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Abstract

We investigate why probabilistic neural models with discrete latent variables are
effective at generating high-quality images. We hypothesize that fitting a more flex-
ible variational posterior distribution and performing joint training of the encoder,
decoder, and prior distribution should improve model fit. However, we find that
modifying the training procedure for the well-known vector quantized variational
autoencoder (VQ-VAE) leads to models with lower marginal likelihood for held-out
data and degraded sample quality. These results indicate that current discrete VAEs
use their encoder and decoder as a deterministic compression bottleneck. The
distribution-matching power of these models lies solely in the prior distribution,
which is typically trained after clamping the encoder and decoder.

1 Introduction

While generative adversarial networks (GANs) excel at synthesizing realistic-looking natural images
[Karras et al., 2020, Park et al., 2019], probabilistic models including variational autoencoders (VAEs)
[Kingma and Welling, 2014, Higgins et al., 2017] and normalizing flows [Dinh et al., 2015, Kingma
and Dhariwal, 2018, Ho et al., 2019] generally lag behind as measured by qualitative assessments
of sample images. However, GANs do not offer many attractive features that probabilistic models
naturally provide, such as efficient encoding of inputs into a latent space representation and likelihood
estimation for held-out data. Indeed, while probabilistic models must posit some probability mass
over every possible image, there is no constraint in the GAN architecture ensuring that all images
correspond to a representation in latent space; due to mode collapse, the typical samples from a GAN
regularly under-represent the training data distribution.

The current state-of-the-art VAE, as judged by image sample quality, is the vector quantized vari-
ational autoencoder (VQ-VAE). VQ-VAEs introduce discrete latent variables and train a powerful
autoregressive prior to capture high-level correlations in this discrete space [van den Oord et al.,
2017]. A recent extension, dubbed VQ-VAE-2, competes with state of the art GANs as measured by
Inception Score and Fréchet Inception Distance [Razavi et al., 2019b] and improves sample image
diversity and resolution by pairing a hierarchical encoder/decoder with a hierarchical autoregressive
prior. However, VQ-VAEs are trained in two steps. The encoder and decoder networks are first trained
to minimize reconstruction error, like a traditional bottleneck autoencoder. The learned encoding
from inputs to latent variables is deterministic. Next, a prior distribution is trained to model the
discrete latent variables.

In this paper, we investigate the extent to which the VQ-VAE’s model fit and sample quality depend
on this specific training procedure. We hypothesized that jointly training the encoder/decoder with
the prior would improve the model fit. Surprisingly, we find that “smoothing” the latent space through
sampling joint training leads to poorer model fit and lower sample image quality. Unlike continuous
VAEs, which often perform well on interpolation tasks, our results show that the distribution of latent
codes in the VQ-VAE is highly structured, and most latent codes do not decode to natural images.
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2 Background

Variational autoencoders (VAEs) are a flexible class of probabilistic latent variable models that
leverage neural networks to learn nonlinear mappings between latent variables and observed variables
[Kingma and Welling, 2014, Rezende et al., 2014]. A VAE posits a joint distribution over observed
variables x and latent variables z: p(x, z; θ, ω) = p(x|z; θ)p(z;ω). The flexibility in VAEs comes
from training a (typically deterministic) mapping decθ(z). The VAE likelihood p(x|z; θ) is then
parameterized by this mapping; for continuous observations, a commonly-used modeling choice is a
Gaussian distribution centered on the decoder output N (decθ(z), σ2I) with fixed variance σ2.

VAEs are fit by maximizing the marginal likelihood, or evidence, p(x; θ). Since this quantity is
usually intractable, approximate inference is performed by positing a variational posterior distribution
q(z|x;φ). Rather than optimizing a variational distribution for each observation x, VAEs perform
amortized inference by training an encoder encφ(x), which in turn parameterizes q(z|x;φ). The
model is trained using the evidence lower bound (ELBO):

p(x; z; θ, ω) ≥ E
z∼q(z|x;φ)

[log p(x|z; θ)−DKL(q(z|x;φ)||p(z;ω))] (1)

The outer expectation is approximated via Monte Carlo samples from the variational posterior q and
the key “reparameterization trick” allow gradients to flow through the sampling operation [Kingma
and Welling, 2014, Rezende et al., 2014].

2.1 Vector Quantized VAEs

Our work focuses on extending the VQ-VAE, a VAE with discrete latent variables introduced by
van den Oord et al. [2017]. In this model, each latent variable zi ∈ {1, . . . ,K} indexes into a
codebook C ∈ RK×D to produce a row vector Czi . The notation Cz will refer to a matrix of
codebook elements indexed by latent variables in z, where the ith row in Cz is Czi . The full model is
specified by setting a uniform categorical prior and an isotropic Gaussian likelihood:

p(zi = k) =
1

K
(2)

p(x|z; θ) = N
(
decθ(Cz), σ

2I
)

(3)

The authors fit this model using a maximum a posteriori (MAP) estimate for the variational posterior
by quantizing the output of the encoder to the nearest codebook vector:

q(zi = k | x;φ) =
{
1 if k = argminj ||encφ(x)− Cj ||2
0 otherwise

(4)

Because the prior distribution is uniform and the posterior is a categorical distribution parameterized
by a one-hot probability vector, the KL-divergence term in ELBO is a constant (logK). Moreover,
the ELBO expectation term is over a deterministic distribution q, so the model is simply trained
by maximizing the likelihood maxθ,φ log p(x|z = decθ(x); θ). The sampling and quantization
operations in Eq 4 are not differentiable, so the authors apply a “straight-through” gradient estimator,
which propagates the gradients with respect to the codebook element Czi through to the outputs of the
decoder encφ(x)i. If the encoder output and codebook element are sufficiently close, this is a close
approximation, but there is no bound on the bias of the gradients with this method. The VQ-VAE
introduces additional terms to the loss function to move codebook entries and outputs of the encoder
toward one another during training.

After training the encoder/decoder end-to-end, a flexible autoregressive prior p(z;ω) is fit to the
latent codes, obtained by the deterministic mapping in Eq 4. The original VQ-VAE paper applies a
PixelCNN model for images [van der Oord et al., 2016]. In this work, we will apply a PixelCNN++
[Salimans et al., 2017]. Both the PixelCNN and PixelCNN++ are autoregressive convolutional neural
networks that are trained efficiently using masked convolutions.

3 Model Variants

We make two changes to the VQ-VAE’s inference procedure to address approximations made in
the original paper. First, instead of fitting a MAP estimate during variational inference, we fit a
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Variational Posterior Prior Prior Training

Quantized PixelCNN++ Marginal
Quantized PixelCNN++ Joint
Quantized Uniform N/A
Categorical PixelCNN++ Marginal
Categorical PixelCNN++ Joint
Categorical Uniform N/A

Table 1: Summary of model variants.

mean-field categorical distribution. Second, instead of fitting the encoder/decoder with a uniform
prior using a straight-through gradient approximation, we train the model jointly end-to-end. The
model variants we explore are shown in Table 1. In addition to the variants discussed below, we
train baseline models with a Uniform categorical prior; this prior is never fine-tuned. The first model
“Quantized, PixelCNN++, Marginal” is the original VQ-VAE.

3.1 Quantization vs. Categorical Posterior

The first question we ask is whether the quantization step in the VQ-VAE is responsible for the
model’s success, or whether an encoder can perform equivalently by directly learning to parameterize
a categorical distribution. Because the variational posterior is simply a tool for amortized inference,
we expect this equally-expressive alternative model to perform comparably. For simplicity, we
choose a mean-field approximation q(z | x;φ) =

∏N
i=1 qi(zi;x, φ) where each qi is a categorical

distribution.

The Quantized model uses Euclidean distance between outputs of the encoder decθ(x) and codebook
entries, similar to the original VQ-VAE. Our “Quantized, PixelCNN++, Marginal” model is equivalent
to the VQ-VAE with regularization parameter β = 0.25. All other Quantized models use a categorical
variational distributions parameterized by distance:

q(zi = k | x;φ) = exp (||encφ(x)i − Ck||2)∑K
k′=1 exp (||encφ(x)i − Ck′ ||2)

(5)

We use the notation encφ(x)i to refer to the encoder’s prediction for the ith latent variable.

The Categorical models directly estimate a categorical distribution without reference to the codebook:

q(zi = k | x;φ) = softmax(encφ(x)i)k (6)

3.2 Marginal vs. Joint Training

The second question we ask is whether the joint VQ-VAE is benefiting from the VAE framework
at all. Since the model is initially trained without any sampling operations, it is possible that the
VQ-VAE’s capability to model complex distributions, such as natural images, is entirely conferred by
the subsequently-trained prior distribution.

Similar to the VQ-VAE loss function, we train the encoder/decoder in the Marginal models to
maximize the expected likelihood term from ELBO: Ez∼q(z|x;φ) log p(x | z; θ). This model
can equivalently be viewed as a bottleneck autoencoder with sampling at the bottleneck layer,
or as an amortized expectation-maximization algorithm to perform maximum likelihood estimation
maxφ,θ Ez∼q(z|x;φ) log p(x | z; θ) [Roy et al., 2018]. Once the encoder/decoder converge, we train
a PixelCNN++ to minimize the KL divergence: minωDKL(q(z|x;φ)||p(z;ω))1.

Our Joint models are straightforwardly trained to maximize ELBO (Eq 1). The model is jointly
trained by allowing gradients to flow between the encoder, decoder, and prior. We fit the prior
distribution by optimizing its hyperparameters ω (i.e. empirical Bayes). We use the Gumbel softmax
trick from Jang et al. [2017] to reparameterize the categorical sampling operation. For our mean-field

1The prior training objective is equivalent to cross entropy loss because H(q) is constant with respect to ω.
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variational posterior, this sampling is computed by:

zi = softmax
(

encφ(x)i + g

τ

)
(7)

where encφ(x)i represents theK-length vector of logits for the ith latent variable, and g is aK-length
vector where gk ∼ Gumbel(0, 1). As τ → 0, zi approaches a one-hot vector representing a draw
from the distribution q(zi = k;φ) = softmax(encφ(x)i).

Rather than indexing into the codebook, the joint model matrix-multiplies the Gumbel-softmax
samples into the codebook matrix C. We begin training with a relatively high value of τ , resulting
in a weighted mixture of codebook elements being passed to the decoder. As the temperature is
annealed, the samples for zi approach one-hot vectors. In our experiments we found that annealing τ
to a value of 0.1 over the course of training brought samples sufficiently close to one-hot vectors.

4 Related Work

Sønderby et al. [2017] develop the most closely-related model to ours in the literature. Rather than
jointly training a flexible prior, however, this work assumes that the prior distribution is uniform. Our
“Categorical, Uniform” model is similar to the GS-Soft model described in the paper. Additionally,
Roy et al. [2018] develop an EM inference algorithm for the VQ-VAE model.

Kaiser et al. [2018] demonstrates that VQ-VAE model fit degrades as the length of quantization
vectors grows, a phenomenon they call “index collapse.” Rather than introducing sampling to avoid
the problem of index collapse, the authors develop a model to quantize sub-vectors of the encoder’s
output using multiple codebooks. It does not appear that our Joint models suffer from index collapse
(see Section 5.2).

Similar to—yet distinct from—our findings, many recent works have found that VAE models with
a flexible decoder experience “posterior collapse”, whereby a powerful autoregressive decoder
completely ignores outputs of the encoder. The lack of a gradient from the decoder leads the
variational posterior distribution q to collapse to match the prior distribution [Lucas et al., 2019,
Razavi et al., 2019a]. In the models we investigate, we restrict our attention to decoders that are
convolutional neural networks, so our findings cannot be explained by posterior collapse.

Several recent works have tried to improve the quality of sample images by increasing the expressive-
ness of VAE models. In particular, Rezende and Mohamed [2015] replaces the variational distribution
in the encoder with a normalizing flow, and Gulrajani et al. [2017] uses a powerful autoregressive
model as the decoder. Both approaches are complementary to our model’s joint training of an
expressive autoregressive prior.

5 Experiments

We present a qualitative and quantitative analysis of the model variants described in Section 3. While
the ImageNet samples in the original VQ-VAE paper appear high quality, it becomes clear upon
close inspection that the model is only matching general textures (for example, most of the animals
are missing heads). We study facial images from the Large-scale CelebFaces Attributes (CelebA)
dataset [Liu et al., 2015] because we believe the quality of samples is more immediately apparent to
human evaluators [Seyama and Nagayama, 2007]. All images are downscaled to 64x64 pixels, and
intensities are scaled to the range

[
0, 255256

]
. We dequantize all images in order to be able to calculate

discrete bits per dimension by adding uniform noise u ∼ U
(
0, 1

256

)
[Kingma and Dhariwal, 2018].

In all model variants, we take one Monte Carlo sample per data point from the variational posterior
distribution during training. The models use the same encoder and decoder structure, consisting
of 4 residual layers with 128 feature maps in both the encoder and decoder. We set the number of
codebook elements K = 256. We use strided convolutions to down/up sample the image spatial
resolution. Our PixelCNN++ prior is slightly modified from the original implementation, using
softmax output rather than a logistic mixture and 3 residual layers with 64 channels instead of the
original 5 residual layers . Models are trained using the Adam optimizer for 500 epochs with a batch
size of 128 and a learning rate of 3e-4. The Gumbel softmax temperature is initialized at 1.0 and is
annealed exponentially to 0.1 over the course of training. The model was trained 10 times on random
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Figure 1: Model evidence for held out images from the CelebA dataset, shown as bits per dimension.
Lower is better. We compute lower bounds on the model evidence across a varying number Monte
Carlo samples, S, from the variational posterior distribution. Error bars indicate standard deviation
across 10 random train/test splits.

train/test splits to characterize variance; 70% of the dataset was used for training, 15% for testing,
and 15% for validation.

5.1 Marginal Likelihood of Held Out Data

We apply the IWAE estimator described in Burda et al. [2016] and Cremer et al. [2018] to obtain an
asymptotically tight lower bound on the model evidence; note that IWAE with 1 sample is equivalent
to ELBO. We compute IWAE by drawing S Monte Carlo samples z(s) ∼ q(z|x;φ) and computing:

IWAES = log

(
1

S

S∑
s=1

p(x, z(s); θ, ω)

q(z(s) | x;φ)

)
(8)

We convert our results from bounds on model evidence to bits per dimension:

Bits per Dim =
1

N

N∑
i=1

−1
W ·H · C

log2(p(x̃; θ, ω))− log(a) (9)

where x̃ ∼ U(x, x+ a), W , H , and C, are the width, height, and number of color channels in the
image, respectively. a measures the discretization level of the data; for 8-bit images standardized to
the range

(
0, 255256

)
, a will be 1

256 .

Figure 1 shows average bits per dimension, along with variance across 10 random train/test splits.
The original VQ-VAE model (“Quantized, PixelCNN++, Marginal“) outperforms all other variants
with 5.35 bits per dimension. Joint training is not too far behind, with the “Categorical, PixelCNN++,
Joint“ model achieving 5.39 bits per dimension. The models with Uniform priors underperform, and
the “Categorical, PixelCNN++, Marginal” model, which is not trained via a valid ELBO objective,
performs worst.

5.2 Index Collapse

Figure 2 shows the usage patterns across all codebook elements, for each model. A large spike at 0
frequency indicates “index collapse”, whereby a large set of codebook elements are rarely used; a
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Figure 2: Histogram of codebook vector usage across models. A large number of indices with a
frequency of 0 is indicative of index collapse in the model. The vertical dashed lines show the location
where we would expect to see a spike if the model was experiencing posterior collapse to a uniform
categorical prior.

spike at 1/256 = 0.0039 would indicate “posterior collapse”, whereby every posterior distribution q
converged to a uniform prior. We see from these results that the models trained marginally do suffer
from index collapse, but joint training with either a PixelCNN++ or a Uniform prior mitigates the
problem. Surprisingly, the VQ-VAE has the second-largest spike at 0, but achieves the highest Bits
per Dimension. No models appear to suffer from posterior collapse, as we expect since the decoder is
a straightforward convolutional network.

5.3 Qualitative Evaluation

It is commonly accepted that likelihood of held-out data is not a good metric for sample quality [Theis
et al., 2016]. Thus, we present samples from all model variants in Figure 3. It is clear that these
samples are not comparable to the quality of state of the art GAN samples; however, the VQ-VAE and
prior architecture in Razavi et al. [2019b] that generates samples competing with GANs is multi-scale
and hierarchical whereas ours is not. We believe this to be the reason for the comparatively poor
samples.

We see that the samples from the original VQ-VAE (”Quantized, PixelCNN++, Marginal“) are
moderately superior to the other models. Interestingly, the “Categorical, PixelCNN++, Marginal”
model, which performed worst as measured by model evidence, produces far superior samples to the
models with a Uniform prior. We note that in preliminary experiments (samples not shown), all of
our model variants consistently produce high quality samples on simple images from CIFAR-10 and
MNIST.

6 Conclusions

Our experiments demonstrate that modifying the inference procedure for the VQ-VAE—by intro-
ducing a more expressive posterior distribution, adding sampling, and jointly training—have a large
negative impact on the model fit and small negative impact on the quality of images sampled from the

6



Figure 3: Samples from trained models.

model. This finding is surprising, because we would expect to achieve better model fit. After all, the
original VQ-VAE’s MAP posterior, i.e. a categorical distribution with all probability mass assigned
to one location, could be learned by our Categorical models.

Although joint training leads to a worse model fit, it offers the possibility of learning an accurate
posterior distribution. Being able to infer an accurate posterior distribution over discrete latent codes
is important capability for a wide variety of inference tasks.

Our finding that learning a full variational posterior does not outperform a simple, quantized point
estimate leads us to conclude that existing discrete neural models don’t truly amortize posterior model
inference for discrete latent variable models. Rather the encoder/decoder serve as a deterministic
compression function. All of the generative modelling functionality is contained within the prior
distribution. Allowing the PixelCNN++ prior to provide gradients to the encoder/decoder does
not lead to improved model fit. This indicates that the PixelCNN++ is flexible enough to model a
somewhat arbitrary discrete distribution produced by a pre-trained, deterministic encoder.
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