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Abstract
In multi-dimensional classification (MDC), the
semantics of objects are characterized by multiple
class variables from different dimensions. Exist-
ing MDC approaches focus on designing effective
class dependency modeling strategies to enhance
classification performance. However, the inter-
coupling of multiple class variables poses a sig-
nificant challenge to the precise modeling of class
dependencies. In this paper, we make the first
attempt towards escaping from class dependency
modeling for addressing MDC problems. Accord-
ingly, a novel MDC approach named DCOM is
proposed by decoupling the interactions of dif-
ferent dimensions in MDC. Specifically, DCOM
endeavors to identify a latent factor that encap-
sulates the most salient and critical feature infor-
mation. This factor will facilitate partial condi-
tional independence among class variables condi-
tioned on both the original feature vector and the
learned latent embedding. Once the conditional
independence is established, classification mod-
els can be readily induced by employing simple
neural networks on each dimension. Extensive
experiments conducted on benchmark data sets
demonstrate that DCOM outperforms other state-
of-the-art MDC approaches.

1. Introduction
In practical applications, objects are always characterized by
diverse semantics across multiple dimensions. To achieve
a more nuanced and comprehensive depiction of these ob-
jects, multi-dimensional classification (MDC) focuses on
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the analysis of multiple class spaces carrying distinct seman-
tics aspects. For example, Figure 1 (Liu et al., 2016) illus-
trates a cloth image characterized by three dimensions in-
cluding Texture, style and Elasticity, each with
corresponding possible labels. In reality, the necessity for
learning from MDC objects is prevalent across a variety of
real-world applications, including computer vision (Lian
et al., 2020; Shi et al., 2025), text mining (Lertnattee &
Theeramunkong, 2004; Serafino et al., 2015), ecological
informatics (Dzeroski et al., 2000; Verma et al., 2021), etc.

Formally speaking, let X = Rd be the input (feature) space
and Y = C1×C2×· · ·×Cq be the output space which corre-
sponds to the Cartesian product of q class spaces. Each class
space Cj = {cj1, c

j
2, . . . , c

j
Kj

} consists of Kj possible class
labels (1 ≤ j ≤ q). In addition, denote the d-dimensional
feature variable by X defined on X and the associated q-
dimensional class variable by Y = (Y1, Y2, . . . , Yq) defined
on Y , where each component Yj is a scalar class variable
defined on class space Cj (1 ≤ j ≤ q). Given an MDC data
set D = {(xi,yi)|1 ≤ i ≤ m} consisting of m i.i.d. train-
ing examples sampled from the Cartesian product of input
space and output space X × Y , the aim of discriminative
MDC approaches is to estimate the conditional joint proba-
bility pY |X(y⋄|x⋄) = pY1,Y2...,Yq|X(y⋄1, y⋄2 . . . , y⋄q|x⋄)

1

by training on the data set D.

Specifically, for an unseen sample x∗, the predicted class
vector ŷ∗ is exactly argmaxy⋄∈Y pY |X(y⋄|x⋄ = x∗). One
straightforward strategy is to transform the multi-variant
class vector y⋄ into a scalar variable y(cp) with a predefined
bijective mapping function ϕ : Y → {1, 2, . . . ,K1 · K2 ·
. . . ·Kj}. In other words, each distinct class combination is
regarded as a new class and multi-class classification algo-
rithms can be utilized subsequently, which is known as class
powerset (CP) (Read et al., 2014b). Then the targeted proba-
bility is transformed into pY |X(ϕ(y⋄1, . . . , y⋄q)|x⋄). How-
ever, the considered sample space is still the whole output
space Y , which contains a tremendous number of elements
(i.e., the cardinality of Y , denoted by |Y| =

∏q
j=1 Kj) and

1Note that x⋄ is a randomly sampled value of the feature vari-
able X and xi represents the i-th feature vector in the data set D.
Similarly, y⋄, y⋄1, . . . , y⋄q are randomly sampled values of class
variables Y, Y1, . . . , Yq and yi represents the i-th class vector in
the data set D. Additionally, yij denotes the j-th elements of yi.
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Dimensions Texture Style Elasticity

Labels

floral
graphic
striped

embroidered
pleated

solid
lattice

denim                
chiffon              
cotton               
leather              

faux                 
knit 

tight                
loose                

conventional         

Figure 1. An image example of multi-dimensional classification.
Labels in each column on a blue background belong to the corre-
sponding dimension in the first row. The ground truth labels solid,
denim and tight are in red circles.

is prone to class-imbalance and overfitting problem. An-
other natural strategy is to focus on each class space indepen-
dently so that the conditional joint probability pY |X(y⋄|x⋄)
is transformed to q independent conditional marginal prob-
ability pYj |X(y⋄j |x⋄) (1 ≤ j ≤ q), known as binary rele-
vance (BR) (Zhang et al., 2018). Although BR significantly
reduces the cardinality of probability space to be measured,
the class dependencies among dimensions are thoroughly
ignored, which may result in suboptimal prediction per-
formance. This highlights a critical need for exploring an
accurate approach with theoretical interpretation to model
class dependencies.

Accordingly, existing MDC approaches generally dedi-
cate to appropriately modeling class dependencies as well
as avoiding confronting the vast original output space Y
directly. On the one hand, some approaches opt to ac-
count for local class dependencies among a subset of class
variables, rather than the entire set, such as probabilistic
graph-based approaches (Bielza et al., 2011; Gil-Begue
et al., 2021; Nguyen et al., 2023), super-class modeling
approaches (Read et al., 2014a) and pairwise dependency
modeling approaches (Jia & Zhang, 2020; Huang et al.,
2024). On the other hand, alternative approaches are de-
signed to transform the original input or output space into
novel representations that facilitate more implicit depen-
dency modeling processes (Ma & Chen, 2018; Wang et al.,
2020; Jia & Zhang, 2023).

However, modeling dependencies in MDC remains a signifi-
cant challenge. Based on the above probabilistic analysis on
BR and CP, the hardness of modeling class dependencies
stems from the typical intercoupling within multiple dimen-
sions. This multi-dimensional intercoupling arises from the
conditional dependency among class variables given the
feature variable, namely the discrepancy between the condi-
tional joint probability pY |X(y⋄|x⋄) and the product of con-
ditional marginal probability

∏
1≤j≤q pYj |X(y⋄j |x⋄). As a

matter of fact, given an MDC instance, it is highly improba-
ble that these two forms of probability are identical, unless
there is a complete absence of correlation among dimen-

sions involved. To address this intricate class dependency
modeling problem from a dual perspective, we propose
a novel MDC approach named DCOM (i.e., DeCOupling
Multi-dimensional classification). Instead of modeling class
dependencies directly, we attempt to identify a latent factor
that encapsulates the most essential and critical feature in-
formation, which enables partial conditional independence
among class variables conditioned on both the original fea-
ture variable and the learned latent variable. Furthermore,
once the conditional independence is established, classifi-
cation models can be induced easily by employing simple
neural networks on each dimension. The main contributions
of DCOM are summarized as follows:

• We make a first attempt towards escaping from class de-
pendency modeling in MDC. The proposed decoupling
strategy can also be generalized to other multi-output
learning paradigms, such as multi-task learning (Feng
& Chen, 2023) and multi-label classification (Shi et al.,
2024; Zhang & Zhang, 2024; Sun et al., 2024).

• From a probabilistic standpoint, we present an efficient
approximation method. This method fosters the condi-
tional independence among class variables conditioned
on the informative latent factor and feature vector, ac-
companied by a theoretical analysis for dealing with
the vast sample space.

• Comprehensive experiments over seventeen bench-
mark data sets demonstrate that DCOM outperforms
other state-of-the-art MDC approaches.

The rest of this paper is organized as follows. Firstly, re-
lated works are briefly reviewed in Section 2. Secondly, the
details of the proposed DCOM approach are presented in
Section 3. Thirdly, experimental results of comparative stud-
ies on benchmark multi-dimensional data sets are reported
in Section 4. Finally, Section 5 concludes this paper.

2. Related Work
Most existing MDC approaches dedicate to modeling
the class dependencies as well as avoiding confronting
the huge original output space Y directly. Amongst
them, chain-based models (Zaragoza et al., 2011; Read
et al., 2014b) disassembles the conditional joint distribu-
tion into the product of q distributions by the chain rule
of probability, i.e., pY1,Y2,...,Yq|X(y⋄1, y⋄2, . . . , y⋄q|x⋄) =∏q

j=1 pYj |X,Y1,...,Yj−1
(y⋄j |x⋄, y⋄1, . . . , y⋄(j−1)) and esti-

mates each individual probability term with a multi-class
classifier. Such step-by-step strategy skillfully makes learn-
ing on each classifier achievable by considering single class
space on each step but leads to the propagation and ac-
cumulation of errors (Read et al., 2014b). Probabilistic
graph models (Bielza et al., 2011; Gil-Begue et al., 2021;
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Nguyen et al., 2023) seek for potential relationship among
class variables by directed acyclic graphs (DAG). Thus the
global joint distribution can be partitioned into some local
joint distributions involving class variables and their respec-
tive parent variables. Nevertheless, the computational com-
plexity associated with determining DAG structure remains
substantial. Dimension-specific MDC approach (Huang
et al., 2024) transforms the original feature vector x into
dimension-specific feature vectors d(j) corresponding to the
j-th dimension. Then the modeling problem is transformed
into pYj |D(y⋄j |d(j)) with each class space being treated as
an individual sample space.

Another category of MDC approaches aim to transform
the original input or output space into new representations,
thereby facilitating implicit dependency modeling processes.
gMML (Ma & Chen, 2018) decomposes the class spaces
into a binary-valued label space via one-vs-rest strategy
and solves the resulting problem via a metric approach.
LEFA (Wang et al., 2020) learns latent label embeddings
based on attentional factorization machines to augment the
original feature space. ADVAE-FLOW (Zhang et al., 2022)
encodes both feature and class variables into probabilistic
latent spaces by normalizing flows. DLEM (Jia & Zhang,
2023) enables modeling alignment in an encoded label space
derived from one-vs-one decomposition and transforms the
output space into a ternary encoded label space.

However, no existing MDC approaches attempt to escape
from the complicated dependency modeling problem. In the
next section, we will elaborate the technical details of the
proposed DCOM approach, which seeks for partial condi-
tional independence based on the instance-based conditional
mutual information.

3. The DCOM Approach
Notation. In this paper, we use capital letters to denote
random variables (e.g., Y,X,Z), lowercase bold letters to
denote vectors (e.g., y⋄,xi) and lowercase non-bold letters
to denote scalars (e.g., y⋄j , yij). A detailed summary of
notations can be found in Table 8 of Appendix C.2.

3.1. Latent Factor Introduction

Given the MDC training data set D = {(xi,yi)|1 ≤ i ≤
m} consisting of m i.i.d. training examples sampled from
X × Y . The conditional log-likelihood function in terms of
class variables conditioned on the feature variable can be
given as follows:

L0(Θ0) =

m∑
i=1

log pY |X(yi|xi;Θ0)

=

m∑
i=1

log pY |X(yi1, . . . , yiq|xi;Θ0), (1)

where Θ0 is the model parameters. Recall that for the j-
th class variable Yj , there exist Kj possible class labels
cj1, c

j
2, . . . , c

j
Kj

. Consequently, the cardinality of the proba-
bility space is given by |Y| =

∏q
j=1 Kj , which is exceed-

ingly large and poses a significant challenge for precise
estimation. Considering the equivalence between maxi-
mizing likelihood estimation (MLE) and minimizing the
cross entropy loss, the loss item regarding classification in
existing deep MDC approaches (Huang et al., 2024; Shi
et al., 2025) is equivalent to the summation of conditional
marginal log-likelihood function defined as follows:

L1(Θ1) =

m∑
i=1

q∑
j=1

log pYj |X(yij |xi;θ
(j)), (2)

where Θ1 = [θ(1),θ(2), . . . ,θ(q)] is the set of model pa-
rameters and θ(j) represents the model parameter of the
j-th dimension. Here, the predictive model of the j-th di-
mension only considers the j-th class space Cj and the total
cardinality of probability space is

∑q
j=1 Kj , which is much

less than
∏q

j=1 Kj . However, the equality of Eq.(1) and
Eq.(2) requires an implicit assumption on the partial2 condi-
tional independence among class variables conditioned on
the feature variable, which is formulated as:

pY |X(yi|xi) =

q∏
j=1

pYj |X(yij |xi), (3)

where i ∈ {1, 2, . . . ,m}. Unfortunately in the context of
MDC, this strong assumption is rarely tenable. To facil-
itate the validity of the partial conditional independence
and thereby reduce the cardinality of the probability space,
DCOM seeks to identify a high-level informative latent factor
denoted by variable Z that enhances the original and basic
feature information. Specifically, we assume that the prior
over the latent variable distribution is the centered isotropic
multivariate Gaussian pZ(z⋄) = N (0, I). We then employ
a simple encoding network G to derive the latent vector
z⋄ corresponding to each feature vector x⋄. Nevertheless,
such a direct mapping from X is incapable of altering the
conditional dependence since the conditional probability
p(G(x⋄)|x⋄) is inherently describing a deterministic event.
To address this issue, we introduce a minor perturbation on
x⋄ prior to applying the encoding network G. Consequently,
the latent vector can be computed as follows:

z⋄ = G(x̃⋄), (4)

where x̃⋄ = x⋄ + ϵ and ϵ is a random noise vector. Further-
more, in order to comprehensively assess the influence of the

2We use “partial” here because the assumption does not require
Eq.(3) to hold universally for all possible values of Y and X , but
rather only under the observed training distribution (which is finite
and empirically sampled).
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latent variable Z on both feature variable X and class vari-
able Y , we extend the original conditional log-likelihood
function conditioned on X (i.e., Eq.(1)) to a conditional
log-likelihood function conditioned on Z as follows:

L(Θ) =

m∑
i=1

log pY,X|Z(yi,xi|zi;Θ)

=

m∑
i=1

[
log pY |X,Z(yi|xi, zi;θd)

+ log pX|Z(xi|zi;θr)
]
, (5)

where Θ = [θd,θr] is the set of model parameters. θd
and θr correspond to the parameters of the discriminant
component and reconstruction component, respectively.

3.2. Conditional Independence Achievement

Although the challenge posed by the vast probability space
associated with the first term in Eq.(5) persists, the introduc-
tion of the latent variable Z offers the potential for achieving
the partial conditional independence among class variables
conditioned on the feature variable X as well as the latent
variable Z. The desired partial conditional independence is
formulated as

pY |X,Z(yi|xi, zi) =

q∏
j=1

pYj |X,Z(yij |xi, zi), (6)

where i ∈ {1, 2, . . . ,m}. For notational concise-
ness, we further denote the joint probability of
all variables pY,X,Z(y⋄,x⋄, z⋄) by p(jt)(y⋄,x⋄, z⋄)
and the conditional marginal probability multi-
plied by the joint probability of feature and latent
variables

∏q
j=1 pYj |X,Z(y⋄j |x⋄, z⋄)pX,Z(x⋄, z⋄) as

p(pd)(y⋄,x⋄, z⋄).
3 Then Eq.(6) is equivalent to:

p(jt)(yi,xi,zi) = p(pd)(yi,xi,zi). (7)

To provide a theoretical support, we define the distance
between the two sides of Eq.(7), i.e., p(jt) and p(pd), in-
spired by Kullback-Leibler (KL) divergence and conditional
mutual information as follows:

Definition 3.1. Given q class variables Y1, Y2, . . . , Yq de-
fined on Y = C1×C2×. . . Cq , a feature variable X defined
on X and a latent variable Z ∼ N (0, I), the conditional

3When no ambiguity arises, we abbreviate p(jt)(y⋄,x⋄,z⋄) as
p(jt) and p(pd)(y⋄,x⋄,z⋄) as p(pd).

mutual information is defined as:

I(Y1, Y2, . . . , Yq|X,Z)

= KL
(
p(jt)||p(pd)

)
=

∑
y⋄∈Y

∫
x⋄

∫
z⋄

p(jt) log
p(jt)

p(pd)
dz⋄

=
∑
y⋄∈Y

∫
x⋄

∫
z⋄

I(y⋄,x⋄, z⋄)dz⋄. (8)

For convenience, the above integrand has been denoted as:

I(y⋄,x⋄, z⋄) = p(jt)(y⋄,x⋄, z⋄) log
p(jt)(y⋄,x⋄, z⋄)

p(pd)(y⋄,x⋄, z⋄)
.

Given the non-negativeness of KL divergence, it is evident
that the condition wherein Eq.(8) equals 0 constitutes a
sufficient but not necessary condition for the satisfaction of
Eq.(7) since a multitude of possible values of the feature
and latent variable are intractable and not considered in
Eq.(7). Therefore, for a given MDC data set, we employ an
instance-based conditional mutual information defined as
follows:

Definition 3.2. For a given MDC data set D =
{(xi,yi)|1 ≤ i ≤ m}, the instance-based conditional mu-
tual information is defined as:

ID(Y1, Y2, . . . , Yq|X,Z) =

m∑
i=1

∑
y⋄∈Y

I(y⋄,xi, zi). (9)

In this paper, we show a feasible and efficient way to es-
timate the instance-based conditional mutual information
with Theorem 3.3.

Theorem 3.3. If the joint probability of class vari-
ables pY (y⋄1, y⋄2, . . . , y⋄q) is small enough, i.e., 0 ≤
pY (y⋄1, y⋄2, . . . , y⋄q) ≪ 1, for ∀δ ∈ R s.t. 0 ≤ δ ≤
p(jt)(y⋄,x⋄, z⋄), then we have |I(y⋄,x⋄, z⋄)| → 0 under
Assumption 3.4.

Assumption 3.4. Given ∀δ ∈ R, s.t. 0 ≤ δ ≤
p(jt)(y⋄,x⋄, z⋄), then the joint probability p(jt)(y⋄,x⋄, z⋄)
and the product of conditional marginal probability
p(pd)(y⋄,x⋄, z⋄) satisfy that p(jt)(y⋄,x⋄, z⋄) − δ ≤
p(pd)(y⋄,x⋄, z⋄).

As a matter of fact, the joint probability p(jt)(y⋄,x⋄, z⋄) ≤∫
x⋄

∫
z⋄

p(jt)(y⋄,x⋄, z⋄)dz⋄ ≤ pY (y⋄1, . . . , y⋄q) → 0
when the condition of Theorem 3.3 is satisfied. Conse-
quently, p(jt) − δ is also a small probability that tends to 0.
This observation suggests that the Assumption 3.4 is highly
likely to be valid. Theorem 3.3 provides an efficient strategy
to reduce the practical size of probability space considering
a specific MDC data set, which shows that when the prior
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joint probability of class variables pY (y⋄1, . . . , y⋄q) is small
enough, the corresponding summand in Eq.(9) can be disre-
garded. We defer the proof of Theorem 3.3 to Appendix A.
Moreover, this prior which only regards to class variables
can be computed easily based on the m class vectors of
the i.i.d. MDC data set. Specifically, given an MDC data
set D = {(xi,yi)|1 ≤ i ≤ m} , we can approximate the
instance-based conditional mutual information as follows:

ID′(Y1, Y2, . . . , Yq|X,Z) =

m∑
i=1

∑
y⋄∈D′

I(y⋄,xi, zi). (10)

Here, D′ is defined as

D′ = {y⋄|
#y⋄

m
> c,y⋄ ∈ D},

where #y⋄ indicates the count of class vectors in data set D
that are equal to y⋄ and c is a small constant that approaches
0. The transformation on the sample space of class variables
considered from Y into D′ makes the instance-based condi-
tional independence computable. In real-world MDC data
sets, the cardinality of D′ is typically deemed acceptable
since the inherent class dependencies across dimensions
necessitate the presence of highly correlated class vectors.
Now, the intractable conditional joint log-likelihood (i.e.,
Eq.(5)) can be transformed into an accessible form with the
minimization of Eq.(10) as follows:

L̃(Θ̃) =

m∑
i=1

[ q∑
j=1

log pYj |X,Z(yij |xi, zi;θ
(j)
d )

+ log pX|Z(xi|zi;θr)
]
, (11)

where Θ̃ = [θ
(1)
d ,θ

(2)
d , . . . ,θ

(q)
d ,θr] is the set of model

parameters. θ
(j)
d and θr correspond to the parameters of

the discriminant component for the j-th dimension (1 ≤
j ≤ q) and the reconstruction component, respectively. The
detailed construction of loss functions based on Eq.(11) will
be discussed in the next section.

3.3. Loss Function Construction

For the first term of Eq.(11) regarding the discriminant
component consisting of the q conditional probabilities
{pYj |X,Z(y⋄j |x⋄, z⋄)|1 ≤ j ≤ q}, we utilize q independent
neural networks {Hj |1 ≤ j ≤ q} to model the correspond-
ing conditional probability. Specifically, considering the
i-th training example, for the j-th dimension, the input of
Hj will be set as the concatenation of xi and zi and the
output of Hj is transformed to normalized probabilities as
follows:

pYj |X,Z(y⋄j = cja|xi, zi)

= [ζ(Hj([xi, zi]))]a

=
exp(Hj([xi, zi])a)∑Kj

b=1 exp(Hj([xi, zi])b)
, (12)

where ζ denotes the soft-max function and the subscript a
and b denote the a-th and b-th element of the corresponding
output vectors, respectively.

For the second term of Eq.(11) regarding the reconstruction
component, we assume pX|Z(xi|zi) is a multivariate Gaus-
sian with a diagonal covariance structure N (µi,σ

2
i I). Here,

µi and σi are the d-dimensional mean and the standard de-
viation vectors, which are the output of a reconstruction
network R. Then for the i-th training example, the logarith-
mic posterior probability can be computed as:

log pX|Z(xi|zi) = −d

2
log 2π − 1

2

d∑
a=1

log σ2
ia

−1

2

d∑
a=1

(xia − µia)
2

σ2
ia

, (13)

where d and xia denotes the dimensionality and the a-th
element of xi, respectively. To simplify the model, it is
common to assume that the variances {σ2

ia|1 ≤ a ≤ d} are
identical and constant. Under this assumption, the recon-
struction network R only needs to output the mean param-
eters µi. Then the reconstruction loss can be computed as
follows:

Lre =

m∑
i=1

d∑
a=1

− (xia − µia)
2

2
. (14)

For the approximated instance-based conditional mutual in-
formation, i.e., Eq.(10), we need to estimate p(jt) and p(pd).
According to the chain rule of probability, p(jt) can be de-
composed as pZ(zi)pX|Z(xi|zi)pY |X,Z(y⋄|xi, zi), where
the first term can be computed as pZ(zi) = N (zi;0, I)
following the normal distribution and the second term
pX|Z(xi|zi) can be computed as Eq.(13) without the log-
arithmic function. As for the last term pY |X,Z(y⋄|xi, zi),
we employ a neural network T with |D′| output nodes to
estimate this probability with soft-max function as Eq.(12).
Then the classification loss regarding classification networks
{Hj |1 ≤ j ≤ q} and T can be computed as the cross-
entropy loss, formulated as:

Lce =

m∑
i=1

[
log pY |X,Z(yi|xi, zi)

+

q∑
j=1

log pYj |X,Z(yij |xi, zi)
]
. (15)

Similarly, each term in p(pd)(yi,xi, zi) can be estimated
by existing neural networks. Therefore, the minimization of
Eq.(10) can be regarded as the minimization of the following
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loss function Lci, formulated as:

Lci =

m∑
i=1

exp

(
−∥xi − µi∥2 + ∥zi∥2

2

)
·
[ ∑
y⋄∈D′

pY |X,Z(y⋄|xi, zi)

· log
pY |X,Z(y⋄|xi, zi)∏q

j=1 pYj |X,Z(y⋄j |xi, zi)

]
.(16)

The overall loss function L is the combination of loss func-
tions defined above:

L =
1

m
(Lce + αLre + βLci) , (17)

where α and β are trade-off parameters.

Table 1. Basic information for data sets. Here, n, x and image
in last column represent numeric, nominal type and unstructured
features.

data set #Exam. #Dim. #Labels/Dim. #Feat.
Flare1 323 3 3,4,2 10x
Oes97 334 16 3 263n
Jura 359 2 4,5 9n
Oes10 403 16 3 298n
Enb 768 2 2,4 6n
Song 785 3 3 98n
BeLaE 1930 5 5 1n, 44x
Voice 3136 2 4,2 19n
Thyroid 9172 7 5,5,3,2,4,4,3 7n, 22x
CoIL2000 9822 5 6,10,10,4,2 81x
TIC2000 9822 3 6,4,2 83x
Flickr 12198 5 3,4,3,4,4 1536n
Adult 18419 4 7,7,5,2 5n, 5x
Default 28779 4 2,7,4,2 14n, 6x
BP4D 16037 7 6,6,6,6,6,2,8 image
DeepFashion 20000 6 7,3,3,4,6,3 image
SEWA 19275 3 21,20,19 image

4. Experiments
4.1. Experimental Setting

4.1.1. DATA SETS

In this paper, we use seventeen real-world MDC data
sets for experimental studies, including fourteen structured
data sets4 and three unstructured data sets: BP4D (Zhang

4https://palm.seu.edu.cn/zhangml/
Resources.htm#MDC_data

et al., 2013; 2014),5 DeepFashion (Liu et al., 2016)6 and
SEWA (Kossaifi et al., 2021).7 Table 1 summarizes basic
characteristics, including the number of examples (#Exam.),
the number of dimensions (#Dim.), the number of labels in
each dimension (#Labels/Dim.) and the number of features
(#Feat.).

4.1.2. EVALUATION METRICS

In this paper, we adopt three commonly used metrics for
performance evaluation, i.e. hamming score (HS), exact
match (EM) and sub-exact match (SEM) (Read et al., 2014a;
Zhu et al., 2016). Given the test set S = {(xi,yi) | 1 ≤ i ≤
p} and the MDC model f to be evaluated, the definitions of
these three evaluation metrics are given as follows:

HSS(f) =
1

p

p∑
i=1

1

q
· r(i)

EMS(f) =
1

p

p∑
i=1

Jr(i) = qK

SEMS(f) =
1

p

p∑
i=1

Jr(i) ≥ q − 1K.

Here, r(i) =
∑q

j=1Jyij = ŷijK denotes the number of
dimensions which are predicted correctly, where yij and
ŷij denote the ground-truth and predicted label w.r.t. the
j-th dimension for the i-th test sample xi, respectively. JπK
returns 1 if π holds and 0 otherwise.

4.1.3. COMPARED APPROACHES

In this paper, the proposed DCOM approach is compared
with seven state-of-the-art MDC approaches including BR,
CP, DLEM, EDCC, LEFA, PIST and SLEM. Specifically, BR
independently learns a multi-class classifier for each dimen-
sion, while CP learns a multi-class classifier via treating
each distinct label combination as a new label. DLEM (Jia
& Zhang, 2023) solves the MDC problem by enabling mod-
eling alignment for MDC in an encoded label space derived
from one-vs-one (OvO) decomposition. EDCC (Jia & Zhang,
2022) builds a chain of binary classifiers and augments the
feature space by predictions generated by preceding clas-
sifiers. LEFA (Wang et al., 2020) introduces a cross corre-
lation aware network to learn latent label embeddings and
augments the original feature space by the learned label

5https://www.cs.binghamton.edu/˜lijun/
Research/3DFE/3DFE_Analysis.html. See more
detailed descriptions in Appendix B.

6https://mmlab.ie.cuhk.edu.hk/projects/
DeepFashion/AttributePrediction.html. See more
detailed descriptions in Appendix B.

7https://db.sewaproject.eu/. See more detailed
descriptions in Appendix B
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Table 2. Experimental results (mean±std.) of each MDC approach in terms of Hamming Score. In addition, •/◦ indicates whether DCOM

is significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

Data Set DCOM BR CP DLEM EDCC LEFA PIST SLEM

Flare1 .920±.033 .923±.031 .881±.028• .897±.035• .923±.035 .913±.034 .923±.031 .645±.262•
Oes97 .749±.020 .607±.031• .686±.026• .738±.026 .747±.021 .730±.024• .737±.023• .659±.016•
Jura .740±.050 .586±.065• .675±.051• .720±.057 .616±.055• .542±.059• .602±.064• .695±.066•
Oes10 .813±.013 .664±.018• .746±.018• .805±.015• .797±.018• .810±.008 .806±.012 .758±.022•
Enb .969±.016 .716±.028• .988±.012◦ .935±.023• .792±.033• .701±.047• .773±.041• .769±.082•
Song .788±.021 .771±.024• .692±.038• .785±.029 .793±.026 .755±.036• .784±.022 .744±.051•
BeLaE .451±.019 .423±.021• .357±.019• .412±.024• .449±.016 .410±.012• .452±.015 .341±.012•
Voice .971±.005 .940±.009• .938±.006• .958±.009• .950±.009• .932±.015• .954±.008• .940±.030•
Thyroid .971±.002 .961±.002• .956±.003• .968±.002• .965±.002• .960±.003• .960±.003• .939±.061
CoIL2000 .960±.004 .874±.005• .897±.005• .904±.005• .938±.003• .949±.009• .957±.004• .900±.006•
TIC2000 .945±.004 .892±.007• .875±.006• .885±.004• .929±.005• .936±.006• .945±.004 .892±.023•
Flickr .798±.005 .715±.005• .675±.006• .735±.005• .800±.004 .748±.007• .795±.003 .733±.015•
Adult .728±.004 .701±.004• .638±.005• .679±.004• .723±.003• .657±.007• .725±.003• .697±.004•
Default .677±.003 .665±.003• .587±.004• .663±.002• .671±.004• .625±.015• .676±.003 .632±.013•

Table 3. Experimental results (mean±std.) of each MDC approach in terms of Exact Match. In addition, •/◦ indicates whether DCOM is
significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

Data Set DCOM BR CP DLEM EDCC LEFA PIST SLEM

Flare1 .811±.076 .821±.069 .718±.071• .762±.074• .818±.076 .805±.074 .821±.069 .410±.318•
Oes97 .069±.052 .030±.027• .030±.030• .060±.046 .057±.045 .033±.036• .060±.048 .018±.031•
Jura .554±.054 .329±.104• .512±.052• .540±.076 .382±.099• .315±.041• .359±.096• .549±.062
Oes10 .097±.046 .064±.033• .077±.042 .094±.043 .099±.043 .084±.037 .102±.038 .062±.034•
Enb .939±.032 .431±.055• .975±.024◦ .870±.045• .584±.067• .402±.094• .546±.083• .611±.091•
Song .480±.054 .449±.057• .343±.047• .478±.059 .493±.049 .429±.071• .467±.047 .437±.065
BeLaE .036±.013 .028±.009 .013±.009• .027±.013• .033±.012 .017±.008• .035±.019 .006±.004•
Voice .942±.010 .884±.016• .878±.010• .918±.017• .902±.017• .872±.021• .910±.016• .900±.028•
Thyroid .815±.012 .743±.014• .712±.016• .803±.014• .770±.014• .737±.019• .738±.016• .698±.184
CoIL2000 .831±.011 .515±.011• .616±.013• .640±.014• .747±.015• .786±.036• .822±.014• .609±.019•
TIC2000 .842±.011 .698±.018• .665±.010• .688±.009• .799±.014• .819±.016• .843±.013 .723±.034•
Flickr .328±.013 .187±.010• .158±.008• .226±.005• .332±.015 .246±.010• .330±.013 .244±.017•
Adult .303±.009 .228±.006• .206±.007• .239±.008• .281±.008• .202±.014• .288±.006• .288±.013•
Default .199±.005 .177±.007• .124±.006• .181±.007• .185±.008• .134±.018• .195±.006• .148±.012•

embeddings. Multi-class algorithms are used for subsequent
classification. PIST (Huang et al., 2024) learns pairwise
dimension-specific features to consider both the specific
characteristics in each dimension and class dependencies
among different dimensions. SLEM (Jia & Zhang, 2021)
learns a multi-output regression model within an encoded
label space by considering the sparse property. For all com-
pared approaches, the recommended parameter setting in
the corresponding literatures are used.

4.1.4. IMPLEMENTATION DETAILS

For all neural networks G,R, T and {Hj |1 ≤ j ≤ q}, we
employ the multi-layer perceptron (MLP) with one hidden
layer, configured with hidden dimension of 512. The dimen-

sionality of latent variable Z is set as 512. In the overall loss
function, i.e., Eq.(17), the trade-off parameter α and β are
both set as 1 (please refer to detailed discussions on param-
eter sensitivities in Section 4.3.2). All activation functions
are fixed as ReLU followed by a dropout layer (Srivastava
et al., 2014) with dropping probability of 0.5. For network
optimization, we utilize SGD with a batch size of 512, mo-
mentum of 0.9 and weight decay of 10−4. We only adopt
experimental results of the last epoch and the number of
epoch is uniformly set as 500 for all data sets. Moreover, for
the three unstructured MDC data sets, ResNet-18 (He et al.,
2016) pretrained on ImageNet dataset (Deng et al., 2009)
is implemented as the feature extractor for the proposed
approach as well as all compared approaches.
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Table 4. Experimental results (mean±std.) of each MDC approach in terms of Sub-Exact Match. In addition, •/◦ indicates whether DCOM

is significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

Data Set DCOM BR CP DLEM EDCC LEFA PIST SLEM

Flare1 .954±.029 .951±.035 .935±.032• .938±.042 .954±.037 .941±.038 .951±.035 .658±.332•
Oes97 .123±.068 .072±.048• .075±.045• .111±.064 .123±.072 .090±.062• .102±.059• .039±.038•
Jura .925±.057 .844±.056• .838±.070• .900±.081 .850±.041• .769±.104• .844±.054• .841±.075•
Oes10 .218±.060 .119±.056• .139±.048• .191±.070 .201±.061 .216±.046 .208±.058 .152±.046•
Enb 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 .927±.093•
Song .888±.034 .868±.030• .763±.064• .878±.038 .887±.045 .841±.055• .888±.036 .818±.066•
BeLaE .151±.027 .132±.023 .070±.021• .136±.030 .157±.021 .117±.017• .160±.024 .068±.014•
Voice 1.00±.000 .996±.004• .998±.003 .999±.002• .997±.003• .992±.011• .997±.003• .980±.033
Thyroid .985±.004 .983±.004 .980±.005• .977±.004• .983±.003 .982±.004 .982±.004 .896±.213
CoIL2000 .969±.007 .873±.015• .905±.010• .908±.009• .948±.007• .963±.007• .966±.006 .903±.009•
TIC2000 .993±.003 .979±.004• .961±.007• .966±.005• .988±.003• .989±.004• .993±.002 .959±.030•
Flickr .729±.015 .543±.015• .483±.010• .600±.014• .737±.011 .627±.021• .723±.009 .600±.020•
Adult .689±.007 .657±.009• .532±.010• .610±.006• .687±.006 .575±.011• .693±.007◦ .627±.009•
Default .612±.005 .590±.008• .446±.008• .586±.005• .604±.007• .518±.032• .610±.007 .531±.022•

Table 5. Experimental results of each MDC approach on the three
unstructured MDC data sets (i.e., BP4D, DeepFashion, and SEWA)
with best results shown in boldface.

(a) Hamming Score
Data Set DCOM BR CP DLEM EDCC LEFA PIST SLEM

BP4D .785 .745 .604 .744 .754 .649 .728 .547
DeepFa. .785 .771 .749 .764 .774 .782 .780 .713
SEWA .580 .537 .416 .474 .559 .448 .435 .617

(b) Exact Match
Data Set DCOM BR CP DLEM EDCC LEFA PIST SLEM

BP4D .274 .219 .195 .246 .231 .117 .186 .135
DeepFa. .285 .249 .257 .242 .266 .262 .262 .176
SEWA .290 .241 .220 .199 .265 .178 .121 .369

(c) Sub-Exact Match
Data Set DCOM BR CP DLEM EDCC LEFA PIST SLEM

BP4D .537 .458 .325 .458 .479 .299 .422 .244
DeepFa. .616 .591 .548 .568 .592 .611 .616 .478
SEWA .590 .540 .393 .464 .563 .428 .422 .630

4.2. Experimental Results

We report the detailed experimental results in Table 2, Ta-
ble 3, Table 4 and Table 5. For structured datasets, ten-
fold cross validation are conducted where the mean metric
value as well as the standard derivation are recorded for
comparison. Furthermore, pairwise t-test (Demšar, 2006)
at 0.05 significance level is conducted to show whether
DCOM achieves significantly superior/inferior performance
against compared approaches. Accordingly, the resulting
win/tie/loss counts are summarized in Table 6. Moreover,

Figure 5, Figure 6 and Figure 7 in Appendix C.4 presents
the t-SNE visualizations (van der Maaten & Hinton, 2008)
for the original features and latent factors in the first fold of
dataset Voice, TIC2000 and Flickr w.r.t. the first dimension
respectively, which shows the learned latent features capture
more compact manifold representations than the original
features. According to the reported experimental results, we
can make some observations as follows:

• For structure data sets, DCOM significantly outper-
forms the seven compared approaches in 79.6%, 73.5%
and 60.2% cases in terms of the three evaluation met-
ric, respectively. For unstructured data sets, DCOM
surpasses all compared approaches on data set BP4D
and DeepFashion and ranks only second to SLEM on
data set SEWA.

• There are only 3 cases where DCOM achieves inferior
performance against all the other compared approaches.
Two of these cases occur on data set Enb when com-
pared with CP. This suggests that the two dimensions
of Enb are strongly correlated, as evidenced by the
superior performance of CP in accurately learning the
possible class combinations directly. Consequently,
it is more appropriate to study the entire probability
space for data set Enb.

• For data set SEWA, SLEM performs the best, likely
due to its consideration on label sparsity. This is par-
ticularly relevant given the number of classes in each
class space of SEWA is exceptionally great (21, 20, 19
corresponding to each dimension, respectively).
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Table 6. Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between DCOM and each compared approach.

Evalu. DCOM against
Metric BR CP DLEM EDCC LEFA PIST SLEM In Total
HS 13/1/0 13/0/1 11/3/0 9/5/0 12/2/0 7/7/0 13/1/0 78/19/1
EM 12/2/0 12/1/1 10/4/0 8/6/0 12/2/0 7/7/0 11/3/0 72/25/1
SEM 10/4/0 12/2/0 7/7/0 5/9/0 10/4/0 3/10/1 12/2/0 59/38/1
In Total 35/7/0 37/3/2 28/14/0 22/20/0 34/8/0 17/24/1 36/6/0 209/82/3

Table 7. Summary of the Wilcoxon signed-ranks test for DCOM

against its variants in terms of each evaluation metric at 0.05
significance level. The p-values are shown in the brackets.

DCOM against HS EM SEM
DEV1 win[1.39e-02] win[7.69e-03] tie[5.52e-02]
DEV2 win[1.07e-04] win[3.36e-03] win[1.07e-04]

4.3. Further Analysis

4.3.1. ABLATION STUDIES

In this section, we further compare the performance of
DCOM with its two degenerated versions on all the seven-
teen MDC benchmark data sets. The two variants, denoted
as DEV1 and DEV2, represent two possible model config-
urations when discarding the proposed class dependency
escaping strategy, i.e. the minimization of Eq.(16).

• DEV1. Predictions are derived solely from the condi-
tional marginal probability. In other words, the first
term of Lce (Eq.(15)) and Lci (Eq.(16)) are discarded.

• DEV2. Predictions are derived solely from the con-
ditional joint probability. In other words, the second
term of Lce (Eq.(15)) and Lci (Eq.(16)) are discarded.
However, the considered sample space remains D′ as
defined in Eq.(10) given that the cardinality of original
output space Y is excessively large.

We conduct Wilcoxon signed-ranks test (Demšar, 2006; Jia
et al., 2025) at significance level 0.05 to analyze whether
DCOM performs statistically better than variant models. Ta-
ble 7 summarizes the p-value statistics on each evaluation
metric. Compared with these two variant models, we ob-
serve that DCOM achieves statistically superior performance
against them in terms of each metric. The only comparable
case to DEV1 in terms of Sub-Exact Match is notable. It
indicates that a classification approach relying exclusively
on conditional marginal probability can achieve satisfactory
performance when evaluated by metrics with relatively low
demands. Nevertheless, when considering evaluation met-
rics that require higher accuracy, such as Hamming Score

and Exact Match, a strategy that accounts for both condi-
tional marginal and joint probability is preferable.

4.3.2. PARAMETER SENSITIVITY

We show how the the performance of DCOM fluctuates with
different dimensionality of latent variable Z, different values
of trade-off parameter α and β in Figure 2, Figure 3 and
Figure 4 of Appendix C.1, respectively. It is demonstrated
that DCOM achieves relatively stable performance as the
three hyperparameters vary within a broad range. However,
it is recommended that the dimensionality of latent variable
Z should not be set too low, considering its necessity to
carry sufficiently rich feature information.

5. Conclusion
In this paper, we propose a novel MDC approach DCOM
as a first attempt towards escaping from class dependency
modeling. This approach provides an effective method to
estimate the discrepancy between the conditional joint prob-
ability and the product of conditional marginal probabili-
ties. The effectiveness of the minimization of the proposed
instance-based conditional mutual information is rigorously
validated via comprehensive experiments conducted on sev-
enteen real-world data sets.
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Bielza, C., Li, G., and Larrañaga, P. Multi-dimensional clas-

sification with Bayesian networks. International Journal
of Approximate Reasoning, 52(6):705–727, 2011.
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A. Proof of Theorem 3.3
Theorem 3.3 shows that when the joint probability of class variables pY (y⋄1, y⋄2, . . . , y⋄q) is small enough, the absolute
value of integrand |I(y⋄,x⋄, z⋄)| in Eq.(8) tends to 0 under Assumption 3.4. Now we are at a position to prove Theorem 3.3.

Proof. Assumption 3.4 indicates that p(jt)(y⋄,x⋄, z⋄)− δ ≤ p(pd)(y⋄,x⋄, z⋄).

Consider two cases:

• When p(jt)(y⋄,x⋄, z⋄) ≤ p(pd)(y⋄,x⋄, z⋄), we have

|I(y⋄,x⋄, z⋄)| = p(jt)
∣∣∣∣log p(jt)

p(pd)

∣∣∣∣ = p(jt) log
p(pd)

p(jt)
≤ p(jt) log

1

p(jt)
= −p(jt) log p(jt). (18)

And

lim
p(jt)→0

−p(jt) log p(jt) = 0, (19)

With the condition that pY (y⋄1, y⋄2, . . . , y⋄q) → 0, we have p(jt)(y⋄,x⋄, z⋄) = pY,X,Z(y⋄,x⋄, z⋄) ≤∫
x⋄

∫
z⋄

pY,X,Z (y⋄1, . . . , y⋄q,x⋄, z⋄)dz = pY (y⋄1, y⋄2, . . . , y⋄q). Therefore, |I(y⋄,x⋄, z⋄)| → 0.

• When p(jt)(y⋄,x⋄, z⋄)− δ ≤ p(pd)(y⋄,x⋄, z⋄) < p(jt)(y⋄,x⋄, z⋄), we have

|I(y⋄,x⋄, z⋄)| = p(jt) log
p(jt)

p(pd)
≤ p(jt) log

p(jt)

p(jt) − δ
. (20)

And

lim
p(jt)→δ

lim
δ→0

p(jt) log
p(jt)

p(jt) − δ
= lim

p(jt)→δ
lim
δ→0

δp(jt)

p(jt) − δ
= 0. (21)

Therefore, |I(y⋄,x⋄, z⋄)| → 0.

B. Detailed Information about Data Sets
In this paper, all structured datasets with detailed descriptions are available in https://palm.seu.edu.cn/
zhangml/Resources.htm#MDC_data.

The unstructured dataset BP4D is collected from https://www.cs.binghamton.edu/˜lijun/Research/
3DFE/3DFE_Analysis.html. The original BP4D-Spontaneous dataset (Zhang et al., 2013; 2014) is a 3D video
database of spontaneous facial expressions in a diverse group of young adults. Well-validated emotion inductions were used
to elicit expressions of emotion and paralinguistic communication. Frame-level ground-truth for facial actions was obtained
using the Facial Action Coding System. Eight tasks were covered with an interview process and a series of activities to
elicit eight emotions. As well, the Metadata include manually annotated action units (FACS AU), automatically tracked
head pose, and 2D/3D facial landmarks. Given the size of the original BP4D-Spontaneous dataset is too large to be used for
training efficiently, we sampled part of frames (16037 images) and kept label combinations as much as possible. The first
five dimensions correspond to AU06, AU10, AU12, AU14, and AU17 coded with intensity respectively. The intensity codes
themselves are either 0 for absent, 1 for present at the A level, 2 for present at the B level, 3 for present at the C level, 4 for
present at the D level, 5 for present at the E level; The sixth dimension corresponds to gender where 0 denotes male and 1
denotes female; The seventh dimension corresponds to tasks where 0-7 represents task 1-8.

The unstructured dataset DeepFashion is collected from https://mmlab.ie.cuhk.edu.hk/projects/
DeepFashion/AttributePrediction.html. The original DeepFashion (Liu et al., 2016) deals with the Cat-
egory and Attribute Prediction task in Large-scale Fashion (DeepFashion) Database. Category and Attribute Prediction
Benchmark evaluates the performance of clothing category and attribute prediction. This is a large subset of DeepFashion,
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Figure 2. Performance of DCOM changes as the dimensionality of the latent variable t varies in the range of {25, 26, 27, 28, 29}.
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Figure 3. Performance of DCOM changes as the trade-off parameter α varies in the range of {10−3, 10−2, 10−1, 100, 101}.

containing massive descriptive clothing categories and attributes in the wild. We only adopted the fine version of DeepFash-
ion dataset given its multi-dimensional characteristic. The “elasticity” dimension is not mentioned in the original paper.
However, in the “list attr cloth.txt” in the “Anno fine” folder of Category and Attribute Prediction Benchmark, we found 3
labels “tight”, “loose” and “conventional” which are denoted by “6”. We named the sixth dimension as “elasticity”.

The unstructured dataset SEWA is collected from https://db.sewaproject.eu/. The original SEWA (Kossaifi et al.,
2021) is a database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female,
and uniformly spanning the age range of 18 to 65 years old. The annotation was performed in real-time using a joystick.
Specifically, the annotators were asked to push / pull the joystick based on their perception of the subject’s level of valence,
arousal, or liking / disliking (toward the advert) while being presented the recording. The joystick position (a value between
-1000 and 1000) was sampled at 66 Hz and saved into the result file. Given the size of the original SEWA dataset is too large to
be used for training efficiently, we sampled part of frames. Finally we kept 19275 images and their corresponding 3 kinds of
labels “arousal”, “liking” and “valence”. We transformed the continuous levels in the range of (-1,1) into discrete labels. For
Arousal dimension, we transform (−1,−0.95) → 0; [−0.95,−0.85) → 1; . . . ; [0.95, 1) → 20; for Liking dimension,
we transform (−1,−0.85) → 0; [−0.85,−0.75) → 1; [−0.75,−0.65) → 2; . . . ; [0.95, 1) → 19; for Valence dimension,
we transform (−1,−0.85) → 0; [−0.85,−0.65) → 1; [−0.65,−0.55) → 2; [−0.55,−0.45) → 3; . . . ; [0.95, 1) → 18.
Note that in dimension Liking and Valence, we merged some intervals of length 0.1 as there are too few examples in
the corresponding range.

C. Additional Tables and Figures
Due to the page limit, we present additional but still important tables and figures in this section.

C.1. Parameter Sensitivity

Figure 2 shows how the performance of DCOM fluctuates with different dimensionality of latent variable Z.
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Figure 4. Performance of DCOM changes as the trade-off parameter β varies in the range of {10−3, 10−2, 10−1, 100, 101}.

Figure 3 and Figure 4 shows how the performance of DCOM fluctuates with different values of trade-off parameter α and β.

C.2. Notation Table

To facilitate understanding, Table 8 summarizes the notations used in Section 1, Section 2 and Section 3.

C.3. Pseudo Code

Algorithm 1 presents the pseudo code of the proposed DCOM approach.

Algorithm 1 The DCOM approach
Input: MDC training set D, an unseen instance x∗, the trade-off parameter α and β
Output: Predicted label vector ŷ∗ for x∗

1: Count the number of each class vectors in the training set D and obtain the set of frequently occurring class vectors D′

2: repeat
3: Randomly sample a batch of examples from D
4: for example xi in the batch do
5: Corrupt xi by a random noise ϵ and obtain x̃i

6: Input x̃i to the encoding network G to obtain the corresponding latent vector zi

7: Input zi to the classification networks {Hj |q ≤ j ≤ q} and T to get the conditional marginal probability p(pd)(y⋄,xi,zi) and
the conditional joint probability p(jt)(y⋄,xi,zi), respectively

8: Input zi to the reconstruction network R to get the estimated mean vector µi of the posterior probability pX|Z(xi|zi)
9: Compute the classification loss Lce by Eq.(15), the reconstruction loss Lre by Eq.(14) and the loss for minimizing instance-based

conditional mutual information by Eq.(16)
10: Compute the overall loss L by Eq.(17)
11: Update the trainable parameters with SGD optimizer
12: end for
13: until Converge
14: for j = 1 to q do
15: Feed x∗ to the trained encoding network G and output the latent vector z∗
16: Feed z∗ to the classification network Hj to output the conditional marginal probability pYj |X,Z(y⋄j |x∗,z∗)

17: Get the prediction result on the j-th dimension by ŷ∗j = argmaxy⋄j∈Cj pYj |X,Z(y⋄j |x∗,z∗)
18: end for
19: Return ŷ∗ = [ŷ∗1, ŷ∗2, . . . , ŷ∗q]

⊤

C.4. Visualization of Latent Factors
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Figure 5. t-SNE Visualization of original feature (left) and latent factors (right) in the first fold of dataset Voice w.r.t. the first dimension.
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Figure 6. t-SNE Visualization of original feature (left) and latent factors (right) in the first fold of dataset TIC2000 w.r.t. the first dimension.
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Figure 7. t-SNE Visualization of original feature (left) and latent factors (right) in the first fold of dataset Flickr w.r.t. the first dimension.
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Table 8. Summary of the notations used in our paper.
Notation Descriptions
d number of features in input space
q number of class spaces (dimensions) in output space
Kj number of class labels in the j-th class space (1 ≤ j ≤ q)
m number of MDC training examples
X the d-dimensional input (feature) space, i.e., X = Rd

Cj the j-th class space where Cj = {cj1, c
j
2, . . . , c

j
Kj

} (1 ≤ j ≤ q)
cja the a-th class label in Cj (1 ≤ a ≤ Kj)
Y the output space where Y = C1 × C2 × . . .× Cq

D the set of MDC samples where D = {(xi,yi)|1 ≤ i ≤ m}
f the MDC predictive model: X 7→ Y
Y the class variable defined on Y
Yj the j-th class variable defind on Cj

y⋄ a randomly sampled value of Y in a probability function
yi the class vector of the i-th example in D
y⋄j a randomly sampled value of Yj in a probability function
yij the j-th element of yi

X the feature variable defined on X
x⋄ a randomly sampled value of X in a probability function
xi the feature vector of the i-th example in D
x̃i the i-th corrupted feature vector where x̃i = xi + ϵ and ϵ is a random noise vector
D′ the set of frequently occurring class vectors where D′ = {y⋄|#y⋄

m
> c,y⋄ ∈ D}

p(jt)(y⋄,x⋄,z⋄) the conditional joint probability where p(jt)(y⋄,x⋄,z⋄) = pY,X,Z(y⋄,x⋄,z⋄)

p(pd)(y⋄,x⋄,z⋄) the product of conditional marginal probabilities and joint probability of feature and latent variables
where p(pd)(y⋄,x⋄,z⋄) =

∏q
j=1 pYj |X,Z(y⋄j |x⋄,z⋄)pX,Z(x⋄,z⋄)

I(y⋄,x⋄,z⋄) the integrant of conditional mutual information where I(y⋄,x⋄,z⋄) = p(jt)(y⋄,x⋄,z⋄) log
p(jt)(y⋄,x⋄,z⋄)
p(pd)(y⋄,x⋄,z⋄)

G The encoding network
Hj The classification network to model conditional marginal probability for the j-th dimension
R The reconstruction network
T The classification network to model conditional joint probability
Z the latent variable of which the prior is the centered isotropic multivariate Gaussian pZ(z⋄) = N (0, I)
z⋄ a randomly sampled value of Z in a probability function
zi the i-th latent vector where zi = G(x̃i)
µi the mean parameters of the assumptive posterior probability which is a multivariate Gaussian with

a diagonal covariance structure N (µi,σ
2
i I)

σi the standard deviation parameters of the assumptive posterior probability
ζ the soft-max function
Lce the classification loss regarding classification networks {Hj |1 ≤ j ≤ q} and T
Lre the reconstruction loss
Lci the loss function for minimization of the proposed instance-based conditional mutual information
L the overall loss function where L = 1

m
(Lce + αLre + βLci)
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