
Rethinking Decision Transformer via Hierarchical
Reinforcement Learning

Yi Ma 1 Jianye Hao 1 2 Hebin Liang 1 Chenjun Xiao 3

Abstract
Decision Transformer (DT) is an innovative al-

gorithm leveraging recent advances of the trans-

former architecture in reinforcement learning

(RL). However, a notable limitation of DT is its re-

liance on recalling trajectories from datasets, los-

ing the capability to seamlessly stitch sub-optimal

trajectories together. In this work we introduce a

general sequence modeling framework for study-

ing sequential decision making through the lens

of Hierarchical RL. At the time of making deci-

sions, a high-level policy first proposes an ideal

prompt for the current state, a low-level policy

subsequently generates an action conditioned on

the given prompt. We show DT emerges as a spe-

cial case of this framework with certain choices

of high-level and low-level policies, and discuss

the potential failure of these choices. Inspired

by these observations, we study how to jointly

optimize the high-level and low-level policies to

enable the stitching ability, which further leads

to the development of new offline RL algorithms.

Our empirical results clearly show that the pro-

posed algorithms significantly surpass DT on sev-

eral control and navigation benchmarks. We hope

our contributions can inspire the integration of

transformer architectures within the field of RL.

1. Introduction
One of the most remarkable characteristics observed in large

sequence models, especially Transformer models, is the in-
context learning ability (Radford et al., 2019; Brown et al.,

2020; Ramesh et al., 2021; Gao et al., 2020; Akyürek et al.,

2022; Garg et al., 2022; Laskin et al., 2022; Lee et al., 2023).

1College of Intelligence and Computing, Tianjin Uni-
versity 2Huawei, Noah’s Ark Lab 3The Chinese University
of Hongkong, Shenzhen. Correspondence to: Jianye Hao
<jianye.hao@tju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

With an appropriate prompt, a pre-trained transformer can

learn new tasks without explicit supervision and additional

parameter updates. Decision Transformer (DT) (Chen et al.,

2021) is an innovative method that attempts to explore this

idea for sequential decision making. Unlike traditional re-
inforcement learning (RL) algorithms, which learn a value

function by bootstrapping or computing policy gradient, DT

directly learns an autoregressive generative model from tra-

jectory data using a causal transformer (Vaswani et al., 2017;

Radford et al., 2019). This approach allows leveraging exist-

ing transformer architectures widely employed in language

and vision tasks that are easy to scale, and benefitting from

a substantial body of research focused on stable training of

transformer (Radford et al., 2019; Brown et al., 2020; Fedus

et al., 2022; Chowdhery et al., 2022).

DT is trained on trajectory data,

(R0, s0, a0, . . . , RT , sT , aT), where Rt is the return-
to-go, the sum of future rewards along the trajectory starting

from time step t. This can be viewed as learning a model

that predicts what action should be taken at a given state
in order to make so many returns. Following this, we

can view the return-to-go prompt as a switch, guiding the

model in making decisions at test time. If such a model

can be learned effectively and generalized well even for

out-of-distribution return-to-go, it is reasonable to expect

that DT can generate a better policy by prompting a higher

return. Unfortunately, this seems to demand a level of

generalization ability that is often too high in practical

sequential decision-making problems. In fact, the key

challenge facing DT is how to improve its robustness to the

underlying data distribution, particularly when learning

from trajectories collected by policies that are not close to

optimal. Recent studies have indicated that for problems

requiring the stitching ability, referring to the capability to

integrate suboptimal trajectories from the data, DT cannot

provide a significant advantage compared to behavior

cloning (Fujimoto & Gu, 2021; Emmons et al., 2021;

Kostrikov et al., 2022; Yamagata et al., 2023; Badrinath

et al., 2023; Xiao et al., 2023). This further confirms that a

naive return-to-go prompt is not good enough for solving

complex sequential decision-making problems.

Recent progress on large language models showed that care-

1

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

fully tuned prompts, either human-written or self-discovered

by the model, significantly boost the performance of trans-

former models (Lester et al., 2021; Singhal et al., 2022;

Zhang et al., 2022; Wei et al., 2022; Wang et al., 2022a;

Yao et al., 2023; Liu et al., 2023). In particular, it has been

observed that the ability to perform complex reasoning nat-

urally emerges in sufficiently large language models when

they are presented with a few chain of thought demonstra-

tions as exemplars in the prompts (Wei et al., 2022; Wang

et al., 2022a; Yao et al., 2023). Driven by the significance

of these works in language models, a question arises: For
RL, is it feasible to learn to automatically tune the prompt,
such that a transformer-based sequential decision model
is able to learn optimal control policies from offline data?
This paper attempts to address this problem. Our main

contributions are:

• We present a generalized framework for studying

decision-making through sequential modeling by con-

necting it with Hierarchical Reinforcement Learning
(Nachum et al., 2018): a high-level policy first suggests

a prompt for the current state, a low-level policy sub-

sequently generates an action conditioned on the given

prompt. We show DT can be recovered as a special case

of this framework.

• We investigate when and why DT fails in terms of stitch-

ing sub-optimal trajectories. To overcome this drawback

of DT, we investigate how to jointly optimize the high-

level and low-level policies to enable the stitching capa-

bility. This further leads to the development of two new

algorithms for offline RL. The joint policy optimization

framework is our key contribution compared to previous

studies on improving transformer-based decision models

(Yamagata et al., 2023; Wu et al., 2023; Badrinath et al.,

2023).

• We provide experiment results on several offline RL

benchmarks, including locomotion control, navigation

and robotics, to demonstrate the effectiveness of the

proposed algorithms. Additionally, we conduct thorough

ablation studies on the key components of our algorithms

to gain deeper insights into their contributions. Through

these ablation studies, we assess the impact of specific

algorithmic designs on the overall performance.

2. Preliminaries
2.1. Offline Reinforcement Learning

We consider Markov Decision Process (MDP) determined

by M = {S,A, P, r, γ} (Puterman, 2014), where S and

A represent the state and action spaces. The discount fac-

tor is given by γ ∈ [0, 1), r : S × A → R denotes the

reward function, P : S × A → Δ(S) defines the transi-

tion dynamics1. Let τ = (s0, a0, r0, . . . , sT , aT , rT) be a

trajectory. Its return is defined as the discounted sum of

the rewards along the trajectory: R =
∑T

t=0 γ
trt. Given a

policy π : S → Δ(A), we use Eπ to denote the expectation

under the distribution induced by the interconnection of π
and the environment. The value function specifies the future

discounted total reward obtained by following policy π,

V π(s) = E
π

[∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
, (1)

There exists an optimal policy π∗ that maximizes values for

all states s ∈ S .

In this work, we consider learning an optimal control policy

from previously collected offline dataset, D = {τi}n−1
i=0 ,

consisting of n trajectories. Each trajectory is generated

by the following procedure: an initial state s0 ∼ μ0 is

sampled from the initial state distribution μ0; for time step

t ≥ 0, at ∼ πD, st+1 ∼ P (·|st, at), rt = r(st, at), this

process repeats until it reaches the maximum time step of

the environment. Here πD is an unknown behavior policy.

In offline RL, the learning algorithm can only take samples

from D without collecting new data from the environment

(Levine et al., 2020).

2.2. Decision Transformer

Decision Transformer (DT) is an extraordinary example that

bridges sequence modeling with decision-making (Chen

et al., 2021). It shows that a sequential decision-making

model can be made through minimal modification to the

transformer architecture (Vaswani et al., 2017; Radford et al.,

2019). It considers the following trajectory representation

that enables autoregressive training and generation:

τ =
(
R̂0, s0, a0, R̂1, s1, a1, . . . , R̂T , sT , aT

)
. (2)

Here R̂t =
∑T

i=t ri is the return-to-go starting from

time step t. We denote πDT(at|st, R̂t, τt) the DT policy,

where τt = (s0, a0, R̂0, . . . , st−1at−1, R̂t−1)
2 is the sub-

trajectory before time step t. As pointed and verified by Lee

et al. (2023), τt can be viewed as as a context input of a

policy, which fully takes advantages of the in-context learn-

ing ability of transformer model for better generalization

(Akyürek et al., 2022; Garg et al., 2022; Laskin et al., 2022).

DT assigns a desired return-to-go R0, together with an ini-

tial state s0 are used as the initialization input of the model.

After executing the generated action, DT decrements the

desired return by the achieved reward and continues this

1We use Δ(X) to denote the set of probability distributions
over X for a finite set X .

2We define τ0 the empty sequence for completeness.

2

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

Causal Transformer… …

Figure 1. ADT architecture. The high-level policy generates prompts that inform the low-level policy to make decisions. We concatenate

prompts with states instead of treating them as separate tokens. Embeddings of tokens are fed into a causal transformer that predicts

actions auto-regressively.

process until the episode reaches termination. Chen et al.

(2021) argues that the conditional prediction model is able

to perform policy optimization without using dynamic pro-

gramming. However, recent works observe that DT often

shows inferior performance compared to dynamic program-

ming based offline RL algorithms when the offline dataset

consists of sub-optimal trajectories (Fujimoto & Gu, 2021;

Emmons et al., 2021; Kostrikov et al., 2022).

3. Autotuned Decision Transformer
In this section, we present Autotuned Decision Transformer
(ADT), a new transformer-based decision model that is able

to stitch sub-optimal trajectories from the offline dataset.

Our algorithm is derived based on a general hierarchical de-

cision framework where DT naturally emerges as a special

case. Within this framework, we discuss how ADT over-

comes several limitations of DT by automatically tuning the

prompt for decision making.

3.1. Key Observations

Our algorithm is derived by considering a general frame-

work that bridges transformer-based decision models with

hierarchical reinforcement learning (HRL) (Nachum et al.,

2018). In particular, we use the following hierarchical rep-

resentation of policy

π(a|s) =
∫
P
πh(p|s) · πl(a|s, p)dp , (3)

where P is a set of prompts. To make a decision, the high-

level policy πh first generates a prompt p ∈ P , instructed by

which the low-level policy πl returns an action conditioned

on p. DT naturally fits into this hierarchical decision frame-

work. Consider the following value prompting mechanism.

At state s ∈ S, the high-level policy generates a real-value

prompt R ∈ R, representing ”I want to obtain R return
starting from s.”. Informed by this prompt, the low-level

policy responses an action a ∈ A, ”Ok, if you want to obtain
return R, you should take action a now.”. This is exactly

what DT does. It applies a dummy high-level policy which

initially picks a target return-to-go prompt and subsequently

decrement it along the trajectory. The DT low-level policy,

πDT(·|s,R, τ), learns to predict which action to take at state

s in order to achieve return R given the context τ .

To better understand the failure of DT given sub-optimal

data, we re-examine the illustrative example shown in Figure

2 of Chen et al. (2021). The dataset comprises random

walk trajectories and their associated per-state return-to-go.

Suppose that the DT policy πDT perfectly memorizes all

trajectory information contained in the dataset. The return-

to-go prompt in fact acts as a switch to guide the model to

make decisions. Let T (s) be the set of trajectories starting

from s stored in the dataset, and R(τ) be the return of a

trajectory τ . Given R′ ∈ {R(τ), τ ∈ T (s)}, πDT is able to

output an action that leads towards τ . Thus, given an oracle
return R∗(s) = maxτ∈T (s) R(τ), it is expected that DT is

able to follow the optimal trajectory contained in the dataset

following the switch.

There are several issues. First, the oracle return R∗ is not

known. The initial return-to-go prompt of DT is picked by

hand and might not be consistent with the one observed in

the dataset. This requires the model to generalize well for

unseen return-to-go and decisions. Second, even though R∗

is known for all states, memorizing trajectory information is

still not enough for obtaining the stitching ability as R∗ only

serves a lower bound on the maximum achievable return.

To understand this, consider an example in Figure 2 with

two trajectories a → b → c, and d → b → e. Suppose that

e leads to a return of 10, while c leads to a return of 0. In

3

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

return:10

return:0
return:1t

start:

Figure 2. Illustrative example.

this case, using 10 as the return-to-go prompt at state b, DT

should be able to switch to the desired trajectory. However,

the information ”leaning towards c can achieve a return of

10” does not pass to a during training, since the trajectory

a → b → e does not exist in the data. If the offline data

contains another trajectory that starts from a and leads to

f with a mediocre return (e.g. 1), DT might switch to that

trajectory at a using 10 as the return-to-go prompt, missing a

more promising path. Thus, making predictions conditioned

on return-to-go alone is not enough for policy optimization.

Some form of information backpropagation is still required.

3.2. Algorithms

ADT jointly optimizes the hierarchical policies to over-

comes the limitations of DT discussed above. An illus-

tration of ADT architecture is provided in Figure 1. Similar

to DT, ADT applies a transformer model for the low-level

policy. Instead of (2), it considers the following trajectory

representation,

τ = (p0, s0, a0, p1, s1, a1, . . . , pT , sT , aT) . (4)

Here pi is the prompt generated by the high-level policy

pi ∼ πh(·|si), replacing the return-to-go prompt used by

DT. That is, for each trajectory in the offline dataset, we

relabel it by adding a prompt generated by the high-level

policies for each transition. Armed with this general hier-

archical decision framework, we propose two algorithms

that apply different high-level prompting generation strat-

egy while sharing a unified low-level policy optimization

framework. We learn a high-level policy πω ≈ πh with pa-

rameters φ, and a low-level policy πθ ≈ πl with parameters

θ. Here ’joint training’ is used to indicate both the prompt

input to the low-level policy and the low-level policy itself

are trained, while in DT the prompt is obtained via manual

prompt instead of well-trained policy. In practice, we train

the high-level policy and the low-level policy in a sequential

manner.

3.2.1. VALUE-PROMPTED AUTOTUNED DECISION

TRANSFORMER

Our first algorithm, Value-promped Autotuned Decision
Transformer (V-ADT), uses scalar values as prompts. But un-

like DT, it applies a more principled design of value prompts

instead of return-to-go. V-ADT aims to answer two ques-

tions: what is the maximum achievable value starting from

a state s, and what action should be taken to achieve such a

value? To answer these, we view the offline dataset D as an

empirical MDP, MD = {SD,A, PD, r, γ}, where SD ⊆ S
is the set of observed states in the data, PD is the transition,

which is an empirical estimation of the original transition P
(Fujimoto et al., 2019). The optimal value of this empirical

MDP is

V ∗
D(s) = max

a:πD(a|s)>0
r(s, a) + γEs′∼PD(·|s,a) [V

∗
D(s

′)] .

(5)

Let Q∗
D(s, a) be the corresponding state-action value. V ∗

D
is known as the in-sample optimal value in offline RL (Fuji-

moto et al., 2018; Kostrikov et al., 2022; Xiao et al., 2023).

Computing this value requires to perform dynamic program-

ming without querying out-of-distribution actions. We apply

Implicit Q-learning (IQL) to learn Vφ ≈ V ∗
D and Qψ ≈ Q∗

D
with parameters φ, ψ (Kostrikov et al., 2022). Details of

IQL are presented in the Appendix. We now describe how

V-ADT jointly optimizes high and low level policies to fa-

cilitate stitching.

High-Level policy V-ADT considers P = R and adopts

a deterministic policy πω : S → R, which predicts the in-

sample optimal value πω ≈ V ∗
D. Since we already have an

approximated in-sample optimal value Vφ, we let πω = Vφ.

This high-level policy offers two key advantages. First,
this approach efficiently facilitates information backprop-

agation towards earlier states on a trajectory, addressing a

major limitation of DT. This is achieved by using V ∗
D as

the value prompt, ensuring that we have precise knowledge

of the maximum achievable return for any state. Making

predictions conditioned on R∗(s) is not enough for policy

optimization, since R∗(s) = maxτ∈T (s) R(τ) only gives a

lower bound on V ∗
D(s) and thus would be a weaker guid-

ance (see Section 3.1 for detailed discussions). Second, the

definition of V ∗
D exclusively focuses on the optimal value de-

rived from observed data and thus avoids out-of-distribution

returns. This prevents the low-level policy from making

decisions conditioned on prompts that require extrapolation.

Low-Level policy Directly training the model to predict

the trajectory, as done in DT, is not suitable for our approach.

This is because the action at observed in the data may not

necessarily correspond to the action at state st that leads to

the return V ∗
D(st). However, the probability of selecting at

should be proportional to the value of this action. Thus, we

use advantage-weighted regression to learn the low-level

policy (Peng et al., 2019; Kostrikov et al., 2022; Xiao et al.,

4

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

2023): given trajectory data (4) the objective is defined as

L(θ) = −
T∑

t=0

exp

(Alow

α

)
· log πθ(at|st, πω(st)) . (6)

where Alow = Qψ(st, at, πω(st))−Vφ(st, πω(st)) and α >
0 is a hyper-parameter. The low-level policy takes the output

of high-level policy as input. This guarantees no discrepancy

between train and test value prompt used by the policies. We

note that the only difference of this compared to the standard

maximum log-likelihood objective for sequence modeling

is to apply a weighting for each transition. One can easily

implement this with trajectory data for a transformer. In

practice we also observe that the tokenization scheme when

processing the trajectory data affects the performance of

ADT. Instead of treating the prompt pt as a single token

as in DT, we find it is beneficial to concatenate pt and st
together and tokenize the concatenated vector. We provide

an ablation study on this in Section 5.2.3. This completes

the description of V-ADT.

3.2.2. GOAL-PROMPTED AUTOTUNED DECISION

TRANSFORMER

In HRL, the high-level policy often considers a latent action

space. Typical choices of latent actions includes sub-goal
(Nachum et al., 2018; Park et al., 2023), skills (Ajay et al.,

2020; Jiang et al., 2022), and options (Sutton et al., 1999;

Bacon et al., 2017; Klissarov & Machado, 2023). We con-

sider goal-reaching problem as an example and use sub-

goals as latent actions, which leads to our second algorithm,

Goal-promped Autotuned Decision Transformer (G-ADT).
Let G be the goal space3. The goal-conditioned reward

function r(s, a, g) provides the reward of taking action a
at state s for reaching the goal g ∈ G. Let V (s, g) be the

universal value function defined by the goal-conditioned

rewards (Nachum et al., 2018; Schaul et al., 2015). Sim-

ilarly, we define V ∗
D(s, g) and Q∗

D(s, a, g) the in-sample

optimal universal value function. We also train Vφ ≈ V ∗
D

and Qψ ≈ Q∗
D to approximate the universal value functions.

We now describe how G-ADT jointly optimizes the policies.

High-Level policy G-ADT considers P = G and uses

a high-level policy πω : S → G. To find a shorter path,

the high-level policy πω generates a sequence of sub-goals

gt = πω(st) that guides the learner step-by-step towards

the final goal. We use a sub-goal that lies in k-steps further

from the current state, where k is a hyper-parameter of the

algorithm tuned for each domain (Badrinath et al., 2023;

Park et al., 2023). In particular, given trajectory data (4), the

high-level policy learns the optimal k-steps jump using the

recently proposed Hierarchical Implicit Q-learning (HIQL)

3The goal space and state space could be the same (Nachum
et al., 2018; Park et al., 2023)

algorithms (Park et al., 2023):

L(φ) = −
T∑

t=0

exp

(Ahigh

α

)
log πω(st+k|st, g) .

Ahigh =

k−1∑
t′=t

γt′−tr(st′ , at′ , g) + γkVφ(st+k, g)− Vφ(st, g).

Low-Level policy The low-level policy in G-ADT learns

to reach the sub-goal generated by the high-level policy. G-

ADT shares the same low-level policy objective as V-ADT.

Given trajectory data (4), it considers the following

L(θ) = −
T∑

t=0

exp

(Alow

α

)
· log πθ(at|st, πω(st)) ,

where Alow = Qψ(st, at, πω(st)) − Vφ(st, πω(st)). Note

that this is exactly the same as (6) except that the advantages

Alow are computed by universal value functions. G-ADT

also applies the same tokenization method as V-ADT by

first concatenating πω(st) and st together. This concludes

the description of the G-ADT algorithm.

4. Discussions
Types of Prompts Xu et al. (2022) introduces Prompt-

DT, which leverages the sequential modeling ability of the

Transformer architecture, using expert trajectory prompts as

task-specific guides to adapt to unseen tasks without extra

finetuning. Reed et al. (2022) have delved into the potential

scalability of transformer-based decision models through

prompting. They show that a causal transformer, trained

on multi-task offline datasets, showcases remarkable adapt-

ability to new tasks through fine-tuning. The adaptability

is achieved by providing a sequence prompt as the input

of the transformer model, typically represented as a trajec-

tory of expert demonstrations. Unlike such expert trajectory

prompts, our prompt can be seen as a latent action gener-

ated by the high-level policy, serving as guidance for the

low-level policy to inform its decision-making process.

Comparison of other DT Enhancements Several recent

works have been proposed to overcome the limitations of

DT. Correia & Alexandre (2022) employs a dual transformer

architecture to design Hierarchical DT (HDT), where a high-

level mechanism selects sub-goal states from demonstration

data to guide a low-level controller in task completion to

improve DT. Yamagata et al. (2023) relabelled trajectory

data by replacing return-to-go with values learned by offline

RL algorithms. Badrinath et al. (2023) proposed to use sub-

goal as prompt, guiding the DT policy to find shorter path

in navigation problems. Wu et al. (2023) learned maximum

achievable returns, R∗(s) = maxτ∈T (s) R(τ), to boost the

stitching ability of DT at decision time. Liu & Abbeel

5

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

(2023) structured trajectory data by relabelling the target re-

turn for each trajectory as the maximum total reward within

a sequence of trajectories. Their findings showed that this

approach enabled a transformer-based decision model to

improve itself during both training and testing time. Com-

pared to these previous efforts, ADT introduces a principled

framework of hierarchical policy optimization. Our prac-

tical studies show that the joint optimization of high and

low level policies is the key to boost the performance of

transformer-based decision models.

5. Experiment
We investigate three primary questions in our experiments.

First, how well does ADT perform on offline RL tasks com-

pared to prior DT-based methods? Second, is it essential to

auto-tune prompts for transformer-based decision model?

Third, what is the influence of various implementation de-

tails within an ADT on its overall performance? We refer

readers to Appendix A for additional details and supplemen-

tary experiments.

Benchmarks and Baseline Algorithms We leverage

datasets across several domains including Gym-Mujoco,

AntMaze, and FrankaKitchen from the offline RL bench-

mark D4RL (Fu et al., 2020). We compare the perfor-

mance of ADT with several representative baselines in-

cluding (1) offline RL methods: TD3+BC (Fujimoto &

Gu, 2021), CQL (Kumar et al., 2020) and IQL (Kostrikov

et al., 2022); (2) valued-conditioned methods: Decision

Transformer (DT) (Chen et al., 2021), Q-Learning De-

cision Transformer (QLDT) (Yamagata et al., 2023) and

Elastic Decision Transformer (EDT) (Wu et al., 2023); (3)

goal-conditioned methods: HIQL (Park et al., 2023), RvS

(Emmons et al., 2021), Hierarchical Decision Transformer

(HDT) (Correia & Alexandre, 2022) and Waypoint Trans-

former (WT) (Badrinath et al., 2023). All the baseline re-

sults except for QLDT are obtained from (Badrinath et al.,

2023) and (Park et al., 2023) or by running the codes of

CORL repository (Tarasov et al., 2022). For HIQL, we

present HIQL’s performance with the goal representation in

Kitchen and that without goal representation in AntMaze,

as per our implementation in ADT, to ensure fair compar-

ison. QLDT and the transformer-based actor of ADT are

implemented based on the DT codes in CORL, with similar

architecture. Details are given in Appendix. The critics

and the policies to generate prompts used in ADT are re-

implemented in PyTorch following the official codes of IQL

and HIQL. In all conducted experiments, five distinct ran-

dom seeds are employed. Results are depicted with 95%

confidence intervals, represented by shaded areas in figures

and expressed as standard deviations in tables. The reported

results of ADT in tables are obtained by evaluating the final

models. Note that as HDT reports the best score, to ensure

fair comparison, we report best normalized scores for both

HDT and ADT in Table 4.

Implementation of ADT The implementations of ADT

is based on CORL repository (Tarasov et al., 2022). A key

different between the implementation of ADT and DT is

that we follow the way in (Badrinath et al., 2023) that we

concatenate the (scaled) prompt and state, then the concate-

nated information and the action are treated as two tokens

per timestep. In practice, we first train the high-level pol-

icy of ADT, then train the low-level policy. For each time

of evaluation, we run the algorithms for 10 episodes for

MuJoCo datasets, 50 episodes for Kitchen datasets, and

100 episodes for AntMaze datasets. Codes for reproducing

our results are provided here. Detailed settings of other

hyperparameters are provided in Appendix A.2.

5.1. Main Results

Tables 1 and 2 present the performance of two variations

of ADT evaluated on offline datasets. ADT significantly

outperforms prior transformer-based decision making algo-

rithms. Compared to DT and QLDT, two transformer-based

algorithms for decision making, V-ADT exhibits significant

superiority especially on AntMaze and Kitchen which re-

quire the stitching ability to success. Meanwhile, Table 2

shows that G-ADT significantly outperforms WT, an algo-

rithm that uses sub-goal as prompt for a transformer policy.

We note that ADT enjoys comparable performance with

state-of-the-art offline RL methods. For example, V-ADT

outperforms all offline RL baselines in Mujoco problems.

In AntMaze and Kitchen, V-ADT matches the performance

of IQL, and significantly outperforms TD3+BC and CQL.

Table 2 concludes with similar findings for G-ADT.

5.2. Ablation Studies

5.2.1. EFFECTIVENESS OF PROMPTING

Figure 3. Learning curves of V-ADT with and without value

prompt. The value prompt significantly boosts the performance in

harder diverse datasets.

In Section 3.1 we discuss an illustrative example showing

6

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

Table 1. Average normalized scores of V-ADT, value-conditioned (DT and QLDT), and value-based RL methods. The methods on the

right of the vertical line are DT-based methods. The top scores among all DT-based methods are highlighted in bold.

Environment TD3+BC CQL IQL DT QLDT EDT V-ADT
halfcheetah-medium-v2 48.3 ± 0.3 44.0 ± 5.4 47.4 ± 0.2 42.4 ± 0.2 42.3 ± 0.4 42.5 ± 0.9 48.7 ± 0.2

hopper-medium-v2 59.3 ± 4.2 58.5 ± 2.1 66.2 ± 5.7 63.5 ± 5.2 66.5 ± 6.3 63.5 ± 5.8 60.6 ± 2.8

walker2d-medium-v2 83.7 ± 2.1 72.5 ± 0.8 78.3 ± 8.7 69.2 ± 4.9 67.1 ± 3.2 72.8 ± 6.2 80.9 ± 3.5
halfcheetah-medium-replay-v2 44.6 ± 0.5 45.5 ± 0.5 44.2 ± 1.2 35.4 ± 1.6 35.6 ± 0.5 37.8 ± 1.5 42.8 ± 0.2

hopper-medium-replay-v2 60.9 ± 18.8 95.0 ± 6.4 94.7 ± 8.6 43.3 ± 23.9 52.1 ± 20.3 89.0 ± 8.3 83.5 ± 9.5

walker2d-medium-replay-v2 81.8 ± 5.5 77.2 ± 5.5 73.8 ± 7.1 58.9 ± 7.1 58.2 ± 5.1 74.8 ± 4.9 86.3 ± 1.4
halfcheetah-medium-expert-v2 90.7 ± 4.3 91.6 ± 2.8 86.7 ± 5.3 84.9 ± 1.6 79.0 ± 7.2 - 91.7 ± 1.5

hopper-medium-expert-v2 98.0 ± 9.4 105.4 ± 6.8 91.5 ± 14.3 100.6 ± 8.3 94.2 ± 8.2 - 101.6 ± 5.4
walker2d-medium-expert-v2 110.1 ± 0.5 108.8 ± 0.7 109.6 ± 1.0 89.6 ± 38.4 101.7 ± 3.4 - 112.1 ± 0.4

gym-avg 75.3 ± 4.9 77.6 ± 3.4 76.9 ± 5.8 65.3 ± 10.1 66.3 ± 6.1 - 78.7 ± 2.8

antmaze-umaze-v2 78.6 74.0 87.5 ± 2.6 53.6 ± 7.3 67.2 ± 2.3 - 88.2 ± 2.5
antmaze-umaze-diverse-v2 71.4 84.0 62.2 ± 13.8 42.2 ± 5.4 62.1 ± 1.6 - 58.6 ± 4.3

antmaze-medium-play-v2 10.6 61.2 71.2 ± 7.3 0.0 ± 0.0 0.0 ± 0.0 - 62.2 ± 2.5
antmaze-medium-diverse-v2 3.0 53.7 70.0 ± 10.9 0.0 ± 0.0 0.0 ± 0.0 - 52.6 ± 1.4

antmaze-large-play-v2 0.2 15.8 39.6 ± 5.8 0.0 ± 0.0 0.0 ± 0.0 - 16.6 ± 2.9
antmaze-large-diverse-v2 0.0 14.9 47.5 ± 9.5 0.0 ± 0.0 0.0 ± 0.0 - 36.4 ± 3.6

antmaze-avg 27.3 50.6 63.0 ± 8.3 16.0 ± 2.1 21.6 ± 0.7 - 52.4 ± 2.9

kitchen-complete-v0 25.0 ± 8.8 43.8 62.5 46.5 ± 3.0 38.8 ± 15.8 - 55.1 ± 1.4
kitchen-partial-v0 38.3 ± 3.1 49.8 46.3 31.4 ± 19.5 36.9 ± 10.7 - 46.0 ± 1.6
kitchen-mixed-v0 45.1 ± 9.5 51.0 51.0 25.8 ± 5.0 17.7 ± 9.5 - 46.8 ± 6.3

kitchen-avg 36.1 ± 7.1 48.2 53.3 34.6 ± 9.2 30.5 ± 12.0 - 49.3 ± 3.1
average 52.7 63.7 68.3 43.8 ± 7.3 45.4 ± 5.3 - 65.0 ± 2.9

Table 2. Performance of G-ADT across all datasets. The methods

on the right of the vertical line are transformer-based methods, the

top scores among which are highlighted in bold.

Environment RvS-R/G HIQL WT G-ADT
antmaze-umaze-v2 65.4 ± 4.9 83.9 ± 5.3 64.9 ± 6.1 83.8 ± 2.3

antmaze-umaze-diverse-v2 60.9 ± 2.5 87.6 ± 4.8 71.5 ± 7.6 83.0 ± 3.1
antmaze-medium-play-v2 58.1 ± 12.7 89.9 ± 3.5 62.8 ± 5.8 82.0 ± 1.7

antmaze-medium-diverse-v2 67.3 ± 8.0 87.0 ± 8.4 66.7 ± 3.9 83.4 ± 1.9
antmaze-large-play-v2 32.4 ± 10.5 87.3 ± 3.7 72.5 ± 2.8 71.0 ± 1.3

antmaze-large-diverse-v2 36.9 ± 4.8 81.2 ± 6.6 72.0 ± 3.4 65.4 ± 4.9

antmaze-avg 53.5 ± 7.2 86.2 ± 5.4 68.4 ± 4.9 78.1 ± 2.5

kitchen-complete-v0 50.2 ± 3.6 43.8 ± 19.5 49.2 ± 4.6 51.4 ± 1.7
kitchen-partial-v0 51.4 ± 2.6 65.0 ± 9.2 63.8 ± 3.5 64.2 ± 5.1
kitchen-mixed-v0 60.3 ± 9.4 67.7 ± 6.8 70.9 ± 2.1 69.2 ± 3.3

kitchen-avg 54.0 ± 5.2 58.8 ± 11.8 61.3 ± 3.4 61.6 ± 3.4
average 53.7 ± 6.5 77.1 ± 7.5 66.0 ± 4.4 72.6 ± 2.8

Figure 4. Average normalized results of DT using different prompt.

Incorporating manual prompt engineering could not help DT out-

perform V-ADT.

how value-based conditional prediction can be leveraged

to solve sequential decision making problem. However, it

is still unclear how much the value prompt contributes to

the remarkable empirical performance of V-ADT. This is

particularly important to understand as by removing the

value prompt, our low-level policy optimization objective

(6) becomes exactly the same as advantage-weighted re-

gression (Peng et al., 2019) with a transformer policy. We

thus compare the performance of V-ADT with and without

using value prompts in Figure 3. Although the value prompt

seems to be less useful for the play datasets, it significantly

improves the performance of V-ADT for the much harder

diverse datasets. This confirms the effectiveness of value

prompting for solving complex problems. In addition, com-

pared with vanilla-DT that only imitates the actions at each

state, V-ADT can still reach better performance without the

prompt. This could be attributed to the using of advantage-

weighted regression to learn the low-level policy. In this

way, the policy could find the best actions leading to the

in-sample optimal return in the dataset, which is referred to

the stitching ability.

The main hypothesis behind ADT is that it is essential to

learn a policy for adaptive prompt generation in order to

make transformer-based sequential decision models able to

learn optimal control policies. Since the initial return-to-go

prompt of DT is a tunable hyper-parameter, a nature ques-

tion follows: is it possible to match the performance of ADT

through manual prompt tuning? Figure 4 delineates the re-

sults of DT using different target returns on four different

walker2d datasets. The x-axis of each subfigure represents

7

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

the normalized target return input into DT, while the y-axis

portrays the corresponding evaluation performance. Empiri-

cal results indicate that manual modifications to the target

return could not improve the performance of DT, with its

performance persistently lagging behind V-ADT. We also

note that there is no single prompt that performs universally

well across all domains. This highlights that the utility of

prompt in DT appears constrained, particularly when work-

ing with datasets sourced from unimodal behavior policy.

5.2.2. EFFECTIVENESS OF LOW-LEVEL POLICY

OPTIMIZATION OBJECTIVE

We claim that the sequence prediction loss used by DT

does not suit our low-level policy optimization. To verify

this claim, we implement a variant of ADT which uses the

original DT objective to learn the low-level policy while

still keeping learning an adaptive high-level policy. Figure

5 presents a comparison between this baseline and ADT.

From the results we observe substantial improvement in per-

formance of both V-ADT and G-ADT when (6) is leveraged.

In particular, without using (6) to optimize the low-level

policy, the effectiveness of auto-tuned prompting is notably

compromised. This also strengthens the need of joint policy

optimization of high and low level policies.

Figure 5. Learning curves of V-ADT and G-ADT with and without

using (6). The results demonstrate that (6) is essential in empower-

ing DT with stitching ability to achieve superior performance.

5.2.3. EFFECTIVENESS OF TOKENIZATION STRATEGIES

In ADT, we diverge from the methodology presented in

(Chen et al., 2021) where individual tokens are produced

for each input component: return-to-go prompt, state, and

action. Instead, we opt for a concatenated representation of

prompts and states. Figure 6 presents a comparative analysis

between these two tokenization strategies. We observe that

our tokenization method contributes to superior performance

both for V-ADT and G-ADT.

We postulate that this is attributed to the design of high-

policy, which ensures a high degree of correlation between

states and the corresponding ideal prompts. Thus we assert

that the states and the corresponding prompts should be

treated with equal significance when computing attention

within the transformer’s internal architecture.

Figure 6. Learning curves of ADT with different tokenization

strategies. Our design contributes to superiority by equally treating

the states and related prompts when computing attention.

5.2.4. WHY ADT FALLS SHORT OF IQL AND HIQL?

It can be observed that the overall performance of ADT falls

short of IQL and HIQL from Table 1 and 2. Our main con-

jecture is that Transformer as a function approximator is
harder to optimize compared to MLP for standard RL
algorithms. To verify this, we first implement an oracle

algorithm, which distills the IQL policy using a transformer

with supervised learning objective (Oracle in Table 3). The

oracle algorithm matches the performance of IQL, suggest-

8

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

ing that the transformer architecture is not the bottleneck.

We then implement another baseline, named IQL-Trans (i.e.,

V-ADT w/o prompt in Figure 3), by replacing the MLP

policy with a transformer policy for IQL. As shown in Table

3, the performance of IQL-Trans cannot match the original

IQL, further supporting our conjecture. Previous study also

aligns with our findings that MLP is competitive with and

sometimes more effective than Transformer in single task

offline RL benchmarks (see Table 1 of RvS (Emmons et al.,

2021)). The advantage of ADT over IQL-Trans is mainly

contributed to the joint optimization of hierarchical policies

(the high-level policy optimizes the prompt and the the low-

level policy is optimized based on the prompt), since this is

the key difference between these two algorithms. Finally,

we note that there is still a performance gap between ADT

and the oracle algorithm. This motivates the investigation

of other techniques to improve transformer-based decision

models, which we leave as our future work.

Table 3. Investigations on using different policy bases

Environment V-ADT IQL-Trans Oracle IQL

antmaze-medium-play-v2 62.2± 2.5 50.6± 6.6 69.0± 1.8 71.2± 7.3
antmaze-medium-diverse-v2 52.6± 1.4 38.6± 5.4 64.8± 6.5 70.0± 10.9

antmaze-large-play-v2 16.6± 2.9 19.4± 3.6 50.0± 1.7 39.6± 5.8
antmaze-large-diverse-v2 36.4± 3.6 5.0± 5.2 33.4± 5.3 47.5± 9.5

6. Comparison with HDT
We provide comparison between Hierarchical Decision

Transformer (HDT) and ADT in Table 4. As HDT reports

the best score, to ensure fair comparison, we report best

normalized scores for both HDT and V-ADT. The results

of HDT are directly taken and transferred to the normalized

score using the function provided in D4RL. As shown in

Table 4, except for hopper-medium, ADT outperforms HDT

on all datasets. The overall performance of ADT is also

significantly better than that of HDT.

Table 4. Comparison with HDT

HDT V-ADT

halfcheetah-medium 44.2 49.9
hopper-medium 95.0 81.3

walker2d-medium 84.5 89.5
kitchen-complete 65.0 66.0
maze2d-medium 66.2 120.2

average 71.0 81.3

7. Conclusion
We propose to rethink transformer-based decision models

through a hierarchical decision-making framework. Armed

with this, we introduce Autotuned Decision Transformer

(ADT), which jointly optimizes the hierarchical policies for

better performance when learning from sub-optimal data.

ADT designed from Hierarchical RL is to provide general

framework that high-level policy considers a latent action

space and the low-level policy considers the control action

to achieve the guidance given by the high-level latent ac-

tion. We provide two widely used latent action space as

two practical implementations of ADT. On standard offline

RL benchmarks, we show ADT significantly outperforms

previous transformer-based decision making algorithms.

Our primary focus for future work is to investigate the fol-

lowing problems. First, besides employing values and sub-

goals as latent actions generated by the high-level policy,

other options for latent actions in hierarchical RL encom-

pass skills (Ajay et al., 2020) and options (Sutton et al.,

1999). We would like to investigate the potential extensions

of ADT by incorporating skills and options. Second, accord-

ing to the reward hypothesis, goals can be conceptualized as

the maximization of expected value through the cumulative

sum of a reward signal (Silver et al., 2021; Bowling et al.,

2023). Can we establish a unified framework that bridges

value-prompted ADT and goal-prompted ADT? Finally, ac-

cording to our experiments, the advantages of substituting

conventional architectures with transformer models in RL

remain uncertain. Previous studies have indicated that the

incorporation of transformers in RL is most advantageous

when dealing with extensive and diverse datasets (Chebotar

et al., 2023). With this in mind, we intend to apply ADT

to create foundational decision-making models for learning

multi-modal and multi-task policies in realistic scenarios

(Wang et al., 2020; Ma et al., 2021; Zheng et al., 2019; Zhou

et al., 2020; Wang et al., 2022b).

Impact Statement
By rethinking the Decision Transformer model, this work

addresses previous limitations and enhances the ability to

stitch sub-optimal trajectories. This work sets a precedent

for future research in the integration of transformers with

reinforcement learning. It opens up possibilities for further

exploration into how hierarchical structures can enhance

learning models, potentially leading to more groundbreak-

ing discoveries in the field. This improvement is crucial for

complex decision-making scenarios, potentially impacting

domains like robotics, autonomous systems, and complex

game environments.

Acknowledgement
This work is supported by the National Natural Science

Foundation of China (Grant Nos. 92370132, 62106172),

the Science and Technology on Information Systems En-

gineering Laboratory (Grant Nos. WDZC20235250409,

6142101220304), and the Xiaomi Young Talents Program

of Xiaomi Foundation.

9

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

References
Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum,

O. Opal: Offline primitive discovery for acceler-

ating offline reinforcement learning. arXiv preprint
arXiv:2010.13611, 2020.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learn-

ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic

architecture. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

Badrinath, A., Flet-Berliac, Y., Nie, A., and Brunskill, E.

Waypoint transformer: Reinforcement learning via super-

vised learning with intermediate targets. arXiv preprint
arXiv:2306.14069, 2023.

Bowling, M., Martin, J. D., Abel, D., and Dabney, W. Set-

tling the reward hypothesis. In International Conference
on Machine Learning, pp. 3003–3020. PMLR, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:

1877–1901, 2020.

Chebotar, Y., Vuong, Q., Irpan, A., Hausman, K., Xia,

F., Lu, Y., Kumar, A., Yu, T., Herzog, A., Pertsch, K.,

et al. Q-transformer: Scalable offline reinforcement

learning via autoregressive q-functions. arXiv preprint
arXiv:2309.10150, 2023.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,

Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-

cision transformer: Reinforcement learning via sequence

modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,

G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,

Gehrmann, S., et al. Palm: Scaling language modeling

with pathways. arXiv preprint arXiv:2204.02311, 2022.

Correia, A. and Alexandre, L. A. Hierarchical decision

transformer. arXiv preprint arXiv:2209.10447, 2022.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.

Rvs: What is essential for offline rl via supervised learn-

ing? In International Conference on Learning Represen-
tations, 2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-

ers: Scaling to trillion parameter models with simple

and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,

S. D4rl: Datasets for deep data-driven reinforcement

learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline

reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function

approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.

PMLR, 2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep

reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.

PMLR, 2019.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-

guage models better few-shot learners. arXiv preprint
arXiv:2012.15723, 2020.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What

can transformers learn in-context? a case study of sim-

ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktäschel, T.,

Grefenstette, E., and Tian, Y. Efficient planning in a com-

pact latent action space. arXiv preprint arXiv:2208.10291,

2022.

Klissarov, M. and Machado, M. C. Deep laplacian-based op-

tions for temporally-extended exploration. arXiv preprint
arXiv:2301.11181, 2023.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement

learning with implicit q-learning. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-

servative q-learning for offline reinforcement learning.

Advances in Neural Information Processing Systems, 33:

1179–1191, 2020.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,

Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,

Brooks, E., et al. In-context reinforcement learning with

algorithm distillation. arXiv preprint arXiv:2210.14215,

2022.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,

Nachum, O., and Brunskill, E. Supervised pretraining can

learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

10

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

Lester, B., Al-Rfou, R., and Constant, N. The power of scale

for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-

forcement learning: Tutorial, review, and perspectives on

open problems. arXiv preprint arXiv:2005.01643, 2020.

Liu, H. and Abbeel, P. Emergent agentic transformer

from chain of hindsight experience. arXiv preprint
arXiv:2305.16554, 2023.

Liu, H., Sferrazza, C., and Abbeel, P. Chain of hindsight

aligns language models with feedback. arXiv preprint
arXiv:2302.02676, 3, 2023.

Ma, Y., Hao, X., Hao, J., Lu, J., Liu, X., Xialiang, T.,

Yuan, M., Li, Z., Tang, J., and Meng, Z. A hierarchical

reinforcement learning based optimization framework

for large-scale dynamic pickup and delivery problems.

Advances in neural information processing systems, 34:

23609–23620, 2021.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient

hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018.

Park, S., Ghosh, D., Eysenbach, B., and Levine, S. Hiql:

Offline goal-conditioned rl with latent states as actions.

arXiv preprint arXiv:2307.11949, 2023.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.

Advantage-weighted regression: Simple and scalable

off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,

2014.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

Sutskever, I., et al. Language models are unsupervised

multitask learners. OpenAI blog, 1(8):9, 2019.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-

ford, A., Chen, M., and Sutskever, I. Zero-shot text-

to-image generation. In International Conference on
Machine Learning, pp. 8821–8831. PMLR, 2021.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,

Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,

Y., Kay, J., Springenberg, J. T., et al. A generalist agent.

arXiv preprint arXiv:2205.06175, 2022.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal

value function approximators. In International conference
on machine learning, pp. 1312–1320. PMLR, 2015.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward

is enough. Artificial Intelligence, 299:103535, 2021.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung,

H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,

et al. Large language models encode clinical knowledge.

arXiv preprint arXiv:2212.13138, 2022.

Sutton, R. S., Precup, D., and Singh, S. Between mdps

and semi-mdps: A framework for temporal abstraction in

reinforcement learning. Artificial intelligence, 112(1-2):

181–211, 1999.

Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., and

Kolesnikov, S. CORL: Research-oriented deep offline

reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https:
//openreview.net/forum?id=SyAS49bBcv.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-

tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,

S., Chowdhery, A., and Zhou, D. Self-consistency im-

proves chain of thought reasoning in language models.

arXiv preprint arXiv:2203.11171, 2022a.

Wang, Z., Jusup, M., Guo, H., Shi, L., Geček, S., Anand,

M., Perc, M., Bauch, C. T., Kurths, J., Boccaletti, S., et al.

Communicating sentiment and outlook reverses inaction

against collective risks. Proceedings of the National
Academy of Sciences, 117(30):17650–17655, 2020.

Wang, Z., Mu, C., Hu, S., Chu, C., and Li, X. Modelling the

dynamics of regret minimization in large agent popula-

tions: a master equation approach. In IJCAI, pp. 534–540,

2022b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,

Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought

prompting elicits reasoning in large language models.

Advances in Neural Information Processing Systems, 35:

24824–24837, 2022.

Wu, Y.-H., Wang, X., and Hamaya, M. Elastic decision

transformer. arXiv preprint arXiv:2307.02484, 2023.

Xiao, C., Wang, H., Pan, Y., White, A., and White, M.

The in-sample softmax for offline reinforcement learning.

arXiv preprint arXiv:2302.14372, 2023.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,

J., and Gan, C. Prompting decision transformer for few-

shot policy generalization. In international conference
on machine learning, pp. 24631–24645. PMLR, 2022.

11

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. Q-

learning decision transformer: Leveraging dynamic pro-

gramming for conditional sequence modelling in offline

rl. In International Conference on Machine Learning, pp.

38989–39007. PMLR, 2023.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,

and Narasimhan, K. Tree of thoughts: Deliberate prob-

lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic

chain of thought prompting in large language models.

arXiv preprint arXiv:2210.03493, 2022.

Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., Liu, Y.,

Shen, R., Chen, Y., and Fan, C. Wuji: Automatic online

combat game testing using evolutionary deep reinforce-

ment learning. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pp. 772–784. IEEE, 2019.

Zhou, M., Luo, J., Villella, J., Yang, Y., Rusu, D., Miao,

J., Zhang, W., Alban, M., Fadakar, I., Chen, Z., Huang,

A. C., Wen, Y., Hassanzadeh, K., Graves, D., Chen, D.,

Zhu, Z., Nguyen, N., Elsayed, M., Shao, K., Ahilan, S.,

Zhang, B., Wu, J., Fu, Z., Rezaee, K., Yadmellat, P.,

Rohani, M., Nieves, N. P., Ni, Y., Banijamali, S., Rivers,

A. C., Tian, Z., Palenicek, D., bou Ammar, H., Zhang,

H., Liu, W., Hao, J., and Wang, J. Smarts: Scalable

multi-agent reinforcement learning training school for

autonomous driving, 11 2020. URL https://arxiv.
org/abs/2010.09776.

12

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

A. Implementation Details
A.1. Environments

MuJoCo For the MuJoCo framework, we incorporate nine version 2 (v2) datasets. These datasets are generated using

three distinct behavior policies: ’-medium’, ’-medium-play’, and ’-medium-expert’, and span across three specific tasks:

’halfcheetah’, ’hopper’, and ’walker2d’.

AntMaze The AntMaze represents a set of intricate, long-horizon navigation challenges. This domain uses the same

umaze, medium, and large mazes from the Maze2D domain, but replaces the agent with an 8-DoF Ant robot from the

OpenAI Gym MuJoCo benchmark. For the ’umaze’ dataset, trajectories are generated with the Ant robot starting and aiming

for fixed locations. To introduce complexity, the ”diverse” dataset is generated by selecting random goal locations within the

maze, necessitating the Ant to navigate from various initial positions. Meanwhile, the ”play” dataset is curated by setting

specific, hand-selected initial and target positions, adding a layer of specificity to the task. We employ six version 2 (v2)

datasets which include ‘-umaze’, ‘-umaze-diverse’, ‘-medium-play’, ‘-medium-diverse’, ‘-large-play’, and ‘-large-diverse’

in our experiments.

Franka Kitchen In the Franka Kitchen environment, the primary objective is to manipulate a set of distinct objects to

achieve a predefined state configuration using a 9-DoF Franka robot. The environment offers multiple interactive entities,

such as adjusting the kettle’s position, actuating the light switch, and operating the microwave and cabinet doors, inclusive

of a sliding mechanism for one of the doors. For the three principal tasks delineated, the ultimate objective comprises the

sequential completion of four salient subtasks: (1) opening the microwave, (2) relocating the kettle, (3) toggling the light

switch, and (4) initiating the sliding action of the cabinet door. In conjunction, three comprehensive datasets have been

provisioned. The ’-complete’ dataset encompasses demonstrations where all four target subtasks are executed in a sequential

manner. The ‘-partial’ dataset features various tasks, but it distinctively includes sub-trajectories wherein the aforementioned

four target subtasks are sequentially achieved. The ‘-mixed’ dataset captures an assortment of subtask executions; however,

it is noteworthy that the four target subtasks are not completed in an ordered sequence within this dataset. We utilize these

datasets in our experiments.

A.2. Hyper-parameters and Implementations

Table 5. ADT Actor (Transformer) Hyper-parameters

Hyper-parameter Value

Architecture

Hidden layers 3

Hidden dim 128

Heads num 1

Clip grad 0.25

Embedding dim 128

Embedding dropout 0.1

Attention dropout 0.1

Residual dropout 0.1

Activation function GeLU

Sequence length 20 (V-ADT), 10 (G-ADT)

G-ADT Way Step 20 (kitchen-partial, kitchen-mixed), 30 (Others)

Learning

Optimizer AdamW

Learning rate 1e-4

Mini-batch size 256

Discount factor 0.99

Target update rate 0.005

Value prompt scale 0.001 (Mujoco) 1.0 (Others)

Warmup steps 10000

Weight decay 0.0001

Gradient Steps 100k (G-ADT, AntMaze), 1000k (Others)

We provide the lower-level actor’s hyper-parameters used in our experiments in Table 5. Most hyper-parameters are set

13

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

following the default configurations in DT. For the inverse temperature used in calculating the AWR loss of the lower-

level actor in V-ADT, we set it to 1.0, 3.0, 6.0, 6.0, 6.0, 15.0 for antmaze-’umaze’, ’umaze-diverse’, ’medium-diverse’,

’medium-play’, ’large-diverse’, ’large-play’ dataset, respectively; for other datasets, it is set 3.0. As for G-ADT, the inverse

temperature is set to 1.0 for all the datasets. For the critic used in V-ADT and G-ADT, we follow the default architecture and

learning settings in IQL (Kostrikov et al., 2022) and HIQL (Park et al., 2023), respectively.

B. IQL and HIQL
Implicit Q-learning (IQL) (Kostrikov et al., 2022) offers an approach to avoid out-of-sample action queries. This is achieved

by transforming the traditional max operator in the Bellman optimality equation to an expectile regression framework.

More formally, IQL constructs an action-value function Q(s, a) and a corresponding state-value function V (s). These are

governed by the loss functions:

LV = E(s,a)∼D
[
Lτ
2

(
Q̄(s, a)− V (s)

)]
, (7)

LQ = E(s,a,s′)∼D
[
(r(s, a) + γV (s′)−Q(s, a))

2
]
, (8)

Here, D represents the offline dataset, Q̄ symbolizes the target Q network, and Lτ
2 is defined as the expectile loss with

a parameter constraint τ ∈ [0.5, 1) and is mathematically represented as Lτ
2(x) = |τ − I(x < 0)|x2. Then the policy is

extracted with a simple advantage-weighted behavioral cloning procedure resembling supervised learning:

Jπ = E(s,a,s′)∼D
[
exp

(
β · Ã (s, a)

)
log π (a | s)

]
, (9)

where Ã (s, a) = Q̄(s, a)− V (s).

Building on this foundation, Hierarchical Implicit Q-Learning (Park et al., 2023) introduces an action-free variant of IQL

that facilitates the learning of an offline goal-conditioned value function V (s, g):

LV = E(s,s′)∼D,g∼p(g|τ)
[
Lτ
2

(
r(s, g) + γV̄ (s′, g)− V (s, g)

)]
(10)

where V̄ denotes the target Q network. Then a high-level policy πh
h (st+k | st, g), which produces optimal k-steps jump, i.e.,

k-step subgoals st+k, is trained via:

Jπh = E(st,st+k,g)

[
exp

(
β · Ãh (st, st+k, g)

)
log πh (st+k | st, g)

]
, (11)

where β represents the inverse temperature hyper-parameter, and the value Ãh (st, st+k, g) is approximated using

V (st+k, g)− V (st, g). Similarly, a low-level policy is trained to learn to reach the sub-goal st+k:

Jπl = E(st,at,st+1,st+k)

[
exp

(
β · Ãl (st, at, st+k)

)
log πl (at | st, st+k)

]
, (12)

where the value Ãl (st, at, st+k) is approximated using V (st+1, st+k)− V (st, st+k).

For a comprehensive exploration of the methodology, readers are encouraged to consult the original paper.

C. Complete Experimental Results
Here we provide the learning curves of our methods on all selected datasets.

D. Visualization of decision-making process of G-ADT

14

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

Figure 7. Learning curves of V-ADT.

15

Rethinking Decision Transformer via Hierarchical Reinforcement Learning

Figure 8. Learning curves of G-ADT.

Figure 9. Example of decision-making process of G-ADT in antmaze-large-play-v2 environments. We present some snapshots within an

episode. The red circle represents the sub-goal given by the prompt policy. The pentagram indicates the target position to arrive.

16

