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Figure 1: VC-Bench Overview. We introduce VC-Bench, a tailored benchmark for the novel Video
Connecting task. We provide a precise definition of this task and adapt several open-source video
generation models to support it. To establish a systematic and comprehensive evaluation framework,
we curate a high-quality dataset spanning 15 categories. We develop 9 automated metrics to evaluate
model performance across three critical dimensions: Video Quality, Start-End Consistency, and
Transition Smoothness. Human subjective validation further confirms the framework’s alignment
with human preferences.

ABSTRACT

While current video generation focuses on text or image conditions, practical appli-
cations like video editing and vlogging often need to seamlessly connect separate
clips. In our work, we introduce Video Connecting, an innovative task that aims
to generate smooth intermediate video content between given start and end clips.
However, the absence of standardized evaluation benchmarks has hindered the
development of this task. To bridge this gap, we proposed VC-Bench, a novel
benchmark specifically designed for video connecting. It includes 1,579 high-
quality videos collected from public platforms, covering 15 main categories and
72 subcategories to ensure diversity and structure. VC-Bench focuses on three
core aspects: Video Quality Score V QS, Start-End Consistency Score SECS,
and Transition Smoothness Score TSS. Together, they form a comprehensive
framework that moves beyond conventional quality-only metrics. We evaluated
multiple state-of-the-art video generation models on VC-Bench. Experimental
results reveal significant limitations in maintaining start-end consistency and tran-
sition smoothness, leading to lower overall coherence and fluidity. We expect
that VC-Bench will serve as a pioneering benchmark to inspire and guide future
research in video connecting. The evaluation metrics and dataset are publicly
available at: https://anonymous.4open.science/r/VC-Bench-1B67/.
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1 INTRODUCTION
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Figure 2: Video Score on VC-Bench. Based
on VC-Bench, we evaluate the performance
of 6 open source models on the Video Con-
nection task. The experimental results can be
seen in Table 2

Recent advances in generative AI have transformed
video creation, with models such as Sora (Ope-
nAI, 2024), Runway-Gen (Runway, 2024), and
Pika (PikaLabs, 2024) demonstrating unprecedented
progress in text-to-video and image-to-video gener-
ation (Li et al., 2024; Sun et al., 2024b). These sys-
tems greatly enhance creative efficiency, enabling
filmmakers and creators to produce concept videos
within hours. Yet, existing efforts largely focus on
generating standalone clips, leaving continuity-aware
generation underexplored.

We introduce the task of Video Connecting (VC):
given two clips (a start and an end), the goal is to
synthesize transitional content that is both spatio-
temporally coherent and consistent with the origi-
nals. Unlike general video generation, VC requires
strict semantic and visual alignment across discontin-
uous segments. This formulation captures practical
needs—linking discrete shots in vlogs, filling surveillance gaps caused by device failures, or produc-
ing narrative transitions in film. More application of VC tasks are listed in Appendix C.2. By framing
VC as a distinct problem, we highlight its potential to bridge the gap between isolated generation and
real-world continuity demands.

Importantly, VC is not about arbitrarily linking any two unrelated clips. The task is meaningful when
clips share a logical, semantic, or narrative relation, where continuity is expected but missing. To
enable systematic study, we construct a benchmark covering diverse scenarios and propose multi-
dimensional evaluation metrics along three axes: overall video quality, start–end consistency, and
transition smoothness. We hope this work lays the foundation for advancing continuity-aware video
generation.

The main contributions are three-fold:

• We are the first to systematically propose the novel task of Video Connecting (VC), which
expands the boundaries of video generation and lays a theoretical foundation for this
emerging research direction.

• We construct a comprehensive benchmark for video connection, termed VC-Bench, which
includes: a test video dataset covering multiple categories and diverse scenarios, as well as a
three-dimensional video evaluation paradigm.

• Based on this benchmark, we conduct a comprehensive evaluation of multiple video genera-
tion models, perform an in-depth analysis of their performance, identify current technical
limitations, and propose constructive research suggestions for future development.

2 RELATED WORKS

2.1 VIDEO GENERATION

Text-to-Video Generation. Text-to-video (T2V) generation is a technology that leverages AI
models to transform natural language descriptions into video content. By understanding the semantics,
scenes, and actions in text, it generates high-quality video sequences. In recent years, advancements in
diffusion models and transformer architectures have significantly improved the fidelity and consistency
of generated videos. Sora (OpenAI, 2024) can produce high-definition videos, excelling in complex
scenes and multi-character interactions, while Kling AI (Kuaishou, 2024) offer motion control and
style presets, suitable for creative generation. Vidu (ShengShu-AI, 2024) and Haiper (DeepMind,
2024) focus on narrative coherence and story generation capabilities. Wan2.1 (Wang et al., 2025) and
HunyuanVideo (Kong et al., 2024) further advance efficient and cinematic video production, meeting
diverse creative demands.

2
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Image-to-Video Generation. Image-to-video(I2V) generation is capable of converting static im-
ages into dynamic videos. It is applicable to animation production and storytelling, often combined
with text prompts to enhance flexibility. Runway Gen-3 Alpha (Runway, 2024) and Luma AI (LumaL-
abs, 2024) support I2V generation with high fidelity, while Jimeng AI (Jianying, 2024) focuses on
visual effects for Chinese scenes, generating short videos. Ruyi (Team, 2024) and CogVideoX (Yang
et al., 2024) support video generation based on the first and last frames. LTX-Video (HaCohen
et al., 2024) can generate smooth 10s short videos in real time. Open-Sora 2.0 (Peng et al., 2025)
integrate image and text inputs to produce high-quality dynamic content, significantly enriching
visual storytelling possibilities.

2.2 EVALUATIONS ON VIDEO GENERATION

In recent years, the rapid development of video generation technology has spawned a variety of
metrics to evaluate the generated videos from different dimensions. The relevant evaluation metrics
can be organized into the following dimensions:

Movement dynamics evaluation: For movement dynamics, multiple benchmarks (Ling et al., 2025)
analyze motion naturalness through long-duration video datasets. MiraBench (Ju et al., 2024) builds
a high-quality dataset of long-duration, fine-grained captions to better evaluate temporal consistency
and motion intensity in video generation. (Liao et al., 2024) proposed DEVIL method, which
evaluates the generation ability of the T2V model by defining fine-grained temporal dynamic scores
and text prompts at multiple dynamic levels.

Text alignment evaluation: The generation model needs to strictly follow the semantic constraints
of the text prompts. StoryBench (Bugliarello et al., 2023) systematically evaluates the ability to
transfer from basic instruction understanding to complex story construction by setting up three levels
of progressive tasks. StoryEval (Wang et al., 2024b) is specifically used to evaluate the model’s
ability to handle event-level story presentation. It uses VLMs to perform event-level decomposition
and verification of generated videos, and integrates voting mechanisms to improve reliability.

Time coherence evaluation: Temporal coherence is a core challenge of video generation.
ChronoMagic-Bench (Yuan et al., 2024) evaluates the rationality of the gradual process of the
T2V model when generating high-dynamic time-lapse videos by introducing MTScore and CHScore.
T2VBench (Ji et al., 2024) quantifies the performance of generated videos in terms of motion ratio-
nality and event timing logic with temporal dynamic features. TC-Bench (Feng et al., 2024) defines
the initial and target state of the scene, and measures the transition integrity through the TCR metrics.

Comprehensive performance evaluation: The comprehensive evaluation system of video gen-
eration models is developing in a multi-dimensional and fine-grained direction. (Liu et al., 2024).
AIGCBench(Fan et al., 2023) established the first scalable evaluation system for I2V generation tasks
through 11 metricss. VBench(Huang et al., 2024) extends video evaluation from surface authenticity
to intrinsic authenticity. T2V-CompBench(Sun et al., 2024a) integrating LLaVA-1.5 and object
tracking technology, and showed significant advantages in complex prompt evaluation.

3 VIDEO CONNECTING

3.1 TASK DEFINITION

Suppose the start video clip is denoted by VS = {It}NS

1 and the end video clip is denoted by
VE = {It}NE

1 , where N∗ denotes the frame counts of the video, and It ∈ RH×W×C represents each
frame. VS and VE share the same spatial resolution and frame rate. Given a pair of video clips VS

and VE as well as an optional textual prompt T , the task of video connecting aims to generate a video
V satisfying to the following conditions:

• The start and end clips of V are consistent with VS and VE , respectively.
• V holds the properties of the video, such as consistent spatial resolution and frame rate,

motion smoothness, etc.

The first condition ensures that the generated video remains faithful to the provided start and end
clips, denoted as VS and VE . This constraint is critical in practical applications, as these clips are

3
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Benchmark Name Year Open-Domain Text-Video Image-Video Video Connecting Metrics

LFDM Eval (Ni et al., 2023) 2023 ✘ ✔ ✘ ✘ 3
StoryBench (Bugliarello et al., 2023) 2023 ✔ ✔ ✘ ✘ 10

CATER-GEN (Hu et al., 2024) 2023 ✘ ✔ ✔ ✘ 7
SVD-Eval (Blattmann et al., 2023) 2023 ✔ ✔ ✔ ✘ 5

EvalCrafter (Liu et al., 2024) 2023 ✔ ✔ ✔ ✘ 17
VideoPhy (Bansal et al., 2024) 2024 ✔ ✔ ✘ ✘ 2

PhyGenBench (Meng et al., 2024) 2024 ✔ ✔ ✘ ✘ 5
MiraBench (Ju et al., 2024) 2024 ✔ ✔ ✘ ✘ 17
DEVIL (Liao et al., 2024) 2024 ✔ ✔ ✘ ✘ 10

StoryEval (Wang et al., 2024b) 2024 ✔ ✔ ✘ ✘ 7
ChronoMagic-Bench (Yuan et al., 2024) 2024 ✔ ✔ ✘ ✘ 6

T2VBench (Ji et al., 2024) 2024 ✔ ✔ ✘ ✘ 16
TC-Bench (Feng et al., 2024) 2024 ✔ ✔ ✔ ✘ 7
AIGCBench (Fan et al., 2023) 2024 ✔ ✔ ✔ ✘ 11
Video-Bench (Han et al., 2025) 2024 ✔ ✔ ✔ ✘ 10

Step-Video-T2V-Eval (Huang et al., 2025) 2024 ✔ ✔ ✘ ✘ 4
VMBench (Lin et al., 2024) 2025 ✔ ✔ ✘ ✘ 5

VBench 1.0 / 2.0 (Huang et al., 2024) 2025 ✔ ✔ ✔ ✘ 21
T2V-CompBench (Sun et al., 2024a) 2025 ✔ ✔ ✘ ✘ 7

VC-Bench(Ours) 2025 ✔ ✔ ✔ ✔ 9

Table 1: The summary of benchmark in video generation. We summarize the benchmark work
related to video generation in the past three years and extract information.

typically predefined by content creators. The second condition is introduced to preserve the high
visual quality of the output video throughout the generation process.

Relation to FLF2V First-Last Frame to Video (FLF2V) (Wang et al., 2025; Zhang & Agrawala,
2025) generation is similar to our Video Connection (VC) task, as both control video content using
start and end states. However, FLF2V is an Image-to-Video task, while VC is Video-to-Video, leading
to distinct challenges. Details of the difference between these two tasks are listed in Appendix B.1.

(1) Information Complexity: In the FLF2V task, video generation is primarily guided by the
information contained in the first and last frames, which provide static visual cues. In contrast, the
VC task relies on the spatiotemporal information from the start and end video clips, which include
dynamic motion, temporal context, and richer content. While this provides more information, it also
introduces the challenge of effectively extracting and utilizing this complex spatiotemporal data, as
processing video clips is significantly more demanding than handling static frames.

(2) Content Difference: In FLF2V task, the two frames typically belong to the same video sequence,
exhibiting high consistency in content, style, and scene. The model only needs to focus on generating
intermediate frames to ensure smooth visual and motion transitions. In contrast, for our video
connecting task, the starting and ending videos may come from different video sequences, with
potentially significant differences in content, such as lighting conditions, color schemes, and so on.

(3) Temporal Consistency: Both tasks require ensuring the temporal consistency. However, the
challenge in video connecting lies in the fact that the start and end clips may have different motion
patterns, rhythms. For instance, the starting video might have slow motion, while the ending video
features fast motion. The model must generate a transitional video that smoothly adapts to the ending
video’s rhythm, which is more complex than simple frame interpolation.

3.2 TRANSFER APPROACH

To address the lack of support for video connection tasks in existing models, we adapted the Diffusion
Transformer (DiT) architecture to generate videos conditioned on starting and ending segments,
enhancing temporal consistency, semantic coherence, and content controllability. The methods are:

(1) Mapping to Latent Space: The start and end clips are mapped to the latent space’s initial and
final positions. The intermediate section, filled with random noise, is processed by the DiT model
alongside conditioned segments, guiding the denoising process to model temporal dependencies and
ensure spatiotemporal consistency.

(2) SLERP for Conditional Control: Using spherical linear interpolation (SLERP), as in
TVG (Zhang et al., 2024), we blend features of the start and end clips to generate smooth tran-
sition parts, improving cross-scene video connections for natural transitions.

4
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Two Scene Video Clip

The video showcases a stunning landscape featuring a 
vibrant pink lake surrounded by rugged mountains under a 
clear blue sky. A small, abandoned structure is visible in the 
foreground, adding a touch of mystery to the tranquil setting.

Aesthetic Scoring

Dynamic Scoring

Periodic Detection

The video captures a cityscape in Dublin, featuring streets 
with pedestrians, vehicles, and construction zones. It 
transitions from urban scenes to a riverside walkway, 
showcasing daily life, public transport, and architectural 
details like the "London" pub and red-doored buildings. 

The video captures a scenic journey of a red train moving 
smoothly along a winding railway track that hugs the edge of 
a vibrant turquoise lake. Adjacent to the rail is a paved road 
with occasional vehicles, both routes curving gracefully 
through the landscape. 

Animals

Figure 3: Dataset Construction. We outline the construction proces s of the our dataset: Web
Data Crawling and Classification: Organized into 15 major categories and 72 subcategories. Data
Filtering: Selected high-quality test data through aesthetic scoring, dynamic scoring, and periodic
detection. Scene Detection: Employed PySceneDetect for scene segmentation. Caption Generation:
Utilized Qwen2-VL to generate high-quality caption.

Remarks The DiT architecture for video generation has limitations in achieving hard-constrained
generation: (1) VAE Encoder Scale Effect: Fixed-ratio compression and techniques like rounding
or zero-padding in VAE encoders cause irreversible loss of original content. (2) Patch-Based
Serialization: Dividing video into fixed-size spatiotemporal patches with positional encoding alters
the original video’s characteristics, especially at boundary patches. (3) Latent Space Denoising:
Compressing video into a low-dimensional latent space for efficient denoising, then reconstructing it,
introduces noise and reduces fidelity.

4 VC-BENCH

In this section, we will introduce VC-Bench in detail, including the construction of the dataset and
the establishment of evaluation metrics. The benchmarks related to video generation are summarized
in Table 1. Compared with previous work that mainly focuses on the evaluation of T2V and I2V
tasks, our benchmark focuses on comprehensive evaluation of video generation models.

4.1 DATASET CONSTRUCTION

The VC-Bench dataset is meticulously curated from multiple public video resource platforms such as
Pexels, Pixabay, Mixkit, and YouTube. The construction pipeline is illustrated in Figure 3.

In addition to conventional steps including aesthetic filtering, dynamic motion screening, watermark
removal, and caption generation, we introduce additional procedures tailored to the video connecting
task: Scene Detection, Periodic Motion Detection, and Video Clips Extraction.

Scene Detection: Automated analysis of raw videos is performed using the PySceneDetect scene
detector to ensure each video contains either a single scene or exactly two scenes. This is based on
the rationale that video connectivity between any number of scenes can be achieved by connecting
videos with two scenes.

Periodic Motion Detection: Videos with prominent periodic motions (e.g., spring oscillations,
dumbbell lifts) are excluded, as such content does not adequately reflect the nature of the video
connectivity task. Structural Similarity Index (SSIM) is used to compute the similarity between the
first frame and each subsequent frame. Peaks are detected via SciPy(Virtanen et al., 2020), and the
period is estimated by calculating the average frame difference between consecutive peaks.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Video Clips Extraction: We set the total video duration to 5 seconds, with the start and end clips
varying between 2 to 4 seconds. For videos containing two scenes, we ensure that transition frames
are excluded from these clips. This is designed to evaluate the capability of existing video generation
models in reconstructing the transitional portions of the videos.

We present detailed statistics of the dataset to provide a comprehensive understanding. Our dataset
consists of a total of 1,579 videos. In terms of video duration, the videos length ranges from 4 seconds
to 43 seconds. Notably, videos lasting between 7.5 and 20 seconds are the most prevalent. Regarding
video quality, all videos have a resolution exceeding 720p and were filtered using the aesthetic score
predictor, achieving an average aesthetic score as high as 0.55, as depicted in Figure 4. Additionally,
we employed Qwen2-VL (Bai et al., 2023; Wang et al., 2024a) to equip each video with detailed and
expressive textual descriptions. The length of these captions ranges from 18 to 57 characters.

For video categorization, we employed a BERT-based text classification model to classify videos
using their textual descriptions, significantly reducing dataset construction time. As shown in Figure
4, the dataset spans 15 major categories and 72 subcategories, ensuring diverse content.

4.2 EVALUATION METRICS

Given the characteristics of video connection tasks, it is necessary to design specialized metrics
to evaluate the quality of video content. It should be noted that due to the limitations of current
conditional video generation models, achieving seamless transitions between the starting and ending
video clips remains challenging, rendering traditional evaluation methods insufficient. Therefore, we
propose our VC-Bench to more accurately assess video generated content, providing a more reliable
basis for research and optimization in video generation technology.

Our work proposes a set of comprehensive metrics for evaluating the quality of video generation,
covering the following three aspects: Video Quality Score V QS, Start-End Consistency Score
SECS and Transition Smoothness Score TSS. The details are as follows.

Video Quality Score V QS: Inspired by VBench (Huang et al., 2024), we propose a comprehen-
sive video quality evaluation method based on five key metrics to assess the realism and overall
performance of generated videos.

(1) Subject Consistency QS: This metric evaluates whether the main subject (e.g., person, animal, or
object) in the video maintains consistent identity, appearance, and structure throughout the sequence.

(2) Background Consistency QB: It is used to measures the stability of the background over time,
ensuring no unnatural shifts or jitters.

(3) Flickering Severity QF : Quantifying flickering artifacts in local details (e.g., color or brightness),
indicating instability in generation.

(4) Aesthetic Score QA: Automatically predicting the artistic quality and visual appeal of the video
using a pre-trained aesthetic assessment model.

(5) Imaging Quality QI : Assessing low-level visual artifacts in individual frames (e.g., blur, distortion,
or noise).

The numerical range of the above metrics scores is between 0 and 1, then V QS is calculated as the
average of these mstrics.

V QS = [QS +QB + (1−QF ) +QA +QI ] /5. (1)

Start-End Consistency Score SECS: The VC task imposes higher demands on maintaining
consistency between the start and end video clips. This dimension primarily evaluates the consistency
of the generated video at the pixel level between its start and end clips.It comprises two metrics:

(1) Pixel Consistency CP : Evaluating the pixel alignment between the start or end clips of the
generated video and the original video by comparing luminance, contrast, and structural similarity.

(2) Optical Flow Error COF : Optical flow describes the motion information of pixels between frames.
This metric measures the motion consistency between the generated and the original video.

6
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Figure 4: Distribution of Curated Data. We analyzed the dataset, including category statistics,
video duration statistics (24fps), caption length statistics, and aesthetic score statistics. Statistical
analysis demonstrates that our dataset exhibits high quality, diversity, and complexity, meeting the
rigorous requirements for benchmark testing.
Similarly, SECS is calculated as follows.

SECS = [CP + (1− COF )] /2. (2)

Transition Smoothness score TSS: Evaluating whether the transition between the original clips
and generated part is natural and fluid, consisting of two metrics:

(1) Video Connecting Distance TCD: Aligning the generated and the original video frame in time
with DTW method. The transition consistency is measured by calculating the ratio of the structural
similarity SSIM(fI , fG) between the frame fI in the original video and the frame fG in the
generated video and the frame spacing d. It ensures that the transition part can naturally connect the
start and end video clips while avoiding abrupt changes.

(2) Local Perceptual Consistency TLP : Quantifying the perceptual similarity between adjacent frames
in the transition region by extracting features using a pre-trained VGG network and computing the
LPIPS distance. This determines whether perceptual jumps exist at the transition point, thereby
assessing the natural fluidity of the generated video’s transition.

TSS is formulated below.
TSS = [(1− TCD) + TLP ] /2. (3)

Finally, the comprehensive evaluation score of the generated video is expressed as the mean of the
above three scores. We provide the specific calculation formula for each metrics in the Appendix B.2.

Score = (V QS + SECS + TSS)/3. (4)

5 EXPERIMENTS

In this section, we evaluate some state-of-the-art video generation models using VC-Bench. We begin
by introducing the evaluation setup, followed by presenting quantitative comparison results. We also
assess the quality of connected videos under varying durations of the start and end clips. Finally, we
analyze the alignment between our proposed evaluation metrics and subjective human judgments.

5.1 SETTINGS

We begin with a brief description of the experimental setup used in our study; more detailed configu-
rations are provided in the supplementary materials.

Models. We evaluated six mainstream video generation models on the video connectivity task:
Wan2.1 (Wang et al., 2025) (1.3B and 14B), CogVideoX (Yang et al., 2024) (2B and 5B), Open-Sora
2.0 (Peng et al., 2025) (11B), and Ruyi (Team, 2024) (7B).

Framework. The DiT architecture and a 3D causal variational autoencoder were adopted and
modified according to the method described in Section 3.2. The framework was adapted to the video
connectivity task through latent space mapping of the start and end video clips and interpolation-based
conditional control.

Conditioning setting. We selected the following conditioning settings: Using single frame, 1 second
(24 frames), 1.5 seconds (36 frames), and 2 seconds (48 frames) as the start and end clip. The text
prompt was set as optional. In all cases, a 5-second transition video was generated.
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Video Quality
Subject Consistency Background Consistency Flickering Severity (↓) Aesthetic Score Imaging Quality

Wan-2.1(1.3B) 0.921 0.944 0.045 0.577 0.720
Wan-2.1(14B) 0.922 0.946 0.060 0.576 0.713

CogVideoX(2B) 0.914 0.943 0.048 0.562 0.704
CogVideoX(5B) 0.906 0.940 0.079 0.561 0.685

Open-Sora 2.0(11B) 0.911 0.938 0.028 0.537 0.644
Ruyi(7B) 0.909 0.939 0.090 0.560 0.688

Start-End Consistency Transition Smoothness Total ScorePixel Consistency Optical Flow Error (↓) Connecting Distance (↓) Local Perceptual Consistency
Wan-2.1 (1.3B) 0.933 0.042 0.022 0.839 0.892
Wan-2.1 (14B) 0.952 0.031 0.021 0.820 0.893

CogVideoX (2B) 0.880 0.058 0.077 0.810 0.864
CogVideoX (5B) 0.893 0.059 0.073 0.782 0.858

OpenSora-2.0 (11B) 0.851 0.098 0.036 0.837 0.859
Ruyi (7B) 0.848 0.078 0.056 0.649 0.827

Table 2: Video Score on VC-Bench. Based on VC-Bench, we evaluate the performance of 6 open
source models on the Video Connection task.

Same Start & End Scenes Distinct Start & End Scenes
Conditional proportion FLF2V 40% 60% 80% Avg. FLF2V 40% 60% 80% Avg.

Wan-2.1 (1.3B) 0.840 0.870 0.872 0.874 0.864 0.801 0.832 0.836 0.835 0.826
Wan-2.1 (14B) 0.851 0.871 0.873 0.875 0.868 0.802 0.822 0.831 0.834 0.822

CogVideoX (2B) 0.820 0.838 0.845 0.847 0.838 0.760 0.786 0.797 0.797 0.785
CogVideoX (5B) 0.785 0.834 0.847 0.849 0.829 0.734 0.786 0.799 0.802 0.780

OpenSora-2.0 (11B) 0.756 — 0.844 0.840 0.813 0.765 — 0.763 0.765 0.764
Ruyi (7B) 0.827 0.824 0.816 0.820 0.822 0.767 0.771 0.771 0.766 0.769

Table 3: Comparison of Duration Ratio. We conducted comparative experiments on 6 test models
to evaluate the impact of start-end duration ratios on generation performance. The experimental
settings included FLF2V, 40% (24 frames each), 60% (36 frames each), and 80% (48 frames each),
with the generated video length fixed at 5 seconds (120 frames).

5.2 MAIN RESULTS

We evaluated six video generation models adapted for the Video Connecting task using our VC-Bench.
To standardize evaluations, we converted negative metrics to positive by subtracting from 1 and
normalized metrics with ranges to the 0–1 interval. Results are presented in Table 2 and Figure 2.

As shown in Table 2, Wan-2.1 (1.3B and 14B) outperforms other models, achieving the highest total
score. It excels in subject consistency, background consistency, optical flow error, and connection
distance, demonstrating superior spatiotemporal coherence and transition naturalness. Conversely,
CogVideoX (2B and 5B) performs strongly in aesthetic score and imaging quality but is less effective
in flickering severity and transition smoothness, which is suitable for short videos prioritizing visual
appeal. Open-Sora-2.0 (11B) leads in flickering severity, effectively suppressing instabilities like
color or brightness fluctuations due to its fine-tuned noise control, but it shows moderate performance
in start-end consistency. Ruyi (7B) performs poorly in transition smoothness due to inadequate
training for the Video Connecting task, resulting in abrupt transitions that reduce overall fluency.

In summary, current video generation models demonstrate strong discriminative capabilities on our
VC-Bench. However, they still underperform significantly in terms of start-end consistency and
transition smoothness. These shortcomings highlight the ongoing challenges in maintaining temporal
coherence and ensuring fluid transitions between video clips in the Video Connecting task. Moving
forward, future research will prioritize conditional video generation, exploring advanced techniques
and optimized training strategies to enhance overall performance and effectiveness in this domain.

5.3 ANALYSIS

Comparison between One Scene and Two Scenes. As shown in Table 3, we evaluated the quality
of transition videos generated by the model under two conditions: when the start and end scenes
are the same, and when they differ. The results indicate that the quality of transitions generated
in the former scenario is consistently higher than in the latter. This suggests that two-scene video
connecting remains highly challenging for current video generation models. The models struggle
to "imagine" plausible transitions between disparate start and end clips, often producing significant
"hallucinations" in the generated videos—such as characters from the end clip appearing abruptly
without logical context—which clearly deviate from realistic and coherent motion continuity.
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Score Objective Avg. Subjective Avg. Correlation Coefficient Subjective Consistency
VQS 0.815 0.807 0.839 0.968
SECS 0.911 0.916 0.905 0.980
TSS 0.867 0.824 0.812 0.979

Table 4: Validate VC-Bench’s Human Alignment. 30 volunteers were invited to subjectively score
video generation results on Video Quality, Start-End Consistency, and Transition Smoothness. We
then calculated the correlation coefficient between objective and subjective scores to demonstrate that
objective scores effectively reflect human preferences. Additionally, we computed the ICC metric
among volunteers to confirm high scoring consistency.

Impact of Conditional Proportion. As shown in Table 3, we conducted experiments to analyze
how the quality of connected videos changes as the proportion of conditioning frames from the start
and end clips increases. Overall, video quality improves gradually with a higher ratio of conditioning
frames, with Wan-2.1 (14B) consistently outperforming other models. It is noteworthy that the quality
of videos generated with higher conditioning frame ratios (40%, 60%, and 80%) is significantly better
than that achieved using only the start and end frames. This improvement can be attributed to the
richer spatiotemporal features and motion consistency captured by the model when provided with
more contextual frames.

Case Presentation and Analysis. We have carefully selected cases from multiple categories for
presentation and analysis, with details provided in the Appendix D.3. These cases vividly illustrate
the common issues in Video Connecting, including subject distortion (involving Animations, Animals,
and Humans), artifact flickering (such as Plants and Sports), image distortion (can be seen in citeps),
and unnatural motion trajectories (like Sports). This indicates that the adaptability of existing models
is still insufficient, necessitating further research and technological advancements in the future.

Human Alignment of VC-Bench. To validate our VC-Bench test set’s alignment with human
subjective perceptions, we engaged 30 volunteers to manually evaluate generated videos. In Table
4, correlation coefficients showed strong similarity between objective and subjective evaluations,
confirming that VC-Bench effectively reflects human perceptions and can serve as an automated
video evaluation. To ensure subjective consistency and detect potential malicious scoring, we applied
the ICC(2,K) statistical method (Koo & Li, 2016). Results confirmed high rater reliability, with no
evidence of intentional high or low scores.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce Video Connecting, a novel task in conditional video generation, and
propose VC-Bench, a benchmark tailored to evaluate performance in this domain. Unlike existing
benchmarks focusing on general video quality, VC-Bench assesses Video Quality, Start-End Consis-
tency, and Transition Smoothness using a diverse dataset of 1,579 high-quality samples. Evaluations
of open-source models reveal challenges in spatiotemporal coherence and transition fluency, espe-
cially in cross-scenes settings. Limitations include testing only 5-second videos, leaving longer
sequences unexplored, and reliance on open-source models due to the absence of closed-source
support. Future work should include longer videos and closed-source models for robust validation.
We aim for VC-Bench to drive advancements in Video Connecting generative models.

7 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. The proposed VC-Bench are constructed entirely
from publicly available videos that are free of personally identifiable or sensitive information. All data
sources follow their original licenses, and the processing steps are documented in Section 4.1. Our
benchmark and evaluation framework are designed to foster research on controllable and coherent
video generation, with positive applications in areas such as film production, short video creation,
advertising, and virtual reality. We acknowledge the general risk that generative video models
could be misused to produce misleading or harmful content; however, our contribution is limited
to a benchmark and evaluation metrics, which are intended solely for advancing academic research.
All procedures were conducted under the approval of an institutional ethics review board, and all
participants provided informed consent prior to participation. The data collected from human subjects
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were limited to annotation feedback and subjective quality ratings of videos, without collection of any
personally identifiable or sensitive information. No additional ethical risks beyond those typically
associated with generative modeling research have been identified.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The construction and pre-
processing steps of the VC-Bench dataset are described in Section 4.1. The detailed description of
the proposed method and evaluation metrics can be found in Sections 4.2 of the main paper and
further clarified in Appendix B.1. Moreover, we provide an anonymous link to our source code and
evaluation scripts at https://anonymous.4open.science/r/VC-Bench-1B67/ to facilitate reproduction
of the reported results.
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Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at
any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Yiping Wang, Xuehai He, Kuan Wang, Luyao Ma, Jianwei Yang, Shuohang Wang, Simon Shaolei
Du, and Yelong Shen. Is your world simulator a good story presenter? a consecutive events-based
benchmark for future long video generation. arXiv preprint arXiv:2412.16211, 2024b.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with
an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Shenghai Yuan, Jinfa Huang, Yongqi Xu, Yaoyang Liu, Shaofeng Zhang, Yujun Shi, Rui-Jie Zhu, Xinhua
Cheng, Jiebo Luo, and Li Yuan. Chronomagic-bench: A benchmark for metamorphic evaluation
of text-to-time-lapse video generation. Advances in Neural Information Processing Systems, 37:
21236–21270, 2024.

Lvmin Zhang and Maneesh Agrawala. Packing input frame contexts in next-frame prediction models
for video generation. Arxiv, 2025.

Rui Zhang, Yaosen Chen, Yuegen Liu, Wei Wang, Xuming Wen, and Hongxia Wang. Tvg: A training-
free transition video generation method with diffusion models. arXiv preprint arXiv:2408.13413,
2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the policy on the use of large language models (LLMs), we disclose that LLMs
were utilized as an assistive tool during the preparation of this manuscript. The LLM (specifically,
DeepSeek) was employed exclusively for the purpose of enhancing the clarity, fluency, and overall
readability of the narrative text.

The precise role of the LLM was limited to:

• Text Polishing and Refinement: Rewording and rephrasing sentences to improve grammatical
correctness and stylistic flow.

• Improving Coherence: Assisting in ensuring smooth transitions between paragraphs and
sections.

It is critical to emphasize that the LLM did not contribute to the core intellectual content of this
work. All research ideation, methodological design, data analysis, interpretation of results, scientific
conclusions, and the original drafting of the manuscript were conducted solely by the human authors.

12

https://github.com/IamCreateAI/Ruyi-Models


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Video Generation
Tasks Conditions Input Length Motion Info Scene Information

Complexity

T2V Text prompt Text only Yes (implicit) Free High
I2V Initial image 1 frame No Same Medium

Video Extension Initial video segment ∼24-48 frames Yes Same Medium
Frame Interpolation Two adjacent frames 2 frames No Same Small

FLF2V First/Last frames 2 frames No Same Medium
VC Two video segments ∼48-96 frames Yes Distinct High

Table 5: Difference between VC Task and Other Video Generation Tasks.

B METHODOLOGY AND VC TASK CLARIFICATION

B.1 DIFFERENCE BETWEEN VC TASK AND OTHER VIDEO GENERATION TASKS

Compared to other video generation tasks such as T2V, I2V, video extension, and frame interpolation,
the proposed VC task is considerably more demanding. For instance, T2V relies solely on a text
prompt with implicitly inferred motion and allows the model to generate a free-scene video, while
I2V conditions on a single frame without motion information, both maintaining relatively lower
information requirements. Video extension takes a short continuous video segment (24–48 frames)
from the same scene and focuses on extending the temporal span, whereas frame interpolation and
FLF2V operate on only two adjacent or boundary frames, requiring no explicit motion cues and
remaining within a fixed scene, resulting in small to medium complexity.

In contrast, VC takes two full video segments of approximately 48–96 frames each as input, both
containing rich temporal motion patterns and originating from distinct scenes. This configuration
obligates the model to not only understand and preserve the motion dynamics within each segment,
but also to bridge semantic gaps, reconcile scene differences, and generate coherent transitions. Such
requirements elevate VC into a highly complex and information-intensive task, making it substantially
more challenging than previous video generation settings. Difference between VC task and other
video generation tasks are shown in Tabel 5

B.2 DETAILS IN EVALUATION METRICS

In this section, we will introduce the various metrics in our benchmark and their implementation
methods in detail.

(1) Subject Consistency QS: This metric assesses whether the primary subject (e.g., a person,
animal, or object) in a video maintains consistent identity, appearance, and structure throughout
the sequence. It ensures that, across the entire video, the same subject remains coherent. In the
generated video, the subject present in the input’s start and end frames should be preserved, while
also maintaining consistency during the intermediate transition part. We specifically adopt the Dino
model to implement subject consistency detection. Because Dino model has not been trained and
is unable to classify subjects and ignore their intra-class differences, it is particularly sensitive to
changes in subject differences in the video and is suitable to detect subject changes. The calculation
formula is as follows:

QS =
1

N − 2

N−1∑
t=2

1

3
(D ⟨I1, It⟩+D ⟨It−1, It⟩+D ⟨It, IN ⟩) , (5)

where N is the number of video frames, It is the t− th frame, and D ⟨·, ·⟩ is the dot product of the
Dino feature cosine similarity between the two frames. In general, we detect whether the current
frame maintains the subject consistency by calculating the average cosine similarity of each frame
with the first frame, the previous frame, and the last frame of the video. Finally, we average all the
detected frames as our final subject consistency score.

(2) Background Consistency QB: In addition to subject consistency, the video background also needs
to be consistent. This metrics is used to measure the stability of the background over time to ensure
that there are no unnatural shifts or jitters in the video. Specifically, we calculate the CLIP feature
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map for each frame of the video, and then similar to the subject consistency, we calculate the average
CLIP feature cosine similarity of each frame with the first frame, previous frame, and last frame of
the video to detect the consistency of the background. Finally, we average all the detected frames as
our final background consistency score. The formulation is as follows:

QB =
1

N − 2

N−1∑
t=2

1

3
(C ⟨I1, It⟩+ C ⟨It−1, It⟩+ C ⟨It, IN ⟩) , (6)

where C ⟨·, ·⟩ is the dot product of the CLIP feature cosine value between the two frames.

(3) Flickering Severity QF : In the generated videos, there are often rapid and irregular changes
in brightness, color, texture, or content between consecutive frames, resulting in a sense of visual
instability. This phenomenon is particularly common in video generation and can seriously affect
the viewing experience. Common flickering includes brightness flickering and color flickering. In
our metrics, we first divide the image into non-overlapping areas, and then determine whether there
is flickering between adjacent frames from the image’s YUV space (focusing on image brightness
changes) and HSV space (focusing on image color changes). We calculate the proportion of the
flickering area between two frames using the following formula:

rt =

∑
Pt∈St

I((L ⟨Pt, Pt+1⟩+ C ⟨Pt, Pt+1⟩) /2 > η)

|St|
. (7)

Among them, St represents the set of non-overlapping regions that the t− th frame is divided into,
and Pt is the divided region. I(·) is an indicator function. If the input is greater than the threshold
η, it takes 1, otherwise it takes 0. It is mainly used to determine whether it is a flickering area
based on the degree of change in a certain area. L ⟨·, ·⟩ represents the brightness change of the same
area in two adjacent frames in the YUV space, and C ⟨·, ·⟩ represents the color change in the HSV
space. If the mean of the two change values is greater than the threshold, the area is considered to be
flickering. Through the ratio definition, the proportion of the flickering area is obtained. Finally, we
can calculate the average flicker ratio r̄t of the video to indicate the flickering serverity of the video.
It should be noted that this metrics is a negative indicator and needs to be positively processed during
visualization.

(4) Aesthetic Score QA: It is used to quantify the visual beauty of images or videos are widely
used in image generation, video synthesis, photography evaluation and other fields. It measures the
aesthetic quality of content, such as composition, color, and thematic appeal, through algorithms or
manual scoring. We used the pretrained image aesthetic quality predictor LAION to score each frame
aesthetically (0-10), calculated the average aesthetic score, and finally linearly normalized the score
to 0-1.

(5) Imaging Quality QI :It mainly considers the frame-level generation quality in the generated video,
focusing on issues such as distortion, blur, and noise in the frame image. We use the pretrained
MUSIQ model as an image quality predictor to score each frame. Finally, the average score of the
entire video sequence is calculated and divide by 100 to normalize to the range of 0− 1.

(6) Pixel Consistency CP : This metrics is used to evaluate the pixel-level alignment ability of the
start and end clips of the generated video. Specifically, for each pair of original and generated frames
(It, Ît) at corresponding positions, we use SSIM as metrics to judge the pixel-level similarity between
the two frames. SSIM comprehensively considers pixel-level features such as brightness, contrast,
and structural similarity, and can well evaluate the pixel consistency maintained by the starting and
ending videos. Finally, we take the average value as an metrics of video pixel consistency. The
calculation formula is as follows:

CP =
1

Ns +Ne

Ns+Ne∑
t=1

SSIM(It, Ît), (8)

where Ns and Ne represent the number of frames of the starting and ending videos.

(7) Optical Flow Error COF : Optical flow describes the per-pixel motion between consecutive video
frames, representing how each pixel moves in a 2D plane over time. This metric is crucial for
evaluating motion consistency between a generated video and its original counterpart, ensuring that
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dynamic elements (e.g., object movement, camera motion) align realistically. Specifically, for each
pair of original and generated frames (It, Ît) at corresponding positions, we calculate their optical
flow OF () and calculate the average optical flow error. It is worth noting that the value range of the
optical flow error is not in the range of 0− 1, but since our optical flow window size is 16, it is easy
to know that the maximum optical flow error is 32 (based on Manhattan Distance), we divide it by 32
to normalize it to 0− 1.

COF =
1

Ns +Ne − 1

Ns+Ne−1∑
i=1

∣∣∣OF (It)−OF (Ît)
∣∣∣ , (9)

(8) Video Connecting Distance TCD: This metrics is used to measure the connection distance between
the middle generated part and the first and last videos. Specifically, we first utilize the DTW method
to align the frames of the generated video with the start and end clips of the original video. Then, for
a pair of corresponding frames (I, IG) of the starting (ending) video, we randomly select the frame
IM of the middle generated part and calculate SSIM ⟨I, IM ⟩ and SSIM ⟨IG, IM ⟩ respectively. We
hope that the difference between these two values is small. However, considering that the frame
distances from IM to I and IG may be different, we use SSIM/d as the measurement standard,
where d is the frame distance between the two frames. The formula is as follows:

TCD =

∣∣∣∣SSIM ⟨I, IM ⟩
dIM→I

− SSIM ⟨IG, IM ⟩
dIM→IG

∣∣∣∣ . (10)

We select K groups of corresponding frames from the starting and ending videos and Z frames from
the middle generated part for calculation respectively, and finally calculate the average value as the
representation of this metrics.

(9) Local Perceptual Consistency TLP : To rigorously evaluate the naturalness of transitions in
generated videos, we propose a perceptual similarity metric based on deep feature extraction and
LPIPS. This method focuses on detecting abrupt perceptual discontinuities between adjacent frames
in transition regions (e.g., scene cuts or interpolated clips), which are critical for assessing temporal
coherence. Specifically, we first use the VGG model to extract features frame by frame, then
calculate the absolute difference of the features between every two frames, and take the average as
the perceptual error of the two frames. Finally, we average all frames to get the perceptual error of
the video. Since this error is a negative metrics and its value is between 0 and 1, we use 1 minus this
value as our local perceptual consistency metrics. The perceptual error formula is as follows:

ε = Mean(|V(It)− V(It−1)|). (11)
Among them, V(·) represents the spatiotemporal features extracted using VGG model, and
Mean()represents the mean value according to the feature dimension.

B.3 CONSTRUCTION FOR THE SUBJECTIVE HUMAN EVALUATION

We invited 30 volunteers and asked them to focus on three aspects such as Video Quality, Start-End
Consistency, and Transition Smoothness for assessment. A 10-point scale was used to rate the video
quality (1 being "extremely poor" and 10 being "perfect"). The human subjective score is calculated
through subjective evaluation method. The Instruction text and Screenshots for the subjective human
evaluation are shown in Figure 5

C EXPANSION OF EXPERIMENTS

C.1 EXTENSION TO MULTI-CLIP VIDEO CONNECTING

VC-Bench is designed naturally supports more complex scenarios, including multi-clip connections
and looped video generation. To illustrate this, we evaluate Wan2.1 on a tiny multi-clip test set
containing 2-, 3-, 4-, and 5-segment connections. Experimental results are shown in Table 6

C.2 APPLICATION OF VIDEO CONNECTING

The Video Connecting task has wide applicability across creative and industrial contexts as shown
in Figure 6. In filmmaking and visual effects, VC can generate transitional shots or smooth scene

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Instruction text and screenshots for the subjective human evaluation.

Metrics Two Clips Three Clips Four Clips Five Clips

Subject Consistency 0.844 0.836 0.828 0.835
Background Consistency 0.915 0.909 0.913 0.914
Flickering Severity (↓) 0.278 0.262 0.290 0.255

Aesthetic Score 0.538 0.542 0.554 0.545
Imaging Quality 0.625 0.630 0.623 0.629

Pixel Consistency 0.914 0.908 0.917 0.916
Optical Flow Error (↓) 0.095 0.083 0.102 0.073

Connecting Distance (↓) 0.143 0.149 0.155 0.142
Local Perceptual Consistency 0.515 0.524 0.518 0.516

Table 6: Extension to Multi-clip Connecting.

changes, reducing the need for costly reshoots and post-production. For short-form video platforms
such as TikTok or YouTube Shorts, VC enables creators to link fragmented clips into coherent
narratives, enhancing fluency and viewer engagement. Advertising campaigns can also benefit from
seamless transitions between product-focused and storytelling segments. Beyond traditional media,
VC supports immersive experiences in virtual and augmented reality, where continuity is critical for
maintaining realism and user immersion. Even in personal media such as travel vlogs, VC allows
amateur creators to connect discontinuous scenic shots into smooth and engaging stories. These
applications underscore VC as a versatile tool for continuity-aware video generation.

D ANALYSIS AND ROBUSTNESS OF VC-BENCH

D.1 SENSITIVITY ANALYSIS

Since all open-source models generate videos with a fixed duration of 5 seconds, extending video
length would naturally degrade scores and is therefore predictable. We hope to objectively evaluate
the optimal performance of the community models. Instead, we analyze sensitivity to video resolution
using three output resolutions: 640×320, 960×432, and 1024×576, evaluated on the same models.
Experimental results are shown in Table 7.

Among all metrics, only Aesthetic Score shows statistically significant sensitivity to video resolution
(F=6.18, p=0.020). All other metrics exhibit no significant differences (p > 0.17), demonstrating
strong robustness of our evaluation framework.
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Movie Special Effects Production - 《EI Eternauta》

Short video content creation

Advertising Production - Coca-Cola

Virtual Reality

Vlog

Figure 6: Application of Video Connecting

Metric F-value p-value

Subject Consistency 0.146 0.866
Background
Consistency 0.777 0.488

Flickering Severity (↓) 0.081 0.923
Aesthetic Score 6.179 0.020
Imaging Quality 2.126 0.175

Pixel Consistency 0.005 0.995
Optical Flow Error (↓) 1.235 0.336

Connecting Distance (↓) 0.169 0.847
Local Perceptual

Consistency 0.005 0.995

Table 7: Sensitivity Analysis of Metrics to Resolution.

D.2 METRICS INTERPRETABILITY REPRESENTATION

In this section, we select specific cases to demonstrate the interpretability of some metrics, including
consistency metrics (Subject Consistency/Background Consistency) and Transition Smoothness
Metrics (Connection Distance). See Table 8, Figure 7 and Figure 8 for specific examples , it can be
seen that the metrics we provide can effectively reflect human subjective evaluations.

D.3 CASE STUDY

We present generated samples from different models in the video transition task, covering various
categories, with each category containing positive and negative examples. The issues in the generated
results are annotated in the case figures, including inconsistent characters, object deformation,
temporal discontinuity, flickering, and so on. The details are showed in Figure 9
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Case Type VCD Value Qualitative Example Phenomenon Description

Better 0.011 A small lion following
behind a hippo in water

The video is coherent and stable, with
smooth object motion and no flickering.

Medium 0.025 The scene focuses on a
person on a beach

The switch between the front and back
views of the person is abrupt, but the

main structure remains stabel.

Poor 0.052 A cartoon panda in front
of a street shop

Temporally incoherent, with obvious
object deformation and content
jumping in transition frames.

Table 8: Qualitative Examples of Video Connecting Distance.

Good Generation with VCD=0.011

Video Connecting Distance (↓)

In a vibrant animated scene, a rhino swims through clear blue water, followed by a playful lion with red hair. The lion enjoys the ocean, set 
against a bright sky with fluffy clouds.

Medium Generation with VCD=0.025

The video begins with an aerial view of waves crashing against rocks in the ocean. It then transitions to a beach where a man, shirtless and
wearing black shorts, is seen performing exercises with a medicine ball, showcasing strength and agility.

Bad Generation with VCD=0.052

In a chaotic urban setting, a cartoon raccoon character panics and runs through debris. The background features a truck and damaged
storefronts with broken glass and scattered cans. The scene is filled with urgency and disorder, highlighting the raccoon's frantic escape amidst
destruction.

Figure 7: Qualitative Examples of Video Connecting Distance.
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Good Generation

Subject and Background Consistency

A couple sits inside a cozy, wooden A-frame cabin, toasting with wine glasses. They are surrounded by warm lighting and festive decorations, creating an intimate and 

romantic atmosphere. （Wan-2.1 1.3B, Subject Consistency 0.982, Background Consistency 0.969）

The video captures a serene scene of white daisies swaying gently in the breeze. The soft focus highlights the delicate petals and vibrant yellow centers, set against a 

blurred green background, creating a peaceful and natural atmosphere. （Wan-2.1 1.3B, Subject Consistency 0.941, Background Consistency 0.959）

The video captures a serene coastal landscape at dusk, featuring a narrow strip of land with fields and a winding road bordered by the calm sea. The sky is painted with 

soft hues of pink and orange, transitioning to a darker blue as it meets the horizon. The scene exudes tranquility and natural beauty. 

（Wan-2.1 14B, Subject Consistency 0.958, Background Consistency 0.918）

Subject and Background Consistency

In a gym, a man and woman high-five while walking on treadmills. The video shows a workout schedule with days labeled from Monday to Sunday, 

including strength training, rest, and running sessions. （Wan-2.1 1.3B, Subject Consistency 0.731, Background Consistency 0.863）

Terrible Generation

The video showcases a gaming setup with an MSI GTX 1070 graphics card, displaying ""Hollywood"" in a game. It includes performance metrics 

and a bar graph comparing HD, QHD, and UHD resolutions, highlighting the card's capabilities. （CogVideoX 2B, Subject Consistency 0.761, 

Background Consistency 0.815）

A young girl with pigtails, wearing a blue dress and white shirt, sits at a table. She leans forward, resting her head on her arms, appearing thoughtful 

or tired. Her expression is contemplative as she looks down at the table.（CogVideoX 5B, Subject Consistency 0.837, Background Consistency 

0.855）

A woman pushes a young girl on a swing in a park. The girl swings high, laughing and enjoying the ride. The woman smiles, ensuring the girl's 

safety as they move back and forth. The scene is set against a backdrop of green grass, trees, and parked cars, capturing a joyful moment of play. 

（CogVideoX 5B, Subject Consistency 0.812, Background Consistency 0.867）

In a cartoon scene, two characters, one human and one dog, hold large carrots. The human stretches the carrot above their head, while the dog 

mimics the action. Both appear excited, with wide smiles and raised eyebrows, set against a colorful, indoor background. （Ruyi, Subject 

Consistency 0.728, Background Consistency 0.905）

Figure 8: Qualitative Examples of Consistency Metrics.
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Wan-2.1 (1.3B)

Animations

Wan-2.1 (1.3B)

Open-Sora 2.0 (11B)

Animals

CogVideoX (2B)

Wan-2.1 (14B)

Humans

Ruyi (7B)

CogVideoX (5B)

Cities

Open-Sora 2.0 (11B)

Figure 9: Case Study.
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