 GPUs (40 GiB
VRAM), present a significant challenge. This in-
dicates that utilizing a 1.5B model to complete all
subsequent experiments would require 30,000 GPU
hours (~150 days). Such computational costs are
prohibitive for a research exploration. To allocate
more computational resources towards exploration
of phenomena across dozens of experiments and to
gain a deeper understanding, we decided to conduct
all subsequent experiments on GPT-2.

(a) PPL on OpenWebText (b) PPL on the Pile

(c) M(f) on the Pile

Figure 2: (a), (b): PPL of the eval of dataset A in rela-
tion to the number of trained tokens. A is a subset of
OpenWebText(a) or the Pile(b). The fluctuating PPL
is not a good indicator of forgetting. (c): M(f) of the
eval for the Pile. At the A-to-B dataset transition, M(f)
shows negligible changes, where we capture the subtle

signal of forgetting, and then consistently increases.
Results of PPL: The results in Figure 2 (a)(b) re-

veal an unexpected trend: contrary to expectations
of increasing PPL for dataset A as a sign of forget-
ting during dataset B’s training, the PPL for dataset
A actually decreased in both setups. Even during
the transition between datasets, PPL showed mini-
mal signs of forgetting.

3.2.1 M(f) Metric

Recognizing the shortcomings of PPL in accurately
measuring forgetting, we turned to the M(f) metric
introduced by Tirumala et al. (2022) for evaluation.
The detailed definition of M(f) is:

Definition 1 Let V denotes the vocabulary size.
The set C consists of contexts (s,y), s is an in-
complete text and vy is the correct token index.
f S = RY is a language model. A context
¢ is memorized if f(s)’s maximum value corre-
sponds to y, ie., argmaxycgv f(s) = y. We
assess the fraction of contexts memorized using
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Results of M(f): In this experiment, we contin-
ued to employ the A (the Pile) + B (SlimPajama)
setup and evaluated the model throughout the en-
tire training process. We also continue to use a
uniformly sampled 1/1000 part of A as the test set.
We observed that at the transition from dataset A to
dataset B, M(f) exhibited subtle fluctuations. Sub-
sequently, as training progressed on B, the test set’s
performance, demonstrated a continuous improve-
ment. The results are given in Figure 2.

It is plausible to hypothesize that PPL’s proba-
bilistic averaging inherent may not accurately re-
flect forgetting for common tokens due to their high
prediction accuracy, potentially masking informa-
tion loss for less frequent elements. In contrast, the
M(f) metric’s binary evaluation is more sensitive
to memory errors, offering a clearer view of the
model’s retention of critical information, essential
for understanding catastrophic forgetting.

3.2.2 Limitation Leads to Underestimate

Certainly, it is important to acknowledge that both
metrics have limitations in capturing forgetting.
Our observations indicate that throughout the train-
ing process, after the model completed training on
dataset A and transitions to dataset B, both metrics
show a continuous improvement, with subtle signs
of forgetting at the transition point. This suggests
a plausible hypothesis: The metrics’ inability to
account for the token difficulty lead to an underes-
timation of forgetting, as they are dominated by
features that are inherently resistant to forget-
ting, such as common tokens and simple, everyday
text. These features may not exhibit significant
prediction errors when the dataset changes, thereby
obscuring the true extent of the model’s forgetting.

Takeaway 1: PPL and M(f) metrics po-
tentially mask true forgetting, as their bias
towards easy-to-remember elements can un-
derestimate the model’s memory decline
across dataset shifts.

4 New Entity-related Metrics for
Measuring Pre-training Forgetting

4.1 How to Understand Pre-training
Forgetting

Building upon the findings presented, a pertinent
inquiry emerges: Which segments of the dataset
should be scrutinized to gain a comprehensive un-

derstanding of the forgetting phenomenon?

We argue that during pre-training, the focus
should
related information. We posit that the capabilities
imparted to a model by a dataset can be broadly cat-
egorized into two components: information related
to entities and task-specific competencies. (1) As
demonstrated by Sorscher et al. (2022), the power
law scaling of error shows that many training ex-
amples are redundant, and in data-rich scenarios,
pruning should focus on retaining challenging ex-
amples. Entity-related information, which is less
frequent (Penedo et al., 2023), is crucial for users’
perception of forgetting in LLMs, as it’s harder to
determine if the loss of abstract capabilities is due
to model limitations or forgetting, making entity
information key in pre-training. (2) We also con-
sidered the approach of Supervised Fine-Tuning
(SFT), which involves training on instructional data.
This phase of training enhances the model’s capa-
bilities for downstream tasks, and we view it as
a stage where the emphasis is on augmenting the
model’s competencies. Nevertheless, for the pre-
training phase, our focus is more directed towards
the acquisition of entity information. (3) Compar-
ing with the forgetting of entities, the forgetting of
other content, such as capabilities related to down-
stream tasks, is more challenging to define and
remains ambiguous. Entities serve as an optimal
vehicle for exploring the phenomenon of forgetting
within our cognitive framework.

4.2 Our Proposed Entity-related Metrics

To evaluate forgetting of entities, we follow the
memorization score (Biderman et al., 2023a) and
introduce new metrics. These new metrics resem-
ble entity-focused question answering. For further
elaboration on the design and illustrative examples
of our metrics, please refer to Appendix C.3.

(1) Mjy: Intuitively, this evaluates the model’s
capacity to output entity-related details given its
context. We select all samples S containing a set
of entities C. For each sample s; € .S, we locate
the entities and use the 32 preceding tokens as
input, ensuring the entity ¢; € C is at the end.
Given s;, we then greedily decode 32 tokens 6 =
(01,02, ...,032). The original next 32 tokens of s;
(t1,ta, ..., t32) is our target output. The accuracy is

32
defined as M;, = Zoges zg,’;:‘;'ﬂ{oq’itl}.

(2) M¢y: Intuitively, this tests if the model can

recall an entity from the context where the en-
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Figure 3: Training dynamics (A (Pile) — B (SlimPa-
jama)): entity-focused evaluation set from A reveals
marked metric degradation during the A-to-B transition.
Besides, traditional metrics on entity-focused samples
such as PPL.,; and M(f).y, exhibit partial recovery dur-
ing training B. This implies that even for entity-related
samples, conventional metrics still focus on information
that is less related to entities, which can continue to
improve with further learning.

tity is implied but not directly mentioned. Simi-
lar to M;,, for a sample s; containing entity c;j,
we use the preceding 32 tokens as input (exclud-
ing c;). After greedy decoding of 32 tokens o,

D s c g is_substring(c;,6)
we calculate M., = =31 3] &

, where
is_substring(ay, ag) returns 1 if a; is a substring
of as and O otherwise.

Besides, we also adopt two entity-centric met-
rics PPLey¢ and M(f)ent, which measure existing
metrics PPL and M(f) on entity-involved samples.
Setup: We continue to leverage the A+B dataset
configuration to accentuate the phenomenon of for-
getting, employing the A (the Pile) + B (SlimPa-
jama) dataset setup and training the model on both
datasets. Given that A and B are commonly used
general-purpose datasets with similar sources, they
exhibit no significant differences in text style. Test-
ing is conducted during the training of dataset B.

We proceed by analyzing frequencies, identify-
ing a set of entities more frequently found in A but
less found in B. Using this set, we curated an test
set from A and monitored its metrics during B’s
training to measure the forgetting effect due to less
exposure in B. See Appendix C.3 for more details.
Results: In Figure 3, we have demonstrated the fol-
lowing: (1) When evaluating forgetting on entity-
related data, a significantly more pronounced de-

cline is noted, with a notably slow recovery of
metrics even during continued training. (2) In eval-
uations focusing on a subset of data that is rich in
samples from source A compared to B, traditional
metrics like PPL and M(f) show a recovery. This
apparent recovery may be due to less forgettable
elements in the data. (3) Comparatively, the newly
proposed metrics Mk and Mj, exhibit a more dif-
ficult recovery, which aligns closely with our ex-
pected manifestation of forgetting. This makes
them more suitable for indicating forgetting.

Takeaway 2: Our newly proposed entity-
related metrics, M., and M;,, exhibit a
more noticeable decline and difficult re-
bound, offering a clearer reflection of the
forgetting phenomenon.

5 Explorations on Memory Replay

With the introduction of our new entity-related met-
rics, we proceed to an intuitive exploration, specifi-
cally investigating whether simple and lightweight
design approaches can alleviate this phenomenon.
Inspired by de Masson D’ Autume et al. (2019), we
introduce novel methods for episodic memory re-
play. We incorporate a module that retains a record
of examples. During the learning period, we peri-
odically draw a uniform sample from the memory’s
stored examples to conduct gradient updates.
Although other types of methods to reduce
task-level forgetting during fine-tuning exist, like
BERT-based memory (de Masson D’ Autume et al.,
2019) and function-preserved expansion (Qin et al.,
2022), they are computationally intensive and un-
suitable for pre-training with vast data. Consider-
ing the practical feasibility, we confine our explo-
ration to the realm of memory replay methods.

5.1 Key Factors in Memory Replay

We have considered several potential design dimen-
sions within the replay process:

Replay Frequency. Following de Mas-
son D’Autume et al. (2019), we match the
size of our retrieved memory batches to our
training batches. We execute a retrieval and
gradient update every 100 steps, achieving an
efficient 1% replay rate.

What to Store into Memory. We consider strate-
gies for memory sample storage: (1) including all
samples encountered during pre-training, (2) pri-
oritizing samples with entities, and (3) choosing



high-loss samples that may be more susceptible

to forgetting. Advanced selection methods are re- *

served for future research.

Retrieve Strategy. We’ve introduced two basic
but impactful retrieval methods: random sampling
and similarity-based sampling. Unlike de Mas-
son D’ Autume et al. (2019), who used a pre-trained
BERT (Devlin et al., 2018) model for the similarity-
based sampling, we opted for BM25 (Robertson
et al., 2009) for its efficiency (Yao et al., 2022).
Exit Mechanism. Given the fixed intervals of
memory replay, the number of replayable samples
is inherently limited. Simple replay methods may
lead to an imbalance in the samples being replayed,
such as coincidentally focusing on a few samples
every replay batch. Thus, limiting the maximum
replay threshold of a sample may help.

5.2 Experimental Settings

In the previous section, we used two datasets, A
and B, to study the forgetting effect. Now, to mimic
a realistic pre-training setup, we’ve mixed and shuf-
fled A with B into one complete set. We trained
GPT?2 from scratch using this combined set. To
measure forgetting across the dataset, we took 1/5
of A+B, selected samples with entities, and made
an test set(~ 200,000 samples). We then use the
aforementioned 4 metrics to assess the results.
Although the ability to relearn past samples is
beneficial, a drawback of the replay method is its
increased training cost. Considering realistic fea-
sibility and the need for simplicity, we select the
following straightforward strategies, while leaving
more sophisticated replay methods for future work:

Vanilla pre-training The standard pre-training.
Upper Bound We train from the above pre-training
checkpoint on the test set, evaluating immediately
to determine the model’s peak memory retention.
BM25. We leverage Elasticsearch (Elasticsearch,
2018) to maintain a memory of all encountered
samples. At designated replay intervals, we use the
current batch as queries to search for previously
seen similar data for replay.

BM25 + Samples with entities only. During learn-
ing, we only keep samples with the presence of
entities in our memory.

Focused Stochasticity: Constrained Entity Sam-
pling with Exit Limit. We shift from similarity-
based retrieval to random sampling. We use the
previously mentioned exit mechanism and exclude
samples from the memory after they have been

replayed 5 times.

Intensive Focused Stochasticity: This variant of
Focused Stochasticity intensifies the replay process,
subjecting replayed samples to multiple epochs of
learning. The idea behind this method and further
details are elaborated in Section 6.2.2.

Let T denote the computational cost of vanilla pre-
training, 7" represent the interval between replays,
and f be the number of epochs conducted on the
replay batch. The computational cost for the In-
tensive Focused Stochasticity method is Tieplay =
(1+ f/T)To. Weuse f =5 and T = 100 in this
experiment. Thus Treplay = 1.057p, which is af-
fordable for practical use. More discussions are
presented in Appendix C.

Method | PPLec M(flent Mex (x107°)  Mip (x1072)

Vanilla pre-training 26.03 0.4093 5.273 3.988
Upper Bound 23.74 0.4182 14.46 4.162
BM25 2795 0.4015 4.586 3.895
BM25 + Samples with entities only | 28.09 0.4013 4.575 3.941
Focused Stochasticity 25.79 0.4101 5.496 3.980
Intensive Focused Stochasticity 2540 0.4121 5.450 4.003

Table 1: Evaluation results for replay strategies.

5.3 Effectiveness of Memory Replay

We display the evaluation in Table 1. The results
indicates that similarity-based replay methods do
not outperform the baseline, no matter if all sam-
ples or only those related to entities are kept in
memory. This might be due to the strategies don’t
spread replay evenly; replaying all samples might
focus too much on non-entity ones, while focusing
only on entity-related samples could lead to too
much attention on a specific subset, exaggerating
the forgetting of other samples.

On the other hand, a simple sampling method im-
proves upon the baseline, hinting that replay helps
reduce forgetting during pre-training. Nevertheless,
there’s still a gap between the replay methods and
the upperbound.

To further demonstrate the effectiveness of mem-
ory replay, we conducted an in-depth analysis of the
impact of sample-level forgetting on the model’s
performance across common benchmark datasets.
We utilized the following common benchmark
datasets for our analysis: Hellaswag (Zellers et al.,
2019), MMLU (Hendrycks et al., 2020) and Wino-
grad (Levesque et al., 2012). We compared the
zero-shot accuracy between the vanilla pre-training
and our Intensive Focused Stochasticity.

The performance shows that Intensive Focused
Stochasticity method is generally superior to the
non-replay method. The MMLU dataset is rela-



Method ‘ Hellaswag MMLU Winograd Avg.
Vanilla pre-training 27.46 23.20 53.47 3471
Intensive Focused Stochasticity 27.75 23.00 55.68 3548

Table 2: Results across common benchmark datasets.

tively more difficult, and the results may be subject
to disturbances. The results indicates that intensi-
fied memory replay methods offer improvements
compared to the standard pre-training approach.
Considering forgetting do help performance on
downstream tasks.

Takeaway 3: Our memory replay methods
show potential in alleviating forgetting in
the pre-training phase, while a gap persists
relative to the upper bound, signifying the
necessity for further research.

6 Explorations on Forgetting Curves

In the preceding section, we demonstrated the ef-
ficacy of memory replay methods. Recognizing
that traditional memory replay methods (de Mas-
son D’ Autume et al., 2019; Wang et al., 2020) in-
volve samples being learned uniformly and at equal
intervals with low intensity. We now seek to ex-
plore the impact of replay learning on subsequent
learning processes, as well as investigate factors
such as the intensity of replay and the effects of pe-
riodic replay on learning curves. This exploration
is motivated by the renowned forgetting curve from
human psychology (Loftus, 1985), which under-
scores the link between the intensity of learning
and the pace of forgetting.

We first focus on factors that we expect to mani-
fest their influence on the model’s forgetting curve.
After an in-depth observation, we aim to apply the
phenomena observed on the forgetting curve to
guide the design of memory replay methods during
pre-training. This approach is intended to refine
and understand our strategies for combating forget-
ting, ensuring that they are informed by empirical
insights into the model’s learning dynamics.

6.1 Setup

We focus on two critical factors: (1) Learning in-
tensity’s impact: We explore the hypothesis that
increased initial learning intensity may result in
more robust memory retention, potentially flatten-
ing the forgetting curve. (2) Memorability and
memory durability: We determine if challenging
samples, post-intensive learning, remain at risk of
forgetting during pre-training.

To tackle these inquiries, we first select sam-
ples related to entities of interest. After the model
undergoes an initial epoch of pre-training, we sub-
ject these samples to intensive training across sev-
eral epochs. The purpose of the initial pre-training
epoch is to ensure the model reaches a basic level
of language proficiency. This step is crucial to pre-
vent general language ability improvements from
confounding the experiment, allowing for a clear
focus on the forgetting phenomenon rather than
overall enhancement.

Post the intensive learning phase, these entity-
related samples serve as our test set. As we proceed
with pre-training, we continuously assess this set
using our established metrics to monitor the forget-
ting curve. This ongoing evaluation allows us to
track how the memory of these samples evolves and
to understand the interplay between initial learning
intensity and long-term retention within the context
of pre-training. For further details on the experi-
mental design, please refer to the Appendix C.4.

6.2 Results on LLMs’ Forgetting Curves
6.2.1 Forgetting Curves

As shown in Figure 4, experiments indicate that
(1) a significant decline is still observed even when
the dataset used for subsequent training is identi-
cal and uniformly distributed to the source of the
data in the initial epoch of pre-training. This re-
inforces our conclusions presented in Section 4.2,
reflecting that even under an identical data distri-
bution, forgetting is still remarkably pronounced.
(2) higher initial learning intensity results in better
performance across various metrics, yet as further
pre-training occurs, the results from experiments
with lower initial learning intensity tend to catch up.
This pattern mirrors human learning curves (Lof-
tus, 1985), and we offer a detailed comparison in
Appendix E. (3) Over the learning period, a diver-
gence is observed; experiments with a very high
initial learning intensity maintain a gap compared
to those with a lower initial intensity. This gap
is more pronounced for less difficult data. This
suggests that data that are more difficult to memo-
rize benefit from more intensive learning to achieve
enhanced memory retention.

6.2.2 Periodic Intensive Replay

Building on findings above, we recall the intuition
that human can reduce forgetting through periodic,
intense learning. We aim to (1) assess its impact on
a model’s forgetting curve, and (2) determine if this
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Figure 4: Forgetting curves on samples categorized by difficulty level. After sufficiently training, experiments
with varying degrees of replay intensity tend to converge, while there remains a gap between methods with higher

and lower replay intensities.

Our key experiment, periodic replay method (red) demonstrates the ability to

achieve continuous performance improvement across the entire learning curve with a smaller computational cost.
Remarkably, even at the end of the curve, the upper and lower bounds of the periodic replay method remain

consistently better.

can enhance previous memory replay methods. To
delve deeper into these effects, we focused our ex-
periments on the more challenging samples. After
the initial phase of high-intensity learning, we intro-
duced a replay process in the ongoing pre-training.
This process involves revisiting the samples every
1000 steps, with each replay session consisting of
5 epochs of learning.

In this experiment, the replay intervals were rel-
atively large, which was acceptable in terms of
efficiency. Moreover, the periodic replay method
outperformed the baseline. Although there was a
temporary decline after each replay, the overall per-
formance improves over time. We discovered that
periodic, high-intensity replay on the forgetting
curve leads to an enhancement of both the upper
and lower bounds. Moreover, this approach proved
more effective and cost-efficient than directly re-
play with 100 epochs.

6.2.3 Intensive Replay for Pre-training

Thus, we believe that such human-like strategies
could guide the design of replay mechanisms. To
test this hypothesis, we conducted an experiment
and enhanced the Focused Stochasticity method in
Section 5.2. Specifically, we intensified the learn-
ing process for each replay batch, with each batch
undergoing 5 epochs of learning. The approach,
referred to as Intensive Focused Stochasticity, has

been included in Table 1 for ease of comparison
with other methods. Additionally, its performance
on general downstream tasks is presented in Table 2.
The results indicate that Intensive Focused Stochas-
ticity outperforms vanilla pre-training across all
metrics, suggesting its efficacy in mitigating forget-
ting during pre-training.

Takeaway 4: The forgetting patterns of
LLMs suggest that periodic, intensive re-
play could be key to mitigating memory
loss. Experiments of intensified memory
replay conducted during the pre-training
phase also confirmed this point.

7 Conclusion and Future Work

We aspire to capture the industry’s attention and
stimulate optimization efforts regarding the often-
overlooked potential danger within model develop-
ment. Our research sheds new light on catastrophic
forgetting in LLMs during pre-training. We scru-
tinized traditional metrics, introduced novel ones
for a clearer analysis of forgetting, and proposed
memory-replay techniques to bolster knowledge
retention. Additionally, we explored the forgetting
curve post-intense, short-term learning, uncovering
similarities with human memory decay, offering
insights into information retention dynamics.



8 Limitations

Our research into the occurrence of catastrophic
forgetting during the pre-training of Large Lan-
guage Models, though innovative, faces significant
computational constraints. The necessity for a sub-
stantial computational resource, such as 10,000
GPU hours on 8 NVIDIA A100 GPUs equipped
with 40 GiB of VRAM, presents a considerable
barrier. The core contribution of our work is to em-
phasize and delve deeply into an often-overlooked
potential danger, with the hope of drawing the in-
dustry’s attention to and optimizing the issue of
pre-training forgetting in models.

Informed by the scaling law (Kaplan et al., 2020),
we recognize that our findings from a smaller
model may provide valuable insights for larger-
scale experiments. This framework indicates that
our study could contribute to the design of future
research, acknowledging the limitations in scaling
our results.

Our approach to memory replay has shown po-
tential in alleviating catastrophic forgetting, but
there is still room for improvement in terms of
its effectiveness. Our investigation did not delve
deeply into the granular effects of each variable
on the experimental outcomes. The complexity of
memory replay mechanisms requires a more nu-
anced analysis to fully understand how different
factors interplay and influence the results.

Additionally, the concentrated learning of mem-
ory replay, while beneficial, may engender trade-
offs that affect the model’s generalizability. We
hypothesize that the focused emphasis of certain
data subsets could lead to a diminished capacity
for the model to adapt to tasks beyond the focused
areas, such as numerical data processing or other
cognitively distinct downstream tasks.

We recognize that forgetting in pre-training dif-
fers from that in SFT, each requiring distinct met-
rics and methods for mitigation. Yet, there are
connections between them. In future work, we
also aim to explore the impact of our methods on
forgetting in downstream tasks.

Despite these limitations, our study exemplifies
the scientific endeavor to confront complex prob-
lems with rigor and without reservation. Our work
is a courageous step towards understanding the
intricate processes of memory retention and forget-
ting in LLMs, reflecting a sincere commitment to
advancing our collective knowledge, even in the
face of substantial challenges.
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A TL;DR: Main Contributions

In this work, our focus is on exploring an issue
that developers and researchers in the industry
have frequently noticed: large models, despite their
widespread use, are susceptible to errors in factual
domains, particularly regarding entity-related in-
formation (Wang et al., 2023a). While the erosion
of knowledge retention during pre-training is ac-
knowledged, no previous work has addressed the
issue of forgetting in pre-training, nor provided a
clear definition, analysis, or methods to address it.
Our core contributions in this work are:

* We are the first to identify the problem of forgetting
during pre-training.

» Within an affordable computational range, we con-
ducted dozens of experiments to carefully explore
the existence of the pre-training forgetting issue,
the metrics for measurement, the forgetting curve,
and the design of replay methods guided by the
forgetting curve to provide feasible methods for
mitigating pre-training forgetting.

Although the issue of forgetting is important and
has been extensively studied during the SFT phase,
no one is willing to tackle such a challenging prob-
lem in pre-training. The pretrain data is extremely
vast and complex, inherently containing thousands
of tasks. It cannot be characterized by task-level
metrics, and such metrics also cannot reflect the
general factual forgetting. Moreover, represent-
ing the forgetting of task-specific capabilities is
too vague and elusive. In pre-training, most ef-
forts have focused on synthetic data (Gunasekar
et al., 2023) and model structures (Allingham et al.,
2021), with too little research on the phenomenon
itself.

We hope that the explorations and conclusions
presented in this paper can facilitate the design of
pre-training in the industry. We also aim to conduct
experiments on larger models and more diverse
datasets to provide more detailed conclusions.

B Further Discussions on Pre-training
Forgetting

In this section, we discuss the intuition and method-
ology behind the paper, as well as potential issues.

1. Why should we be concerned about model
forgetting at the sample level during pre-
training?

Developers and researchers have frequently
observed that large models, despite their exten-
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sive deployment, are prone to errors in factual
domains, especially concerning entity-related
information (Wang et al., 2023a). These dis-
crepancies can substantially affect user per-
ception and trust. However, there is a scarcity
of research on the influence of learning during
the pre-training phase on this type of infor-
mation, and even less on how models remem-
ber and forget information during pre-training.
The phenomenon of sample-level forgetting in
pre-training is also difficult to define clearly,
analyze, and further explore.

. How should we understand entity-related

metrics, and why is it important to focus on
forgetting at the entity level?

(1) Forgetting across the entire pre-training
dataset is extremely difficult to define and
study, hence we concentrate on a specific
subset. Errors related to entity information
are easily noticeable in model applications
and significantly impact user experience. (2)
Beyond the model’s memory of entity infor-
mation, we also consider its capabilities dur-
ing pre-training, especially since the Super-
vised Fine-Tuning (SFT) phase places more
emphasis on instructional data. This phase
enhances the model’s competencies for down-
stream tasks, and we see it as a stage for aug-
menting the model’s capabilities. Therefore,
we believe the pre-training phase should place
greater emphasis on exploring entity informa-
tion. (3) In Section 3.2, we demonstrate that
overall data forgetting is hard to evaluate, as
there is no clear decline in model performance
when switching training data (we deliberately
selected parts of data from A to ensure mini-
mal repetition in B), and almost no change in
metrics is observed during the switch. Instead,
during training in B, the model’s capabilities
continue to improve, even surpassing the met-
rics achieved during training in A, which con-
tradicts the intuition of forgetting. PPL does
not intuitively reflect the model’s forgetting;
in contrast, the metrics concentrated on enti-
ties show significant changes on entity-related
data, with almost no recovery, facilitating the
direct study of the forgetting phenomenon.

. Why the proposed metrics better reflect for-

getting? Might the decreased performance
on the metric be attributed to the applica-
tion of a more stringent metric?

Attempting to identify the phenomenon of for-



getting during pre-training and to indicate it
with a reasonably sound metric poses a con-
siderable challenge. However, this question
has never been explored in the past. We have
extensively reviewed previous work and have
adopted the PPL and M(f) metrics, while also
proposing two novel metrics.

The A and B datasets in Section 4.2, as general
pre-training datasets, show no significant dif-
ferences in text style. Besides, in Section 6.2,
we showed that a significant decline in met-
rics is still observed, even the dataset used for
subsequent training is identical and uniformly
distributed to the source of the data in the ini-
tial epoch of pre-training. This indicates that
forgetting detected by our metrics does not
stem from a shift in text styles.

Regarding the difficulty of metrics, in the ex-
periment shown in Figure 3, we observe that
even metrics that are simple by design, such
as PPL and M(f), show a significant decline.
This suggests that the forgetting phenomenon
is unrelated to the difficulty of the metric. Be-
sides, for M(f), which involves calculating the
accuracy of the subsequent 32 tokens for each
decoded token using teacher forcing, it is not
simpler. However, we can see that PPL and
M(f) slowly recover during subsequent train-
ing, indicating they are not sensitive enough
to capture the forgetting phenomenon. While
the M., and M;,, though more complex, are
more sensitive. We believe that by combin-
ing a range of metrics with varying degrees
of design complexity and sensitivity, we can
provide as comprehensive a portrayal of the
phenomenon of forgetting as possible.

. Since the model may leak verbatim se-
quences of personal information, is sample-
level forgetting harmful?

In our study, we focus on learning and the
retention of factual information related to enti-
ties, which models should not forget and that
is prevalent in the pre-training data. We di-
verge from concerns about leaking verbatim
personal information. There is extensive liter-
ature on machine unlearning (Wu et al., 2020;
Bourtoule et al., 2021; Chen et al., 2022),
which typically addresses scenarios involving
privacy protection and changes in user infor-
mation. These scenarios fall outside the scope
of our work, although our research might offer
insights into the design of machine unlearning
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methods.

. Is this study primarily addressing halluci-

nations, or is it actually more focused on the
model’s tendency to forget entity-related in-
formation rather than producing false out-
puts?

Our research concentrates on the model’s in-
clination to forget information pertaining to
entities, diverging from the generation of er-
roneous outputs, commonly known as hallu-
cinations. However, it is true that our work
offers a perspective on the concept of halluci-
nations, where the two newly designed met-
rics, Mex and Mj,, can be interpreted as po-
tential false negatives and false positives in
the pre-training model’s responses: the model,
given relevant information, fails to identify
the correct entity; or the model provides an
entity and some information but is unable to
supply the related context.

. Should we expect an LLM to reproduce

exact training text, given it’s not a lossless
compression model?

In our study, we do not anticipate LLMs to
reproduce the exact training text. Specifically,
our M metric solely assesses whether the
ground truth entity is included in the output;
while capturing the formalization of informa-
tion related to the entity presents challenges.
For the M;, metric, we follow the design of Bi-
derman et al. (2023a), calculating accuracy
for each token. We consider that alternative
design schemes might be possible, such as uti-
lizing a BERT model (Devlin et al., 2018) to
calculate the similarity between the generated
tokens and the ground truth tokens. We have
reserved this exploration for future research.

. Analysis of computational costs for replay

methods. To discuss the computational cost
of replay methods, let Tjy denote the compu-
tational cost of vanilla pre-training, 1" repre-
sent the interval between replays, and f be
the number of epochs conducted on the re-
play batch. (1 + f/T)Ty. Every T training
steps, the model gets a replay batch and under-
goes f epochs of training on that batch. There-
fore, training 7" batches of unique data, replay
methods necessitate 7' + f steps of training,
whereas vanilla pre-training requires training
with just 7" batches. This indicates that the
computational cost for the Intensive Focused
Stochasticity method i Treplay = (14 f /1) Tp.



Setting f = 1, the Intensive Focused Stochas-
ticity will degenerate to Focused Stochastic-
ity. For instance, if f = 5, T" = 100, and
Treplay = 1.05Tp, such computational cost is
deemed acceptable.

C Setup Details

In this section, we outline our experimental setup.
We selected a batch size of 576, informed by our
use of 8 NVIDIA A100 GPUs with 40 GiB VRAM,
and aligned with GPT-2°s (Radford et al., 2019) hy-
perparameter recommendations for optimal perfor-
mance on our hardware configuration. A consistent
sequence length of 1024 was applied across all ex-
periments. Training is executed in half-precision
format using BF16, and we capitalize on the Zero
Redundancy Optimizer (ZeRO) Stage 2 (Rajbhan-
dari et al., 2020) to enable efficient scaling across
multiple machines. We draw inspiration from the
works of Biderman et al. (2023b); Gupta et al.
(2023); Radford et al. (2019), employing a cosine
learning rate decay that reduces to a minimum of
0.1 times the Maximum Learning Rate (MaxLr),
with the MaxLr itself set at 6 x 1074

C.1 Setup for Section 3.1

We utilized the GPT-2 XL model (1.5B) (Radford
et al., 2019) and trained it on a dataset sampled
from SlimPajama (Soboleva et al., 2023), consist-
ing of 4.9e8 tokens. Prior to training, we shuf-
fled the data to ensure that the order of training
instances was consistent across different experi-
ments. We conducted two experiments: a stan-
dard pre-training and a pre-training with a replay
mechanism that retrieves a batch of data, equiva-
lent in size to the training batch. (where we stored
all trained data using Elasticsearch (Elasticsearch,
2018) and performed a replay every 10 steps). At
each replay step, we use the current batch‘s training
data to uniformly sample an equal amount of data
from the completed training data based on similar-
ity. This ensures a uniform replay throughout the
entire data training process, with an additional 1/10
increase in computational budget. For evaluation,
we constructed a test set by sequentially segment-
ing the training data according to the training steps
and uniformly sampling 1/100 of each segment.
The samples were then reassembled in their orig-
inal stepwise order to ensure uniform distribution
across the training steps, thus creating a test set that
mirrors the model‘s training progression. We plot-
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ted perplexity (PPL) against the number of training
tokens processed, with the evaluation set‘s token
count scaled proportionally to reflect the model‘s
exposure to the training data.

C.2 Setup for Section 3.2

To ensure computational feasibility in our experi-
ments, we choose GPT-2 (0.1B) in this section. We
uniformly sample 1/1000 of dataset A to consti-
tute a eval set, and perform evaluations every 1000
training steps during the training process of dataset
B.

C.3 Setup for Section 4.2

We followed Biderman et al. (2023a), selecting a
sequence length of 32 for both the input and output
of our M.y and M;, metrics. We collected enti-
ties from English Wikipedia dataset (Foundation).
Some randomly sampled entities are shown in Ta-
ble 5.

To spotlight entity-level forgetting, we evenly
sampled 400,000 English Wikipedia entries, com-
paring entity frequencies in datasets A and B. We
selected the intersection C' of entities that were top
1/2 frequent in A and bottom 1/2 in B to accentuate
the distribution disparity. Samples from A with
entities in C' constituted our evaluation set. Follow-
ing the approach of Biderman et al. (2023a), we
retained a subset where M¢x = 1 post A’s training
to scrutinize their forgetting during B’s training.

We provide illustrative examples in Table 3 and
Table 4 to provide clearer explanations of M;, and
M.

C.4 Setup for Section 6.2

It is evident that M assigns a binary label to each
sample: a label of 1 is given if the ground truth
entity appears within the generated 32 tokens, and
a 0 is assigned otherwise. Utilizing the challenging
metric of M.y, we can categorize the difficulty of
data memorization as follows: We performed an
evaluation on the portion of the pre-training data
that includes entities, recorded each entity along-
side the samples that received labels of 1 or 0, and
then calculated the accuracy rate for each entity
based on these labels. We then divided the entities
into groups with roughly equal accuracy rates, en-
suring that during the phase of intensive, short-term
learning, the related samples for certain entities are
the focus of concentrated study. For the data cate-
gorized into different difficulty levels, we carried
out experiments with varying degrees of learning



Prompt

True Continuation

The Amazon Rainforest ,

known as the Earth’s lungs

Greedily Generated Sequence
known  [as [the  Moon’s

My

LHEL0H _ (g

lungs L

The Amazon Rainforest ,

known as the Earth’s lungs

The Colosseum in Rome, also known as the Flavian Amphitheatre ,

i an iconic symbol of the Roman Empire’s architectural prowess.

known [as [the Moon's legs

is |an liconic (symbol lof [the Russian Federation’s scientific |prowess
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Table

and are not from the real training data.

3: Examples of M;, calculation with different prompts. These samples are provided for illustrative purposes

Entity Prompt

True Continuation

Greedily Generated Sequence

Mex

Leonardo da Vinci | The Mona Lisa, painted by

Leonardo da Vinci , is renowned for its elusive

Leonardo da Vinci | The Mona Lisa, painted by

Leonardo da Vinci , is renowned for its elusive

Leonardo da Vinci , is renowned for its elusive

1

aman called Leonardo da Vinci , is renowned for

1

Leonardo da Vinci | The Mona Lisa, painted by

Leonardo da Vinci , is renowned for its elusive

Donald Trump , is renowned for its elusive

0

the United States

The Statue of Liberty, a gift from France to

the United States , stands as a symbol

the United States

The Statue of Liberty, a gift from France to

the world, mysteriously appeared on an uninhabited island

the United States , stands as a symbol

0

tell the enduring friendship with the United States

1

Table 4: Examples of M calculation with different prompts. These samples are provided for illustrative purposes

and are not from the real training data.

intensity—specifically, by adjusting the number of
epochs dedicated to this phase of learning.

D Performance across Various Entity

Types

To further enhance the effectiveness of replay meth-
ods and the new metrics, an analysis is presented
on how these metrics perform with different types
of entities.

The entities employed for evaluation in Table 1
have been systematically categorized into four dis-
tinct classes: MISC (miscellaneous entities), PER
(person names), LOC (location) and ORG (organi-
zation). We compare Intensive Focused Stochas-
ticity in Table 1 with the standard pre-training, the
results are shown in Table 6 below.

The Intensive Focused Stochasticity method
demonstrates superior performance over vanilla
pre-training across a broad spectrum of entity types,
indicating that the replay approach and its asso-
ciated metrics are broadly applicable to various
linguistic contexts.

E Comparison of Forgetting Curves
between Humans and LLMs

The reproduced human forgetting curve, originally
reported by Craig et al. (1972), is illustrated below,
reflecting the typical decline in memory retention
over time. In their study, 180 undergraduates par-
ticipated in an experiment involving exposure to
magazine advertisements under controlled condi-
tions. They were categorized into three groups
based on the extent of learning: 100%, 200%, and
300%, determined by the number of 5-second rep-
etitions of 12 ads. Following exposure, 15 partic-
ipants from each group were assigned to one of
four retention tests occurring at immediate, 1-day,
7-day, or 28-day intervals. The study utilized a 3
x 4 factorial design, assessing the impact of learn-
ing intensity and retention intervals on the recall
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of brand names. It can be observed that there are
similarities between the model’s forgetting curve
and the human forgetting curve, with higher initial
learning intensity resulting in a relatively slower
rate of forgetting.

Memory Performance (Items Recalled)

25
Delay Time (days)

Figure 5: Human forgetting curve from Craig et al.
(1972).



Sampled entities

¢ Terrel Bell, ¢ BIST®, ‘ The Great Hunt*, * Best in
Drag Show*,  Stella Maris‘, * William Knighton‘,
¢ Italian campaign‘, ¢ The Octopus Project’, ‘ Light
Cycle‘, © Clark Street‘, ‘ Paulette Hamilton*, °
Robert Mack®, ¢ Nusrat‘, ¢ Soul Catcher‘, ¢ Lord
of Light*, * Bieger*, * Foreach loop‘, ‘ Choruss",
¢ Screen space ambient occlusion®, ¢ Florida De-
partment of Environmental Protection®, * USA Ul-
timate‘, ¢ Historical Association‘, ¢ Robert Holt*,
‘ Willie Nile, ¢ Fiordland National Park®, ‘ Star
Wars: The Clone Wars®, * Crouch End‘, ‘ Tracy
Ham®, ¢ Jimmy Chamberlin®, ¢ Journal of Food Sci-
ence’, - Comet Tempel‘, © AirMed International‘, *
CanWaCH"*, ¢ Pumapunku®, ¢ Pre-law‘, * Arovane‘,
¢ Diex*‘, < Her Escape‘, * Voltige*, ‘ Triadelphia®,
¢ Florian Zeller‘, * The Busy World of Richard
Scarry‘, ‘ Texting while driving*, ©* Amir Wilson®,
Julie White*, ‘ Lenox‘, * GNPDA2°¢, - Cammie Dun-
away‘, ¢ Session Man®, ‘ Charoen Krung Road®, *
James Raine‘, ¢ Archie Andrews‘, ‘ The Picture
of Dorian Gray‘, ¢ Theresa Caputo®, * Schauins-
landbahn, ‘ Japanese relocation‘,  O.C. Handa’, *
Afula‘, ‘ The Secrets®, * Sonnet 61°,  Daniel Bell, *
The Dawn®, ‘ Bob Berry*, * Bigger Life®, ‘ Jamaica
Wine House®, ¢ Conica‘, ¢ Renuar‘, ‘ Plantation,
Florida‘, “ Fasser®, * Al-Qadi‘,  Vassy‘, ‘ Tom
Dempsey*, ‘ Department of Agriculture, Environ-
ment and Rural Affairs, ¢ Abdallah Djaballah®, *
Silent Hill 2¢, * Bill Ayres®, ‘ Jeremy Howe*, © J15°,
¢ Jake Ryan‘, ¢ Black Mafia‘, * Nicholas Fox*, *
Interstate 78°, ¢ Mark Stein®, ‘ Pietro Torri‘, ¢ Wet
sump°, ‘ Centre national des arts plastiques®, * Nitro
Express‘, < Wyvill‘, - WSRA*, © Whitewater River*,
¢ Merry Christmas Mr. Lawrence®, ¢ Jon Jansen®, *
Le Message®, * Mavrommati‘, ‘ Tourouvre®, * Bob
Peterson®, ¢ America Again®‘, ‘ Livernois‘, * The
Shepherd Express®, ¢ Hypercalcaemia*

Table 5: Sampled entities from English Wikipedia.

Method Entity Type | PPLaxc M(Denw  Mex (x10°3) M, (x10-2)
MISC 2724 0.4045 5.685 3.786
Vanilla pre-training PER 27.47 0.4008 3.530 3.760
° LOC 2530 0.4126 3.336 4.282
ORG 25.13  0.4144 7.070 3.832
MISC 26.46 0.4071 6.464 3.861
Intensive Focused Stochasticity PER 2655 0.4044 3.544 3.774
LoC 2441 0.4164 4.776 4.303
ORG 2424 0.4183 6.637 3.850

Table 6: The evaluation results of replay strategies

across different subsets of entities.
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