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Abstract

Successful applications of deep reinforcement learning (deep RL) combine algo-
rithmic design and careful hyper-parameter selection. The former often comes
from iterative improvements over existing algorithms, while the latter is either
inherited from prior methods or tuned for the specific method being introduced. Al-
though critical to a method’s performance, the effect of the various hyper-parameter
choices are often overlooked in favour of algorithmic advances. In this paper, we
perform an initial empirical investigation into a number of often-overlooked hyper-
parameters for value-based deep RL agents, demonstrating their varying levels
of importance. We conduct this study on a varied set of classic control environ-
ments which helps highlight the effect each environment has on an algorithm’s
hyper-parameter sensitivity.

1 Introduction

Deep reinforcement learning (deep RL) is a burgeoning research area with an astounding number
of theoretical and empirical advances. Algorithmic progress is usually measured by comparing to
pre-existing baselines on a set of established benchmarks, where the proposed method is typically
evaluated using a single (or small set of) hyper-parameter choices. While this approach helps
demonstrate the potential of new algorithms, they are less effective at demonstrating their robustness
to varying hyper-parameters, especially those that have been "inherited" from prior methods. We will
refer to these types of publications as academic deep RL.

There have been a number of recent success stories in applying deep RL to large-scale real-world
tasks [Silver et al., 2016, Bellemare et al., 2020, Mirhoseini et al., 2021], but in all these cases
very specific design decisions (including hyper-parameter choices) were necessary for them to work
effectively; often, differing from the design choices made in the algorithms leveraged by these works.
We will refer to these types of publications as applied deep RL.

Although tackling the same underlying problem, there exists a gap between academic and applied
deep RL. While progress in the applied side leverages advances made in the academic side, it typically
requires a group of highly-specialized researchers to successfully adapt the academic insights into a
workable agent; this produces a de-facto barrier for non-academics to successfully apply deep RL to
their problem. On the other hand, many of the components ultimately used for large-scale real-world
problems tend to be specific, resulting in less-than-ideal academic uptake.

∗Equal contribution.

Deep Reinforcement Learning workshop at NeurIPS 2021.
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Figure 1: Comparison of hyper-parameter sensitivity for DQN and Rainbow on classic control (top)
and MinAtar (bottom) environments. The colors represent groups of hyper-parameters: network
components ( , subsection 3.1), optimizer components ( , subsection 3.2), algorithmic components
( , subsection 3.3). Note that the hyper-parameters considered are only those that are within a
reasonable range of the default settings.

We argue that a key contributor to the gap between academic and applied deep RL is a poor empirical
understanding of the impact of the aforementioned hyper-parameters on the performance of the overall
algorithm. In this paper, we begin to "lift the veil" on some commonly overlooked hyper-parameters
for value-based deep RL in the hope that they help bridge this gap. We aim to (at least partially)
answer the following questions:

1. How sensitive are deep reinforcement learning algorithms to variations in hyper-parameter
selection?

2. Does the choice of environment vary the sensitivity to hyper-parameter selection?

3. Are existing methods under-performing due to a poor hyper-parameter choice?

2 Background

Reinforcement learning problems are typically formulated as a Markov decision process (MDP),
which consists of a 5-tuple 〈X ,A, R,P, γ〉, where X denotes the (possibly infinite) state space, A
denotes a finite set of actions, R : X × A → R is the reward function, P : X × A → Dist(X )
encodes the transition dynamics (often written as P(x′|x, a)), and γ ∈ [0, 1) is a discount factor. The
principal objective of reinforcement learning is to learn a behaviour policy π : X → Dist(A) that
maximizes the discounted sum of expected rewards. While there are a number of valid approaches
(see, e.g. Sutton and Barto [1998]), in this paper we focus on value-based methods. These aim to
learn an approximation to the so-called Q∗-values, defined via the Bellman recurrence:
Q∗(x, a) := R(x, a) + γEx′∼P(x,a)[maxa′∈AQ

∗(x′, a′)]. The optimal policy π∗ can then be
obtained from Q∗ as π∗(x) := maxa∈AQ

∗(x, a).

One of the most common approaches for learning Q∗ is via the method of temporal differences:
given an estimate Q and a transition tuple (x, a, r, x′), we can obtain a new estimate via: Q(x, a)←
Q(x, a) + α [r + γmaxa′∈AQ(x′, a′)−Q(x, a)], where α is a learning rate. We often refer to the
term [r + γmaxa′∈AQ(x′, a′)] as the Bellman target.

2



2.1 DQN

Mnih et al. [2015] defined DQN by combining temporal-difference learning with deep networks,
and demonstrated its capabilities in achieving super-human performance on the Arcade Learning
Environment (ALE) [Bellemare et al., 2012]. Specifically, a deep network, parameterized by a vector
θ, was trained to approximate Q∗: Qθ ≈ Q∗. Mnih et al. [2015] introduced two key components that
helped stabilize the learning process.

The first was the use of a large replay buffer to store experienced transitions and, after collecting a
sufficient number of transitions (referred to as the min replay history), use samples from that buffer to
update the network. By having many transitions in the buffer and sampling from it one can reduce
the dependency between the elements of a training batch, which helps with neural network training,
in addition to leveraging speedups from hardware like GPUs. However, this results in off-policy
learning, which means that the agent is learning from experience obtained from a different (e.g. older)
policy than the policy it is currently using to act. Exploring the difficulties in off-policy learning is an
active area of research; nonetheless, the use of replay buffers is ubiquitous in deep RL.

The second was the use of a target network (parameterized by θ̄), in addition to the main online
network, for stabler bootstrapping targets. The Q-update then becomes

∆Qθ = −α∇θ
(
rt + γ

′
max
a

Qθ̄(x
′, a′)−Qθ(x, a)

)2

The target network parameters are not updated by gradient descent, but rather they are synchronized
with the online parameters at a lower frequency (e.g. θ̄ ← θ). We refer to the frequency of online
network updates (via gradient descent) as the online update period, and the frequency of the target
network updates as the target update period.

2.2 Rainbow

Although DQN benchmarked on the 57 ALE games with the same set of hyper-parameters, Anschel
et al. [2017] and Cini et al. [2020] demonstrated that in some environments it can prove to be rather
unstable resulting in degraded performance. There were a number of papers that improved on it to
improve its stability and performance. Hessel et al. [2018] combined many of these into a single
agent they called "Rainbow". Specifically, they combined DQN with double Q-learning [van Hasselt
et al., 2016b], prioritized experience replay [Schaul et al., 2016], dueling networks [Wang et al.,
2016], multi-step learning [Sutton, 1988], noisy nets [Fortunato et al., 2018], and distributional
reinforcement learning [Bellemare et al., 2017].

2.3 Experimental details

As suggested by Obando-Ceron and Castro [2021], we evaluate on four classic control environments
(CartPole, Acrobot, LunarLander, and MountainCar)2, which can be useful for conducting thorough
investigations with numerous independent runs. Our implementation is based on the Dopamine frame-
work [Castro et al., 2018], but the default hyper-parameter settings used for the online experiments
are those specified by Obando-Ceron and Castro [2021]. All experiments were run on a CPU, and we
report the mean and 95% confidence intervals, averaged over 30 independent seeds.

We also evaluated on the MinAtar environment [Young and Tian, 2019], as they can help shed
some light into the effect of convolutional layers and more complex environments. For the MinAtar
experiments we use the default settings suggested by Obando-Ceron and Castro [2021], except
where noted. Given the increased computational complexity of this suite, we ran each setting with 5
independent seeds (each on a separate GPU), and we report the mean 75% confidence intervals.

3 Lifting the veil

We organize our experiments into three groups of hyper-parameters: network components (sub-
section 3.1), optimization hyper-parameters (subsection 3.2), and algorithmic parameters (sub-
section 3.3). Figure 1 presents an overall summary of these experiments, and we will present

2Available in the OpenAI Gym library [Brockman et al., 2016]
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Figure 2: Comparison of hyper-parameter sensitivity for DQN and Rainbow, for the network compo-
nent hyper-parameters (subsection 3.1).

and discuss each individual group below. Due to space constraints we include all the figures in
Appendix A and include only aggregate plots in the main paper. All our code is available at
https://github.com/JohanSamir/rainbow_extend.

3.1 Network components

The aggregate results for these experiments are summarized in Figure 2.

Initializations Initialization is the term used to define the initial values for the parameters of a
neural network. While there exists a broad literature studying initialization strategies for neural
networks [Glorot and Bengio, 2010, He et al., 2015, Saxe et al., 2014]. With a few exceptions, these
strategies have not been studied in detail in deep reinforcement learning [Andrychowicz et al., 2020,
Hussenot et al., 2021, Paine et al., 2020].

In Figure 5 and Figure 6 we can observe that, for the most part, there is little difference when varying
the initialization scheme. This is somewhat expected due to RL’s "self-correcting nature"; that is, it is
not optimizing towards a fixed target, but rather a shifting one (as a consequence of bootstrapping).
There are two notable exceptions worth mentioning:

(1) All-zeros and all-ones initialization almost always fails to learn with DQN. This is most likely due
to zero gradients occurring as a consequence of the combination of constant predictions with little
reward variability. In Rainbow this issue is not present, perhaps due to the presence of noisy networks
(which break the constancy of predictions). (2) DQN on MountainCar seems to be rather sensitive to
the choice of initialization. This is likely due to the properties of this particular environment, which
we discuss below.

In Figure 7 we can see that we have the same level of stability in the MinAtar environments.

Activation functions Non-linear activation functions are a fundamental part of Deep Neural Net-
works, as their removal effectively turns the network into a linear function approximator. Many
different activation functions have been proposed for different settings ([Devlin et al., 2019, Elfwing
et al., 2018, Dauphin et al., 2017]), yet it’s rare to see comparisons between the many possible options
[Shamir et al., 2020] and, to the best of our knowledge, there are no previous examples of doing such
comparison in the Reinforcement Learning setting.

In Figure 8 (and in Figure 10 for MinAtar environments) we can see that there is little difference
across the top activation functions, with DQN on MountainCar once again being a notable exception.
However, in Figure 9 we can see that there is a fair bit of variability across the 16 possible activation

4
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Figure 3: Comparison of hyper-parameter sensitivity for DQN and Rainbow, for the optimizer
hyper-parameters (subsection 3.2).

functions. Of note is how sensitive Rainbow seems to be to these on CartPole, which is arguably the
simplest of all the environments. A more detailed investigation of the effect (and interaction with
other components) of activation functions is an interesting avenue for future work.

Normalization Normalization plays an important role in various deep learning applications, and
it is well established in supervised learning [Tan and Le, 2020, Xie et al., 2017]. Surprisingly, the
use of normalization is fairly rare in deep reinforcement learning, with a few exceptions [Bhatt
et al., 2019, Arpit et al., 2019, Lillicrap et al., 2019, Silver et al., 2017]. We explore two types of
normalization: batch normalization [Ioffe and Szegedy, 2015] and layer normalization [Ba et al.,
2016]. In Figure 11 we can see that although there are some minor differences, there appears to
be little gain to using normalization. This may very well be a consequence of the simplicity of the
environments (indeed, the biggest differences are observed in MountainCar) and the shallowness of
the networks we’re using. Although batch normalization does not seem to provide clear benefits, it
also does not seem to hurt (with the exception of MountainCar), a finding that is somewhat at odds
with that of Salimans and Kingma [2016], who affirm that batch normalization is not well suited for
Deep Reinforcement Learning.

We investigated this further on the MinAtar suite in Figure 12. It is worth noting that since the default
setting for MinAtar is to use a single convolutional layer with no dense layers, we added one dense
layer (based on the depth results from Figure 14) and applied the normalization on this extra dense
layer. The results provide even more evidence that there is little gain to using normalization, and
this can in fact hurt performance. It is worth investigating whether applying normalization to the
convolutional layer can help address this.

Network capacity Improvements in deep learning architectures have played a vital role in moving
forward the state of supervised and unsupervised learning in computer vision, but neural network
architecture design for deep reinforcement learning is relatively unexplored, with a few exceptions
[Sinha et al., 2020, Andrychowicz et al., 2020].

We vary network capacity via the depth (e.g. the number of hidden layers) and the width (e.g. the
number of neurons) of each hidden layer. In Figure 13 we observe an interesting phenomenon where
fewer layers seems to help DQN (e.g. MoutainCar) whereas in Rainbow performance is correlated
with the number of layers. We hypothesize that this form of network capacity has a non-trivial
interaction with the type of loss (e.g. expectational versus distributional), and may help further
understand the difference between the two forms of TD-learning [Lyle et al., 2019]. Huh et al. [2021]
and Kumar et al. [2020] demonstrated that deeper networks tend to be biased towards lower rank

5
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Figure 4: Comparison of hyper-parameter sensitivity for DQN and Rainbow, for the algorithmic
hyper-parameters (subsection 3.1).

(e.g. simpler) solutions. This may help explain why in DQN, shallower networks work best with
Mountaincar (the most complex off the four classic control environments).

In Figure 14 we investigate the effect of depth on the MinAtar suite. The default setting for MinAtar
is to use a single convolutional layer (depth = 0), so we investigated the effect of adding dense layers
after the convolutional layer. In DQN there is a clear benefit to adding more layers, but the best
results are obtained when adding only a single layer. It is interesting to note that in Freeway, the
simplest of the five games, the best performance is obtained without any extra layers. This strongly
suggests that there is a close relationship between network depth and environment complexity, where
the best performance is obtained in a “goldilocks region”, and this region varies across environments.
In Rainbow, we can further observe how much this “goldilocks region” varies from game to game:
from a wide region (Asterix) to a very narrow one (Seaquest).

In Figure 15 we can see that, in general, increasing width improves performance. It is somewhat
surprising the significant differences observed with Rainbow in CartPole (arguably the easiest of the
environments), yet there is no noticeable difference in DQN.

Given the results of the depth experiments, we explored varying width in the MinAtar environments
by adding one dense layer after the convolutional layer. In Figure 16 we see surprising variation
across environments where performance is sometimes proportional to width (SpaceInvaders), and
sometimes inversely proportional (Asterix and Freeway).

3.2 Optimizer hyper-parameters

Although the choice of optimizer is a design choice in itself, Obando-Ceron and Castro [2021]
demonstrated the superior performance of the Adam optimizer [Kingma and Ba, 2015] relative to
candidates such as RMSProp. We explore two hyper-parameters of this optimizer: learning rate and
epsilon values.The aggregate results for these hyper-parameters are summarized in Figure 3.

In Figure 17 we can see that both algorithms are relatively robust to varying learning rates between
10−4 and 0.01; however in Figure 18 we explore a wider range and observe a deterioration in
performance in both algorithms. In Figure 19 we can see a fair bit of variation across the MinAtar
environments for the learning rates considered, with the ordering based on performance varying
between environments (e.g. Asterix versus Breakout on DQN).

We also observe that DQN seems to exhibit greater stability with larger ε values than Rainbow (see
Figure 20 and Figure 21). To further investigate this observation, we ran the ε experiment on the
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MinAtar suite (Figure 22). We observe that the qualitative differences between DQN and Rainbow
are mostly gone, suggesting that the observations in the classic control environment are perhaps due
more to Rainbow’s stability on simpler environments.

3.3 Algorithmic parameters

There are a number of algorithmic design choices for RL agents that are often overlooked, but can
play a significant role in performance. Hessel et al. [2019] explored this to some extent, focusing
on variants of the A2C algorithm [Mnih et al., 2016]. The aggregate results for this group of
hyper-parameters is presented in Figure 4.

Reward clipping Reward clipping was an important design decision for the original DQN algo-
rithm, as it enabled normalizing scores across games [Mnih et al., 2015]. Clipping rewards changes
the objective, which can result in qualitatively different learned behaviours. This design decision has
often been adopted by derivative algorithms for other domains without properly evaluating its efficacy.
Indeed, Figure 23 suggests that the agents can actually perform better without reward clipping. This
is somewhat at odds with the findings of van Hasselt et al. [2016a], where they found reward-clipping
to be useful for learning. In the MinAtar environments we do not see much difference between the
two (Figure 24).

Discount factor The importance of γ has been observed in a number of recent works [Amit et al.,
2020, Hessel et al., 2019, Gelada and Bellemare, 2019, van Seijen et al., 2019, François-Lavet et al.,
2016], and in particular the discrepancy between the γ value used for training and the one used for
evaluation. As Figures 25 and 26 demonstrate, algorithmic performance is rather sensitive to the
choice of γ; a result consistent with the findings of Hessel et al. [2019].

In Figure 27 we evaluate three values of γ on the MinAtar environments and see a fair bit of variability
across environments (compare DQN on SpaceInvaders versus Seaquest, for instance).

Minimum replay history As mentioned above, the agent stores its experience in a replay memory,
from which it then samples mini-batches for learning. It is common practice to only begin sampling
from the replay buffer when a minimum number of transitions have been recorded: the minimum
replay history. The purpose of this parameter is to avoid overfitting to a sample set of samples at the
early stages of training. Perhaps, surprisingly, Figure 28 and Figure 29 suggest that the choice of this
parameter has very little effect on the performance of either algorithm.

Update horizon Multi-step learning [Sutton, 1988] computes the temporal difference error using
multi-step transition, instead of a single step. DQN uses a single-step update by default, whereas
Rainbow chose a 3-step update. In Figure 30 we compare various update horizons. It is interesting to
note that DQN is mostly unaffected by the update horizon, whereas Rainbow seems to have degraded
performance with a single-step update horizon. It thus seems that one of the Rainbow components
benefits from the multi-step update, an interesting question left for future work.

The update horizon has been argued to trade-off between the bias and the variance of the return
estimate [Kearns and Singh, 2000]. This effect has been observed in the linear function approximation
case, but it has not been very well studied with deep networks. Hernandez-Garcia and Sutton
[2019] perform a statistical analysis on the effect the update horizon has on the performance of six
reinforcement algorithms in MountainCar and find that the performance of each algorithm at the
beginning of training was better with larger update horizons. These findings are confirmed by our
results on MountainCar (Figure 30), but they are less evident on the other environments. Indeed, DQN
seems to perform worse with a larger update horizon on Acrobot. These findings further highlight the
sensitivity of the different DRL components relative to the environment on which they are run.

In Figure 31 we see this effect in high relief, where the benefit of the update horizon seems to be
closely tied with environmental complexity. Compare, for instance, both algorithms on Freeway and
Seaquest: in the former, an update horizon of 1 performs best, while in the latter an update horizon of
10 yields a dramatic improvement for both algorithms.

Update periods For synchronous agents (like DQN and Rainbow), the update of the online network
parameters is not done after every step taken in the environment; instead, it is performed at a frequency
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specified by the update period. The default value used is 4, which means that the online network
parameters are only updated after every 4 steps taken in the environment.

The effect of varying the update period for the online network can be seen in Figure 32. The results
vary from environment to environment (compare the performance of an update period equal to 8 in
Acrobot and MountainCar with DQN); this variability is likely due to the complex learning dynamics
of RL and merits further study. Interestingly, this parameter does not seem to have much of an effect
on the MinAtar environments (Figure 31).

As mentioned previously, the target network parameters are updated less frequently than the online
parameters. It has been observed that less frequent updates can result in improvements [Hernandez-
Garcia and Sutton, 2019]. However, our findings in Figure 34 suggest that the best performance is
obtained between values of 50-200, but any higher or lower results in decreased performance. We
also find that DQN seems to be more sensitive to this choice than Rainbow in the classic control
environments, but there is little variation for both DQN and Rainbow in the MinAtar environments
(Figure 35).

Number of atoms One of the key components of the Rainbow algorithm is distributional reinforce-
ment learning. With this approach, the output layer predicts the distribution of the returns for each
action a in a state s, instead of the mean Qπ(s, a). Rainbow uses the distribution parameterization
originally proposed by Bellemare et al. [2017]; namely, representing the return distribution as a
categorical distribution parameterized by N "atoms". Bellemare et al. [2017] found that empirically
setting N = 51 proved best for the ALE; in Figure 36 we revisit this design choice.

Somewhat surprisingly, we observe little sensitivity to this choice in the four environments considered.
Obando-Ceron and Castro [2021] hypothesized that the role of the number of atoms may be larger
when the deep networks include convolutional layers. To investigate this, we repeated this experiment
on the MinAtar suite (see Figure 37) and observe that, rather than being dependent on the use of
convolutional layers, the role of this parameter is affected by the environment. In particular, we
observe very little difference between the number of atoms in Asterix, but see a clear difference in
SpaceInvaders, where more atoms results in better performance.

4 Discussion

There is a growing interest and concern in the effect of hyperparameter choice, and the ensuing
reproducibiliity, for deep reinforcement learning. Henderson et al. [2019] and Islam et al. [2017]
highlight issues with reproducibility in RL, including performance differences between different
code implementations, hyperparameters, and the high level of non-determinism due to random seeds.
Fu et al. [2019] experimentally investigate potential issues of deep Q-learning algorithms. Other
large-scale studies similar to ours have been carried out by Andrychowicz et al. [2020], Hussenot
et al. [2021], and Paine et al. [2020], but not for online value-based methods.

Figure 1 summarizes our experiments for both agents. We hearken back to the questions raised in the
introduction and discuss them with respect to our findings.

How sensitive are DQN and Rainbow to variations in hyper-parameter selection? While in
aggregate the two agents have comparable sensitivity, there are some notable exceptions. Network
capacity seems to be strongly affected by environment complexity; indeed, in the simpler classic
control environments Rainbow has a higher sensitivity to over-parameterization, while in the more
difficult MinAtar suite both algorithms have noticeable sensitivity. Rainbow seems to be more
affected by the choice of ε for the Adam optimizer. High values of ε make Adam behave more like
SGD with Momentum then as diagonal natural gradient descent [Choi et al., 2020]; this leads us to
wonder about the relationship between the distributional loss and these different forms of optimization.
In the classic control environments, Rainbow seems to be unaffected by different choices of the
number of atoms (in contrast with the original findings of Bellemare et al. [2017]); this result may
very well be a consequence of the relative simplicity of these environments, as further evidenced by
the findings in MinAtar (Figure 37).

Does the choice of environment vary the sensitivity to hyper-parameter selection? This is most
certainly the case, as we observed stark qualitative differences between MountainCar and the other
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classic control environments. Indeed, any differences between hyper-parameter values seem to be
brought into high-relief when evaluated in MountainCar. Additionally, a somewhat surprising finding
is that CartPole (often considered the simplest of all four) proved quite effective at highlighting
important qualitative differences between DQN and Rainbow (e.g. network width/depth, optimizer
ε). We observed similar qualitative differences between the different MinAtar games (e.g. Figure 37
demonstrated the effect of number of atoms is best observed in SpaceInvaders, relative to the other
games).

Some of our experiments are interesting in that their behavior is different from all other combinations
of actor-environment:

• While for most environments initializations seemed to have little effect on the performance
of our agents, we see a much higher effect when varying initializations on DQN on Moun-
taincar.

• Although in general changing activation functions did not impact performance significantly,
we can see that in both DQN on Mountaincar, and Rainbow on Breakout there are clearly
activation functions that are better than the rest, most interestingly is how relu6 shows a
clear improvement over all other activations in Rainbow on Breakout.

• The next striking behavior comes from the depth experiments in DQN on Mountaicar, where
we see shallower networks being significantly better than deeper networks, a result opposite
to what we see in the other combinations of agents and classic control environments.

• The experimental results on MinAtar show that the optimal choice for a number of hyper-
parameters are quite sensitive to the environment itself. Specifically, see the results and
discussion on varying learning rates, layer width, γ, and the update horizon.

Are existing methods under-performing due to a poor hyper-parameter choice? There are no
canonical hyper-parameter values for the environments considered in this paper; the ones we have
labeled as "default" are using the values provided by Obando-Ceron and Castro [2021]. However,
some interesting findings that merit further investigation are:

• As mentioned previously, there seems to be a “goldilocks region” for network capacity that
is conditional on the environment. As we observed in Figure 13, a network with a single
hidden layer seems to be sufficient for DQN, and in fact yields improved performance on
MountainCar. On the other hand, in Figure 14 we see that deeper networks can help, but
only up to a point.

• As discussed above, while reward clipping may be useful for the ALE, it is worth revisiting
for any new environment as it can sometimes prove detrimental to performance.

• Our results suggest both algorithms are quite sensitive to the choice of γ, and this sensitivity
varies across environments. As such, this parameter must be selected with care for new
environments.

• While 51 atoms may have proved best for the ALE experiments conducted by Bellemare et al.
[2017], our results suggest smaller values can suffice for simpler environments. However,
this question can be somewhat sidestepped by using different parameterizations of the return
distribution [Dabney et al., 2018a,b].

• Although we provided some insights into some aspects of the replay buffer and network
updates, a more thorough investigation into the relationship between the size and frequency
of updates, dubbed the replay ratio by Fedus et al. [2020] is warranted.

The present work aims at investigating the importance of a broad set of hyper-parameters that need
to be chosen when designing and implementing off-policy learning algorithms. Although we found
surprising insights on the classic control environments, we would like to run further experiments on
the ALE [Bellemare et al., 2012].
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Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What matters in on-policy reinforcement learning? a large-scale empirical study, 2020.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning, 2017.

Devansh Arpit, Victor Campos, and Yoshua Bengio. How to initialize your network? robust
initialization for weightnorm & resnets, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, Vol.
47:253–279, 2012. cite arxiv:1207.4708.

Marc G. Bellemare, Will Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In ICML, 2017.

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C. Machado,
Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Autonomous navigation of strato-
spheric balloons using reinforcement learning. Nature, 588(7836):77–82, 2020. doi: 10.1038/
s41586-020-2939-8. URL https://doi.org/10.1038/s41586-020-2939-8.

Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Crossnorm: Normalization for
off-policy td reinforcement learning, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A research framework for deep reinforcement learning, 2018.

Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and George E.
Dahl. On empirical comparisons of optimizers for deep learning, 2020.

Andrea Cini, Carlo D’Eramo, Jan Peters, and Cesare Alippi. Deep reinforcement learning with
weighted q-learning, 2020.

W. Dabney, M. Rowland, Marc G. Bellemare, and R. Munos. Distributional reinforcement learning
with quantile regression. In AAAI, 2018a.

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile networks for
distributional reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1096–1105.
PMLR, 2018b.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, page 933–941. JMLR.org, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Stefan Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks : the official journal of the International
Neural Network Society, 107:3–11, 2018.

W. Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, H. Larochelle, Mark Rowland,
and Will Dabney. Revisiting fundamentals of experience replay. In ICML, 2020.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alexander
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane
Legg. Noisy networks for exploration. 2018.

10

https://doi.org/10.1038/s41586-020-2939-8


Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. How to discount deep reinforcement
learning: Towards new dynamic strategies, 2016.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-learning
algorithms, 2019.

Carles Gelada and Marc G. Bellemare. Off-policy deep reinforcement learning by bootstrapping the
covariate shift, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters, 2019.

J. Fernando Hernandez-Garcia and Richard S. Sutton. Understanding multi-step deep reinforcement
learning: A systematic study of the dqn target, 2019.

Matteo Hessel, Joseph Modayil, H. V. Hasselt, T. Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement
learning. In AAAI, 2018.

Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David Silver. On inductive biases in deep
reinforcement learning. CoRR, abs/1907.02908, 2019. URL http://arxiv.org/abs/1907.
02908.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Leonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton Raichuk, Lukasz
Stafiniak, Sertan Girgin, Raphael Marinier, Nikola Momchev, Sabela Ramos, Manu Orsini, Olivier
Bachem, Matthieu Geist, and Olivier Pietquin. Hyperparameter selection for imitation learning,
2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control, 2017.

Michael J. Kearns and Satinder P. Singh. Bias-variance error bounds for temporal difference updates.
In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, COLT
’00, page 142–147, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN
155860703X.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

Clare Lyle, Pablo Samuel Castro, and Marc G. Bellemare. A comparative analysis of expected and
distributional reinforcement learning. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence (AAAI’19), 2019.

11

https://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1412.6980


Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong,
Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger
Carpenter, and Jeff Dean. A graph placement methodology for fast chip design. Nature, 594
(7862):207–212, 2021. doi: 10.1038/s41586-021-03544-w. URL https://doi.org/10.1038/
s41586-021-03544-w.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning, 2016.

Johan S Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful and
inclusive deep reinforcement learning research. In International Conference on Machine Learning
(ICML), 2021.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning,
2020.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks, 2016.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks, 2014.

T. Schaul, John Quan, Ioannis Antonoglou, and D. Silver. Prioritized experience replay. CoRR,
abs/1511.05952, 2016.

G. Shamir, Dong Lin, and Lorenzo Coviello. Smooth activations and reproducibility in deep networks.
ArXiv, abs/2010.09931, 2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, jan 2016. ISSN 0028-0836.
doi: 10.1038/nature16961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of
go without human knowledge. Nature, 550:354–359, 10 2017. doi: 10.1038/nature24270.

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense
architectures in reinforcement learning, 2020.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3
(1):9–44, August 1988.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks, 2020.

Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning values
across many orders of magnitude, 2016a.

12

https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w


Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the Thirthieth AAAI Conference On Artificial Intelligence (AAAI),
2016, 2016b. cite arxiv:1509.06461Comment: AAAI 2016.

Harm van Seijen, Mehdi Fatemi, and Arash Tavakoli. Using a logarithmic mapping to enable lower
discount factors in reinforcement learning, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In Proceedings of the 33rd International
Conference on Machine Learning, volume 48, pages 1995–2003, 2016.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks, 2017.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments, 2019.

13



A All figures

0 10 20 30
500

400

300

200

100
DQ

N 
re

tu
rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Initialization
orthogonal
variance_baseline
xavier_nor
he_uni

0 10 20 30

400

300

200

100

0
LunarLander

0 10 20 30
600

500

400

300

200

MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w 

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 5: Comparison of initializations on DQN (top) and Rainbow (bottom). The default initialization
is Xavier Normal.
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Figure 6: Comparison of all initializations on DQN (top) and Rainbow (bottom). The default
initialization is Xavier Normal.

14



0 2 4 6 8
5

10

15

20

25

30

35

40

DQ
N 

re
tu

rn
Asterix

0 2 4 6 8
3

4

5

6

7

8

9

10
Breakout

0 2 4 6 8

40

45

50

55

60
Freeway

init
he_uni
he_nor
xavier_uni
xavier_nor
orthogonal

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w 

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

0 2 4 6 8
Environment steps

25

30

35

40

45

50

55

0 2 4 6 8
Environment steps

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Environment steps

2

4

6

8

10

12

14

16

Figure 7: MinAtar comparison of initializations on DQN (top) and Rainbow (bottom). The default
initialization is Xavier Normal.
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Figure 8: Comparison of activations on DQN (top) and Rainbow (bottom). The Default Activation is
ReLU.
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Figure 9: Comparison of all activations on DQN (top) and Rainbow (bottom). The default activation
is ReLU.
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Figure 10: MinAtar comparison of activations on DQN (top) and Rainbow (bottom). The default
initialization is Xavier Normal.
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Figure 11: Comparison of normalization on DQN (top) and Rainbow (bottom). The default normal-
ization is None.
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Figure 12: MinAtar comparison of normalization on DQN (top) and Rainbow (bottom). The default
normalization is None.
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Figure 13: Comparison of depth on DQN (top) and Rainbow (bottom). The default depth is 2.
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Figure 14: MinAtar comparison of the number of dense layers (on top of the single convolutional
layer) on DQN (top) and Rainbow (bottom). The default is a depth of 0.
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Figure 15: Comparison of width on DQN (top) and Rainbow (bottom). The default width is 512.
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Figure 16: MinAtar comparison of width of one dense layer (on top of the single convolutional layer)
on DQN (top) and Rainbow (bottom). The default is a depth of 0.
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Figure 17: Comparison of learning rates on DQN (top) and Rainbow (bottom). The default learning
rate is 0.001, except for MountainCar where it is 0.01.
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Figure 18: Comparison of all learning rates on DQN (top) and Rainbow (bottom). The default
learning rate is 0.001, except for MountainCar where it is 0.01.
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Figure 19: MinAtar comparison of learning rates on DQN (top) and Rainbow (bottom).
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Figure 20: Comparison of optimizer ε on DQN (top) and Rainbow (bottom). The default ε is
0.0003125.
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Figure 21: Comparison of all optimizer ε values on DQN (top) and Rainbow (bottom). The default ε
is 0.0003125.
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Figure 22: Minatar comparison of optimizer ε on DQN (top) and Rainbow (bottom). The default ε is
0.0003125.
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Figure 23: Comparison of reward clipping on DQN (top) and Rainbow (bottom). The default is True.
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Figure 24: MinAtar comparison of reward clipping on DQN (top) and Rainbow (bottom). The default
is True.
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Figure 25: Comparison of γ on DQN (top) and Rainbow (bottom). The default γ is 0.99.
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Figure 26: Comparison of all γ values on DQN (top) and Rainbow (bottom). The default γ is 0.99.
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Figure 27: MinAtar comparison of γ on DQN (top) and Rainbow (bottom). The default γ is 0.99.
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Figure 28: Comparison of minimum replay history on DQN (top) and Rainbow (bottom). The default
value is 500.
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Figure 29: MinAtar comparison of minimum replay history on DQN (top) and Rainbow (bottom).
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Figure 30: Comparison of update horizon on DQN (top) and Rainbow (bottom). The default value
for DQN is 1, while for Rainbow it is 3.
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Figure 31: MinAtar comparison of update horizon on DQN (top) and Rainbow (bottom). The default
value for DQN is 1, while for Rainbow it is 3.
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Figure 32: Comparison of online network update period on DQN (top) and Rainbow (bottom). The
default value is 4.
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Figure 33: MinAtar comparison of online network update period on DQN (top) and Rainbow (bottom).
The default value is 4.
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Figure 34: Comparison of target network update period on DQN (top) and Rainbow (bottom). The
default value is 100.
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Figure 35: MinAtar comparison of target network update period on DQN (top) and Rainbow (bottom).
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Figure 36: Comparison of number of atoms on Rainbow. The default value is 51.
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Figure 37: MinAtar comparison of number of atoms on Rainbow. The default value is 51.
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B Best Hyperparameters settings for DQN and Rainbow accros the
environments

Table 1 shows the best values for each hyperparameter across all the classic control environments and
MinAtar games.

Table 1: Best Hyperparameters settings for DQN and Rainbow accros the environments
Classic control envs MinAtar

Hyperparameter DQN Rainbow DQN Rainbow

gamma 0.99 0.99
update horizon 4 10

min replay history 1000 625
update period 4 2

target update period 100 50
hidden layer 1 3 1 1

neurons 256 1024
initialization Orthogonal He uniform Orthogonal Xavier uniform

activation function Gelu Selu
normalization LayerNorm LayerNorm Non-normalization Batch-normalization

num atoms 71 71

clip False False

learning rate 0.001 0.01
eps 0.003125 3.125e-5 3.125e-5 0.0003125
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C Hyperparameters settings for Classic control environments and MinAtar
games

Table 2, 3, 4 list the choice configurations we used to run several experiments on classic control
environments and MinAtar games.

Table 2: Hyperparameters settings for Classic control environments and MinAtar games
activation init learning_rate epsilon normalization

None activation orthogonal 10 1 None
relu zeros 5 0.5 BatchNorm
relu6 ones 2 0.3125 LayerNorm
sigmoid xavier_uni 1 0.03125
softplus xavier_nor 0.1 0.003125
soft_sign lecun_uni 0.01 0.0003125
silu lecun_nor 0.001 3.125e-05
swish he_uni 0.0001 3.125e-06
log_sigmoid he_nor 1e-05
hard_sigmoid variance_baseline
hard_silu variance_0.1
hard_swish variance_0.3
hard_tanh variance_0.8
elu variance_3
celu variance_5
selu variance_10
gelu
glu

Table 3: Hyperparameters settings for Classic control environments and MinAtar games
target_update_period update_period width depth

10 1 32 1
25 2 64 2
50 3 128 3
100 4 256 4
200 8 512
400 10 1024
800 12
1600

Table 4: Hyperparameters settings for Classic control environments and MinAtar games
min_replay_history update_horizon gamma num_atoms clip_rewards

125 1 0.1 11 True
250 2 0.5 21 False
375 3 0.9 31
500 4 0.99 41
625 5 0.995 51
750 8 0.999 61
875 10
1000

31


	Introduction
	Background
	DQN
	Rainbow
	Experimental details

	Lifting the veil
	Network components
	Optimizer hyper-parameters
	Algorithmic parameters

	Discussion
	All figures
	Best Hyperparameters settings for DQN and Rainbow accros the environments
	Hyperparameters settings for Classic control environments and MinAtar games

