
Under review as a conference paper at ICLR 2024

PLASTICITY-DRIVEN SPARSITY TRAINING FOR DEEP
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While the increasing complexity and model size of Deep Reinforcement Learning
(DRL) networks promise potential for real-world applications, these same attributes
can hinder deployment in scenarios that require efficient, low-latency models.
The sparse-to-sparse training paradigm has gained traction in DRL for memory
compression as it reduces peak memory usage and per-iteration computation.
However, this approach may escalate the overall computational cost throughout
the training process. Moreover, we establish a connection between sparsity and
the loss of neural plasticity. Our findings indicate that the sparse-to-sparse training
paradigm may compromise network plasticity early on due to an initially high
degree of sparsity, potentially undermining policy performance. In this study, we
present a novel sparse DRL training approach, building upon the naïve dense-to-
sparse training method, i.e., iterative magnitude pruning, aimed to enhance network
plasticity during sparse training. Our proposed approach, namely Plasticity-Driven
Sparsity Training (PlaD), incorporates memory reset mechanisms to improve the
consistency of the replay buffer, thereby enhancing network plasticity. Furthermore,
it utilizes dynamic weight rescaling to mitigate the training instability that can arise
from the interplay between sparse training and memory reset. We assess PlaD on
various MuJoCo locomotion tasks. We assess PlaD on various MuJoCo locomotion
tasks. Remarkably, it delivers performance on par with the dense model, even at
sparsity levels exceeding 90%.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has witnessed substantial progress in recent years, with
advancements spanning diverse domains such as protein structure prediction (Jumper et al., 2021),
optimization of matrix multiplication algorithms (Fawzi et al., 2022), and the development of
autonomous vehicles (Feng et al., 2023). While DRL harbors the potential to transform real-world
applications via the utilization of increasingly complex and extensive networks, it concurrently poses
substantial challenges. A key concern is the surge in model complexity, which is accompanied by
significantly increasing computational load. This presents a notorious obstacle for the widespread
deployment of DRL solutions, particularly for real-world applications that necessitate compact and
efficient models, such as latency-constrained settings in controlling plasma (Degrave et al., 2022).

Sparse networks (or neural network pruning), since proposed by Mozer & Smolensky (1989);
Janowsky (1989), have emerged as a prevalent technique for compressing model sizes, reducing
memory demands, and shortening computational costs associated with modern neural network
architectures. Numerous efforts have been made to incorporate sparse training in DRL. Specifically,
Rusu et al. (2016); Schmitt et al. (2018); Zhang et al. (2019) utilize knowledge distillation to train a
sparse student model. However, these approaches necessitate the pre-training or concurrent training
of a dense model from which the final sparse DRL networks are distilled, adding to the complexity
and computational burden. Sparse-to-sparse training techniques in supervised learning (Lee et al.,
2019; Evci et al., 2020), which initialize with sparse networks, have garnered upsurging interest
in the DRL field as the potential to restrict the peak memory cost and per-iteration computational
FLOPs (in theory) (Arnob et al., 2021; Graesser et al., 2022; Tan et al., 2022; Grooten et al., 2023).
For instance, Arnob et al. (2021) explore one-shot pruning before the start of training in offline RL
domains, (Tan et al., 2022) propose a DST training method for online DRL with robust value learning
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techniques, and (Graesser et al., 2022) perform systematic analysis on the effectiveness of different
sparse learning algorithms in the online DRL setting.

However, sparse-to-sparse algorithms might take more iterations to coverage and achieve parity with
the accuracy of dense training even under low pruning ratios (Liu & Wang, 2023), hence not always
"cheaper" in terms of the total computation memory. For example, the training steps of RLx2 (Tan
et al., 2022) (3e6) significantly exceed the required training steps in traditional dense training, i.e.,
1e6. Furthermore, we highlight an inherent increase in sparsity during dense training for DRL, a
phenomenon that aligns with the loss of plasticity (Nikishin et al., 2022; Sokar et al., 2023), and
subsequently potentially deteriorates policy performance. This observation calls into question the
sparse-to-sparse training paradigm in DRL. Despite their dynamic nature, these methods enforce a
high degree of fixed sparsity right from the start, which is associated with an immediate decrease in
plasticity. Therefore, an interesting question remains open:

Can we efficiently enhance plasticity in sparse DRL training to boost performance?

In this paper, we present a novel dense-to-sparse training approach for DRL, named Plasticity-
Driven Sparsity Training (PlaD). Specifically, PlaD initially aims to mitigate the loss of plasticity
by periodically emptying the replay buffer, addressing the primary source of plasticity loss in DRL
training, i.e., non-stationarity. Subsequently, PlaD introduces dynamic weight rescaling (DWR) to
counteract the training instability induced by memory reset and sparse training process. Our approach
is straightforward to implement and can readily be adapted to various pruning techniques. To illustrate
the efficacy of enhancing plasticity in sparse DRL training, PlaD is built upon the simple yet effective
iterative magnitude pruning (IMP) method (Han et al., 2015). The integration of these two novel
components enhances network plasticity and training stability, enabling the policy performance on
par with dense models under sparsity levels in excess of 90%. The primary contributions of this paper
are as follows:

• We explore the inherent increase in sparsity during standard dense training in DRL and
establish a link between sparsity training and the loss of plasticity within DRL.

• Inspired by these insights, we introduce PlaD, a plasticity-centric approach for sparse
training within a dense-to-sparse training paradigm. The two innovative components of
PlaD, namely memory reset and dynamic weight rescaling (DWR), necessarily enhance
plasticity and stabilize the training.

• Through rigorous evaluation, we showcase the superior sparse training performance of PlaD
when combined with a fundamental algorithm, i.e., SAC (Haarnoja et al., 2018), across
several MuJoCo tasks (Todorov et al., 2012). Remarkably, even under one of the simplest
pruning algorithms, i.e., IMP, PlaD achieves performance comparable to that of dense
models, maintaining this standard even when the sparsity level surpasses 90%.

2 RELATED WORKS

2.1 SPARSE TRAINING

Dense-to-Sparse Training. Dense-to-sparse training typically starts with a fully connected neural
network (dense model/network), where weights are progressively or instantaneously reduced to zero,
culminating in a sparse model (Zhu & Gupta, 2017; Gale et al., 2019; Louizos et al., 2018; You et al.,
2019; Liu et al., 2020; Kusupati et al., 2020; Liu et al., 2021). Various techniques have been employed
for the dense-to-sparse training paradigm, including random (Liu et al., 2019; 2022), magnitude (Han
et al., 2015), L1 or L2 regularization (Wen et al., 2016; Louizos et al., 2018), dropout (Molchanov
et al., 2017), and weight reparameterization (Schwarz et al., 2021). Standard post-training pruning can
be considered a specific instance within this category, typically involving the complete pre-training
of a dense network followed by multiple cycles of re-training, each incrementing the level of sparsity
after pruning(Janowsky, 1989; Denton et al., 2014; Singh & Alistarh, 2020). Another stream of
research is centered around the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019; Chen
et al., 2020). This hypothesis posits that a sparse "winning ticket" at initialization can be identified
through an iterative process of training, pruning, and resetting. However, the peak per-iteration
computational FLOPs in a dense-to-sparse training process can be as high as in full dense training.
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Both post-pruning and LTH methods are known to be resource-intensive due to the necessity for
multiple cycles of pruning and re-training.

Sparse-to-Sparse Training. Sparse-to-sparse training is designed to train an inherently sparse
neural network from the outset and maintain the prescribed level of sparsity throughout the training
process (Mocanu et al., 2016; Bellec et al., 2018; Liu et al., 2021). These approaches start with a
sparse network prior to training. Some methodologies emphasize the dynamic change of topology
evolution (Bellec et al., 2018; Mocanu et al., 2018; Mostafa & Wang, 2019; Evci et al., 2020), whereas
others prioritize identifying a static sparse network before training (Lee et al., 2019; Wang et al.,
2020; Tanaka et al., 2020). However, many of these algorithms, despite theoretically having lower
peak per-iteration computational FLOPs, may require significantly more time to achieve performance
comparable to that of dense-to-sparse training (Evci et al., 2020).

Sparse Training in DRL. Employing sparse training in DRL presents a greater challenge than in
supervised learning due to inherent training instability and non-stationarity data streams (Evci et al.,
2020; Sokar et al., 2021; Graesser et al., 2022). Drawing inspiration from knowledge distillation,
Livne & Cohen (2020) train a sparse RL student network using iterative policy pruning based on a
pre-trained dense teacher policy network. Similarly, Zhang et al. (2019) concurrently learn a smaller
network for the behavior policy and a large dense target network. LTH has shown promise in DRL for
identifying a sparse winning ticket via behavior cloning (Yu et al., 2020; Vischer et al., 2022). The
sparse-to-sparse training paradigm has been adopted to mitigate the computational burden associated
with policy distillation and dense-to-sparse training (Lee et al., 2021; Sokar et al., 2021; Arnob
et al., 2021). To achieve sparse DRL agents, sparse-to-sparse training methods include block-circuit
compression and pruning (Lee et al., 2021), sparse evolutionary training in topology evolution (Sokar
et al., 2021), and one-shot pruning at initialization in offline RL (Arnob et al., 2021). A comprehensive
investigation of various sparse-to-sparse training techniques applied to a variety of RL agents and
environments is conducted by Graesser et al. (2022). Sparse DRL networks have also been found
to enhance minimal task representation and filter noisy information (Vischer et al., 2022; Grooten
et al., 2023). However, sparse-to-sparse training can potentially introduce high computational costs
in terms of total training time to reach the optimal solution and may require complex strategies to
stabilize training (Liu & Wang, 2023; Tan et al., 2022).

2.2 PLASTICITY OF NEURAL NETWORKS

The concept of neural network plasticity, which broadly refers to the capacity to adapt to new
information, has recently garnered attention in the field of deep learning (Mozaffar et al., 2019;
Berariu et al., 2021; Zilly, 2022). Emerging evidence indicates that managing the decline in neural
network plasticity, particularly in the context of continuous learning with dynamic data streams, new
tasks, and evolving environments, can lead to consistent performance enhancements throughout the
training process (Achille et al., 2017; Ash & Adams, 2020; Igl et al., 2020; Dohare et al., 2021;
Nikishin et al., 2022).

DRL is particularly susceptible to the effect of neural network plasticity due to the inherent non-
stationarity in the targets and data flows (Nikishin et al., 2022; Igl et al., 2020; Sokar et al., 2023).
Several techniques have been developed that focus on improving plasticity, and these have demon-
strated remarkable performance. These techniques include controlling rank collapse (Kumar et al.,
2021), periodically resetting the network (Nikishin et al., 2022; D’Oro et al., 2022; Schwarzer et al.,
2023), reactivating dormant neurons (Sokar et al., 2023), imposing regularization on the initial
network (Lyle et al., 2022), injecting randomly initialized layers (Nikishin et al., 2023), and layer
normalization (Lyle et al., 2023).

3 PRELIMINARIES

We are interested in the standard RL formulation under the Markov Decision Process (MDP) formal-
ism M = (S,A,R,P, γ). Usually, for one interaction process, the agent chooses an action a ∈ A
based on the observed state s ∈ S from the environment, and then obtains a reward r based on a
reward function r(s, a) : S × A → R. After getting the action a from the agent, the environment
changes into a state s′ according to the transition probability function p(s′|s, a) ∈ ∆(P). The initial
state s0 is sampled from the initial distribution p0(s0) and γ ∈ [0, 1) denotes the discount factor. The
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objective of RL tasks is to learn a policy π : S → ∆(A) that maximize the expected discounted
cumulative rewards (a.k.a return) along a trajectory:

max
π

E

[ ∞∑
t=0

γtr(st, at | s0 = s, a0 = a)

]

Value-based RL methods typically introduce a state-action value function, noted as Q-function, under
approximate dynamic programming (Sutton et al., 1998; Haarnoja et al., 2018; Fujimoto et al., 2018).
The temporal-difference (TD) learning is employed to learn the Q-function to satisfy the single-step
Bellman consistency, minimizing the mean squared error between Qπ(s, a) and its bootstrapped
target (T π)Q(s, a) with respect to the policy π:

(T πQ) (s, a) := r(s, a) + γEp(s′|s,a),π(a′|s′) [Qπ (s
′, a′)] . (1)

4 IMPLICIT SPARSITY IN DENSE TRAINING OF DRL

In this section, we explore the growing implicit sparsity during traditional dense network training in
DRL, which coincides with diminished plasticity in the networks. To measure this escalating sparsity
(or reduced plasticity), we introduce the Weight Shrinkage Ratio (WSR) (Section 4.1). We depict the
evolution of implicit sparsity (or reduced plasticity) in the network throughout training and advocate
for the adoption of the dense-to-sparse training paradigm in the consideration of neural network
plasticity (Section 4.2).

4.1 WEIGHT SHRINKAGE RATIO

Consider a deep neural network, denoted by M, composed of L hidden layers, where each layer is
indexed by l ∈ {1, 2, · · · , L}. Let us define hl as the weight vector from layer l in the network M,
given an input dataset distribution D. The number of neurons in each layer is represented by N l. To
explore the plasticity of neural networks, we propose a novel statistical metric:
Definition 4.1 (Weight Shrinkage Ratio). For a given input distribution D, the Weight Shrinkage
Ratio (WSR) for layer hl

t is defined as the proportion of weights in hl
t that have decreased in

magnitude from the current training step t to its previous checkpoint step t− k with k ∈ (0, t):

D[hl
t|hl

t−k] := Ex∈D

∑N l

i=1 I(|hl
t,i(x)| < |hl

t−k,i(x)|)
N l

 , (2)

where I(.) denotes the indicator function, returning 1 if the enclosed condition is true and 0 otherwise,
and i denotes the weight of the ith neuron.
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Figure 1: Gaussian distribution with the stan-
dard mean (µ = 0) but different variances.

The WSR for a model, such as a multi-layer neu-
ral network, can be computed through a straightfor-
ward summation across all hidden layers: D[Mt |
Mt−k] :=

∑
i=l D[hi

t | hi
t−k]. The purpose of WSR

is to quantify the ratio of weights that have a lower
magnitude at the current time step t with respect to
the last checkpoint step t−k. The normalization term
in the denominator, N l, ensures that the WSR is a
dimensionless quantity. This normalization facilitates
the comparison of WSR across different layers or net-
works by scaling the WSR accordingly. To illustrate
the quantitative interpretation of WSR and the factors
that contribute to it, we provide an intuitive example
starting with Gaussian distribution, a commonly used
distribution for initializing neural networks.

In Fig. 1, we examine three Gaussian distributions, each possessing an identical mean
(µ = 0) but differing in standard deviations. We specifically consider (N1, N2, N3) =
(N(0, 0.62), N(0, 0.82), N(0, 12)). Upon sampling 1000 data points from those distributions, we
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yield D[N2|N1] = 56.8% and D[N3|N2] = 59.4%. Note that D serves as an approximation of the
shrinkage speed, scaled by a factor k, implying fractional shrinkage is initiated whenever D > 0. The
increased shrinkage speed from N2 → D3 (D[N3|N2] = 59.4%) to N1 → N2 (D[N2|N1] = 56.8%)
indicates an acceleration in the convergence speed of data points towards zero.

4.2 IMPLICIT SPARSITY IN DENSE TRAINING

This section focuses first on demonstrating the generality of implicit sparsity in conventional dense
training (fully connected neural networks) in DRL. Initially, we monitor the WSR throughout the
dense training for two distinct task types. The first is high-dimension pixelated tasks with discrete
action spaces, for which we employ DQN (Mnih et al., 2015) on the Atari platform (Mnih et al.,
2013). The second is dynamic-based observation tasks with continuous action spaces, for which we
utilize SAC (Haarnoja et al., 2018) on MuJoCo locomotion tasks (Todorov et al., 2012). All results
in the following are averaged over 5 independent seeds with the standard deviation. For clarity, we
simplify our analysis by setting k equal to the evaluation frequency in different tasks: 5e3 steps for
MuJoCo locomotion tasks and 2e5 steps for Atari games.

Figure 2: The WSR exhibits a growth pattern for both SAC and DQN networks throughout training.

Figure 3: The feasible pruning ratio, indicative of the maximum pruning rate that allows models to
retain at least 95% performance relative to the dense model, increases throughout the training of both
SAC and DQN agents.

Increased implicit sparsity with training steps. In Fig. 2, we discern a clear upward trajectory in
WSR throughout the training process. The escalating pattern of WSR throughout training suggests
an increasing speed of partial neural weight shrinkage towards 0 as training progresses. The rising
overlap coefficient of the shrinkage weights, compared with the last checkpoint, suggests that this
shrinkage trend of most weights persists throughout the remainder of the training process. Those
trend remains consistent across a variety of algorithms and tasks, shown in Appendix A.

Shrinkage persists across various activation functions. One might hypothesize that the Rectified
Linear Unit (ReLU) activation function (Nair & Hinton, 2010), which sets a lower bound of zero
for negative input, contributes to this phenomenon. To probe this further, we first calculate the WSR
using different activation functions that either lack a lower bound or have a negative lower bound,
such as Leaky ReLU (Maas et al., 2013) and Sigmoid, respectively. We extend our investigation to
the gradient shrinkage ratio by substituting the weight gradient for weight in Eqn. (2) under varying
activation functions. Due to space constraints, we present these results in Appendix A. Our findings
indicate that shrinkage occurs for both gradient and weight in neural networks across different
activation functions. The SAC agent exhibits a consistent pattern across all activation functions.
Specifically, the gradient shrinkage ratio rapidly escalates to nearly 50% during the initial training

5



Under review as a conference paper at ICLR 2024

stage, and subsequently oscillates around this value for the remainder of the training period. This
suggests that gradient shrinkage persists, albeit at a consistent rate.

Increasing sparsity as training progresses. However, it is crucial to understand that these
diminishing neural weights or gradients may still contribute to the final representation and do not
necessarily indicate a clear pattern of sparsity within neural networks. To delve deeper into this,
we perform explicit neuron pruning to determine the feasible pruning rate. This rate represents the
maximum pruning rate that allows models to maintain at least 95% performance relative to the dense
model. As illustrated in Fig. 3, we show the feasible pruning ratio increases in tandem with the
progression of training steps, aligning significantly with the WSR trend. The consistency of the
feasible pruning rate across various tasks is further elaborated in Appendix A.

The study by Sokar et al. (2023) presents a compelling finding: reinitializing weights (under the
ReLU activate function) that approach zero beneath a specified threshold can significantly enhance
performance over the course of training. The potential for improvement arises from addressing
inactive or dormant neurons, which signifies a decrease in neural plasticity. In the realm of sparse
training, the sparse-to-sparse training paradigm presents a trade-off: while it reduces computational
memory demands at the initial training stages, it does so at the cost of the expressivity of neural
networks. As a result, it could lead to the loss of plasticity of neural networks, especially at high
sparsity ratios, even when subjected to dynamic changes. To address this, we propose a dense-
to-sparse training paradigm that also enhances network plasticity at the very beginning, thereby
improving the final performance even under high pruning ratios.

5 PLASTICITY-DRIVEN SPARSITY TRAINING

In the preceding section, we highlight an increase in implicit sparsity and a concurrent loss of
plasticity during sparse DRL training. These observations motivate us to propose a new framework,
Plasticity-Driven Sparsity Training (PlaD). PlaD adopts a dense-to-sparse training paradigm with
the goal of enhancing performance in sparse DRL models by preserving neural plasticity throughout
the training process. More specifically, PlaD is characterized by two key components: 1) periodic
memory reset, which ensures consistency in the replay buffer and thereby improves the plasticity
of DRL agents, and 2) dynamic weight rescaling (DWR), which is designed to counterbalance the
instability introduced by the resetting and pruning operations.

Periodic Memory Reset. A naïve approach to maintaining plasticity throughout the training
process in DRL involves periodic re-initialization of multiple complete neural networks of the agents
while maintaining the experience within the buffer (Nikishin et al., 2022). However, this approach is
notoriously resource-hungry due to the numerous re-initialization operations and a significantly high
replay ratio, which is defined as the number of updates to parameters per environment interaction.
Further, the high replay ratio paradoxically accelerates the loss of plasticity, leading to suboptimal
performance. Other similar methods typically impose constraints on the neural networks, but these
methods inevitably hamper the flow of gradients essential for policy updates.

Instead of directly modifying neural networks, we periodically reset the replay buffer to empty
(0.2M) and then collect a batch of samples necessary for training, with the spirit of preserving the
simplicity of our proposed algorithm. This strategy does not impact the policy gradient but effectively
addresses non-stationarity, an important factor contributing to plasticity loss in DRL training (Sokar
et al., 2023; Lyle et al., 2023), thereby maintaining policy consistency within the replay buffer. In
the Appendix B.2, we illustrate that a straightforward memory reset effectively reduces the policy
distance between the replay buffer and the current policy. Importantly, this operation does not impose
an extra computational burden, such as determining the policy distance of the reply buffer at every
training step (Tan et al., 2022).

Dynamic Weight Rescaling (DWR). In practice, the periodic memory reset, as well as the sparse
training, impose the training instability over the course of training. Based on this motivation, we
further introduce a supplement but necessary component in PlaD, namely dynamic weight recaling.
Specifically, consider a sparse neural network Ms, denoted as Ms = {Γl : l = 1, . . . , L}, which
mirrors the structure of M in terms of weights, where γl represents the mask applied to the lth layer.
Consequently, the sparse network Ms can be represented as follows:

al = hl ⊙ γl ul+1 = fl

(
al

⊤
ul + bl

)
, (3)
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Figure 4: DWR mitigates the learning instability induced by memory reset and dynamic training.
Left: PlaD (w/o DWR) typically exhibits higher instability, as evidenced by increased critic loss and
variances in Bellman updates. Middle: The Q-value of PlaD (w/ DWR) is rationally higher than
PlaD (w/o DWR), potentially leading to improved policy performance. Right: The performance
PlaD (w/o DWR) significantly falls short when compared to the performance with PlaD (w/ DWR).

where al is the pruned (or masked) neuron weights, ⊙ is the element-wise product, ul represents
the input vector to the l-th layer, bl is the bias, and fl is the transformation function for the lth layer.
After getting pruned weights, We can readily obtain the dynamic statistical information, namely, the
mean and standard variance across all hidden units within the same layers:

µl =
1

L

L∑
i=1

ali σl =

√√√√ 1

L

L∑
i=1

(
ali − µl

)2
.

We then dynamic scale weights that are not been pruned:

âl =
al − µl√
(σl)

2
+ ϵ

, (4)

where ϵ is a small number of significance introduced to prevent the denominator from becoming
zero. Dynamic Weight Rescaling (DWR) exhibits properties akin to those of layer normalization (Ba
et al., 2016); however, a notable distinction lies in their operational domains. While DWR applies to
pruned weights al during sparse training, layer normalization functions on (al)Tul. As depicted in
Fig. 4, DWR mitigates the learning instability caused by memory reset and sparse training. Consistent
observations across different tasks can be found in the ablation study in Section 6.2. We observe
that the critic loss of PlaD (w/ DWR) is consistently lower than the critic loss PlaD (w/o DWR) as
training progresses. The occurrence of lower critic loss but higher Q-value in PlaD (with DWR)
suggests that the higher Q-value effectively enhances the flow of gradients, thereby resulting in
superior performance compared to PlaD (w/o DWR).

6 EXPERIMENTS

We conducted experiences to assess and analyze for PlaD. In Section 6.1, we first evaluate PlaD on
standard MuJoCo environments with other sparse training baselines. Section 6.2 contains an ablation
study demonstrating the necessity of both components in PlaD for policy improvement. Lastly, in
Section 6.3, we analyze the effect of buffer size, comparing a periodic memory reset in PlaD to a
smaller buffer without the memory reset. More details in experiments are shown in Appendix B.

6.1 PERFORMANCE ON BENCHMARKS

We perform a standard benchmark comparison of PlaD with a range of other sparse training methods.
This comparison, which is conducted within the context of MuJoCo environments using the Soft
Actor-Critic (SAC) as a backbone, is detailed in Fig. 5. The comparative baselines encompass a
diverse set of sparse training techniques, including both dense-to-sparse (solid lines) and sparse-to-
sparse training paradigms (dotted lines). The dense-to-sparse baselines all initialize with a dense
network, including: (1) Random: the most naïve baseline to randomly iterative pruning the weights.
(2) Magnitude (Frankle & Carbin, 2019): performing iterative weight pruning as the training goes.
On the other hand, the sparse-to-sparse training paradigm initializes a sparse network to the target
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Figure 5: Performance comparisons of PlaD with sparse training baselines with the SAC backbone,
normalized with the performance achieved by vanilla SAC, where the solid line and dotted line
indicate the dense-to-sparse and sparse-to-sparse training paradigm, respectively. PlaD achieves the
best performance in 10 out of 12 tasks with high pruning ratios (≥ 85%) in different environments.

sparsity ratio before training, including: (1) Static Sparse (Lee et al., 2019): pruning a given dense
network randomly at initialization and the resulting sparse network is trained with a fixed structure.
(2) SET (Mocanu et al., 2018): Using the dynamic sparse training, a portion of the connections
are periodically changed by the replacement of connections characterized by the lowest magnitudes
with new, randomly initialized ones. (3) RigL (Evci et al., 2020): the same as SET, except the new
connections are activated according to the highest magnitude of gradient signal instead of random. (4)
RLx2: the same as RigL, except for two specific RL components for robust value learning to mitigate
non-stationary, where the following content in the bracket refers to the number of training steps, such
as 3M refers to 3 million training steps, while others are 1 million training steps otherwise specified.
For the fairness of comparison, we specify the pruning ratio as the same for both actor and critic
networks. For all algorithms under consideration, we employ the ERK network distribution (Evci
et al., 2020) due to its superior efficiency compared to uniform distribution (Graesser et al., 2022).
More experiment details in benchmark experiments are displayed in Appendix B and benchmark
tables with the standard deviation are shown in Appendix B.3.

As evidenced in Fig. 5, our algorithm, PlaD, exhibits a significant performance superiority over other
baselines. This superiority becomes more pronounced at high pruning ratios (≥ 85%), where PlaD
outperforms other baselines in 10 out of 12 tasks. For instance, in the HalfCheetah task at 90%
sparsity, PlaD achieves a remarkable performance increase, outstripping the nearest baseline (RLx3
(3M)) by nearly 17%, reaching 99.2% compared to 82.5%. Similarly, in the Ant task with 90%
sparsity, PlaD’s performance of 103.0% surpasses the best baseline (Magnitude) by a substantial
30%, the latter achieving only 71.7%. The pronounced performance of PlaD relatively mediocre
performance at lower pruning ratios such as 50%, can be attributed to the less apparent loss of
plasticity at lower ratios. However, this plasticity loss becomes more conspicuous and impactful at
higher pruning ratios, thus highlighting the strengths of PlaD.

Interestingly, we observe that PlaD achieves its peak performance within the high range of 85% to
90% pruning ratios. This performance not only matches but also surpasses that of the corresponding
dense model derived from the SAC algorithm by a large margin. For instance, in the Walker2d task,
PlaD achieves an impressive approximate 130% of the performance of the dense model at an 85%
pruning ratio in the Ant task. Furthermore, our analysis reveals that the sparse-to-sparse training
paradigm demands substantial computational resources to achieve performance levels comparable to
those of the dense-to-sparse training paradigm. For example, while the performance of RLx2 (3M) is
on par with other dense models, the performance of RLx2 (1M) is lower than the baselines derived
from the dense-to-sparse paradigm in most tasks at different pruning ratios.

6.2 THE TWO COMPONENTS ARE NECESSARY

To underscore the critical roles of memory reset and DWR within PlaD, we conduct an ablation
study at high pruning ratios, as shown in Tab. 1. The results show that the PlaD (w/o DWR) leads
to diminished performance and increased variances in tasks such as Hopper-v4 and Ant-v4. It
underscores the importance of prioritizing training stability when sparse training is integrated with
memory reset. Conversely, PlaD (w/o Reset) exhibits performance levels similar to the Magnitude
method, but with reduced variances in most tasks. This outcome attests to the effectiveness of DWR
in stabilizing the training process. Within this combined approach, memory reset plays a crucial role
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in enhancing performance at high sparsity ratios by preserving model plasticity. Concurrently, DWR
effectively mitigates the training instability from memory reset and sparse training, thereby bolstering
the overall performance of PlaD.

Table 1: An ablation study on memory reset and subsequent DWR in PlaD, where performance (%) is
normalized and compared to the performance from its corresponding dense model over 5 independent
seeds, including standard deviation.

Algorithms Sparsity HalfCheetah-v4 Hopper-v4 Walker2d-v4 Ant-v4

Magnitude

0.9

82.3±13.6 91.1±6.7 90.6±8.4 72.9±14.0
PlaD (w/o DWR) 86.2±18.4 80.5±20.3 98.0±13.7 68.2±17.7
PlaD (w/o Reset) 85.4±5.8 92.3±3.1 96.5±4.5 77.0±6.3

PlaD 99.2 ±3.9 105.3 ±7.3 117.4 ±5.2 103.5 ±6.5

Magnitude

0.93

71.0±11.3 91.6±12.8 84.5±15.7 65.5±7.2
PlaD (w/o DWR) 81.9±13.5 78.8±19.7 96.3±18.7 55.5±12.5
PlaD (w/o Reset) 73.5±9.2 92.9±4.4 83.6±8.2 71.6±15.3

PlaD 84.6 ±7.6 94.5 ±12.5 106.7 ±11.4 78.4 ±7.5

6.3 CAN WE USE A SMALLER REPLY BUFFER?
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Figure 6: Performance comparison between Reset buffer and Small buffer in PlaD with
0.9 target sparsity. The results are averaged over five independent seeds, with the standard deviation
indicated. Black dotted lines represent the dense performance obtained from the vanilla SAC
algorithm. Reset buffer outperforms the Small Buffer strategy in 3 out of 4 tasks in terms
of final averaged performance, with a large margin in 2 of them.

An intriguing aspect warranting further exploration pertains to PlaD is the operation of the replay
buffer. Given that direct memory reset leads to significant challenges in training stabilization, one
might consider employing a smaller buffer size as a potential solution. To investigate this, we compare
these two settings (Reset buffer vs. Small buffer) in a high pruning ratio (90%) with 0.2M
buffer size, as shown in Fig. 6. Our results indicate that Reset buffer significantly surpasses
Small Buffer in 3 out of 4 tasks, most notably in the Hopper task over 30% gains averaged
with dense performance. Reset buffer periodically imposes a steep learning curve on the agent,
thereby facilitating the learning of relatively fresh experiences, compared with the gentle learning
curve in Small Buffer. Such a dynamic learning curve approach in Reset buffer can be
beneficial when the policy needs to undergo significant evolution during training, particularly in the
context of non-stationary data flows. Consistent results with an extremely high sparsity ratio (93%)
can be found in Appendix B.4.

7 CONCLUSIONS AND LIMITATIONS

In this study, we initially establish a link between the loss of plasticity and sparse training. Subse-
quently, we introduce a novel dense-to-sparse training algorithm for sparse training in DRL, referred
to as PlaD, with the primary motivation to enhance network plasticity. PlaD employs memory reset
to mitigate the non-stationarity in the replay buffer, which is a primary factor contributing to the loss
of plasticity in DRL. Furthermore, PlaD introduces dynamic weight rescaling (DWR) to stabilize
the training process, which could otherwise be disrupted by memory reset and sparse training. Our
extensive evaluations show the state-of-the-art sparse training performance and highlight the essential
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for those two components. Surprisingly, we find that PlaD is capable of achieving higher performance
than the dense performance in high sparsity ratios due to the plasticity perspective. One limitation
of PlaD is the lack of theoretical analysis and we hope this work will shed light on future rigorous
analysis between sparse training and the loss of plasticity in DRL. We also hope this work could
inspire more attention to real-world applications characterized by constrained resources or latency.
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A IMPLICIT SPARSE IN DENSE TRAINING

This section provides a comprehensive elaboration related to Section 4. It encompasses additional
consistent experiments that illustrate the increasing trend of the Weight Shrinkage Ratio (WSR) for
both continuous and discrete action spaces throughout the training process. Furthermore, it includes
ablation studies on the activation functions for both the weight and gradient in neural networks, as
well as an examination of the feasible pruning ratio. All the reported performances are averaged over
5 independent seeds with the standard deviation.

Weight Shrinkage Ratio (WSR). Fig. 7 and Fig. 8 illustrate the consistently increasing trend in
both continuous and discrete environments. In the continuous task domains, a rapid increase in the
critic network is evident compared to the actor network. It’s noteworthy that shrinkage occurs when
the WSR is greater than or equal to zero.

In order to delve deeper into the consistency of the "shrinkage" effect observed in certain neurons
as training progresses, we monitor the overlap coefficient of these neurons compared to the final
network checkpoint. The overlap coefficient1 for both SAC and DQN agents is illustrated in Fig. 9
and Fig. 10. The observed increase strongly implies that once a neuron enters a state of shrinkage,
it maintains this status throughout the remainder of the training process. Importantly, we note that
the approximation of a 100% overlap coefficient for the critic network strongly indicates that once
neurons embark on the shrinkage process, they are highly likely to persist in this state for the duration
of the remaining training steps.
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Figure 7: The WSR exhibits a growth pattern for SAC networks throughout training with the ReLU
activate function.
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Figure 8: The WSR exhibits a growth pattern for DQN networks throughout training with the ReLU
activate function.
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Figure 9: The weight overlap coefficient of SAC networks throughout training with the ReLU activate
function.
Ablation on Different Activation Functions. We first conduct an ablation study on the activation
function with respect to the WSR. Fig. 11, Fig. 12, Fig. 13, and Fig. 14 illustrate a consistent

1The overlap coefficient between two sets X and Y is defined as overlap(X,Y ) = |X∩Y |
min(|X|,|Y |)
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Figure 10: The weight overlap coefficient of DQN networks throughout training with the ReLU
activate function.

increasing pattern for WSR, indicating that shrinkage occurs regardless of the activation function
used in continuous and discrete tasks. Interestingly, we observe a pulse occurring in most tasks within
DQN when employing the Sigmoid activation function, except the Seaquest task. This suggests a
rapid increase in weight shrinkage during the initial learning period, as shown in Fig. 14.

We further validate this with the gradient shrinkage ratio, for both continuous and discrete tasks,
where we observe a significant alignment between the weight shrinkage ratio and gradient shrinkage
ratio across different tasks and activation functions (as shown in Fig. 16, Fig. 17, Fig. 18, Fig. 19,
and Fig. 20). For the gradient shrinkage ratio, both DQN and SAC agents exhibit a stable degree of
shrinkage. For example, the gradient shrinkage ratio in MuJoCo tasks swiftly rises to nearly 50%
during the initial stages of training, and then fluctuates around 50% for the remainder of the training
period. This indicates that gradient shrinkage continues to take place at a steady pace.
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Figure 11: The WSR exhibits a growth pattern for SAC networks on the Leaky ReLU activate
function throughout training.
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Figure 12: The WSR exhibits a growth pattern for SAC networks on the Sigmoid activate function
throughout training.
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Figure 13: The WSR exhibits a growth pattern for DQN networks on the Leaky ReLU activate
function throughout training.
It’s important to note that the "increasing" pattern may occur at different stages due to the influence of
tasks or algorithms. For instance, the HalfCheetah-4 task displays this during the initial training
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Figure 14: The WSR exhibits a growth pattern for DQN networks on the Sigmoid activate function
throughout training.
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Figure 15: The gradient shrinkage ratio exhibits a growth pattern for SAC networks on the ReLU
activate function throughout training.
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Figure 16: The gradient shrinkage ratio exhibits a growth pattern for SAC networks on the Leaky
ReLU activate function throughout training.
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Figure 17: The gradient shrinkage ratio exhibits a growth pattern for SAC networks on the Sigmoid
activate function throughout training.
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stage and the Walker-2d task throughout the entire training process. Nevertheless, a clear increase
in the feasible pruning ratio over the course of training is observable in all cases.
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Figure 18: The gradient shrinkage ratio exhibits a growth pattern for DQN networks on the ReLU
activate function throughout training.
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Figure 19: The gradient shrinkage ratio exhibits a growth pattern for DQN networks on the Leaky
ReLU activate function throughout training.
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Figure 20: The gradient shrinkage ratio exhibits a growth pattern for DQN networks on the Sigmoid
activate function throughout training.
Feasible Pruning Ratio (%). We provide comprehensive experiments on feasible pruning across
both discrete (DQN Atari) and continuous environments (Gym MuJoCo and Deepmind Control
Suites) in Fig. 21, Fig. 22, and Fig. 23.
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Figure 21: The feasible pruning ratio increases throughout the training for SAC agents in MuJoCo
locomotion tasks.

B EXPERIMENTS DETAILS

This section offers additional experimental details related to Section 6, including a comprehensive
experimental setup, network structure, and an ablation study on memory reset with an extremely high
sparsity ratio (0.93).
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Figure 22: The feasible pruning ratio increases throughout the training for DQN agents in Atari
games.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

5

10

15

20

Fe
as

ib
le

 P
ru

ni
ng

 R
at

io
 (%

)

cheetah-run

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

2.5

0.0

2.5

5.0

7.5

10.0
finger-turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10

5

0

5

10

15
hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

5
0
5

10
15
20
25

humanoid-run

Figure 23: The feasible pruning ratio increases throughout the training for SAC agents in Deepmind
control suites.

B.1 HARDWARE SETUP

Our experiments were conducted using JAX (Bradbury et al., 2018) and executed on 4x NVIDIA
GeForce RTX 3090. The implementations of Jax DQN and SAC were based on CleanRL (Huang
et al., 2022) and the open-source Jax SAC (Kostrikov, 2021) implementation, respectively. The
pruning algorithms were based on Jaxpruner (Lee et al., 2023), with the exception of RLx2, which
was based on the author’s official implementation. All training processes involved 1 million steps,
except for RLx2 (3M), which entailed 3 million steps.

B.2 PERIODIC MEMORY RESET ENSURES THE POLICY CONSISTENCE
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Figure 24: The policy distance between the reply buffer and the current learning policy.

In this section, we present evidence demonstrating the impact of periodic memory resets on maintain-
ing policy consistency between the learned policy and the behavior policy within the replay buffer.
Expanding on the methodology of (Tan et al., 2022), we employ a policy distance metric to measure
the disparity between the data in the buffer and the current learning policy:

D(B, ϕ) = 1

K

∑
(si,ai)∈OldK(B)

∥π (si;ϕ)− ai∥2 ,
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Here, B signifies the replay buffer, OldK(B) denotes the oldest K transitions in B, and π(·;ϕ)
represents the current policy. The hyperparameter K is established as 256, corresponding to the batch
size, in our experiments. A visualization of policy distance throughout the training process in Fig. 24
reveals that resets can effectively reduce the discrepancy between the current policy and the oldest K
transitions in the replay buffer. We also observe that the discrepancy can be somewhat alleviated by
employing a smaller buffer. Note that this metric approximates the policy distance between the replay
buffer and the current policy under the monotonic improvement assumption with a strong algorithm,
where the oldest transitions are assumed to exhibit the maximum discrepancy between the behavior
policy and the current policy.

B.3 BENCHMARK TABLES

Table 2: Performance comparisons on HalfCheetah environment of PlaD with sparse training
baselines with the SAC backbone, normalized with the performance achieved by vanilla SAC. All
results are averaged over 5 independent seeds and reported with the standard deviation. PlaD achieves
the best performance in 4 out of 5 pruning ratios with a significant margin, over 10%, in high sparsity
ratios (85%, 90%, 93%) sparsity ratio over the best performance from baselines.

Sparsity 50% 80% 85% 90% 93%

Random 93.8 ± 6.0 90.0 ± 3.0 88.6 ± 1.0 77.5 ± 4.7 69.7 ± 0.2
Magnitude 99.3 ± 7.9 93.0 ± 6.2 90.3 ± 3.5 82.3 ± 13.6 71.0 ± 11.4
Static Sparse 83.6 ± 8.1 83.5 ± 9.6 85.4 ± 6.9 71.6 ± 3.2 65.9 ± 2.9
SET 96.3 ± 6.9 88.6 ± 6.8 86.9 ± 4.5 77.6 ± 2.7 67.0 ± 4.1
RigL 86.1 ± 5.0 69.6 ± 4.3 88.8 ± 3.5 78.2 ± 4.4 69.0 ± 3.5
RLx2 (1M) 88.9 ± 3.2 82.5 ± 3.5 74.1 ± 11.6 71.8 ± 5.1 64.8 ± 2.5

RLx2 (3M) 107.3 ±3.8 91.5 ± 5.0 90.4 ± 1.7 82.5 ± 4.4 73.5 ± 12.2

PlaD (ours) 100.6 ± 6.9 94.9 ± 8.5 100.2 ± 5.5 99.2 ± 4.0 84.6 ± 7.6

Table 3: Performance comparisons on the Hopper environment of PlaD with sparse training baselines
with the SAC backbone, normalized with the performance achieved by vanilla SAC. All results are
averaged over 5 independent seeds and reported with the standard deviation.

Sparsity 50% 80% 85% 90% 93%

Random 96.0 ± 12.7 87.8 ± 25.8 86.1 ± 27.5 98.4 ± 1.4 98.7 ± 5.4

Magnitude 93.1 ± 8.6 71.7 ± 42.5 102.9 ± 1.5 91.1 ± 6.7 91.7 ± 2.9

Static Sparse 103.0 ± 19.2 100.7 ± 3.0 95.0 ± 1.6 98.6 ± 13.9 92.8 ± 1.8

SET 98.2 ± 22.1 102.4 ± 3.0 86.6 ± 27.9 74.2 ± 34.0 93.9 ± 2.4
RigL 94.0 ± 19.6 97.9 ± 4.6 86.7 ± 23.7 96.7 ± 5.5 95.8 ± 2.7
RLx2 (1M) 91.8 ± 6.4 71.2 ± 20.4 72.1 ± 21.8 72.6 ± 28.4 72.1 ± 11.7
RLx2 (3M) 94.4 ± 11.3 82.7 ± 21.9 77.1 ± 29.0 77.0 ± 12.6 94.9 ± 1.5

PlaD (ours) 98.6 ± 9.4 75.5 ± 13.3 97.6 ± 4.8 105.3 ± 7.2 94.5 ± 9.5

B.4 CAN WE USE A SMALLER REPLY BUFFER?

We present the results for an extreme target sparsity of 0.93 in comparison with Reset buffer
and Small buffer, as shown in Fig. 25. The outcomes align closely with the scenarios involving
a target sparsity of 0.9 as shown in Fig. 6. Even with a target sparsity of 0.93, we can still observe a
significant advantage of the Reset buffer strategy in the HalfCheetah and Hopper tasks.
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Table 4: Performance comparisons on the Walker2d environment of PlaD with sparse training
baselines with the SAC backbone, normalized with the performance achieved by vanilla SAC. All
results are averaged over 5 independent seeds and reported with the standard deviation. It notably
excels in 4 out of 5 pruning ratios, particularly distinguishing itself in the 85% and 93% sparsity
domains with a near 10% performance lead over the best performance in baselines.

Sparsity 50% 80% 85% 90% 93%

Random 105.4 ± 9.2 98.5 ± 10.5 83.6 ± 3.4 107.0 ± 6.3 83.8 ± 3.0
Magnitude 94.8 ± 8.2 93.6 ± 13.1 100.8 ± 12.2 90.6 ± 8.5 83.5 ± 15.9
Static Sparse 92.8 ± 15.5 96.3 ± 7.1 42.7 ± 38.7 80.2 ± 9.0 44.2 ± 16.7
SET 96.2 ± 7.9 103.9 ± 22.9 94.9 ± 4.0 86.2 ± 12.5 80.2 ± 20.8
RigL 104.0 ± 12.7 92.2 ± 7.7 95.2 ± 11.2 84.7 ± 13.4 64.8 ± 19.3
RLx2 (1M) 123.0 ± 11.8 125.5 ± 8.0 99.2 ± 9.4 96.0 ± 11.2 89.8 ± 20.0

RLx2 (3M) 147.7 ± 8.9 132.4 ± 11.1 116.9 ± 12.4 112.3 ± 12.5 83.6 ± 13.1

PlaD (ours) 108.1 ± 11.7 117.0 ± 20.1 129.0 ± 11.8 117.4 ± 5.1 101.1 ± 11.4

Table 5: Comparative performance analysis in the Ant environment, showcasing PlaD’s superior
efficiency over other sparse training methods with the SAC backbone. Results, normalized against
vanilla SAC, are averaged over 5 seeds and include standard deviations. Notably, PlaD outperforms
competitors across all pruning ratios, particularly excelling at higher sparsity levels (85% and 90%),
where it achieves a performance increase of nearly 20%.

Sparsity 50% 80% 85% 90% 93%

Random 93.4 ± 10.3 95.6 ± 7.9 83.6 ± 7.6 71.7 ± 8.0 62.2 ± 14.9
Magnitude 104.4 ± 6.0 77.3 ± 5.8 72.1 ± 4.7 73.0 ± 14.2 65.3 ± 7.3
Static Sparse 102.2 ± 12.7 75.9 ± 11.3 71.4 ± 27.1 63.8 ± 19.6 50.4 ± 14.1
SET 104.9 ± 6.5 87.0 ± 9.9 79.0 ± 20.0 67.4 ± 23.2 51.1 ± 5.3
RigL 93.3 ± 11.8 75.2 ± 15.4 76.0 ± 16.0 58.0 ± 9.8 47.6 ± 13.3
RLx2 (1M) 66.6 ± 16.3 66.9 ± 18.2 51.7 ± 12.1 30.0 ± 11.2 20.2 ± 3.2
RLx2 (3M) 71.9 ± 10.1 100.4 ± 8.0 79.1 ± 23.5 37.3 ± 19.0 46.0 ± 6.9

PlaD (ours) 106.1 ± 8.0 107.7 ± 6.1 113.5 ± 3.7 103.0 ± 6.6 73.9 ± 7.5
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Figure 25: Performance comparison between Reset buffer and Small buffer in PlaD with
0.93 target sparsity.
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B.5 MODEL DETAILS FOR DQN, SAC, AND PLAD.

The parameter details of DQN and SAC agents, as well as PlaD, are shown in Tab. 6 and Tab. 7.

Table 6: DQN Hyperparameters.

Parameter Value

DQN
optimizer Adam (Kingma & Ba, 2015)
learning rate 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 3
number of hidden (all networks) [64, 64, 512]
number of samples per minibatch 32
train frequency 4
target update interval 1000
exploration fraction 0.1
learning starts 80000
nonlinearity ReLU
target update interval 1000
gradient steps 1
total learning steps 1000000

Table 7: SAC and PlaD Hyperparameters.

Parameter Value

SAC
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
hidden units (all networks) [256, 256]
number of samples per minibatch 256
nonlinearity ReLU
target smoothing coefficient (τ ) 0.005
target update interval 1
gradient steps 1
total learning steps 8000000

PlaD
memory reset interval 20000
collection after memory reset 5000
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