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ABSTRACT

Ensuring reliability in human-AlI collaboration is crucial for fostering appropri-
ate trust in hybrid decision-making systems, which hinges on performance and
transparency, but also on understanding the limits of ML methods. Selective clas-
sification addresses this need by allowing classifiers to reject uncertain instances
and focus on more confident predictions. However, very few works try to pro-
vide interpretable abstention policies for selective classification. In this work, we
introduce a novel interpretable-by-design method for selective classification that
leverages the distance between data points and their set of counterfactuals as a
measure of uncertainty. By using this distance as a basis for rejection, our method
formulates an effective abstention policy while providing contrastive and model-
agnostic explanations. Experimental results indicate that our method effectively
implements a rejection policy that is explainable by design without affecting per-
formance.

1 INTRODUCTION

Over the past two decades, research in human-computer interaction has highlighted the importance
of establishing an appropriate level of trust in artificial intelligence (AI) systems to ensure their safe
and effective deployment in decision-making contexts (Lee and Seel |2004), possibly enabling do-
main experts to take part in the design of human-Al hybrid systems. Performance and transparency
are the two fundamental pillars on which we can build trust in Al systems: users look at accuracy
metrics, confidence scores, and explanatory feedback to gauge whether an automated system’s rec-
ommendations are worthy of acceptance (Zerilli et al., [2022). Communication of uncertainty status
also plays a crucial role in enhancing transparency and enabling the integration of Al predictions
with human judgment, while also facilitating humans to retain responsibility, agency, and control
over the decision-making process (Bhatt et al., 2021). Explicit communication of uncertainty rat-
ings or formulas like “I know that I don’t know” helps align the perception of users with the actual
system capabilities (Mehrotra et al., 2024)). This is typically accomplished by implementing an ab-
stention mechanism in the ML pipeline (Bhatt et al.| 2021} Hendrickx et al, |2024): Learning to
Abstain (L2A) systems equip a machine learning (ML) model with the ability to refrain from pre-
dicting when the uncertainty is too high or the cost of error is unacceptable (Punzi et al.| [2025).
By diverting ambiguous cases to human experts or stronger models, these systems reduce the risk
of low-confidence mistakes. Despite their promise, most L2A methods adopt a black box rejec-
tion policy that does not disclose why certain cases were deferred. This opacity can erode trust in
the system, as stakeholders are left without insight into the system’s decisions and its rationale for
abstaining (Artelt et al.| |2023; Singla et al., [2023). Given that abstention mechanisms directly af-
fect subsequent human workflows, the provision of interpretable rejections is essential: individuals
require not only awareness of a model’s uncertainty but also understanding of the underlying rea-
sons for abstention, enabling them to determine whether to accept, contest, or act on the deferred
case, without compromising trust in the Al system. To achieve this, human-centred approaches to
Al show that explanations are judged by their contrastive, causal and actionable content rather than
by low-level descriptions of model internals; explanations that answer “why this rather than that?”
better align with how people seek reasons and build trust (Miller, 2019). Counterfactual, contrastive
explanations have been advocated as a practical and actionable way to explain automated decisions
and also to explain a model’s confidence (Le et al., 2023).
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In this paper, we address this topic by introducing an explainable by-design abstaining classifier
named Selective Classification via Counterfactual Explanations (SC~CE, see Figure[T)) Building on
the selective classification paradigm, where the choice to reject is a function of input features and
preliminary model outputs, SC—CE presents two key innovations: (i) it provides an interpretable
quantification of model uncertainty through a confidence score based on the distance between each
data point and its closest counterfactual, which is an approximation strategy to characterize the
decion boundary of the ML model (Guidotti, | 2024); (ii) it uses said counterfactuals to generate local
explanations for the rejection of each case, offering users transparent insights into the inner workings
of the abstention policy: in addition to acknowledging that it knows to not know, it also explain why
it is not confident enough. Our rejection policy is therefore plug-in, model agnostic, and does not
require access to any model information aside from its hard predictions.

The paper is organized as follows: Section [2] reviews related works on selective classification and
explainable Al in the context of rejection policies. Section 3| presents the SC-CE methodology, de-
tailing the problem setting, the rejection policy, and the process of generating explanations. Section
[] describes the experimental setup and results, followed by discussion and conclusions in Section[3]
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Figure 1: Graphical overview of SC-CE.
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2 RELATED WORK

Learning algorithms with a reject option The ability to incorporate in an algorithm the option
to refrain from predicting on “difficult” instances, such as those with high uncertainty or where
misclassifications carry critical consequences, has been extensively studied in the computer science
literature. The first abstaining algorithms (Punzi et al., |2025)) were introduced in the 1970s for clas-
sification tasks (Chow, [1970), giving rise to an entire research field known as learning to reject
(L2R) (Zhang et al., |2023)), selective classification (SC) (El-Yaniv and Wiener, 2010), or machine
learning with a reject option (Hendrickx et al., 2024)). While conceptually related and often inter-
changeably named, these approaches exhibit subtle algorithmic differences. L2R requires defining
a class-wise cost function that penalizes both mispredictions and rejections (Cortes et al.,[2023)). In
contrast, SC imposes different constraints: the rejection policy can be learned by either setting a tar-
get coverage and minimizing risk (bounded-abstention) (Geifman and El-Yaniv,|2019; |Pugnana and
Ruggieri, 2023ajb), or establishing a target risk and maximizing coverage (bounded-improvement)
(Gangrade et al., 20205 |Geitman and ElI-Yaniv, 2017)). More generally, the goal of abstaining algo-
rithms is to learn a model comprising two key components: a prediction function and a rejection
policy (see Section [3|for the formal definition). These can be learned either independently or jointly,
with varying levels of access to information depending on the specific architecture (Punzi et al.,
20255 \Hendrickx et al., 2024). The types of samples targeted for rejection typically fall into two
main categories: ambiguities, where the model struggles to distinguish between multiple plausible
classes, and novelties, which lie outside the distribution of known training data. A model with the
reject option can also be formulated within the framework of conformal prediction (CP) (Linusson
et al.| 2018} [Hallberg Szabadvary et al.| 2025])), which refers to a class of distribution-free statistical
methodologies for assessing uncertainty in predictions. Unlike typical approaches that yield a single
top prediction based on the highest confidence score, CP generates a set of predictions designed to
include the true label with a user-defined probability level (Vovk et al.,|2005). According to |Linus-
son et al.| (2018)), confidence-credibility predictions may be used to establish a classification model
with a reject option by assessing the cumulative error count on a set of predictions generated by a
conformal classifier, ordered by their confidence levels. More recently, [Hallberg Szabadvary et al.
(2025) extends this formulation by integrating the distinction between ambiguities and novelties in
the rejection policy.
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Explainable AI Explainable Al (XAI) encompasses a range of methodologies designed to en-
hance the transparency and interpretability of Al systems, particularly those relying on black-box
machine learning models (Bodria et al.l [2023} |Guidotti et al., [2018). The primary goal of XAI is
to support Al-driven decision-making by generating explanations that enable users to comprehend,
trust, and assess model predictions. In critical domains such as healthcare and finance, explainabil-
ity also plays a key role in promoting fairness, accountability, and adherence to regulatory standards
(Ali et al.2023). A common strategy in XAl involves deriving explanations from a surrogate model
trained post-hoc to approximate the behavior of the original black-box system (Lundberg and Lee,
2017; |Guidotti et al.,2024; Ribeiro et al., [2016). These post-hoc methods are generally categorized
as either model-specific or model-agnostic, depending on whether they rely on the internal structure
and training process of the black-box model. In particular, a model-agnostic approach provides ex-
planations without accessing the internal workings of the model. Additionally, XAl techniques can
be classified as either global or local: global methods aim to describe the overall decision-making
process of the Al model, while local methods focus on explaining individual predictions (Bodria
et al., [2023).

Explainability of the reject option While L2A algorithms are designed to enhance user trust, they
simultaneously introduce a new layer of opacity through their rejection policy, potentially compro-
mising transparency and trustworthiness. Research addressing this limitation remains scarce. Most
recently, |Artelt et al.| (2023)) extends previous work (Artelt and Hammer, [2022; |Artelt et al., [2022)) to
develop a local model-agnostic technique for post-hoc explanation after rejection: given a data point
rejected by a conformal prediction rejection policy, this method generates a local surrogate model
around that instance and uses this surrogate model to provide explanations (either counterfactual,
semi-factual or factual). Our proposal extends this work by using the distance of counterfactuals
from the original data points as the rejection criterion, thereby rendering our method model-agnostic
and explainable by design. Related to our work are also the contributions by |Singla et al.| (2023)),
which refines an overconfident classifier using counterfactual explanations to improve uncertainty
estimates, and by [Lenders et al.|(2024)), who introduce a fair interpretable abstention classifier that
provides some explainability for rejections; these explanations concern only rejections that are based
on fairness concerns. In other words, the explanations for abstention provided by their method are
rooted in local and global fairness analysis of the model’s prediction and data.

3 SETTING THE STAGE

3.1 PROBLEM SETTING AND BACKGROUND

The goal of selective classification algorithms is to learn a model f,, that consists of two components,
namely a predictor f and a rejection policy g. The former is defined as a function f : X — ),
where X denotes the feature space and ) the target space, while the latter is generally defined (at
inference time) as g : X — {0, 1}. In this paper we focus on dependent rejectors (Hendrickx et al.,
2024) where the policy g depends on the predictor f through a confidence function ¢y : X — Ry
and a certain threshold 7., such that g = 1{(: r(z) > 77,.} where 1 is the indicator function. The
confidence function should provide a proper estimation for the true confidence of the model f (Franc
et al.,|2023). The composed system is then defined by a function f, : X — Y (J{0} such that:

f(z) ifg(z) =1,
Jo(@) = {(/) if g(z) = 0. M
Given an instance z, if the rejection policy g rejects it, then no prediction is made; conversely, if
g accepts x, then the prediction function f is applied to = and the outcome f(x) is observed. In
this study, we assume f to be a binary classifier. Ideally, g should be able to accurately capture
the decision boundary of f, rejecting the examples on which f is prone to make mistakes while
accepting those where a correct prediction is more probable. The policy g can be learned with the
bounded-abstention methodology (Pugnana et al., 2024; |Geifman and El-Yaniv, [2017): let ¢(g) =
E[g(X)] be a coverage function that computes the expected number of accepted instances of g
over some set X. Let Xipqin, Xcal, and Xyes; be the training, calibration, and test sets sampled
from some dataset D, respectively. We learn g by sorting X.,; with the confidence function c:
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cy < c@) < ... < ¢(|x.))5 then select threshold 7, corresponding to the percentile of a target
coverage ¢(g) = C
1 |Xcal‘
7 = inf{r : —— Hepn<rt>0-C 2)
{ |Xml|z {e@y <7} >(1-0)}

i=1
To keep this work self-contained, we present the formal definition of counterfactual explanation.
Given aninstance x € X, aclassifier f, and a distance metricd : X xX — R>¢ (e.g., the Euclidean
distance), a counterfactual instance is defined as an element of the set X’ : {2’ € X | f(a') #
f(x) A&’ = argmind(z,2’) }, and such that, for a given distance metric d : X x X — Rxq (e.g.
the Euclidean distance), d(x, =) is minimal.

3.2 THE SC-CE METHODOLOGY

The objective of our methodology is twofold: (i) learn an interpretable rejection policy that deter-
mines whether test examples should be directed to the black-box classifier for prediction or not, and
(ii) generate a human-interpretable explanation for the decision to abstain. We propose to imple-
ment a dependent rejection policy based on a confidence function that quantifies the uncertainty of
the prediction of a classifier on a given instance by measuring its proximity to its closest counter-
factual. Intuitively, finding a counterfactual near the decision boundary should be “easy”, due to the
relatively short distance that needs to be traversed to transition from one side of the decision bound-
ary to the other. In turn, this short distance suggests a high level of uncertainty in the classifier,
which can be interpreted as a reason for abstaining from making any prediction, i.e., if an instance
and its counterfactual are too similar, the machine is likely unsure in the prediction. Conversely, if
the distance of a test example from its counterfactual is sufficiently large, it can be inferred that the
classifier possesses a considerable level of confidence in its prediction. Having this formulation, we
are able to build a rejection policy without accessing the classifier’s prediction probabilities. While
prediction probabilities are usually available, they may not be so in contexts where a model is pro-
vided by third-party entities that keep it closed-source or when the model is protected for privacy
reasons. Our methodology makes it possible to both explain and equip any model with a rejection
policy to bolster its performance on the accepted instances. The complete SC—CE pipeline requires
only the hard prediction queries f(z) € ), without the need for gradient information, probability
score, or architectural knowledge.

3.2.1 LEARNING THE REJECTION POLICY

The conceptual basis of our framework is that the distance between an input instance and its coun-
terfactual explanations can serve as a proxy for the confidence score of a black-box model, hence
enabling the computation of an accurate rejection policy. In SC—CE, the definition of the confi-
dence function cy that determines the rejection policy g depends on the generation of counterfactual
instances X'. More precisely, given a counterfactual explainer (Guidotti, [2024):

E:x — X, E(x) =X, ={z},...,2,},
SC—CE computes d(x,2") for all pairs (x,2’), ' € X/ and then derives a surrogate confidence ¢4

for the model on x by applying a user-selectable aggregation function a (e.g. min, max, mean) over
the set of distances:

ci(z) = of{d(z,2') 2" € X.}). 3)

Note that whenever the counterfactual instances in X’ are chosen to minimize the distance function
d used to compute cg4, then they should all have the same distance from x; hence, Eq. equation
simplifies to cq(x) = d(z,z}). However, since different metrics can be employed to estimate
minimality in the counterfactual extraction stage, we keep the more general formulation, allowing
a flexible choice of aggregation. The same simplification applies when the explainer F returns one
single valid counterfactual. We then use c4(x) to inversely rank a calibration set, following Eq.

Cy(7) =ﬁ S ealw) > 7},

€ Xcal (4)
7. =inf{r : Cy(1) > C}
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Note that the above can also be formulated in terms of the rejection (or abstention rate), which is
simply defined as 7, (7) := 1—C, (7). This modular design allows us to plug in any black-box coun-
terfactual explainer E (for instance, LORE, DiCE, etc.), any distance metric d (such as Euclidean,
Manhattan, mixed, or feature-weighted), and any aggregation policy a (minimum, maximum, or
mean).

Finally, the rejection policy ¢ is formulated so that data points whose distance from their closest
counterfactual is less than the specified threshold 7, are deemed too uncertain to be predicted by the
classifier f and are thus rejected:

1 ifeq(z) > 7,
0 otherwise.

9@ ca,7y) = { )

We note that, following Eq. [T} the policy returns 1 if an instance is accepted. Therefore, the distance
computed in Eq. [3] must be greater than the threshold to accept an instance. If X! = {2/} =
|X!| = 1, SC-CE can also be formulated in terms of conformal prediction by setting the non-
conformity to S(z) = d(ml;(w)) = d(x{m,) and then using the rejection rate as the p-value. We

provide the exact percentile and p-value recipe in the Appendix

3.2.2 GENERATING EXPLANATIONS OF REJECTION OUTCOMES

The output of SC—-CE provides the user with complementary pieces of information that, taken to-
gether, support an informed interpretation and appropriate use of the system: i) the classifier’s pre-
dicted label g, ii) the decision of the rejection policy g(z) € 0, 1, and iii) a multi-modal explanation
of the rejection policy’s outcome.

The third component is the distinctive feature of SC—CE. Whereas conventional selective classifiers
merely report whether the confidence in the most likely outcome lies above or below a threshold,
our method additionally explains why the confidence measure falls on one side of the threshold for
a given instance. Because the cutoff is calibrated according to the distance between an instance
and its counterfactuals, these counterfactuals can be directly used to interpret the abstention policy.
Specifically, for each rejected instance, SC—CE provides a multi-modal explanation that combines
textual and visual elements: a brief message informs the user that whether the model is sufficiently
confident to make a prediction, a bar plot shows the position of the instance-counterfactual distance
relative to the rejection threshold, and an additional panel illustrates a minimal change to the input
that would lead to an alternative prediction, thereby offering insight into the model’s rationale for
rejection.

Importantly, SC—-CE does not use counterfactuals in the conventional sense, namely, to suggest min-
imal changes needed to make a rejected instance accepted. Because counterfactuals are constructed
to lie close to the decision boundary, they often illustrate proximity to the boundary and therefore
typically lie in the model’s uncertainty region. However, in our formulation, this depends on the
aggregation a, the chosen distance d, and the local shape of the decision boundary; thus, counter-
factuals may but do not necessarily always trigger rejection themselves. We therefore present coun-
terfactuals as visual/contrastive indicators of boundary proximity rather than as guaranteed rejected
instances.

4 EXPERIMENTS

Through our experiments, we directly address the following research questions:

RQ1 Given a data point, can its distance from an appropriate counterfactual be considered a good
proxy for the confidence of the ML model?

RQ2 Does SC-CE achieve comparable results to state-of-the-art selective classifiers in terms of
predictive performance (i.e., non-rejected accuracy)?

RQ3 Can SC-CE provide human interpretable explanations of the ML algorithm about the rationale
behind the reason to abstain from making a prediction?
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CA
‘ NA= G <ol
Accept  Reject CA+ MR
Correct CA CR CQ_C’A+C’R+MA+MR€[O’1]'

Misclassified MA MR

MR\ /(MR+ MA
he = (CR)/<CR+CA ) € [0, +oc].

Table 1: Left: Confusion matrix for a selective classifier. Right: formal definitions of the evaluation
metrics used in the experiments.

4.1 EXPERIMENTAL SETTING

Dataset and classification models We evaluate SC-CE with standard benchmark datasets on
binary classification with synthetic and real data: Adult (Becker et all [1996), German (Dua
and Graff, [2019) , Wisconsin (Street et al., [1993), and Two-Moons.These datasets are openly
available benchmarks commonly used in the evaluation of selective classification algorithms (Pug-
nana et al.| [2024). Each dataset was partitioned into training, calibration, and test subsets, with
the training subsets employed to fit four distinct classification models (LightGBM, Multilayer
Perceptron (MLP), Random Forest, and XGBoost) using 5-fold cross-validation for hy-
perparameter optimization. Detailed specifications of the hardware setup used for our experiments
and a statistical description of the datasets used can be found in the Appendix [C]

Counterfactual generators We validate our framework with different methods for counterfactual
generation: DiCE (Mothilal et al., [2020) balances proximity and diversity,LoRE (Guidotti et al.,
2024) builds local decision tree surrogate models, and ILS (Piaggesi et al.,[2024) which computes a
latent space L through a linear interpretable transformation (X', )) — £ and then uses an encoder-
decoder architecture to generate counterfactuals in £. As the space £ maintains semantic validity, a
comparison between an instance and its counterfactuals can be computed both in the input and latent
spaces. In our work, we refer to these variants as ILS and ILS;4¢ent, respectively.

Distance metrics To quantify the relationship between an instance x and its counterfactuals
2’ € X', we evaluate several distance metrics. Indeed, each formulation captures different aspects
of the relationship between instances and their counterfactuals. For example, L; and Lo norms
measure absolute differences, while cosine distance captures orientation differences regardless of
magnitude. Given the pivotal function of this component in the SC-CE framework as proxies for
model confidence, we assess several formulations of distances to verify our first reasearch question
and determine which distance best correlates with the model confidence. After preliminary experi-
ments, we selected a subset of metrics that exhibited the most promising results. Lo A complete list
of the metrics considered is provided in the Appendix [E]

Selective classification baselines To assess the efficacy of SC-CE, we compare it with two base-
line state-of-the-art selective classifiers. The first is PlugInRule (Herbei and Wegkamp), [2006),
which uses the predicted probabilities of the underlying classifier to fit a rejection threshold and
PlugInRuleAUC (Pugnana and Ruggieri, |2023b), a variant of PlugInRule that uses the area under
the ROC curve (AUC) as the performance metric to determine the optimal threshold for rejection,
which improves performance in cases where the class distribution is imbalanced.

Evaluation metrics The evaluation of an ML model with a reject option requires metrics that
assess both the predictor and the rejection function: an ideal selective classifier should achieve high
accuracy on non-rejected examples while maintaining a low rejection rate (Hendrickx et al., [2024)),
i.e., should reject the misclassified samples. Several metrics exist to evaluate SC (Condessa et al.,
2017), we employ Non-rejected Accuracy (IV A), Classification Quality (C'Q), and Rejection Quality
(RQ) in our analysis. Following the terminology introduced in Table [T} they are defined as: N A
represents the accuracy on the subset of accepted samples, computed as the ratio of correct examples
to total accepted instances. It is noteworthy that models with higher rejection rates may be favored
when using this metric alone. R() represents the rejection policy’s ability to reject misclassified
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examples, computed by comparing the ratio of misclassified examples on the rejected subset with
the ratio on the complete dataset. C'Q is an assessment of the classifier’s performance on the set
of non-rejected samples and the performance of the rejector on the set of misclassified samples.
We report only the plots of VA to illustrate the performance-rejection trade-off of our approach
compared to baselines. The complete analysis for NA, CQ, and RQ), is provided in the Appendix

Sampling strategy for the distance With bounded abstention, once a target coverage C'is defined,
the i-th percentile of the ranked calibration set X.,; is taken as a reference to set the right rejection
threshold 7,.. Because these distances inhabit a strictly non-negative space, often a right-skewed
space shaped by the model’s decision boundary, we experimented with our method not only through
linear sampling but also through Gamma sampling, which we expect to reflect the empirical distri-
bution of distances better, yielding lower-variance percentile estimates. To do so, we fit a Gamma
distribution to the distances computed over the calibration set and then estimate the percentiles as
for bounded abstention.

4.2 RESULTS

RQ1 - Correlation with model’s confidence We study the correlation between the instance-
counterfactual distance computed on the calibration set of each dataset and the prediction proba-
bility of each classifier, the latter being a proper confidence metric for classification (Herbei and
Wegkamp, |2006)). Table [Z]presents the results for the three most correlated distances, for all datasets
and all models, with all counterfactual generation methods. From the table, we can see that gener-
ally using ILS;4tent yields good and fairly consistent correlations with L, distance, indicating that
indeed a form of counterfactual distance can serve as a good proxy for the confidence of a classifier.
Naturally, this heavily depends on the shape of the decision boundary of the classifier, as highlighted
by the differences between the different models for the same dataset. The complete tables with the
correlations between the instance-counterfactual distances metrics and the prediction probability
for the Wisconsin dataset (computed on the calibration and test set, grouped by counterfactual
generation method, for every black box) are in the Appendix [G]

Dataset Metric LightGBM MLP Random Forest XGBoost
DiCE ILS ILSigtent LORE | DIiCE ILS ILSiatent LORE | DiCE ILS ILSiatent LORE | DIiCE ILS ILSigtent LORE
Bray-Curtis | 0.74 095 0.93 0.64 | 078  0.86 0.93 070 | 075  0.90 0.89 070 | 0.67 094 0.90 0.64
Adult Cosine 0.64 091 0.93 050 | 071  0.85 0.91 052 | 070 0.86 0.95 0.57 | 058 091 0.93 0.49
Ly 033  0.68 0.90 046 | 035 023 0.73 042 | 030 0.04 -0.05 048 | 029 079 0.90 0.46
Bray-Curtis | 037  0.73 0.73 029 | 031 042 0.42 039 | 052 078 0.78 0.67 | 041 073 0.73 0.47
Wisconsin  Cosine 0.21 0.72 0.72 0.27 0.17 0.53 0.53 0.39 0.28 0.73 0.73 0.58 022 0.69 0.69 0.46
Lo 020 053 0.53 0.31 0.21  0.58 0.58 0.55 | 034 082 0.82 0.63 | 026 058 0.58 0.54
Bray-Curtis | 0.19  0.07 0.69 039 | 043 -022 0.57 0.63 | -0.03 089 0.97 044 [ -0.13 0.I1 0.68 -0.19
German Cosine 0.17  0.04 0.73 0.15 031 -0.40 0.60 031 | -007 092 0.97 024 | -0.14  0.06 0.72 -0.30
Ly 030 -0.18 0.74 0.50 | 046 -0.40 0.57 075 | 0.10 083 0.99 0.58 | 0.05 0.14 0.73 0.05
Bray-Curtis | 0.18  0.25 -0.04 -0.07 | 044 -0.17 -0.20 007 | 041 0.1I5 0.26 -002 | 037 020 0.04 0.03
Two-Moons  Cosine -0.10 023 0.18 0.07 | -0.01 001 0.58 -0.04 | -0.04 0.09 0.36 -0.08 | 0.01 0.17 0.23 0.03
L, 048 026 -0.03 026 | 074 021 -0.20 0.37 052 041 0.45 0.17 | 0.60 0.13 0.14 0.32

Table 2: Correlation between the top 3 distances (using min as aggregation function) and the pre-
diction probability of each ML model on the calibration set.

RQ2. SC—-CE performance against benchmarks The direct comparison of our method with the
two baseline selective classification models is evaluated through the performance metrics introduced
in Section[3} non-rejected accuracy N A (see Figure[2) classification quality C'Q) and rejection qual-
ity RQ. The complete results can be found in the Appendix [H] Our results suggest that SC-CE
matches the performance or even exceeds the baselines, consistently for almost all target coverages.
While in the case of C'Q) all SC-CE methods show similar performance, when considering the NV A,
we find that ILS and ILS;4en: €merge as the preferred method to realize an effective rejection
policy.

Our experiments systematically compared a wide range of counterfactual generation and rejection
methods across several datasets and models. The Friedman test with o = 0.05 has been used for
the statistical analysis. The results show that, across all datasets and models, the best-performing
rejection policy in terms of NR is the PlugInRule, followed by our proposal, specifically multiple
combinations utilising LoRE as the counterfactual generator method with various distance functions
(e.g., mean absolute error, L; and Wasserstein metrics), all aggregated with the minimum. Likewise,
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Figure 2: Non-Rejected Accuracy performance curves for the German and Adult dataset on the
four classifiers: RF, m1p, xgboost and LGBM. In the plots, the x-axis indicates the target coverage,
while on the y-axis we find the N A, with higher values indicating better performance. In the legend,
we indicate with « symbols the SC—-CE implementations where the percentiles are computed while
fitting a Gamma distribution over the distances, while the two benchmarks are indicated with black
lines. We present results only for the best 6 counterfactual methods for each combination of dataset
and ML model.

when examining performance on each individual dataset, SC-CE always demonstrates competitive
performance, particularly when using the counterfactual generation techniques ILS;¢ep: and DiCE.
In all cases, the statistical comparison of selective classification performance indicates no statisti-
cally significant differences (p-value > 0.05) between the top-performing SC—CE combinations and
the benchmark methods, confirming that our proposed method attains state-of-the-art performance
while providing the additional benefit of interpretable explanations. The full critical difference dia-
grams are available in Appendix

RQ3. SC-CE explanations Figure[I6|displays an example of the explanation provided by SC-CE
in the case of a rejected instance selected from the Adult dataset. In this case, the method refrains
from making a prediction due to uncertainty near the decision boundary and instead provides a multi-
modal explanation for the decision to abstain. By employing the explanatory format delineated in
Section[3] SC—CE aims to clarify to a prospective user of the system that no reliable prediction can
be rendered, as the input lies within an uncertainty region of the ML model. To support this claim,
it shows that opposite outcomes may be achieved with only marginal modifications to the input,
thereby invalidating any prediction.

Furthermore, in Appendix [[] presents an example of output provided by SC-CE for an
accepted test instance of the Adult dataset. This output contains a multi-modal explanation analo-
gous to the rejection scenario in addition to the ML prediction.
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Instance-Counterfactual Distance Bar Although the model leans toward >50K, an almost identical case would
Coverage=75% produce the opposite prediction, indicating high uncertainty:
IDENTICAL FEATURES MINIMAL CHANGES TO FLIP THE

PREDICTION TO <=50K:
Demographic information

o Age: 52 years old Demographic information
o Sex: Male o Education: High School — Less
o Marital status: Married-civ- than High School
ACCEPT spouse
safe Al prediction o Relationship: Husband
o Race: White

o Native country: United-Sta

Work-related information
o Workclass: Private
o Occupation: Tech-support
o Hours per week: 40
hours/week

—————————————— T=0.1501

REJECT

uncertainty zone Financial information

o Capital gain: $0
o Capital loss: $0

0.0588

-0

Figure 3: Example of explanation generated by SC—CE for a rejected test instance of the Adult
dataset. The output includes a banner warning the user that the Al system cannot provide a prediction
for the input due to its placement inside the model’s uncertainty zone, along with instructions to
properly interpret the figures.

5 DISCUSSION AND CONCLUSION

We have introduced Selective Classification via Counterfactual Explanations (SC-CE), a novel
framework for selective classification that implements contrastive and model-agnostic explanation
of the reject option using only hard predictions. SC-CE employs a rejection policy that considers
the distance between input data and their counterfactuals as a proxy for model confidence. SC-CE
is thus able to provide a multi-modal counterfactual explanation to clarify what is contributing to
the classifier’s uncertainty. The experimental results demonstrate that the distance between an in-
put and its counterfactual explanations provides a viable proxy for model confidence, confirming
our hypothesis that “easy” counterfactuals (i.e., small perturbations) correspond to low confidence,
and vice versa. In terms of selective classification performance, SC-CE matches or surpasses the
non-rejected accuracy of state-of-the-art baselines (PlugInRule, PlugInRuleAUC) across both the
German and Adult datasets and all four learning models. Notably, employing a Gamma-fitted per-
centile () often reduces variance at extreme coverage targets, yielding smoother accuracy-coverage
curves than linear sampling of empirical order statistics. In addition to quantitative performance,
SC—CE offers a human-readable explanation for rejection by directly employing the estimation of
counterfactuals. This transparency directly addresses the opacity of conventional rejectors and en-
hances user trust in high-stakes decision-making scenarios.

5.1 LIMITATIONS AND FUTURE WORKS

The generation of counterfactuals requires non-trivial computational overhead. The use of a single
global threshold 7 rather than region-specific ones may overlook local heterogeneity in the feature
space. The instance-counterfactual distance is primarily a measure of boundary proximity (am-
biguity) and does not reliably detect novelties or out-of-distribution (OOD) inputs. We therefore
recommend combining SC—-CE with an explicit OOD/novelty detector (e.g., density estimators, re-
construction error, or a conformal novelty procedure) when novelty detection is required. Nonethe-
less, the modularity of SC—CE facilitates extensions such as integrating a deferral policy (Mozannar
et al.l 2023)) that routes ambiguous cases to specific human experts, exploring the abstention policy
for anomaly and novelty detection, possibly leveraging the cardinality of the set of admissible labels
in close proximity to the input data through conformal prediction (Hallberg Szabadvary et al.,|2025)),
expanding the explanation with guidance on how to turn a rejected instance into an accepted one,
and conducting user studies to assess the subjective clarity and utility of counterfactual explanations
in real-world decision workflows. Our framework, further strengthened by these advancements, pro-
vides a practical approach to reliable human-AlI collaboration where ML predictions are supported
by both abstention mechanisms and interpretable features.
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REPRODUCIBILITY STATEMENT

The anonymized code repository can be found and downloaded at: https://anonymous.
4open.science/r/L2R-CE_/Readme.md. A description of the hardware, classification, and
counterfactual generation methods, training process, and distance functions employed in the exper-
iments is provided in the Appendix, along with additional numerical and graphical results for each
research question.
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APPENDIX

A CONFORMAL PREDICTION FORMULATION

When a single canonical counterfactual E(x) = 2’ is returned, SC—CE scores can be embedded in a
split-conformal calibration to obtain distribution-free guarantees. Define a nonconformity score on
the calibration set as

1
d(xi, E(x:))’

so that larger « indicates closer counterfactuals (higher nonconformity/uncertainty). For a target
coverage level 6 € (0,1) compute the (1 — d)-quantile ¢;_s of the calibration scores {«;} using
the usual conformal quantile, i.e. the [(1 — §)(nca + 1)]-th smallest value. For a test point = define
Quest = S(x). A conservative rejection rule is

Q; = S(.’l?l) =

i:17...,ncal,

reject r <= Quest > G1—s6-
Equivalently, the conformal p-value may be computed as

_ Hi: o > cues}] +1

Necal + 1

and the instance is accepted only when p(x) > 4. This follows the standard split-conformal calibra-
tion procedure.

p()

)

B HARDWARE

All experiments were conducted on a high-performance workstation running Ubuntu 22.04.5 LTS,
equipped with an Intel® Core™ i9-10980XE CPU @ 3.00GHz (18 cores, 36 threads), 251 GB of
memory, and two NVIDIA GPUs: a Quadro RTX 6000 for compute-intensive tasks and a GeForce
GT 1030 for display. The system was configured with NVIDIA driver version 535.247.01.

C DATASET DESCRIPTION

Dataset | Features | Samples | Class Ratio
Two—-Moons 2 1000 50:50
Adult 12 48842 76:24
German 20 1000 70:30
Wisconsin 30 569 63:37

Table 3: The Datasets considered for the experiments are tabular data.

D HYPERPARAMETER OPTIMIZATION

Black box classifiers The hyperparameter is determined by doing a cross-validation on the train-
ing set with 5 folds. The best hyperparameters are selected based on the average accuracy across
the folds. The hyperparameter search is done using a random search approach, where some com-
binations of the specified options are evaluated. While not of great importance, the hyperparameter
search is done to ensure that the models are not overfitting or underfitting the data. The hyperpa-
rameters and their possible values, specific for each black box model, can be found in Table E}

In the Table 5] there are the best hyperparameters selected for each model and dataset. The hyper-
parameters are chosen based on the average accuracy across the folds.

Counterfactual Generators: DiCE and LoRE We used fixed hyperparameters for the generation
of the counterfactuals when using DiCE and LoRE. For DiCE we used the proximity weight equal
to 0.5 and as a method kdtree. For LoRE we used the genetic option for the neighborhood
synthesis.
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Model Hyperparameter Values
num estimators 50, 100, 150
RF max depth 6, 10, 30, None
min samples split 2,5, 10
min samples leaf 1,2,4
num hidden layers 1,2
mlp hidden neurons 32,64, (32, 32), (64, 32)
learning rate 0.001, 0.01, 0.1
max epochs 150, 300, 500
num estimators 50, 100, 150
xgboost max depth 3,6,9, None
learning rate 0.01, 0.05, 0.1
min child weight 1,3,5
num estimators 50, 100, 150
LGBM max depth 6, 10, 30, None
learning rate 0.01, 0.05, 0.1

Table 4: Hyperparameter configurations for different models, including RF, mlp, xgboost, and
LGBM. The choices for each hyperparameter are specified.

Model Hyperparameters | German | Adult | Wisconsin | Two—-Moons
num estimators 50 150 50 50
RF max depth 10 30 10 10
min samples split 2 5 5 5
min samples leaf 1 4 1 1
hidden layers 1 1 1 1
mlp hidden neurons 64 32 64 32
learning rate 0.001 0.01 0.01 0.1
max epochs 150 300 300 500
num estimators 150 150 150 50
xgboost max depth 6 6 9 None
learning rate 0.1 0.1 0.1 0.01
min child weight 1 1 3 3
num estimators 100 100 100 50
LGBM max depth 10 30 None 30
learning rate 0.05 0.05 0.05 0.01

Table 5: Best hyperparameters identified for each model and dataset through our optimization pro-
cess.

Counterfactual Generators: ILS ILS is optimized using a hyperparameter search using a strati-
fied 3-fold random search, looking for 20 different random combinations within the hyperparameter
space composed of:

* latent space dimensions: 2, 3, 4,

¢ batch size: 4, 8, 16, 32, 64, 128,

* learning rate: 0.0001, 0.001, 0.005, 0.008, 0.01

e sigma: 0.5, 1.0, 2.0
for a maximum of 2000 epochs with an early stop of 50 for the German, Two-Moons, and
Wisconsin datasets, while 70 for Adult. What is optimized during the hyperparameter search is
the KL-loss function of ILS, on the calibration set. We found that the ILS’ best hyperparameters
do not vary when varying the black-box model, but they remain the same across the dataset. For
the German we found the best latent dimension to be 4, the best batch size to be 4, the learning

rate equal to 0.0001, and 0=0.5; for the Adult dataset and Wisconsin, the best hyperparameters
remained the same. ILS represent the space (X)) in an analogous way, performing best when
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the number of dimensions is higher, while approaching the solution very slowly, having the lowest
possible learning rate and the lowest batch size as well.

We do report that a different combination was obtained for the Two-Moons, which was indeed
different: latent dimension=3, batch size=16, learning rate=0.001, and o=1.0.

E DISTANCE FUNCTIONS

Distance metrics A central element of our approach is quantifying the relationship between an
instance and its counterfactuals. The choice of distance metric significantly impacts how this rela-
tionship is measured, as different metrics capture different aspects of the feature space. We explore
a diverse set of distance functions to identify which best correlates with model confidence.

Given an instance x to be selectively classified and a counterfactual c in its set of counterfactuals
X., we compute distances using multiple metrics. After preliminary experiments, we selected the
following subset for our final analysis:

 Standard norm-based distances:

Ly (Manhattan): d(z,c) = || —c[1 =), |z; — ¢

L, (Euclidean): d(z,c) = ||z — c|l2 = /D> (xi — ¢;)?
Squared Euclidean: d(z,c) = >, (z; — ¢;)?
Chebyshev (Loo): d(z,¢) = ||z — ¢l = max; |x; — ¢;]

 Similarity-based measures:

— Cosine distance: d(x,c) =1 — -
=Nl

— Bray-Curtis distance: d(z,c) = %

* Other specialized distances:
- MAE (Mean Absolute Error): d(z,c) = + 3, |z; — ¢

— Minkowski: d(z,c) = (3, |z; — c;|P)7
— Wasserstein: A statistical distance between probability distributions

The diversity of these metrics allows us to thoroughly investigate our hypothesis that distance from
counterfactuals serves as a proxy for model confidence. Each metric offers a different perspective:
norm-based distances measure absolute differences in feature space; similarity measures capture
orientation differences regardless of magnitude; while specialized distances like Wasserstein can
better handle distributional shifts. For instance, L is less sensitive to outliers than Lo, while cosine
distance focuses on angle rather than magnitude, which is valuable for high-dimensional spaces.

This comprehensive evaluation provides insights into which geometric properties of the instance-
counterfactual relationship best indicate the reliability of model predictions, directly addressing our
first research question (RQ1). The full tables reporting the correlations between the confidence of the
classification model and the instance-counterfactual distance, for all considered distance functions,
are displayed in Section [G|for the dataset Wisconsin.

F CRITICAL DIFFERENCE DIAGRAMS

Here we report the critical difference diagrams. We focus our statistical analysis on Non-Rejected
Accuracy as it captures the primary objective of rejection learning: prediction quality on retained
instances. Evaluating the quality of counterfactual explanations would require either user studies or
XAI metrics that are known in the literature to lack robustness.

The critical difference diagrams provide a comprehensive view of method performance
across different datasets and experimental conditions. Each method name follows the
format: [Counterfactual Generator] - [Distance Function] [Aggregation
Method], where counterfactual generation includes the ones described in the paper, the distance
functions are those listed in[E] and aggregation methods include min, max, and mean.
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For each test, the methods are ranked by mean performance across target coverage levels ranging
from 50% to 99%. Than a Friedman test is performed using a significance level of & = 0.05. The
critical difference (CD) is computed based on the number of methods and datasets, and methods that
are not significantly different are connected with a horizontal line. The higher the rank (leftmost in
the plot), the better the performance of the method.

Best 16 methods (ranked by mean)
across 4 datasets, on Non-Rejected Accuracy, on all models - No significant difference

2 4 6 8 10 12 14 16
L L L L L L \

PlugIinRuleAUC (2) (13) PlugIinRule
ILS/atent - COSIN€mean (2.5)— ——(11) LORE - maenmin
LORE - 11}, (4.5)——— ———(11) LORE - I1n
LORE - mae};, (5.7)——— (11) LORE - wasserstein! ;.
LORE - chebyshev),;, (9) (10) LORE - wassersteinmi,
LORE - inf?;, (9) (9.8) LORE - sqeuclideanp;n
LORE - I12¥, (9.1) (9.8) LORE - minkowsKimin
LORE - minkowskiY,;, (9.1) (9.8) LORE - 125

Figure 4: Critical difference diagram showing the best-performing rejection policies in terms of
Non-Rejected Accuracy (NA) across all four datasets and models. PluginRuleAUC achieves the
best overall performance, followed by ILS;,ten: With cosine distance and mean aggregation. The

absence of connecting lines indicates no statistically significant differences between top-performing
methods.

F.1 DATASET-SPECIFIC ANALYSIS

Figure [5] shows a pattern for Adult: counterfactual-based methods show competitive performance
alongside traditional approaches. Given the normalized feature space with target-encoded cate-
gorical variables, the prominence of DiCE, LoRE methods with Bray-Curtis distance suggests this
metric effectively captures relationships in the transformed feature representation. ILS appear in the
best performing when paired with Bray-Curtis distance (rank 7.6). The relatively high p-value indi-
cates that while there are performance differences, they may not be statistically robust, highlighting
the competitive nature of multiple approaches when working with standardized feature spaces.

Best 11 methods (ranked by mean)
on Adult, on Non-Rejected Accuracy, 4 models - p value 4.553E-1

2 4 6 8 10

PluginRuleAUC (1.6 H(8.5) ILS/atent - COSIN€mean
DICE - braycurtismax (4.4)————— L——(7.7) PlugIinRule
LORE - braycurtisps (5.3)——m8 L—(7.6) ILS - braycurtismean
DICE - braycurtismin (5.4) (6.8) ILS - cosinemean
DICE - braycurtisean (6.2) (6.4) DICE - braycurtis),,

(6.2) DICE - braycurtisY, ..,
Figure 5: Critical difference diagram for the Adult dataset showing rejection policy performance
across 4 models. PlugInRuleAUC maintains its leading position with a mean rank of 1.6, followed

by DiCE-based rejection policy using Bray-Curtis distance. DiCE methods perform competitively.

The German dataset results reveal a dataset where counterfactual-based rejection policies show
their strongest relative performance. The dominance of LoRE methods with Wasserstein distance
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is particularly noteworthy, as this suggests that optimal transport distances are well-suited to the
normalized feature space created by target encoding. The methods with the equivalent ranking ling
in the second half of the CD diagram, in Figure [] can be verified to reject the same instances or,
anyway, maintain the same non-rejected accuracy.

Best 11 methods (ranked by mean)
on German, on Non-Rejected Accuracy, 4 models - No significant difference

2 4 6 8 10

LORE - wasserstein),;, (31 H8.2) ILS/atent - infhyp
LORE - wassersteinm, (3.7)— L(8.2) ILSjatent - chebyshev) .
PluginRuleAUC (4.3) (6.8) ILSjatent - sqeuclideanmin
PluginRule (4.4)—— ———(6.8) ILS/atent - minkowskinmin
ILS/atent - chebyshev i, (6.8) (6.8) ILSjatent - 12min

—(6-8) ”—S/atent - im:min

Figure 6: Critical difference diagram for the German dataset across 4 models. LoRE methods with
Wasserstein distance with min aggregation achieve the top rankings, demonstrating the effectiveness
of optimal transport-based distances for this social-economic dataset. PlugIlnRule methods maintain
competitive performance but are outranked by the counterfactual-based approaches.

The Wisconsin dataset results demonstrate another scenario where the proposed ILS method
achieves strong performance, ranking second after the traditional PluginRule AUC. The effectiveness
of ILS with cosine distance in the normalized feature space suggests this combination is strong.
The presence of multiple ILS variants in the top tier in Figure[7indicates robustness across different
distance functions, while the relatively high p-value confirms the competitive nature of multiple
approaches in this domain.

Best 11 methods (ranked by mean)
on Wisconsin, on Non-Rejected Accuracy, 4 models - p value 5.154E-1

: : : :
PluginRuleAUC (1.4)- L(8) DICE - braycurtis) ..,
ILS - cosinemean (4.1)—— L—(7.7) DICE - braycurtis};,
PluginRule (5.2) L—(7.6) DICE - braycurtismin
ILS - braycurtis};, (5.5) L—(7.5) DICE - braycurtiSmean
ILS - braycurtismin (5.8) (6.6) LORE - infY ;.

(6.6) LORE - chebyshev!

Figure 7: Critical difference diagram for the Wi sconsin dataset across 4 models. PluginRuleAUC
maintains its leading position with a mean rank of 1.4, followed by ILS with cosine distance and
mean aggregation (rank 4.1). The dataset shows strong performance for ILS methods with both
cosine and Bray-Curtis distances, while DiCE and LoRE methods occupy middle-tier positions.

The Two—Moons results provide insights into method behavior on synthetic data with well-defined
decision boundaries. The strong performance of traditional plug-in methods aligns with expectations
for datasets where the underlying structure is relatively simple and geometric. The success of DiCE
methods with standard distance metrics (L1, L2) further supports the idea that synthetic datasets
with clear separability favor straightforward distance-based rejection strategies over more complex
counterfactual generation approaches.
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Best 12 methods (ranked by mean)
on Two-Moons, on Non-Rejected Accuracy, 4 models - No significant difference

2 4 6 8 10 12
L L L L ,

PluginRuleAUC (1.3) 1(8.1) DICE - inf}, .,
PluginRule (3)——— L(8.1) DICE - chebyshevy, .,
DICE - 11}, (6.3) |—(7.8) DICE - wasserstein), .
DICE - 11, (6.9) | (7.8) DICE - minkowskiY,,,
DICE - maeY,_, (6.9) L (7.8) DICE - 12}«
DICE - 12}, (6.9) (6.9) DICE - minkowski¥, ..,

Figure 8: Critical difference diagram for the synthetic Two-Moons dataset across 4 models. Plugln-
Rule methods secure the top two positions, with D1 CE methods using various distance functions (L1,
L2, and others) filling out the remaining top-tier positions. The clear performance hierarchy sug-
gests that simpler geometric relationships in synthetic data favor more direct rejection approaches.

Proposal’s performance varies across datasets despite consistent methodology. Different rejection
strategies show strengths on different data types, suggesting method selection should be data-driven
rather than universal. Minimum aggregation dominates in LoRE methods, while mean aggrega-
tion works well for ILS methods, indicating that different counterfactual generators may benefit
from different aggregation approaches. The absence of statistically significant differences among
top-performing methods, as indicated by the connecting lines in the critical difference diagrams,
suggests that multiple approaches can achieve comparable performance; the choice of method may
depend on other factors like computational efficiency or interpretability requirements; the proposed
counterfactual-based approaches are competitive with established baselines.
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G ADDITIONAL RESULTS FOR RQ1: CORRELATION WITH MODEL’S
CONFIDENCE

The following tables report the correlation between the instance-counterfactual distance metrics
computed on the calibration set of the Wisconsin dataset and the prediction probability of each
classification method, split by counterfactual generation method.

Wisconsin - calibration set - DICE

Correlations between distances and output probability of the model

mean - 0.052 0,021 0,033 .03 r 1.00
L0 min - -0.052 -0.021 -0.033 -0.03
max -
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max - 0.25 0.16 0.16 0.13
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= - mean - 0.34 0.21 0.26 0.2
o MINKOWSKI min - 0.36 0.22 0.26 0.21 -0.00
o | max - 0.29 0.18 0.22 0.12
o mean - 0.51 0.31 0.42 0.37
& CANBERRA 1 min - 0.51 0.27 0.41 0.34
0 max - 0.49 0.25 0.42 0.32
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SPEARMAN - min - 0.24 0.22 0.2 0.19
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I mean - 0.3 0.25 0.22 0.22
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max - 0.3 0.23 0.23 0.2
B mean - 0.32 0.24 0.22 0.22
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Figure 9: Distance-confidence correlation for the dataset Wisconsin and the counterfactual gen-
eration method DiCE
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Wisconsin - calibration set - ILS

Correlations between distances and output probability of the model

r mean - 0.49 0.18 0.61 0.48 r1.00
LO min - 0.47 0.13 0.59 0.38
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Figure 10: Distance-confidence correlation for the dataset Wi sconsin and the counterfactual gen-
eration method ILS

20



Under review as a conference paper at ICLR 2026

Wisconsin - calibration set - ILS_LATENT

Correlations between distances and output probability of the model
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| max - 0.72 0.57 0.61 0.66 -0.25
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Figure 11: Distance-confidence correlation for the dataset Wi sconsin and the counterfactual gen-
eration method ILS; ient
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Wisconsin - calibration set - LORE

Correlations between distances and output probability of the model
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Figure 12: Distance-confidence correlation for the dataset Wi sconsin and the counterfactual gen-
eration method LoRE
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H ADDITIONAL RESULTS FOR RQ2: SC—CE PERFORMANCE AGAINST
BENCHMARKS

Additional plots In this section, we include additional plots displaying our results regarding the
performance of top SC-CE combinations against the two chosen selective classification baselines,
PlugInRule and PlugInRule AUC on the benchmark datasets. Performance is computed as a function
of the target coverage. Specifically, we report:

the Non-rejected Accuracy N A of Wisconsin and Two-Moons in Figure[I3}

the Classification Quality C'Q of Wisconsin and Two-Moons in Figure[T4}
the Classification Quality C'Q of German and Adult in Figure I3}
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Figure 13: Non-Rejected Accuracy performance curves for the Wisconsin (top row) and
Two-Moons (bottom row) dataset on the four classifiers: RF, m1p, xgboost and LGBM. In the
plots, the xz-axis indicates the target coverage, while on the y-axis we find the NV A, with higher val-
ues indicating better performance. In the legend, we indicate with v symbols the SC-CE implemen-
tations where the percentiles are computed while fitting a Gamma distribution over the distances,
while the two benchmarks are indicated with black lines. We present results only for the best 6
counterfactual methods for each combination of dataset and ML model.
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Figure 14: Classification Quality metrics for the Wisconsin (top row) and Two-Moons (bottom
row) dataset. The upper plot shows performance curves. In the plots, the z-axis indicates the target
coverage while on the y-axis we find the VA or C'() metric, which in both cases ranges between 0
and 1, with higher values indicating better performance. In the legend of the figures, we indicate with
~ symbols the SC-CE implementations where the percentiles are computed while fitting a Gamma
distribution over the distances, while the two benchmarks are indicated with black lines. We present
results only for the best 6 counterfactual methods for each combination of dataset and ML model.
In the first plot, there is the RF, the second is the m1p, the third is the xgboost, and the last is the
LGBM.
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Figure 15: Classification Quality performance curves for the German (top row) and Adult dataset
(bottom row) on the four classifiers: RF, mlp, xgboost and LGBM. In each plots, the x-axis
indicates the target coverage while on the y-axis we find the C'Q, with higher values indicating
better performance. In the legend, we indicate with v symbols the SC-CE implementations where
the percentiles are computed while fitting a Gamma distribution over the distances, while the two
benchmarks are indicated with black lines. We present results only for the best 6 counterfactual
methods for each combination of dataset and ML model.
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Full tables The following tables report the performance of SC-CE and the two chosen selec-
tive classification baselines on all benchmark datasets. Performance is computed in terms of Non-
rejected Accuracy, Classification Quality, and Rejection Quality. As described in the experimen-
tal setting @[), SC—CE tested on all combinations of the selected counterfactual explainers E (i.e.,
LoRE, DiCE, ILS and ILS;4tent), distance metric d (e.g., Euclidean, Manhattan, cosine, etc.) and
aggregation policy a (i.e., minimum, maximum and mean). We limit the content of the following
tables only to the top performing combinations for each dataset D and black-box classifier f pair.
Specifically, we report:

* the Non-rejected Accuracy N A of German and Adult in Table[6}

* the Non-rejected Accuracy N A of Wisconsin and Two-Moons in Table[7}
» the Classification Quality CQ of German and Adult in Table (8}

» the Classification Quality CQ of Wisconsin and Two-Moons in Table [}

» the Rejection Quality R(Q) of German and Adult in Table[T0}

* the Rejection Quality R(Q) of Wisconsin and Two-Moons in Table[TT]
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s . Target Coverages
Dataset | Black Box | Rejection Policy 999% 95% 920% 85% ‘ 80% 5% 70% 65% 60%
PlugInRule 0.752 | 0.754 | 0.754 | 0.779 | 0.797 | 0.797 | 0.797 | 0.801 | 0.804
PlugInRuleAUC 0.752 | 0.779 | 0.779 | 0.785 ‘ 0.781 | 0.787 | 0.784 | 0.781 | 0.812
ILSatent - sqeuclidean]) . 0.752 | 0.774 | 0.788 | 0.793 0.799 | 0.818 | 0.826 | 0.835 | 0.853
ﬁ ILS - cosine}, . 0.752 | 0.753 | 0.784 | 0.793 0.807 | 0.821 | 0.828 | 0.830 | 0.831
ILS atent - cosine;) .. 0.752 | 0.768 | 0.785 | 0.795 0.798 | 0.809 | 0.819 | 0.832 | 0.835
ILS -inf), ... 0.752 | 0.758 | 0.774 | 0.788 0.799 | 0.818 | 0.827 | 0.826 | 0.848
ILS - wasserstein,,can, 0.752 | 0.768 | 0.773 | 0.775 0.798 | 0.810 | 0.827 | 0.839 | 0.851
PlugInRule 0.744 | 0.755 | 0.754 |1 0.756 | 0.758 | 0.764 | 0.760 | 0.759 | 0.767
PlugInRuleAUC 0.744 | 0.743 | 0.750 | 0.749 ‘ 0.752 | 0.757 | 0.762 | 0.757 | 0.774
o DICE - cosine,,qx 0.744 | 0.754 | 0.774 | 0.777 0.785 | 0.786 | 0.786 | 0.781 | 0.791
— DICE - cosine}, . 0.744 | 0.754 | 0.768 | 0.778 0.782 | 0.786 | 0.789 | 0.781 | 0.789
G DICE - cosine,ean 0.744 | 0.754 | 0.762 | 0.772 0.779 | 0.782 | 0.785 | 0.781 | 0.788
a DICE - 11,42 0.744 | 0.758 | 0.761 | 0.762 0.774 | 0.777 | 0.789 | 0.794 | 0.795
',g ILS - wasserstein, i, 0.744 | 0.751 | 0.757 | 0.759 0.772 | 0.789 | 0.794 | 0.792 | 0.791
a*, PlugInRule 0.744 | 0.749 | 0.752 | 0.758 ‘ 0.771 | 0.777 | 0.782 | 0.790 | 0.813
o » PlugInRuleAUC 0.744 | 0.749 | 0.752 | 0.764 | 0.765 | 0.763 | 0.761 | 0.772 | 0.794
a ILSiatent - 127, 0an 0.744 | 0.750 | 0.755 | 0.760 0.777 | 0.788 | 0.803 | 0.808 | 0.814
o ILSiatent - inf), .0 0.744 | 0.748 | 0.749 | 0.749 0.762 | 0.790 | 0.789 | 0.799 | 0.805
'3. ILSiatent - inf), 0 0.744 | 0.746 | 0.750 | 0.749 0.766 | 0.774 | 0.788 | 0.798 | 0.811
® ILS;atent - cosine], . 0.744 | 0.744 | 0.762 | 0.765 0.777 | 0.772 | 0.776 | 0.785 | 0.798
ILS;atent - cosine) . 0.744 | 0.744 | 0.760 | 0.762 0.767 | 0.781 | 0.779 | 0.778 | 0.804
PlugInRule 0.744 | 0.755 | 0.769 | 0.790 | 0.797 | 0.805 | 0.811 | 0.827 | 0.843
PlugInRuleAUC 0.744 | 0.744 | 0.753 | 0.753 ‘ 0.752 | 0.757 | 0.756 | 0.761 | 0.780
s LORE - 11 ,,in, 0.744 | 0.756 | 0.758 | 0.766  0.772 | 0.794 | 0.815 | 0.825 | 0.836
3 LORE - braycurtis,, i, 0.744 | 0.756 | 0.759 | 0.775 0.774 | 0.789 | 0.808 | 0.816 | 0.824
H LORE - 12,,;n, 0.744 | 0.756 | 0.757 | 0.762 0.772 | 0.787 | 0.806 | 0.827 | 0.838
LORE - wasserstein] . . 0.744 | 0.758 | 0.762 | 0.768 0.776 | 0.786 | 0.795 | 0.818 | 0.832
LORE - wasserstein, 0.744 | 0.760 | 0.762 | 0.763 0.777 | 0.783 | 0.790 | 0.823 | 0.833
PlugInRule 0.866 | 0.879 | 0.895 | 0.912 | 0.923 | 0.937 | 0.945 | 0.946 | 0.967
PlugInRuleAUC 0.866 | 0.872 | 0.868 | 0.875 | 0.875 | 0.883 | 0.881 | 0.894 | 0.913
ILS atent - cosine),. . 0.866 | 0.866 | 0.889 | 0.925 0.954 | 0.964 | 0.963 | 0.971 | 0.976
§ ILS;atent - cosine], ., 0.866 | 0.893 | 0.918 | 0.926 0.930 | 0.937 | 0.944 | 0.946 | 0.950
ILS - braycurtis, ... 0.866 | 0.870 | 0.907 | 0.929 0.939 | 0.942 | 0.949 | 0.950 | 0.958
LORE - wasserstein, . . 0.866 | 0.887 | 0.899 | 0.909 0.920 | 0.932 | 0.943 | 0.954 | 0.963
ILS atent - COSIN€ mean 0.866 | 0.879 | 0.898 | 0.913 0.918 | 0.936 | 0.939 | 0.950 | 0.970
ILS 4tent - braycurtis, i, 0.866 | 0.876 | 0.893 | 0.910 0.925 | 0.937 | 0.947 | 0.947 | 0.964
PlugInRule 0.864 | 0.878 | 0.890 | 0.905 | 0.914 | 0.927 | 0.941 | 0.950 | 0.967
PlugInRuleAUC 0.864 | 0.867 | 0.867 | 0.871 ‘ 0.877 | 0.897 | 0.906 | 0.911 | 0.942
m LORE - wasserstein; . 0.864 | 0.883 | 0.904 | 0.912 0.920 | 0.926 | 0.929 | 0.945 | 0.958
— ILS atent - COSIN€pean 0.864 | 0.878 | 0.902 | 0.910 0.911 | 0.927 | 0.934 | 0.944 | 0.952
| ILSatent - braycurtis,,cqn 0.864 | 0.877 | 0.895 | 0.905 0.913 | 0.929 | 0.932 | 0.940 | 0.967
ILSiqatent - cosine], ., 0.864 | 0.892 | 0.908 | 0.909 0.916 | 0.921 | 0.929 | 0.932 | 0.940
" ILSiatent - inf) 0.864 | 0.889 | 0.907 | 0.909 0.919 | 0.923 | 0.926 | 0.932 | 0.946
; PlugInRule 0.872 | 0.891 | 0.905 | 0.922 ‘ 0.925 [ 0.932 | 0.941 | 0.947 | 0.980
k-] » PlugInRuleAUC 0.872 | 0.870 | 0.876 | 0.876 | 0.887 | 0.892 | 0.898 | 0.916 | 0.935
= a ILS;atent - cosine], ... 0.872 | 0.907 | 0.920 | 0.931 0.934 | 0.939 | 0.941 | 0.945 | 0.949
o ILS;atent - cosine]), . 0.872 | 0.905 | 0.921 | 0.933 0.930 | 0.940 | 0.941 | 0.943 | 0.944
'& ILS qtent - cosine) . 0.872 | 0.902 | 0.924 | 0.926 0.934 | 0.939 | 0.943 | 0.946 | 0.952
% ILS;atent - sqeuclideany, .., | 0.872 | 0.898 | 0.925 | 0.930 0.934 | 0.942 | 0.943 | 0.942 | 0.945
ILS - inf) .. 0.872 | 0.896 | 0.915 | 0.929 0.937 | 0.939 | 0.943 | 0.950 | 0.950
PlugInRule 0.870 | 0.889 | 0.903 | 0.920 | 0.924 | 0.937 | 0.941 | 0.953 | 0.970
PlugInRuleAUC 0.870 | 0.872 | 0.868 | 0.873 ‘ 0.882 | 0.890 | 0.895 | 0.900 | 0.941
s ILS qtent - Wasserstein)),. 0.870 | 0.892 | 0.925 | 0.938 0.938 | 0.946 | 0.946 | 0.952 | 0.951
8 ILS;atent - cosine], ., 0.870 | 0.907 | 0.926 | 0.933 0.934 | 0.938 | 0.939 | 0.941 | 0.950
H ILSatent - inf);, 0.870 | 0.887 | 0.919 | 0.933 0.938 | 0.941 | 0.941 | 0.944 | 0.957
ILS;atent - minkowskiY, ..., | 0.870 | 0.905 | 0.918 | 0.926 0.934 | 0.940 | 0.942 | 0.944 | 0.947
ILSiatent - 127 can 0.870 | 0.905 | 0.918 | 0.926 0.934 | 0.940 | 0.942 | 0.944 | 0.947

Table 6: Non-Rejected Accuracy of the top SC—CE combinations and Selective Classification base-
lines for the dataset German and Adult.
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Dataset | Black Box | Rejection Policy 99% | 95% | 90% | 8 S’E/SrgetSCO(é/\o/erags; % | 70% | 65% | 60%
PlugInRule 0.965 | 0.985 | 0.984 | 0.992 | 0.991 | 1.000 | 1.000 | 1.000 | 1.000

PlugInRuleAUC 0.965 | 0.965 | 0.964 | 0.961 | 0.961 | 0.957 | 0.955 | 0.938 | 0.933

DICE - 11, (D) 0.965 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

N DICE - 12,4, (D) 0.965 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

DICE - braycurtis, ;. 0.965 | 0.993 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

DICE - braycurtis, ,in, 0.965 | 0.978 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

DICE - braycurtis) ... 0.965 | 0.985 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

PlugInRule 0.979 | 0.979 | 0.985 | 0.984 | 0.984 | 0.990 | 1.000 | 1.000 | 1.000

PlugInRuleAUC 0.979 | 0.979 | 0.978 | 0.978 | 0.977 | 0.975 | 0.974 | 0.972 ‘ 0.978

o LORE - cosine] . . 0.979 | 0.993 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

=) LORE - cosine;,in, 0.979 | 0.986 | 0.992 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 1.000

o & LORE - braycurtis, . . 0.979 | 0.993 | 0.992 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 1.000
'w‘ LORE - braycurtis, i, 0.979 | 0.986 | 0.992 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 1.000
g LORE - 12,,,;,, (D) 0.979 | 0.986 | 0.985 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000
0 PlugInRule 0.979 | 0.993 | 0.993 | 0.992 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000
A " PlugInRuleAUC 0.979 | 0.978 | 0.978 | 0.977 | 0.977 | 0.977 | 0.977 | 0.975 ‘ 0.971
= u ILS - cosine 4z 0.979 | 0.985 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000
0 ILSiatent - 12maa (D) 0.979 | 0.993 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

ey ILSiatent - 1imae (D) 0.979 | 0.993 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

® ILSiatent - infyq. (D) 0.979 | 0.986 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

ILS - cosine}, ... 0.979 | 0.985 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

PlugInRule 0.972 | 0.993 | 0.992 | 0.991 | 0.991 | 0.990 | 0.990 | 0.989 | 1.000

PlugInRuleAUC 0.972 | 0.970 | 0.969 | 0.968 | 0.967 | 0.975 | 0.973 | 0.969 ‘ 0.966

s ILS atent - COSiN€pmas 0.972 | 0.993 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

a ILS - cosine? ;.. 0.972 | 0.992 | 0.992 | 0.992 | 0.992 | 1.000 | 1.000 | 1.000 1.000

H ILS;atent - cosine], . 0.972 | 0.993 | 0.993 | 0.993 | 0.992 | 1.000 | 1.000 | 1.000 1.000

ILS atent - COSINCmean 0.972 | 0.993 | 0.992 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 1.000

DICE - 1 ,¢an (D) 0.972 | 0.978 | 0.984 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

PlugInRule 0.916 | 0.933 | 0.951 | 0.960 | 0.965 | 0.973 | 0.978 | 0.988 | 0.993

PlugInRuleAUC 0.916 | 0.919 | 0.928 | 0.938 | 0.962 | 0.959 | 0.973 | 0.976 | 0.986

DICE - inf), ... 0.916 | 0.937 | 0.968 | 0.980 | 0.980 | 0.989 | 0.988 | 0.994 1.000

) DICE - wasserstein?, .. | 0.916 | 0.936 | 0.963 | 0.985 | 0.985 | 0.989 | 0.989 | 0.988 0.993

LORE - inf,,eqn 0.916 | 0.940 | 0.950 | 0.980 | 0.990 | 0.989 | 0.988 | 1.000 1.000

DICE - 12}, .. 0.916 | 0.937 | 0.963 | 0.980 | 0.985 | 0.989 | 0.989 | 0.994 0.993

DICE - 117, .. 0.916 | 0.932 | 0.959 | 0.985 | 0.985 | 0.989 | 0.989 | 0.988 0.993

PlugInRule 0.912 | 0.952 | 0.968 | 0.976 | 0.980 | 0.995 | 0.994 | 0.994 | 1.000

PlugInRuleAUC 0912 | 0.911 | 0.956 | 0.968 | 0.980 | 0.990 | 0.989 | 0.994 ‘ 0.993

o DICE-11] .. 0.912 | 0.947 | 0.972 | 0.990 | 0.990 | 0.989 | 0.988 | 0.994 1.000

=) LORE-11) .. 0912 | 0.943 | 0.977 | 0.985 | 0.985 | 0.989 | 0.994 | 0.994 1.000

o & DICE - sqeuclidean) . | 0.912 | 0.943 | 0.972 | 0.986 | 0.990 | 0.989 | 0.989 | 0.994 1.000
g LORE - i, 0.912 | 0.943 | 0.972 | 0.977 | 0.985 | 0.989 | 0.994 | 0.994 1.000
g LORE - 12,,,;,, 0.912 | 0.944 | 0.968 | 0.977 | 0.986 | 0.984 | 0.988 | 1.000 1.000
1 PlugInRule 0.928 | 0.935 | 0.941 | 0.962 | 0.961 | 0.962 | 0.960 | 0.971 | 0.966
2 o PlugInRuleAUC 0.928 | 0.937 | 0.950 | 0.946 | 0.955 | 0.954 | 0.964 | 0.981 ‘ 0.980
H a DICE - 12,4, 0.928 | 0.958 | 0.982 | 0.982 | 0.990 | 0.989 | 0.994 | 1.000 1.000
0 DICE - inf,, 45 0.928 | 0.958 | 0.978 | 0.986 | 0.986 | 0.989 | 0.994 | 1.000 1.000

Y DICE - inf}, ., 0.928 | 0.934 | 0.982 | 0.986 | 0.990 | 0.989 | 1.000 | 1.000 1.000

x DICE - 127, .. 0.928 | 0.935 | 0.982 | 0.990 | 0.990 | 0.989 | 0.994 | 1.000 1.000

DICE - sqeuclideany .. | 0.928 | 0.939 | 0.973 | 0.986 | 0.990 | 0.989 | 0.994 | 1.000 1.000

PlugInRule 0.936 | 0.944 | 0.953 | 0.959 | 0.960 | 0.973 | 0.972 | 0.970 | 0.985

PlugInRuleAUC 0.936 | 0.937 | 0.936 | 0.943 | 0.945 | 0.967 | 0.966 | 0.974 ‘ 0.986

s DICE - wasserstein?,.,,, | 0.936 | 0.946 | 0.964 | 0.981 | 0.995 | 0.995 | 0.994 | 0.994 1.000

a DICE - 127, .. 0.936 | 0.950 | 0.969 | 0.976 | 0.985 | 0.995 | 0.994 | 0.994 1.000

H DICE - wasserstein?, ... | 0.936 | 0.950 | 0.969 | 0.976 | 0.990 | 0.990 | 0.994 | 0.994 1.000

DICE - inf}, . 0.936 | 0.950 | 0.969 | 0.977 | 0.980 | 0.995 | 0.994 | 0.994 1.000

DICE - 12),.0n 0.936 | 0.942 | 0.960 | 0.981 | 0.990 | 0.995 | 0.994 | 0.994 1.000

Table 7: Non-Rejected Accuracy of the top L2R-CE combinations and Selective Classification base-
lines for the datasets Wisconsin and Two-Moons.
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I . Target Coverages
Dataset | Black Box | Rejection Policy 99% | 95% | 90% | 85% | 80% | 75% | 70% | 65% ‘ 60%
PlugInRule 0.752 | 0.744 | 0.744 | 0.764 | 0.764 | 0.740 | 0.740 | 0.732 | 0.720
PlugInRuleAUC 0.752 | 0.744 | 0.744 | 0.748 | 0.720 | 0.712 | 0.680 | 0.648 ‘ 0.620
ILS - mae}, .. 0.752 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.764 0.768
B ILS - 117, 0 0.752 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 0.760
ILS - ,ean 0.752 | 0.764 | 0.764 | 0.752 | 0.760 | 0.760 | 0.756 | 0.760 0.764
ILS - sqeuclidean,,cqs, 0.752 | 0.776 | 0.752 | 0.764 | 0.752 | 0.752 | 0.760 | 0.756 0.752
ILS - wasserstein}, 0.752 | 0.756 | 0.756 | 0.756 | 0.756 | 0.756 | 0.756 | 0.756 0.760
PlugInRule 0.744 | 0.748 | 0.712 | 0.700 | 0.692 | 0.684 | 0.664 | 0.660 | 0.640
PlugInRuleAUC 0.744 | 0.716 | 0.712 | 0.684 | 0.680 | 0.672 | 0.660 | 0.628 ‘ 0.596
o LORE - wasserstein), .. | 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.748 | 0.728 | 0.736  0.652
~ DICE - cosine}, .. 0.744 | 0.752 | 0.764 | 0.756 | 0.744 | 0.736 | 0.728 | 0.696 0.660
g LORE - mae}, ..., 0.744 | 0.748 | 0.744 | 0.744 | 0.740 | 0.732 | 0.736 | 0.724 0.652
o DICE - braycurtis, o, 0.744 | 0.748 | 0.740 | 0.744 | 0.752 | 0.732 | 0.728 | 0.712 0.680
g DICE - cosine, g 0.744 | 0.752 | 0.768 | 0.744 | 0.744 | 0.736 | 0.728 | 0.696 0.668
cE) PlugInRule 0.744 | 0.740 | 0.736 | 0.724 | 0.728 | 0.724 | 0.720 | 0.720 ‘ 0.712
(U] PlugInRuleAUC 0.744 | 0.740 | 0.712 | 0.720 | 0.716 | 0.700 | 0.676 | 0.668 | 0.656
Y ILS - 127,00 0.744 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 0.748
9 ILS - inf,ip, 0.744 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 0.748
Q ILS - inf) ... 0.744 | 0.740 | 0.740 | 0.740 | 0.740 | 0.740 | 0.752 | 0.752 0.752
g ILS - mae’ . 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.744 0.724
ILS - 117, 0 0.744 | 0.740 | 0.740 | 0.740 | 0.740 | 0.740 | 0.744 | 0.744 0.744
ILSiatent - 127 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.740 | 0.736 | 0.736 0.720
PlugInRule 0.744 | 0.756 | 0.768 | 0.776 | 0.772 | 0.768 | 0.768 | 0.768 | 0.744
PlugInRuleAUC 0.744 | 0.728 | 0.732 | 0.716 | 0.696 | 0.680 | 0.660 | 0.648 ‘ 0.644
s LORE - sgeuclidean? . | 0.744 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 | 0.748 0.748
a LORE - mae] ;. 0.744 | 0.752 | 0.748 | 0.752 | 0.764 | 0.744 | 0.744 | 0.760 0.760
H LORE - braycurtis, 0.744 | 0.752 | 0.756 | 0.764 | 0.752 | 0.748 | 0.756 | 0.752 0.712
LORE-117 . 0.744 | 0.748 | 0.752 | 0.752 | 0.748 | 0.748 | 0.740 | 0.760 0.756
LORE - 11, 0.744 | 0.752 | 0.752 | 0.756 | 0.744 | 0.748 | 0.760 | 0.760 0.716
PlugInRule 0.866 | 0.860 | 0.842 | 0.826 | 0.816 [ 0.796 | 0.786 [ 0.756 | 0.700
PlugInRuleAUC 0.866 | 0.846 | 0.806 | 0.792 | 0.770 | 0.748 | 0.712 | 0.698 ‘ 0.666
DICE - 12] .. 0.866 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 0.872
A DICE - mae,, ., 0.866 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.874 0.866
DICE - mae}, ... 0.866 | 0.868 | 0.868 | 0.868 | 0.868 | 0.870 | 0.874 | 0.876 0.872
LORE -inf] .- 0.866 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 0.870
DICE - wasserstein?, .., | 0.866 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.870 | 0.874 0.876
PlugInRule 0.864 | 0.852 | 0.856 | 0.852 | 0.830 | 0.818 | 0.792 | 0.750 | 0.694
PlugInRuleAUC 0.864 | 0.808 | 0.784 | 0.772 | 0.758 | 0.738 | 0.720 | 0.708 ‘ 0.680
o DICE - inf}, ... 0.864 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 0.870
) DICE - inf), .., 0.864 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 0.868
g LORE - sgeuclidean? ;. | 0.864 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 0.868
" DICE - inf} .., 0.864 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 0.866
- DICE - mae, ., 0.864 | 0.866 | 0.866 | 0.866 | 0.868 | 0.868 | 0.868 | 0.868 0.868
g PlugInRule 0.872 | 0.876 | 0.864 | 0.862 | 0.836 | 0.818 | 0.786 | 0.738 | 0.702
< " PlugInRuleAUC 0.872 | 0.834 | 0.808 | 0.782 | 0.772 | 0.752 | 0.724 | 0.720 ‘ 0.686
“ ILS - sqeuclidean?, .. 0.872 | 0.876 | 0.876 | 0.876 | 0.876 | 0.876 | 0.876 | 0.876 0.876
0 DICE - wasserstein?,.,,, | 0.872 | 0.874 | 0.874 | 0.874 | 0.874 | 0.874 | 0.874 | 0.874 0.874
Y DICE - inf].., 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 0.872
® ILS - sqeuclidean? ;. 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 0.870
DICE - 11} .. 0.872 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 | 0.870 0.870
PlugInRule 0.870 | 0.872 | 0.864 | 0.860 | 0.846 | 0.826 | 0.788 | 0.742 | 0.702
PlugInRuleAUC 0.870 | 0.830 | 0.796 | 0.778 | 0.766 | 0.754 | 0.732 | 0.720 ‘ 0.702
s DICE - inf}, ... 0.870 | 0.874 | 0.874 | 0.874 | 0.874 | 0.874 | 0.874 | 0.874 0.874
a DICE - mae}, . 0.870 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 0.880
H DICE - wasserstein?, ., | 0.870 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.874 0.876
ILS - wasserstein]), 0.870 | 0.872 | 0.872 | 0.872 | 0.872 | 0.874 | 0.874 | 0.872 0.872
DICE - wasserstein), ... | 0.870 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 0.872

Table 8: Classification Quality of the top SC-CE combinations and Selective Classification baselines
for the dataset German and Adult.
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s . Target Coverages
Dataset | Black Box | Rejection Policy 99% 95% 0% 85% ‘ 80% | 75% 0% 65% 60%
PlugInRule 0.965 | 0.944 | 0.887 | 0.880 | 0.810 | 0.746 | 0.718 | 0.690 | 0.585
PlugInRuleAUC 0.965 | 0.958 | 0.937 | 0.859 ‘ 0.859 | 0.782 | 0.754 | 0.535 | 0.493
LORE-11) .. 0.965 | 0.965 | 0.965 | 0.965 0.965 | 0.965 | 0.965 | 0.965 | 0.965
ﬁ LORE - sqeuclidean; . . 0.965 | 0.965 | 0.965 | 0.965 0.965 | 0.965 | 0.965 | 0.972 | 0.958
LORE - inf}, ... (D) 0.965 | 0.958 | 0.958 | 0.958 0.958 | 0.958 | 0.958 | 0.958 | 0.958
ILS qtent - Wasserstein,),. . 0.965 | 0.965 | 0.965 | 0.965 0.979 | 0.979 | 0.965 | 0.930 | 0.894
ILS - sqeuclidean?, . 0.965 | 0.979 | 0.972 | 0.965 0.951 | 0.944 | 0.944 | 0.944 | 0.944
PlugInRule 0.979 | 0.972 | 0.930 | 0.894 | 0.859 | 0.746 | 0.71T | 0.690 | 0.577
PlugInRuleAUC 0.979 | 0.972 | 0.951 | 0.923 ‘ 0.880 | 0.810 | 0.796 | 0.739 | 0.641
a ILSiatent - 117,00 0.979 | 0.979 | 0.979 | 0.979 0.979 | 0.972 | 0.972 | 0.972 | 0.908
~ ILSiatent - 127,00 0.979 | 0.979 | 0.979 | 0.979 0.979 | 0.972 | 0.972 | 0.972 | 0.915
a E ILSatent - inf]), . (D) 0.979 | 0.972 | 0972 | 0.972 0.958 | 0.951 | 0.944 | 0.915 | 0.796
o LORE - mae] .. 0.979 | 0.979 | 0.979 | 0.979 0.979 | 0.979 | 0.972 | 0.944 | 0.500
g ILSiqtent - inf) .o, (D) 0.979 | 0.972 | 0.972 | 0.965 0.944 | 0.923 | 0.894 | 0.859 | 0.690
9] PlugInRule 0.979 | 0.972 | 0.951 | 0.859 | 0.711 | 0.648 | 0.620 | 0.577 | 0.514
] » PlugInRuleAUC 0.979 | 0.958 | 0.937 | 0.915 ‘ 0.915 | 0.894 | 0.880 | 0.824 | 0.711
= 2 ILS - sqeuclidean, . 0.979 | 0.979 | 0.979 | 0.979 0.979 | 0.979 | 0.979 | 0.979 | 0.979
0 ILS;atent - braycurtis), 0.979 | 0.979 | 0.972 | 0.965 0.965 | 0.965 | 0.965 | 0.965 | 0.930
'3. LORE - mae] .. 0.979 | 0.979 | 0.979 | 0.979 0.979 | 0.965 | 0.958 | 0.951 | 0.859
% LORE - inf}, ... (D) 0.979 | 0.979 | 0.979 | 0.979 0.979 | 0.965 | 0.958 | 0.930 | 0.824
ILS;atent - cosine]), .. 0.979 | 0.958 | 0.972 | 0.972 0.972 | 0.958 | 0.937 | 0.930 | 0.866
PlugInRule 0.972 | 0.979 | 0.852 | 0.831 [ 0.768 | 0.718 | 0.711 | 0.648 | 0.563
PlugInRuleAUC 0.972 | 0.908 | 0.866 | 0.852 ‘ 0.831 | 0.817 | 0.768 | 0.662 | 0.606
s ILS - mae}, ., 0.972 | 0.972 | 0.972 | 0.972 0972 | 0.979 | 0.979 | 0.979 | 0.972
g ILS;atent - sqeuclideany, ..., | 0.972 | 0.972 | 0.972 | 0.972 0.972 | 0.972 | 0.979 | 0.979 | 0.972
H ILS - sqeuclidean), .., 0.972 | 0.972 | 0.972 | 0.972 0972 | 0.972 | 0.972 | 0.972 | 0.979
ILS;qtent - inf), ., (D) 0.972 | 0.972 | 0972 | 0.972 0.972 | 0.972 | 0.972 | 0.972 | 0.972
ILS - wasserstein), ., 0.972 | 0.972 | 0.972 | 0979 0.972 | 0.979 | 0.979 | 0.972 | 0.958
PlugInRule 0.916 | 0.916 | 0.888 | 0.828 | 0.828 [ 0.796 [ 0.792 | 0.740 | 0.660
PlugInRuleAUC 0.916 | 0.912 | 0.888 | 0.872 ‘ 0.852 | 0.800 | 0.784 | 0.732 | 0.624
LORE - cosine}, 0.916 | 0.920 | 0.920 | 0.920 0.920 | 0.920 | 0.920 | 0.920 | 0.924
§ ILSiatent - inf);, 0.916 | 0.920 | 0.920 | 0.920 0.920 | 0.920 | 0.920 | 0.920 | 0.920
ILS atent - 117, 0.916 | 0.920 | 0.920 | 0.920 0.920 | 0.920 | 0.916 | 0.916 | 0.916
ILSiatent - 12 0.916 | 0.920 | 0.920 | 0.920 0.920 | 0.916 | 0.920 | 0.920 | 0.916
ILSqtent - Wasserstein) . 0.916 | 0.920 | 0.920 | 0.916 0.916 | 0.920 | 0.916 | 0.912 | 0.908
PlugInRule 0.912 | 0.912 | 0.904 | 0.892 | 0.872 | 0.812 | 0.780 | 0.744 | 0.656
PlugInRuleAUC 0.912 | 0.900 | 0.908 | 0.900 ‘ 0.864 | 0.844 | 0.780 | 0.712 | 0.620
a LORE - braycurtis), .. 0.912 | 0912 | 0912 | 0.912 0912 | 0.912 | 0.916 | 0.912 | 0.904
=) ILS - sqeuclidean; ;. 0.912 | 0.904 | 0.904 | 0.904 0.904 | 0.904 | 0.904 | 0.904 | 0.904
" & LORE - sgeuclidean, ... 0.912 | 0.908 | 0.912 | 0.920 0.920 | 0.904 | 0.888 | 0.888 | 0.848
5 ILS - braycurtis ;.. 0.912 | 0.900 | 0.900 | 0.900 0.900 | 0.900 | 0.900 | 0.900 | 0.896
g LORE - cosine], ., 0.912 | 0.892 | 0.888 | 0.884 0.876 | 0.860 | 0.856 | 0.852 | 0.796
] PlugInRule 0.928 | 0.928 | 0.912 | 0.856 | 0.824 | 0.752 | 0.712 | 0.716 | 0.620
2 o PlugInRuleAUC 0.928 | 0.908 | 0.868 | 0.800 ‘ 0.796 | 0.784 | 0.688 | 0.692 | 0.636
e 2 LORE - braycurtis}, .. 0.928 | 0.928 | 0.928 | 0.928 0.928 | 0.928 | 0.928 | 0.928 | 0.920
0 LORE - braycurtis,, . 0.928 | 0.920 | 0.876 | 0.876 0.876 | 0.876 | 0.876 | 0.876 | 0.876
ey LORE - cosine}, . 0.928 | 0.888 | 0.880 | 0.872 0.872 | 0.868 | 0.856 | 0.848 | 0.836
x ILS-117 .. 0.928 | 0.924 | 0.904 | 0.884 0.860 | 0.836 | 0.816 | 0.808 | 0.808
ILS - wasserstein) . 0.928 | 0.924 | 0.908 | 0.884 0.844 | 0.824 | 0.808 | 0.808 | 0.764
PlugInRule 0.936 | 0.944 | 0.912 | 0.868 | 0.792 | 0.772 | 0.736 | 0.692 | 0.580
PlugInRuleAUC 0.936 | 0.840 | 0.828 | 0.808 ‘ 0.772 | 0.736 | 0.712 | 0.640 | 0.600
= LORE - cosine}, ., 0.936 | 0.944 | 0.932 | 0932 0.908 | 0.888 | 0.864 | 0.852 | 0.840
3 LORE - braycurtis], ... 0.936 | 0.916 | 0.900 | 0.900 0.896 | 0.892 | 0.888 | 0.888 | 0.888
H LORE - braycurtis,, . 0.936 | 0.924 | 0.884 | 0.884 0.884 | 0.884 | 0.884 | 0.884 | 0.884
DICE - sgeuclidean, ., 0.936 | 0.932 | 0.920 | 0.888 0.876 | 0.852 | 0.816 | 0.768 | 0.672
DICE - 11,4, 0.936 | 0.920 | 0.916 | 0.908 0.880 | 0.848 | 0.816 | 0.780 | 0.668

Table 9: Classification Quality of the top SC—CE combinations and Selective Classification baselines
for the dataset Wisconsin and Two-Moons.
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Lo . Target Coverages

Dataset | Black Box ‘ Rejection Policy 99% 95% 90% 85% 80% 75% | 70% 65% | 60%
PlugInRule 0.000 | 1.516 1.516 | 4169 | 3.639 | 2.637 | 2.637 | 2471 2.274

‘ PlugInRuleAUC 0.000 | 2.628 | 2.628 | 2.843 | 2.022 1.987 ‘ 1.633 1.423 ‘ 1.539

ILS - 12,44 0.000 | 21.226 | 4.043 | 3.249 | 2713 | 3.032 3.032 | 3.032 2.426

) ILS 4tent - sqeuclideany,, .., | 0.000 | 9.097 | 4.765 | 3.266 | 3.211 2.637 2583 | 2325 2.541

ILS atent - cOSIN€ a0 0.000 | 15.161 | 3.032 | 3.032 | 3.222 | 2.888  2.491 2445  2.622

ILS;atent - sqeuclideany, .. | 0.000 | 15.161 | 2.780 | 3.465 | 2.599 | 2.491 2.543 | 2.665  2.729

ILSiatent = 11700 0.000 | 15.161 | 3.032 | 3.682 | 2599 | 2382 2.628 | 2.748  2.864

PlugInRule 0.000 | 3.633 1.539 1.453 1.453 1.500 1.335 1.300 1.332

‘ PlugInRuleAUC 0.000 | 0.872 1.356 1.162 | 1.246 1.321 ‘ 1.341 1.186 ‘ 1.277

o DICE - cosine, .. 0.000 | 5812 | 6.539 | 3.699 | 2.906 | 2.629 2.441 1.849 1.635

~ DICE - cosine,; q.; 0.000 | 5812 | 6.394 | 2906 | 2.906 | 2.629 2.422 1.849  1.706

E DICE - cosine}, ..., 0.000 | 5812 | 4.069 | 4.359 | 2393 | 2616  2.105 1.776  1.643

o DICE - cosine,can 0.000 | 5.812 | 3.321 2906 | 2.735 | 2.491 2.105 1.776  1.679
E DICE - braycurtis,, o 0.000 | 4359 | 2543 | 2906 | 3.353 | 2447 2325 | 1976 1.683
] ‘ PlugInRule 0.000 | 2.180 | 2.076 1.868 | 2260 | 2.246 ‘ 2209 | 2.283 ‘ 2.294
o PlugInRuleAUC 0.000 | 2.180 1.453 1.937 1.889 1.627 1.409 1.526 1.653
H ILS - 127, 0.000 | 5812 | 5.812 | 5812 | 5.812 | 5812 5.812 | 5812 5.812

0 ILS - inf}, . 0.000 | 8.719 | 8719 | 8.719 | 1.661 1332 1.176 1.097 1.279

8 ILS - sqeuclidean, . 0.000 | 5812 | 5.812 | 5812 | 8.719 1.661 1.372 1.182  1.198

g ILS - inf,,ip, 0.000 | 5.812 | 3.633 | 3.633 | 3.633 | 3.633 3.633 | 3.633  3.633

ILS - inf} ;. 0.000 | 8.719 | 2.180 | 2.180 1.310 | 1274 1.274 1.177 1.235

ILS - mae] ... 0.000 | 0.000 | 2.906 | 2906 | 5.812 | 5.812 1453 1.643 1.258

PlugInRule 0.000 | 11.625 | 8.719 | 5490 | 4.471 3932 | 3.824 | 3.633 | 2.906

‘ PlugInRuleAUC 0.000 | 0.969 1.937 1.550 1.321 1.356 ‘ 1.257 1.284 ‘ 1.482

5 LORE - sqeuclidean)),. . 0.000 | 5812 | 5812 | 5.812 | 5.812 | 5812 5812 | 5.812 3.633

] LORE - braycurtis) ;. 0.000 | 2906 | 2.906 | 2906 | 5.812 | 14.531 4.844 | 4359  2.806

H LORE - mae] .. 0.000 | 8.719 | 3.633 | 4359 | 5328 | 2906 2906 | 3460 3.353

LORE - braycurtis, i, 0.000 | 4.844 | 5812 | 4982 | 3435 | 3.068 3303 | 3.130 2339

LORE-11} . 0.000 | 5.812 | 4844 | 4359 | 3.391 | 3.170 2753 | 3460 3218

PlugInRule 0.000 | 4847 | 4.039 | 3.878 | 3.814 | 3.563 | 3.491 3.012 | 2.631

‘ PlugInRuleAUC 0.000 | 2.424 1.223 1.583 1.459 1.636 ‘ 1.436 1.659 ‘ 1.813

DICE-12]) .. 0.000 | 25.851 | 25.851 | 25.851 | 25.851 | 25.851 25.851 | 25.851 25.851

] DICE - mae; ;,, 0.000 | 25.851 | 25.851 | 25.851 | 25.851 | 25.851 25.851 | 19.388  6.463
DICE - inf] ;.. 0.000 | 19.388 | 19.388 | 19.388 | 19.388 | 19.388 19.388 | 19.388 19.388
DICE - wasserstein), ., 0.000 | 12.925 | 12.925 | 12.925 | 12.925 | 12.925 19.388 | 32.313 17.234

DICE - mae}, ... 0.000 | 0.000 | 0.000 | 12.925 | 12.925 | 19.388 32.313 | 38.776 9.694

PlugInRule 0.000 | 3.971 5.143 | 5.162 | 4.149 | 3996 | 3.564 | 3.000 [ 2.577

‘ PlugInRuleAUC 0.000 | 1.271 1.167 1.400 1.543 | 2.003 ‘ 2.038 | 2.044 ‘ 2.237
o DICE - mae] ;. 0.000 | 12.706 | 12.706 | 12.706 | 19.059 | 19.059 19.059 | 19.059 19.059
=) DICE - wasserstein,), ;. 0.000 | 0.000 | 12.706 | 12.706 | 12.706 | 12.706 19.059 | 19.059 19.059
& LORE - sqeuclidean,), ;.. 0.000 | 12.706 | 12.706 | 12.706 | 12.706 | 12.706 12.706 | 12.706 12.706

" DICE - 117, .. 0.000 | 6.353 | 6.353 | 12.706 | 25.412 | 44.471 10.588 | 4.941 2.795
- DICE - 117 ..., 0.000 | 6.353 | 6.353 | 12.706 | 12.706 | 19.059 38.118 | 10.165 3.315
] PlugInRule 0.000 | 8.175 | 5722 | 5.839 | 4408 | 3938 [ 3366 | 2.773 | 2.763
< o ‘ PlugInRuleAUC 0.000 | 0.649 1.363 1.239 1.729 1.766 ‘ 1.771 2.106 ‘ 2.154
2 ILS - sqeuclidean), ., 0.000 | 20.438 | 20.438 | 20.438 | 20.438 | 20.438 20.438 | 20.438 20.438

0 ILS - sqeuclidean, ., 0.000 | 13.625 | 13.625 | 13.625 | 13.625 | 13.625 13.625 | 13.625 13.625

B ILS - braycurtisy, .., 0.000 | 13.625 | 20438 | 6.812 | 6.812 | 6.812 5.551 | 5378 3.331

x ILS - wasserstein, ;oo 0.000 | 8.326 | 5299 | 4.866 | 4.061 | 3.185 3.370 | 2.805 2.348

ILS - 117 on 0.000 | 6358 | 5904 | 4.258 | 4.258 | 3.742 3.572 | 3.368 3.085

PlugInRule 0.000 | 7.301 5856 | 5736 | 4908 | 4318 | 3.426 | 2.902 | 2.677

‘ PlugInRuleAUC 0.000 | 1.338 | 0.797 1.195 1.575 1.779 ‘ 1.780 1.819 ‘ 2.368
= DICE - inf}, ... 0.000 | 20.077 | 20.077 | 20.077 | 20.077 | 20.077 20.077 | 20.077 20.077
a DICE - mae}, .. 0.000 | 13.385 | 13.385 | 13.385 | 13.385 | 13.385 13.385 | 13.385 40.154
H DICE - wasserstein), ., 0.000 | 13.385 | 13.385 | 13.385 | 13.385 | 13.385 13.385 | 20.077 26.769
DICE - wasserstein), , . 0.000 | 13.385 | 13.385 | 13.385 | 13.385 | 13.385 13.385 | 13.385 10.038

DICE - inf} ..., 0.000 | 13.385 | 13.385 | 13.385 | 13.385 | 13.385 13.385 | 13.385 13.385

Table 10: Rejection Quality of the top SC-CE combinations and Selective Classification baselines
for the dataset German and Adult.
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Target Coverages

Dataset | Black Box | Rejection Policy 99% 95% 90% 85% 80% 75% ‘ 70% 65% ‘ 60%
PlugInRule 0.000 [ 13.700 | 5.871 | 6.850 | 4.215 | 3.806 | 3.425 | 3.114 [ 2.322

‘ ILS - cosine,in 0.000 | 9.133 | 8.220 | 5.138 | 4.567 | 3.425 ‘ 2436 | 2915 ‘ 2.322

ILSqtent - wasserstein? ;.- 0.000 | 27.400 | 27.400 | 27.400 | 82.200 | 82.200 27.400 | 10.275 6.323

] ILS atent - Wasserstein)),.,,, | 0.000 | 0.000 | 27.400 | 27.400 | 54.800 | 82.200 20.550 | 11.743  4.982
ILS - sqeuclidean, . 0.000 | 82.200 | 41.100 | 27.400 | 16.440 | 13.700 13.700 | 13.700 13.700

DICE - cosine}, ..., 0.000 | 54.800 | 8.220 | 5.138 | 4.059 | 4.152 3425 | 2978  2.362

ILS atent - braycurtis), . .., 0.000 | 13.700 | 10.275 | 8.220 | 6.323 | 5.871 5.871 5.138  4.326

PlugInRule 0.000 | 0.000 | 5792 | 3.564 | 2.574 | 2.648 | 3390 | 3.159 | 2317

‘ PlugInRuleAUC 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 ‘ 0.000 | 0.000 ‘ 0.946

o LORE - wasserstein, i, 0.000 | 92.667 | 18.533 | 10.296 | 5.148 | 2.896  3.658 | 3.310  2.623

— LORE - wasserstein;) ;.. 0.000 | 92.667 | 13.238 | 7.722 | 5.148 | 3.432 2725 | 2574  3.089

o E LORE - braycurtis, i, 0.000 | 46.333 | 11.583 | 4.212 | 4.633 | 3.159 3.022 | 2.673 2.482
o LORE - sqeuclidean’ ;. 0.000 | 23.167 | 7.722 | 7.722 | 11.583 | 6.318 4.344 | 3.564 2.482
g LORE-11} .. 0.000 | 23.167 | 9.267 | 11.583 | 6.619 | 4.633  3.658 | 3.022 2.527
0 PlugInRule 0.000 | 30.889 | 15.444 | 4.877 | 2.317 | 2780 | 2.574 | 2.317 | 2.014
A » ‘ ILS - cosine,,in 0.000 | 0.000 | 4212 | 4.029 | 3432 | 2.155 ‘ 2.673 | 2.673 ‘ 2.106
= 2 ILS atent - cosine], . 0.000 | 0.000 | 30.889 | 30.889 | 30.889 | 18.533 11.583 | 10.296 5.148
0 ILS 4tent - minkowskiy, .. 0.000 | 23.167 | 18.533 | 11.583 | 9.267 | 8.424 8424 | 7316  3.658

Y ILS - inf}, .. (D) 0.000 | 46.333 | 23.167 | 15.444 | 13.238 | 7.128  4.029 | 2.206  1.495

x ILSiatent - 127,00 0.000 | 23.167 | 18.533 | 11.583 | 9.267 | 8.424 8424 | 7316 3475
ILS 4tent - braycurtis), .. 0.000 | 0.000 | 0.000 | 0.000 | 23.167 | 23.167 23.167 | 23.167 10.296

PlugInRule 0.000 | 51.750 | 5.175 | 4500 | 3.234 | 2.654 | 2.587 | 2.112 | 2.226

‘ PlugInRuleAUC 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.500 | 1.150 | 0.767 ‘ 0.651

E ILSiatent - 117,00 0.000 | 51.750 | 51.750 | 25.875 | 17.250 | 14.786 12.938 | 5.750  2.797
8 ILS - wasserstein), 0.000 | 0.000 | 0.000 | 0.000 | 34.500 | 69.000 69.000 | 34.500 20.700

H ILS - sqeuclidean, . 0.000 | 69.000 | 34.500 | 51.750 | 17.250 | 7.962  5.175 | 2.875 1.643
ILSi4tent - sqeuclideany,, .., | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 34.500 69.000 | 69.000 34.500

ILS - 127, (D) 0.000 | 34.500 | 51.750 | 34.500 | 14.786 | 7.393  5.175 | 3.044  1.848

PlugInRule 0.000 [ 10.905 | 6.415 | 4.050 [ 4.241 3.793 | 3.862 | 3.289 | 2.596

‘ PlugInRuleAUC 0.000 | 5452 | 3.965 | 4.241 4.888 | 3.375 ‘ 3.561 2.943 ‘ 2.252

DICE - cosine}, ., 0.000 | 21.810 | 21.810 | 32.714 | 13.631 | 6.134  3.998 | 2.399 1.737

) ILSqtent - wasserstein ;. 0.000 | 0.000 | 0.000 | 10.905 | 10.905 | 21.810 10.905 | 7.270  7.270

ILSiatent - mae) ;. 0.000 | 0.000 | 0.000 | 10.905 | 21.810 | 21.810 7.270 | 10.905 7.270

DICE - sqeuclidean}, ., 0.000 | 54.524 | 5452 | 7.088 | 5.640 | 5305 4.063 | 3.760  2.796

DICE - cosine;, .. 0.000 | 0.000 | 0.000 | 21.810 | 21.810 | 4.089 3.635 | 2.019 1.410

PlugInRule 0.000 | 10.364 | 9.144 | 8.008 | 6.662 | 4.731 4.030 | 3455 | 2.651

‘ PlugInRule AUC 0.000 | 0.000 | 9.566 | 8.636 | 6.218 | 5.602 ‘ 3911 3.065 ‘ 2.315

o DICE-11},,. 0.000 | 72.545 | 20.727 | 8.008 | 5.330 | 4.190 3.636 | 3.508  2.780

— DICE - 1,42 0.000 | 93.273 | 19.432 | 12.584 | 8.008 | 5.042 4.230 | 3.636 2.651

o E DICE - wasserstein}, . 0.000 | 72.545 | 17.273 | 8.390 | 5.330 | 3.969 3.574 | 3.201 2.714
g DICE - wasserstein, , q.; 0.000 | 93.273 | 17.273 | 11.745 | 7.660 | 4909 3.986 | 3.343  2.591
(<] DICE - sqeuclidean], . 0.000 | 93.273 | 16.121 | 10.364 | 5.830 | 4.055 3.516 | 3.298  2.780
EI: PlugInRule 0.000 | 12.889 | 6.444 | 4.603 | 3.580 | 2.578 | 2.181 2.539 1.862
2 o ‘ PlugInRule AUC 0.000 | 4.833 | 4.101 2313 | 2.762 | 2.578 ‘ 2.148 | 2.613 ‘ 2.197
B © DICE - 12,42 0.000 | 25.778 | 15.037 | 13.880 | 7.638 | 4296 3913 | 3314 2.762
I DICE - inf, 5 0.000 | 25.778 | 13.963 | 10.175 | 7.733 | 4483 3478 | 3.178  2.698

Y DICE - 12,,can 0.000 | 19.333 | 12.889 | 10.311 | 6.652 | 4.124  3.381 3314 2729

® DICE - sqeuclidean, . 0.000 | 19.333 | 12.889 | 8.056 | 5.728 | 4.044  3.652 | 3.362 2.607

DICE - sqeuclidean,,cqn 0.000 | 17.185 | 11.815 | 12.889 | 6.652 | 4.124  3.437 | 3412 2.729

PlugInRule 0.000 [ 0.000 | 6.648 | 4266 | 2.659 | 3.094 [ 2.637 | 2.234 1.988

‘ PlugInRuleAUC 0.000 | 1.125 1.009 1.625 1.590 | 2.437 ‘ 2216 | 2.041 ‘ 2.089

s LORE - cosine?, 0.000 | 29.250 | 12.188 | 12.188 | 6.094 | 4.301 3.179 | 2.812 2925

a DICE - 1,42 0.000 | 7.312 | 9.402 | 8.603 | 6435 | 5432 4.875 | 4.062 2.819

H DICE - wasserstein, . 0.000 | 7.312 | 9.402 | 8.603 | 6435 | 6.022 4.668 | 3917 2753

DICE - sqeuclideany, ., 0.000 | 9.750 | 8.775 | 5.388 | 6.500 | 5.850 4.875 | 3.849 2.708

DICE - sqeuclidean?, . 0.000 | 8.775 | 8357 | 6.187 | 5941 | 4477 3718 | 3274 2721

Table 11: Rejection Quality of the top SC-CE combinations and Selective Classification baselines
for the dataset Wisconsin and Two-Moons.
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I ADDITIONAL RESULTS FOR RQ3: SC-CE EXPLANATION IN CASE OF
accepted INSTANCES

Instance-Counterfactual Distance Bar The model confidently predicts <=50K. A large number of simultaneous
Coverage=75% changes would be required to alter the prediction, which shows that the
decision is stable and reliable:

IDENTICAL FEATURES MINIMAL CHANGES TO FLIP THE
PREDICTION TO >50K:
Demographic information
—e ——07328 o Relationship: Unmarried Demographic information
o Race: White o Age: 41 years old — 46 years old
Work-related information EduFation: i sdiel = il
o Workclass: Private o Sex: Female — Male
o Hours per week: 40 o Marital status: Married-spouse-
hours/week abse_nt — Married-AF-spouse
o Native country: United-States —
Financial information India
o Capital loss: $0

ACCEPT
safe Al prediction

Work-related information
........... T=0.1501 i i
REJECT o Occupation: Adm-clerical — Prof-
uncertainty zone specialty

Financial information
o Capital gain: $0 — $815

Figure 16: Example of explanation generated by SC—CE for an accepted test instance of the Adult
dataset. The output includes a banner warning the user that the Al system can provide a prediction
for the input since it is placed inside the model’s safe zone, along with instructions on how to
properly interpret the figures.
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