
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VARIATIONAL DEEP LEARNING VIA IMPLICIT REGU-
LARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern deep learning models generalize remarkably well in-distribution, despite
being overparametrized and trained with little to no explicit regularization. In-
stead, current theory credits implicit regularization imposed by the choice of ar-
chitecture, hyperparameters and optimization procedure. However, deep neural
networks can be surprisingly non-robust, resulting in overconfident predictions
and poor out-of-distribution generalization. Bayesian deep learning addresses this
via model averaging, but typically requires significant computational resources as
well as carefully elicited priors to avoid overriding the benefits of implicit regu-
larization. Instead, in this work, we propose to regularize variational neural net-
works solely by relying on the implicit bias of (stochastic) gradient descent. We
theoretically characterize this inductive bias in overparametrized linear models as
generalized variational inference and demonstrate the importance of the choice
of parametrization. Empirically, our approach demonstrates strong in- and out-
of-distribution performance without additional hyperparameter tuning and with
minimal computational overhead.

1 INTRODUCTION

The success of deep learning across many application domains is, on the surface, remarkable, given
that deep neural networks are usually overparameterized and trained with little to no explicit regular-
ization. The generalization properties observed in practice have been explained by implicit regular-
ization instead, resulting from the choice of architecture [1], hyperparameters [2, 3], and optimizer
[4–10]. Notably, the corresponding inductive biases often require no additional computation, in
contrast to enforcing a desired inductive bias through explicit regularization.

In the last two decades, there has been an increasing focus on improving the reliability and robust-
ness of deep learning models via (approximately) Bayesian approaches [11] to improve performance
on out-of-distribution data [12], in continual learning [13] and sequential decision-making [14].
However, despite its promise, in practice, Bayesian deep learning can suffer from issues with prior
elicitation [15], can be challenging to scale [16], and explicit regularization via a prior combined
with approximate inference may result in pathological inductive biases and uncertainty [17–20].

In this work, we demonstrate both theoretically and empirically how to exploit the implicit bias of
optimization for approximate inference in probabilistic neural networks, thus regularizing training
implicitly rather than explicitly via the prior. This not only narrows the gap to how standard neural
networks are trained, but also reduces the computational overhead of training compared to varia-
tional inference. More specifically, we propose to learn a variational distribution over the weights
of a deep neural network by maximizing the expected log-likelihood in analogy to training via max-
imum likelihood in the standard case. However, in contrast to variational Bayes, there is no explicit
regularization via a Kullback-Leibler divergence to the prior. Surprisingly, we show theoretically
and empirically that training this way does not cause uncertainty to collapse away from the training
data, if initialized and parametrized correctly. More so, for overparametrized linear models we rigor-
ously characterize the implicit bias of SGD as generalized variational inference with a 2-Wasserstein
regularizer penalizing deviations from the prior. Figure 1 illustrates our approach on a toy example.

Contributions In this work, we propose a new approach to Bayesian deep learning that gener-
alizes robustly by exploiting the implicit regularization of (stochastic) gradient descent. We fully

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

−2

0

Standard NN Implicit Bias VI (ours)

(a) Implicit regularization.

−2

0

Mean-field VI (KL) Generalized VI (W2
2)

(b) Explicit regularization.

Figure 1: Variational deep learning via implicit regularization. Neural networks generalize well
without explicit regularization due to implicit regularization from the architecture and optimization.
We can exploit this implicit bias for variational deep learning, removing the computational overhead
of explicit regularization and narrowing the gap to deep learning practice. As illustrated for a two-
hidden layer MLP and proven rigorously for overparametrized linear models in Theorems 1 and 2,
the implicit bias of (S)GD in variational networks (see (a)) can be understood as generalized vari-
ational inference with a 2-Wasserstein regularizer (see (b)). This differs from the standard ELBO
objective with a KL divergence to the prior as used for example in mean-field VI (see (b)).

characterize this implicit bias for regression (Theorem 1) and binary classification (Theorem 2) in
overparameterized linear models, generalizing results for non-probabilistic models and drawing a
rigorous connection to generalized Bayesian inference. We also demonstrate the importance of the
parametrization for the inductive bias and its impact on hyperparameter choice. In several bench-
marks, we demonstrate competitive performance to state-of-the-art baselines for Bayesian deep
learning, at minimal computational overhead compared to standard neural networks. Finally, we
provide an open-source implementation of our approach as a standalone library: inferno.

2 BACKGROUND

Given a training dataset (X,y) = {(xn, yn)}Nn=1 of input-output pairs, supervised learning seeks a
function fw(x) to predict the corresponding output y(x) for a test input x. The parameters w ∈ RP

of the function are typically trained via empirical risk minimization, i.e.

w⋆ ∈ argmin
w

ℓr(w) with ℓr(w) = ℓ(y, fw(X)) + λr(w), (1)

where the loss ℓ(y, fw(X)) encourages fitting the training data and the regularizer r(w), given
some λ > 0, discourages overfitting, which can lead to poor generalization on test data.

Implicit Bias of Optimization One remarkable observation in deep learning is that training over-
parametrized neural networks (P > N) with gradient descent without explicit regularization can
nonetheless lead to effective (in-distribution) generalization, despite there being many global min-
ima of the loss corresponding to functions fw which achieve zero training error [21]. This can be
explained by the optimizer, initialization, and parametrization implicitly regularizing the optimiza-
tion problem argminw ℓ(y, fw(X)), thereby preferring certain global minima [e.g. 4, 5, 7, 22, 23].
Nonetheless, deep neural networks can be surprisingly brittle when predicting out-of-distribution,
often displaying overconfidence and a significant drop in generalization performance.

Bayesian Deep Learning Approximate Bayesian techniques like the Laplace approximation [24–
26], stochastic weight averaging [27, 28], deep ensembles [29], and variational approaches [30–33]
attempt to address the aforementioned shortcomings of deep learning by learning a distribution over
functions as opposed to merely a point estimate. The idea being that a weighted combination of
models, all of which achieve low training error, generalizes more robustly while at the same time
providing uncertainty quantification.

Variational Inference In Bayesian inference this weighted combination is defined by the posterior
distribution p(w | X,y) ∝ p(y | X,w)p(w) over weights, induced by a likelihood p(y | w) and
a choice of prior p(w) that expresses an explicit preference for some models over others. Approxi-
mating the posterior with qθ(w) ≈ p(w | X,y) by maximizing a lower bound to the log-evidence
leads to the following variational optimization problem [34]:

θ⋆ ∈ argmin
θ

ℓr(θ) s.t. ℓr(θ) = Eqθ(w)(− log p(y | w)) + KL(qθ(w) ∥ p(w)) (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Equation (2) is an instance of the empirical risk minimization objective in Equation (1), with the key
difference that one optimizes over variational parameters θ of a family of distributions qθ(w) ∈ Q.
If that family includes the posterior, qθ(w) = p(w | X,y) is the unique global minimum. In
the case of a potentially misspecified prior or likelihood, the variational formulation (2) can be
generalized to arbitrary loss functions ℓ and statistical distances D to the prior [35–37], such that

ℓr(θ) = Eqθ(w)(ℓ(y, fw(X))) + λD(qθ, p). (3)

3 VARIATIONAL DEEP LEARNING VIA IMPLICIT REGULARIZATION

Our overarching goal is to enable deep neural networks to generalize robustly out-of-distribution
without sacrificing their in-distribution performance, at minimal computational overhead. We ap-
proach this goal within the framework of Bayesian deep learning, by learning a distribution over
neural networks fw, induced by a parametrized variational distribution qθ(w) over its weights.
However, rather than approximating the Bayesian posterior, which trades off training error against
an explicit, a priori preference for certain models, we enforce that all models have zero training
error while using implicit regularization to weight them. Doing so preserves the implicit regular-
ization of the optimizer, which determines the generalization performance of neural networks to a
substantial degree, rather than purely relying on explicit regularization induced by the prior. Impor-
tantly, this approach leads to robust out-of-distribution generalization, while providing uncertainty
quantification at small computational overhead over standard deep learning.

3.1 TRAINING VIA THE EXPECTED LOSS

We propose to train a variational neural network defined by an architecture fw and a variational
distribution over weights qθ(w) by minimizing the expected loss ℓ̄(θ) in analogy to how deep neural
networks are usually trained. In other words, the optimal variational parameters are given by

θ⋆ ∈ argmin
θ

Eqθ(w)(ℓ(y, fw(X)))

:=ℓ̄(θ)

+λD(qθ, p). (4)

At first glance removing the divergence term from the variational objective in Eq. (3) seems prob-
lematic because the new objective is clearly minimized when the variational distribution is a point
mass at the minimum loss solution, i.e. qθ⋆

(w) = δw⋆
(w) where w⋆ ∈ argminw ℓ(y, fw(X)).

This seemingly defeats the point of a Bayesian deep learning framework, given that there is no
variability in predictions on test data. Moreover, the new objective no longer involves a prior dis-
tribution, ostensibly removing the ability to manually favor some models over others entirely. The
key to understanding our approach is that, in the overparameterized setting, a point mass is only one
of many optima corresponding to distributions qθ⋆(w), and it is the implicit bias of the optimiza-
tion procedure that chooses among them. As we will see, if one trains an overparametrized linear
model via the expected loss using (stochastic) gradient descent, this implicit bias can be explicitly
characterized to depend on the initialization.

3.2 IMPLICIT BIAS OF SGD AS GENERALIZED VARIATIONAL INFERENCE

Assume we train an overparametrized linear model with a Gaussian variational family via the ex-
pected loss. For an appropriate learning rate sequence, (stochastic) gradient descent converges to a
global minimum θGD

⋆ ∈ argmin ℓ̄(θ) of the training objective. As we show in Section 4, if SGD is
initialized to the prior, i.e. qθ0(w) = p(w), its implicit bias can be understood as selecting the dis-
tribution over models with zero training error which is closest to the prior in 2-Wasserstein distance:

qθGD
⋆

= argmin
qθ

s.t. θ∈argmin ℓ̄(θ)

W2
2(qθ, p) .

Therefore, we can interpret the implicit bias of (S)GD when training a variational linear model as
performing generalized variational inference. More precisely, the above is equivalent to qθGD

⋆
mini-

mizing the objective in Equation (3) for a certain regularization strength, but with a regularizer that
is not a KL divergence as it would be for standard variational inference, but rather a 2-Wasserstein
distance to the prior. This characterization directly generalizes results for (non-probabilistic) mod-
els, where the implicit bias of SGD selects minima that are close to the initialization in Euclidean
distance [5, 21]. We therefore call our method Implicit Bias Variational Inference (IBVI). From a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

practical perspective, by exploiting the implicit regularization of SGD, rather than performing gen-
eralized variational inference directly, we no longer need to compute the regularizer explicitly or
allocate memory for the prior hyperparameters.1

Section 4 provides a detailed version of the regression result introduced here and proves a similar
result for binary classification. Our experiments in Section 5 focus on the application to deep neural
networks, where we generally expect the implicit regularization to be more complex.

3.3 COMPUTATIONAL EFFICIENCY

In practice, we minibatch the expected loss both over training data and parameter samples wm drawn
from the variational distribution qθ(w) such that

ℓ̄(θ) = Eqθ(w)(ℓ(y, fw(X))) ≈ 1
NbM

∑Nb

n=1

∑M
m=1 ℓ(yn, fwm

(xn)). (5)

The training cost is primarily determined by two factors. The number of parameter samples M we
draw for each evaluation of the objective, and the variational family, which determines the number
of additional parameters of the model and the cost for sampling a set of parameters in each forward
pass. We wish to keep the overhead compared to a vanilla deep neural network as small as possible.

0.00

0.05

0.10

Te
st

E
rr

or
↓

SGD

100 101 102

Parameter Samples

0.00

0.05

0.10
Te

st
E

rr
or
↓

SGD + Momentum

Figure 2: Training with a
single parameter sample given
a small enough learning rate.
Lighter color shades correspond
to smaller learning rates. See
also Section S3.2.

Training With A Single Parameter Sample (M = 1) When
drawing fewer parameter samples wm the training objective in
Eq. (5) becomes noisier similar to using a smaller batch size.
This is concerning since the optimization procedure may not
converge given this additional noise. However, one can train
with a single parameter sample only, simply by reducing the
learning rate appropriately, as we show experimentally in Fig-
ure 2 and Section S3.2. Therefore, given a set of sampled pa-
rameters, the cost of a forward and backward pass is identical
to a standard neural network (up to the overhead of the covari-
ance parameters). When using fewer parameter samples in the
expected loss, training is unstable unless the learning rate is cho-
sen sufficiently small. For a fixed number of optimizer steps this
decreases performance, but either training for more steps, or us-
ing momentum closes this gap.

Variational Family and Covariance Structure We choose a
Gaussian variational distribution qθ(w) over (a subset of the)
weights of the neural network. While at first glance this may
seem restrictive, there is ample evidence that variational fami-
lies in deep neural networks do not need to be complex to be
expressive [38, 39]. In fact, in analogy to deep feedforward NNs
with ReLU activations being universal approximators [40], one
can show that Bayesian neural networks with ReLU activations
and at least one Gaussian hidden layer are universal conditional distribution approximators, meaning
they can approximate any continuous conditional distribution arbitrarily well [39]. As we show in
Section 4, training an overparametrized linear model with SGD via the expected loss amounts to
generalized variational inference if the covariance is factorized, i.e. Σ = SST where S ∈ RP×R

is a dense matrix with rank R ≤ P . The implicit bias of SGD for arbitrary parametrizations of the
covariance matrix remains an open problem. Throughout our experiments we use Gaussian layers
with factorized covariances for all architectures.

3.4 PARAMETRIZATION, FEATURE LEARNING AND HYPERPARAMETER TRANSFER

The inductive bias of SGD depends on the initialization and choice of parametrization, a bijective
map ρ : Θ′ → Θ reparametrizing a (variational) model such that fθ ≡ fρ(θ′). When training
deep neural networks, it is not unusual to use layer-specific learning rates. These can be absorbed
into the weights of the model and the initialization, meaning they effectively just define a different

1We only need them to initialize the optimizer after which we can free up the allocated memory.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2−7 2−5 2−3 2−1

Learning Rate

1.5

2.0
Tr

ai
n

L
os

s

Standard Param. (SP)

2−7 2−5

Learning Rate

0.5

1.0

1.5

Maximal Update Param. (µP)

28 210

Hidden Size

0.6

0.8

1.0

R
el

at
iv

e
Te

st
A

cc
ur

ac
y

Hidden Size
128
256

512
1024

2048

Parametrization
Standard
Maximal Update

LR Selection Method
Grid Search
Transferred Grid Search

Figure 3: Hyperparameter Transfer. When scaling the size of a neural network, one has to re-tune
the hyperparameters, such as the learning rate, when using the standard parametrization (SP). The
same is true for probabilistic networks as we show here on CIFAR-10 (left). However, when using
our proposed extension of the maximal update parametrization (µP) [41] to probabilistic networks,
one can tune the learning rate on a small model and achieve optimal generalization for larger models
by “transferring” the optimal learning rate from a smaller model (center and right).

parametrization [Lemma J.1, 41]. While parameterization is well-studied for non-probabilistic deep
learning, it has been identified as one of the “grand challenges of Bayesian computation” [42].

In deep learning, the “standard parameterization” (SP) initializes the weights of a neural network
randomly from a distribution with variance ∝ 1/fan in (e.g., as in Kaiming initialization, the
PyTorch default) and makes no further adjustments to the forward pass or learning rate. In contrast,
the maximal update parametrization (µP) [43] ensures feature learning even as the width of the
network tends to infinity. In addition, under µP, hyperparameters like the learning rate, can be tuned
on a small model and transferred to a large-scale model [41].

Given our interpretation of training via the expected loss as generalized variational inference with a
prior implied by the parametrization and initialization, a natural question is whether we can extend
µP to the variational setting and thus inherit its inductive bias. In the probabilistic setting, feature
learning occurs when the distribution over hidden units changes from initialization. At any point
during training, the ith hidden unit in layer l is a function of four random variables: the variational
mean and covariance parameters (µ,S), Gaussian noise z, and the previous layer hidden units:

h
(l)
i (x) = Wih

(l−1)(x) = (µi + Siz)h
(l−1)(x). (6)

The parameters are random because of the stochasticity in the initialization and/or optimization
procedure, while the noise is randomly drawn during each forward pass. Since the Siz term is
a sum over R terms, where R is the rank of S ∈ RP×R, applying the central limit theorem we
propose scaling this term by R−1/2 and then applying µP to the mean and covariance parameters.
In practice, we implement the scaling via an adjustment to the covariance initialization and learning
rate. Section S2 in the supplement provides empirical investigating of this scaling, demonstrating
feature learning in the last hidden layer as the width is increased.

Figure 3 demonstrates that our proposed maximal update parametrization enables hyperparameter
transfer in a probabilistic model. We train two-hidden-layer MLPs on CIFAR10, using a low rank
covariance in the final two layers. Under standard parametrization (left panel), the learning rate
that results in the smallest training loss decreases with hidden size. In contrast, under µP (middle
panel), it remains the same across hidden sizes. The right panel of Fig. 3 demonstrates the practical
implications for model selection. For each parametrization and each hidden size D, we select the
learning rate based on a grid search. In “transferred grid search” we do a grid search using the
smallest model (hidden size 128) and transfer the best validating learning rate to the hidden size D
model, whereas in “grid search” we perform the grid search on the hidden size D model. Relative
to the test accuracy of the best performing model across learning rate and parametrization, we see

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that (a) µP outperforms SP, though the gap decreases with hidden size, and (b) the transfer strategy
works well for µP but poorly for SP once the hidden size exceeds 256.

3.5 RELATED WORK

Variational inference in the context of Bayesian deep learning has seen rapid development in re-
cent years [30–33, 44, 45]. Using a Wasserstein regularizer [37] in the context of generalized VI
[36] is arguably most related to our work, given our theoretical results. Structure in the variational
parameters has always played an important role for computational reasons [38, 46, 47] and often
only a few layers are treated probabilistically [39], with some methods only considering the last
layer, effectively treating the neural network as a feature extractor [48, 49]. The Laplace approxi-
mation if applied in the last-layer also falls under this category, which has the advantage that it can
be applied post-hoc [13, 24–26, 50–54]. Deep ensembles repeat the standard training process using
multiple random initializations [29, 55] and have been linked to Bayesian methods [56, 57] with cer-
tain caveats [58, 59]. While we use SGD only to optimize the variational parameters and arguably
average over samples by using momentum, SGD has also been used widely to directly approximate
samples from a target distribution [27, 56, 60, 61], a popular example being stochastic weight aver-
aging (SWA) [27, 28]. Our theoretical analysis extends recent developments on the implicit bias of
overparameterized linear models [4, 5, 7] to the probabilistic setting. For classification, works have
focused on convergence rates [6], SGD [7], SGD with momentum [8], and the multiclass setting
[10]. Results on the implicit bias of neural network training [22] often assume large widths [9, 62–
65] allowing similar arguments as for linear models. The former is exemplified by the neural tangent
parametrization, under which neural networks behave like kernel methods in the infinite width limit
[66]. Yang et al. [41, 43, 64, 65] developed an alternative parameterization that still admits feature
learning in the infinite width limit, which we extended to the case of variational networks.

4 THEORETICAL ANALYSIS

Consider an overparameterized linear model with a Gaussian prior, trained via the expected loss
using (stochastic) gradient descent. We show that, in both regression (Theorem 1) and binary clas-
sification (Theorem 2), our approach can be understood as generalized variational inference with a
2-Wasserstein regularizer, which penalizes deviation from the prior among models with zero training
error. Theorems 1 and 2 recover analogous results for non-probabilistic models [4, 5, 21].

4.1 LINEAR REGRESSION

Theorem 1 (Implicit Bias in Regression)
Let fw(x) = xTw be an overparametrized linear model with P > N . Define a Gaussian prior
p(w) = N

(
w;µ0,S0S

T
0

)
and likelihood p(y | w) = N

(
y; fw(X), σ2I

)
and assume a varia-

tional family qθ(w) = N
(
w;µ,SST

)
with θ = (µ,S) such that µ ∈ RP and S ∈ RP×R where

R ≤ P . If the learning rate sequence (ηt)t is chosen such that the limit point θGD
⋆ = limt→∞ θGD

t
identified by gradient descent, initialized at θ0 = (µ0,S0), is a (global) minimizer of the expected
log-likelihood ℓ̄(θ), then

θGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈argmin ℓ̄(θ)

W2
2(qθ, p) . (7)

Further, this also holds in the case of stochastic gradient descent and when using momentum.

Proof. See Section S1.1.1.

Theorem 1 states that, among those variational parameters which minimize the expected loss, SGD
(with momentum) converges to the unique variational distribution which is closest in 2-Wasserstein
distance to the prior. This characterization of the implicit regularization of SGD as generalized varia-
tional inference differs from a standard ELBO objective (2) in VI via the choice of regularizer. Since
the variational parameters minimize the expected loss in Equation (7), all samples from the predic-
tive distribution interpolate the training data (see Figure 1(b), right panel), the same way a standard
neural network would. In contrast, when training with a KL regularizer, the uncertainty does not
collapse at the training data (see Figure 1(b), left panel), in fact a KL regularizer would diverge to
infinity for a Gaussian with vanishing variance. Now, for test points that are increasingly out-of-
distribution, i.e. less aligned with the span of the training data, the variational predictive matches

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the prior predictive more closely. Interestingly, qθGD
⋆

is equal to the distribution over weights of an
ensemble of linear models initialized from the prior and trained independently (see Section S1.1.3).
Next, we prove a similar result for binary classification.

4.2 BINARY CLASSIFICATION OF LINEARLY SEPARABLE DATA

Consider a binary classification problem with labels yn ∈ {−1, 1}, a linear model fw(x) = xTw
and a variational distribution qθ(w) with variational parameters θ. The expected empirical loss
is ℓ̄(θ) =

∑
n∈[N] Eqθ(w)

(
ℓ(ynx

T
nw)

)
. We assume without loss of generality2 that all labels are

positive, i.e. yn = 1 for all n, and that the dataset is linearly separable.
Assumption 1 The dataset is linearly separable: ∃w ∈ RP such that ∀n : wTxn > 0.

For an overparametrized linear model, if X ∈ RN×P has full row rank the dataset is guaranteed to
be linearly separable.3 Define the solution to the hard margin SVM, the L2 max margin vector as

ŵ = argmin
w∈RP

∥w∥22 s.t. wTxn ≥ 1, (8)

and the set of support vectors S = argminn∈[N] x
T
nŵ indexing the data points on the margin.

We make the following additional assumption which is satisfied with high probability under mild
assumptions on the training data distribution and degree of overparametrization [67, 68].
Assumption 2 The SVM support vectors span the dataset: span({xn}n∈[N]) = span({xn}n∈S).

We can now characterize the implicit bias in the case of binary classification.
Theorem 2 (Implicit Bias in Binary Classification)
Let fw(x) = xTw be an (overparametrized) linear model and define a Gaussian prior p(w) =
N
(
w;µ0,S0S

T
0

)
. Assume a variational distribution qθ(w) = N

(
w;µ,SST

)
over the weights

w ∈ RP with variational parameters θ = (µ,S) such that S ∈ RP×R and R ≤ P . Assume we
are using the exponential loss ℓ(u) = exp(−u) and optimize the expected empirical loss ℓ̄(θ) via
gradient descent initialized at the prior, i.e. θ0 = (µ0,S0), with a sufficiently small learning rate η.
Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

θrGD
t = (µrGD

t ,SrGD
t) =

(
1

log(t)µ
GD
t + Pnull(X)µ0,S

GD
t

)
(9)

converge to a limit point θrGD
⋆ = limt→∞ θrGD

t for which it holds that

θrGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈Θ⋆

W2
2(qθ, p) . (10)

where the feasible set Θ⋆ = {(µ,S) | Prange(XT)µ = ŵ and ∀n : Varqθ (fw(xn)) = 0}
consists of mean parameters which, if projected onto the training data, are equivalent to the L2 max
margin vector and covariance parameters such that there is no uncertainty at training data.

Proof. See Section S1.2.

Theorem 2 states that the mean parameters µt converge to the L2 max-margin vector ŵ in the span
of the training data, i.e. the data manifold, and there uncertainty collapses to zero. This is analogous
to the regression case, where zero training loss enforces interpolation of the training data. In the
null space of the training data, i.e. off of the data manifold, the model falls back on the prior as
enforced by the 2-Wasserstein distance. The assumption of an exponential loss is standard in the
literature and we expect this to extend to (binary) cross-entropy in the same way it does in results
for standard neural networks [4, 6–8, 10]. Similarly, we conjecture that Theorem 2 can be extended
to SGD with momentum [cf. 7, 8]. While Theorem 2 is similar to Theorem 1, there are some subtle
differences. First, the feasible set for the minimization problem in Equation (10) is not the set of
minima of the expected loss. This is because the exponential function does not have an optimum
in contrast to a quadratic function. However, the sequence of variational parameters identified by

2This is not a restriction since we can always absorb the sign into the inputs, such that x′
n := ynxn.

3We can always choose w = XT(XXT)−11, i.e. the weights linearly interpolating y = 1 = (1, . . . , 1)T.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.10

0.15

Te
st

To
p-

5
E

rr
or
↓

CIFAR100

1

2

Te
st

N
L

L
↓

CIFAR100

107

108

N
um

.P
ar

am
et

er
s

CIFAR100

MNIST
CIFAR10

CIFAR100

TinyImageNet
0

2h

4h

Tr
ai

ni
ng

R
un

tim
e

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure 4: In-distribution generalization and uncertainty quantification. Implicit Bias VI (IBVI) has
similar test error to other Bayesian deep learning approaches and achieves competitive uncertainty
quantification on in-distribution data. While ensembles have improved accuracy, they come at an
additional memory overhead. Training a probabilistic model via IBVI has only a minor computa-
tional overhead during training, both in time and memory, over standard deep learning.

gradient descent still satisfies limt→∞ ℓ̄(θt) = 0. Second, without transformation of the mean
parameters, the exponential loss results in the mean parameters being unbounded. This necessitates
the transformation in Equation (9) as we explain in detail in Section S1.3.

5 EXPERIMENTS

We benchmark the generalization and robustness of our approach, Implicit Bias VI (IBVI), against
standard neural networks and several baselines for uncertainty quantification, namely Temperature
Scaling (TS) [69], Laplace approximation (LA-GS) & (LA-ML) [24–26], Weight-Space VI (WSVI)
[30, 31], SWA-Gaussian (SWAG) [28] and Deep Ensembles (DE) [29], on a set of standard bench-
mark datasets for image classification and robustness to input corruptions. We use convolutional
architectures (LeNet5 [70] or ResNet34 [71]), which, for all datasets but MNIST, are initialized
with pretrained weights except for the input and output layer. All models were trained with SGD
with momentum γ = 0.9 and a batch size of Nb = 128 for 200 epochs in single precision on an
NVIDIA GH200 GPU. Results shown are averaged across five random seeds. A detailed description
of the datasets, metrics, models and training can be found in Section S3. An implementation of our
method is contained in the supplementary material and will be open-sourced upon publication.

In-Distribution Generalization and Uncertainty Quantification In order to assess the in-
distribution generalization, we measure the test error, negative log-likelihood (NLL) and calibra-
tion error (ECE) on MNIST, CIFAR10, CIFAR100 and TinyImageNet. As Figure 4 shows for CI-
FAR100, and Figure S10 for all datasets, the test error for post-hoc methods (TS, LA-GS, LA-ML)
is unchanged. As expected, SWAG and IBVI perform similarly with only Ensembles providing an
increase in accuracy, but at substantial memory overhead compared to most other approaches. Sim-
ilarity of IBVI to Ensembles is perhaps expected in light of their equivalence for linear models (see
Proposition S1). In-distribution uncertainty quantification measured in terms of NLL is improved
substantially by TS, DE and IBVI with only LA and WSVI showing occasional worsening of NLL
compared to the base model. The full results in Figure S10 show that TS, DE and IBVI consistently
are also the best calibrated. As described in Section 3.3, for IBVI we train with a single sample only
and a probabilistic input and output layer with low-rank covariance, reducing the memory overhead
compared to a standard neural network to as little as ≈ 10% with similar training time (see Figure 4).
See Section S3.3.2 for the full experimental results including different parametrizations (SP vs µP).

Robustness to Input Corruptions We evaluate the robustness of the different models on
MNISTC [72], CIFAR10C, CIFAR100C and TinyImageNetC [73]. These are corrupted versions
of the original datasets, where the images are modified via a set of 15 corruptions, such as impulse
noise, blur, pixelation etc. We selected the maximum severity for each corruption and averaged
the performance across all. As expected, the performance of all models drops compared to the in-
distribution performance measured on the standard test sets as Figure 5 shows. Besides DE which
consistently show lower test error, also IBVI shows improved accuracy on corrupted data compared
to all other approaches. When using the maximal update parametrization, SWAG shows good ac-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.1

0.2

Te
st

E
rr

or
↓

MNISTC

0.250

0.275

CIFAR10C

0.30

0.35

Te
st

To
p-

5
E

rr
or
↓ CIFAR100C

0.60

0.65

O
O

M

TinyImageNetC

0.5

1.0

Te
st

N
L

L
↓

1

2

3

4

5

6

7

O
O

M

0.05

0.10

0.15

Te
st

E
C

E
↓

0.1

0.2

0.3

0.2

0.4

0.25

0.50

O
O

M

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure 5: Generalization on robustness benchmark problems. When comparing different methods
for Bayesian deep learning with regards to robustness to 15 different input corruptions, our approach,
Implicit Bias VI, consistently has competitive uncertainty quantification across different datasets and
metrics without sacrificing accuracy compared to a non-probabilistic network.

curacy on the two larger datasets (see Figure S12). TS, DE and IBVI perform consistently well in
terms of uncertainty quantification (both for NLL and ECE) across all datasets, with LA-ML being
somewhat competitive in terms of NLL. However, compared to the in-distribution setting IBVI has
better uncertainty quantification than the Ensembles across all datasets.

Limitations Compared to standard neural networks, when training via Implicit Bias VI, we ob-
served that often lower learning rates were necessary due to the additional stochasticity in the ob-
jective (see also Section 3.3). While this does not have a significant impact on generalization, it
sometimes requires slightly more epochs to achieve similar in-distribution performance to standard
neural networks. Effectively, early in training it takes a bit more time for IBVI to become sufficiently
certain about those features which are critical for in-distribution performance. This also means that
folk knowledge on learning rate settings for specific architectures may not immediately transfer. In
the experiments we train models with probabilistic in- and output layers with our approach, but we
have so far not explored other covariance structures or where in the network probabilistic layers are
most beneficial. While there is theoretical evidence that even just a single probabilistic hidden layer
may be sufficient [39], we believe there is potential for improvement. Beyond the prior induced by
the choice of parametrization, we did not experiment with more informative or learned priors, which
could potentially give significant performance improvements on certain tasks [15].

6 CONCLUSION

In this paper, we demonstrated how to improve the robustness of deep neural networks and while
quantifying predictive uncertainty by exploiting the implicit regularization of (stochastic) gradient
descent. We rigorously characterized this implicit bias for an overparametrized linear model and
showed that our approach is equivalent to generalized variational inference with a 2-Wasserstein
regularizer at reduced computational cost. We demonstrated the importance of parameterization and
how it impacts the inductive bias via the initialization — thus conferring desirable properties such
as learning rate transfer. Lastly, we empirically demonstrated competitive performance with state-
of-the-art methods for Bayesian deep learning on a set of in- and out-of-distribution benchmarks
with minimal computational overhead over standard deep learning. In principle, our approach is not
restricted to Gaussian variational families and should seamlessly extend to location-scale families,
which could further improve performance. Finally, it would be interesting to explore connections
between Implicit Bias VI and Bayesian deep learning in function-space [e.g., 37, 54, 74–76].

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] M. Goldblum, M. Finzi, K. Rowan, and A. G. Wilson. “The No Free Lunch Theorem, Kol-
mogorov Complexity, and the Role of Inductive Biases in Machine Learning”. In: Interna-
tional Conference on Machine Learning (ICML). 2024. DOI: 10.48550/arXiv.2304.
05366 (cit. on p. 1).

[2] M. S. Nacson, R. Mulayoff, G. Ongie, T. Michaeli, and D. Soudry. “The Implicit Bias of
Minima Stability in Multivariate Shallow ReLU Networks”. In: International Conference on
Learning Representations (ICLR). 2023. DOI: 10.48550/arXiv.2306.17499 (cit. on
p. 1).

[3] R. Mulayoff, T. Michaeli, and D. Soudry. “The Implicit Bias of Minima Stability: A View
from Function Space”. In: Advances in Neural Information Processing Systems (NeurIPS).
2021. URL: https : / / proceedings . neurips . cc / paper / 2021 / hash /
944a5ae3483ed5c1e10bbccb7942a279-Abstract.html (cit. on p. 1).

[4] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. “The Implicit Bias of
Gradient Descent on Separable Data”. In: Journal of Machine Learning Research (JMLR)
(2018). DOI: 10.48550/arXiv.1710.10345 (cit. on pp. 1, 2, 6, 7, 23, 24, 28, 32).

[5] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. “Characterizing Implicit Bias in Terms of
Optimization Geometry”. In: International Conference on Machine Learning (ICML). 2018.
DOI: 10.48550/arXiv.1802.08246 (cit. on pp. 1–3, 6, 23).

[6] M. S. Nacson, J. D. Lee, S. Gunasekar, P. H. P. Savarese, N. Srebro, and D. Soudry. “Con-
vergence of Gradient Descent on Separable Data”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2019. DOI: 10.48550/arXiv.1803.01905 (cit.
on pp. 1, 6, 7).

[7] M. S. Nacson, N. Srebro, and D. Soudry. “Stochastic Gradient Descent on Separable Data:
Exact Convergence with a Fixed Learning Rate”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2019. DOI: 10.48550/arXiv.1806.01796 (cit.
on pp. 1, 2, 6, 7).

[8] B. Wang, Q. Meng, H. Zhang, R. Sun, W. Chen, Z.-M. Ma, and T.-Y. Liu. “Does Momentum
Change the Implicit Regularization on Separable Data?” In: Advances in Neural Information
Processing Systems (NeurIPS) (2022) (cit. on pp. 1, 6, 7).

[9] H. Jin and G. Montúfar. Implicit Bias of Gradient Descent for Mean Squared Error Re-
gression with Two-Layer Wide Neural Networks. arXiv:2006.07356 [stat]. May 2023. DOI:
10.48550/arXiv.2006.07356 (cit. on pp. 1, 6).

[10] H. Ravi, C. Scott, D. Soudry, and Y. Wang. “The Implicit Bias of Gradient Descent on Sep-
arable Multiclass Data”. In: Advances in Neural Information Processing Systems (NeurIPS).
2024. DOI: 10.48550/arXiv.2411.01350 (cit. on pp. 1, 6, 7).

[11] T. Papamarkou, M. Skoularidou, K. Palla, L. Aitchison, J. Arbel, D. Dunson, M. Filippone, V.
Fortuin, P. Hennig, J. M. Hernández-Lobato, A. Hubin, A. Immer, T. Karaletsos, M. E. Khan,
A. Kristiadi, Y. Li, S. Mandt, C. Nemeth, M. A. Osborne, T. G. J. Rudner, D. Rügamer, Y. W.
Teh, M. Welling, A. G. Wilson, and R. Zhang. “Position: Bayesian Deep Learning is Needed
in the Age of Large-Scale AI”. In: International Conference on Machine Learning (ICML).
2024. DOI: 10.48550/arXiv.2402.00809 (cit. on p. 1).

[12] D. Tran, J. Liu, M. W. Dusenberry, D. Phan, M. Collier, J. Ren, K. Han, Z. Wang, Z. Mariet, H.
Hu, N. Band, T. G. J. Rudner, K. Singhal, Z. Nado, J. v. Amersfoort, A. Kirsch, R. Jenatton, N.
Thain, H. Yuan, K. Buchanan, K. Murphy, D. Sculley, Y. Gal, Z. Ghahramani, J. Snoek, and
B. Lakshminarayanan. Plex: Towards Reliability using Pretrained Large Model Extensions.
July 15, 2022. DOI: 10.48550/arXiv.2207.07411. arXiv: 2207.07411[cs]. URL:
http://arxiv.org/abs/2207.07411 (visited on 05/16/2025) (cit. on p. 1).

[13] H. Ritter, A. Botev, and D. Barber. “Online Structured Laplace Approximations For Over-
coming Catastrophic Forgetting”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2018. DOI: 10.48550/arXiv.1805.07810 (cit. on pp. 1, 6).

[14] Y. L. Li, T. G. J. Rudner, and A. G. Wilson. “A Study of Bayesian Neural Network Surro-
gates for Bayesian Optimization”. In: International Conference on Learning Representations
(ICLR). 2024. DOI: 10.48550/arXiv.2305.20028 (cit. on p. 1).

[15] V. Fortuin. “Priors in Bayesian Deep Learning: A Review”. In: International Statistical Re-
view 90.3 (2022), pp. 563–591. DOI: 10.1111/insr.12502 (cit. on pp. 1, 9).

10

https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2306.17499
https://proceedings.neurips.cc/paper/2021/hash/944a5ae3483ed5c1e10bbccb7942a279-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/944a5ae3483ed5c1e10bbccb7942a279-Abstract.html
https://doi.org/10.48550/arXiv.1710.10345
https://doi.org/10.48550/arXiv.1802.08246
https://doi.org/10.48550/arXiv.1803.01905
https://doi.org/10.48550/arXiv.1806.01796
https://doi.org/10.48550/arXiv.2006.07356
https://doi.org/10.48550/arXiv.2411.01350
https://doi.org/10.48550/arXiv.2402.00809
https://doi.org/10.48550/arXiv.2207.07411
https://arxiv.org/abs/2207.07411 [cs]
http://arxiv.org/abs/2207.07411
https://doi.org/10.48550/arXiv.1805.07810
https://doi.org/10.48550/arXiv.2305.20028
https://doi.org/10.1111/insr.12502

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[16] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson. “What Are Bayesian Neural Net-
work Posteriors Really Like?” In: International Conference on Machine Learning (ICML).
2021. DOI: 10.48550/arXiv.2104.14421 (cit. on p. 1).

[17] B. Adlam, J. Snoek, and S. L. Smith. Cold Posteriors and Aleatoric Uncertainty. July 31,
2020. DOI: 10.48550/arXiv.2008.00029. arXiv: 2008.00029[stat]. URL:
http://arxiv.org/abs/2008.00029 (visited on 05/15/2025) (cit. on p. 1).

[18] T. Cinquin, A. Immer, M. Horn, and V. Fortuin. “Pathologies in priors and inference for
Bayesian transformers”. In: NeurIPS Bayesian Deep Learning Workshop. 2021. DOI: 10.
48550/arXiv.2110.04020 (cit. on p. 1).

[19] B. Coker, W. P. Bruinsma, D. R. Burt, W. Pan, and F. Doshi-Velez. “Wide Mean-Field
Bayesian Neural Networks Ignore the Data”. In: International Conference on Artificial In-
telligence and Statistics (AISTATS). 2022. DOI: 10.48550/arXiv.2202.11670 (cit. on
p. 1).

[20] A. Y. K. Foong, D. R. Burt, Y. Li, and R. E. Turner. “On the Expressiveness of Approximate
Inference in Bayesian Neural Networks”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2020. DOI: 10.48550/arXiv.1909.00719 (cit. on p. 1).

[21] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning re-
quires rethinking generalization”. In: International Conference on Learning Representations
(ICLR). 2017. DOI: 10.48550/arXiv.1611.03530 (cit. on pp. 2, 3, 6).

[22] G. Vardi. “On the Implicit Bias in Deep-Learning Algorithms”. In: Commun. ACM 66.6 (May
2023), pp. 86–93. DOI: 10.1145/3571070 (cit. on pp. 2, 6).

[23] B. Vasudeva, P. Deora, and C. Thrampoulidis. Implicit Bias and Fast Convergence Rates for
Self-attention. 2024. DOI: 10.48550/arXiv.2402.05738 (cit. on p. 2).

[24] D. J. C. MacKay. “A Practical Bayesian Framework for Backpropagation Networks”. In: Neu-
ral Computation 4 (1992). ISSN: 0899-7667, 1530-888X. DOI: 10.1162/neco.1992.4.
3.448 (cit. on pp. 2, 6, 8).

[25] H. Ritter, A. Botev, and D. Barber. “A Scalable Laplace Approximation for Neural Net-
works”. In: International Conference on Learning Representations (ICLR). 2018 (cit. on
pp. 2, 6, 8).

[26] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. “Laplace
Redux – Effortless Bayesian Deep Learning”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2021. DOI: 10.48550/arXiv.2106.14806 (cit. on pp. 2, 6, 8, 41).

[27] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. “Averaging Weights
Leads to Wider Optima and Better Generalization”. In: Conference on Uncertainty in Arti-
ficial Intelligence (UAI). 2018. URL: https://arxiv.org/abs/1803.05407v3
(cit. on pp. 2, 6).

[28] W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, and A. G. Wilson. “A Simple Baseline for
Bayesian Uncertainty in Deep Learning”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2019. DOI: 10.48550/arXiv.1902.02476 (cit. on pp. 2, 6, 8, 42).

[29] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predictive Uncer-
tainty Estimation using Deep Ensembles”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2017. DOI: 10.48550/arXiv.1612.01474. URL: http://
arxiv.org/abs/1612.01474 (cit. on pp. 2, 6, 8, 42).

[30] A. Graves. “Practical Variational Inference for Neural Networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2011. URL: https://papers.nips.cc/
paper_files/paper/2011/hash/7eb3c8be3d411e8ebfab08eba5f49632-
Abstract.html (cit. on pp. 2, 6, 8, 42).

[31] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. “Weight Uncertainty in Neu-
ral Networks”. In: International Conference on Machine Learning (ICML). 2015. DOI: 10.
48550/arXiv.1505.05424 (cit. on pp. 2, 6, 8, 42).

[32] K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, and M. E. Khan.
“Practical Deep Learning with Bayesian Principles”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). 2019. DOI: 10.48550/arXiv.1906.02506 (cit. on pp. 2,
6).

11

https://doi.org/10.48550/arXiv.2104.14421
https://doi.org/10.48550/arXiv.2008.00029
https://arxiv.org/abs/2008.00029 [stat]
http://arxiv.org/abs/2008.00029
https://doi.org/10.48550/arXiv.2110.04020
https://doi.org/10.48550/arXiv.2110.04020
https://doi.org/10.48550/arXiv.2202.11670
https://doi.org/10.48550/arXiv.1909.00719
https://doi.org/10.48550/arXiv.1611.03530
https://doi.org/10.1145/3571070
https://doi.org/10.48550/arXiv.2402.05738
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.48550/arXiv.2106.14806
https://arxiv.org/abs/1803.05407v3
https://doi.org/10.48550/arXiv.1902.02476
https://doi.org/10.48550/arXiv.1612.01474
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1612.01474
https://papers.nips.cc/paper_files/paper/2011/hash/7eb3c8be3d411e8ebfab08eba5f49632-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/7eb3c8be3d411e8ebfab08eba5f49632-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/7eb3c8be3d411e8ebfab08eba5f49632-Abstract.html
https://doi.org/10.48550/arXiv.1505.05424
https://doi.org/10.48550/arXiv.1505.05424
https://doi.org/10.48550/arXiv.1906.02506

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[33] Y. Shen, N. Daheim, B. Cong, P. Nickl, G. M. Marconi, C. Bazan, R. Yokota, I. Gurevych,
D. Cremers, M. E. Khan, and T. Möllenhoff. “Variational Learning is Effective for Large
Deep Networks”. In: International Conference on Machine Learning (ICML). 2024. DOI:
10.48550/arXiv.2402.17641 (cit. on pp. 2, 6).

[34] A. Zellner. “Optimal Information Processing and Bayes’s Theorem”. In: The American Statis-
tician 42.4 (1988), pp. 278–280. DOI: 10.2307/2685143 (cit. on p. 2).

[35] P. G. Bissiri, C. Holmes, and S. Walker. “A General Framework for Updating Belief Distri-
butions”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78.5
(Nov. 2016), pp. 1103–1130. ISSN: 1369-7412, 1467-9868. DOI: 10.1111/rssb.12158
(cit. on p. 3).

[36] J. Knoblauch, J. Jewson, and T. Damoulas. “An Optimization-centric View on Bayes’ Rule:
Reviewing and Generalizing Variational Inference”. In: Journal of Machine Learning Re-
search (JMLR) 23.132 (2022), pp. 1–109. ISSN: 1533-7928. URL: http://jmlr.org/
papers/v23/19-1047.html (cit. on pp. 3, 6).

[37] V. D. Wild, R. Hu, and D. Sejdinovic. “Generalized Variational Inference in Function Spaces:
Gaussian Measures meet Bayesian Deep Learning”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). Oct. 2022. DOI: 10.48550/arXiv.2205.06342 (cit. on
pp. 3, 6, 9).

[38] S. Farquhar, L. Smith, and Y. Gal. “Liberty or Depth: Deep Bayesian Neural Nets Do Not
Need Complex Weight Posterior Approximations”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). 2020. DOI: 10.48550/arXiv.2002.03704. URL: http:
//arxiv.org/abs/2002.03704 (cit. on pp. 4, 6).

[39] M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth. “Do Bayesian Neural Networks Need
To Be Fully Stochastic?” In: International Conference on Artificial Intelligence and Statistics
(AISTATS). 2023. DOI: 10.48550/arXiv.2211.06291 (cit. on pp. 4, 6, 9).

[40] B. Hanin and M. Sellke. Approximating Continuous Functions by ReLU Nets of Minimal
Width. arXiv:1710.11278 [stat]. Mar. 2018. DOI: 10.48550/arXiv.1710.11278. URL:
http://arxiv.org/abs/1710.11278 (cit. on p. 4).

[41] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen,
and J. Gao. “Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperpa-
rameter Transfer”. In: Advances in Neural Information Processing Systems (NeurIPS). 2021.
DOI: 10.48550/arXiv.2203.03466 (cit. on pp. 5, 6, 36, 37).

[42] A. Bhattacharya, A. Linero, and C. J. Oates. “Grand Challenges in Bayesian Computation”.
In: Bulletin of the International Society for Bayesian Analysis (ISBA) 31.3 (Sept. 2024). DOI:
10.48550/arXiv.2410.00496 (cit. on p. 5).

[43] G. Yang and E. J. Hu. “Tensor Programs IV: Feature Learning in Infinite-Width Neural Net-
works”. In: International Conference on Machine Learning (ICML). 2021. DOI: 10.48550/
arXiv.2011.14522 (cit. on pp. 5, 6, 34).

[44] G. Zhang, S. Sun, D. Duvenaud, and R. Grosse. Noisy Natural Gradient as Variational Infer-
ence. Feb. 26, 2018. DOI: 10.48550/arXiv.1712.02390. arXiv: 1712.02390[cs].
URL: http://arxiv.org/abs/1712.02390 (visited on 05/15/2025) (cit. on p. 6).

[45] M.-N. Tran, N. Nguyen, D. Nott, and R. Kohn. Bayesian Deep Net GLM and GLMM. May 25,
2018. DOI: 10.48550/arXiv.1805.10157. arXiv: 1805.10157[stat]. URL:
http://arxiv.org/abs/1805.10157 (visited on 05/15/2025) (cit. on p. 6).

[46] C. Louizos and M. Welling. Structured and Efficient Variational Deep Learning with Matrix
Gaussian Posteriors. June 23, 2016. DOI: 10.48550/arXiv.1603.04733. arXiv:
1603.04733[stat]. URL: http://arxiv.org/abs/1603.04733 (visited on
05/15/2025) (cit. on p. 6).

[47] A. Mishkin, F. Kunstner, D. Nielsen, M. Schmidt, and M. E. Khan. SLANG: Fast Structured
Covariance Approximations for Bayesian Deep Learning with Natural Gradient. Jan. 12,
2019. DOI: 10.48550/arXiv.1811.04504. arXiv: 1811.04504[cs]. URL: http:
//arxiv.org/abs/1811.04504 (visited on 05/15/2025) (cit. on p. 6).

[48] J. Harrison, J. Willes, and J. Snoek. “Variational Bayesian Last Layers”. In: International
Conference on Learning Representations (ICLR). Apr. 2024. DOI: 10.48550/arXiv.
2404.11599 (cit. on p. 6).

12

https://doi.org/10.48550/arXiv.2402.17641
https://doi.org/10.2307/2685143
https://doi.org/10.1111/rssb.12158
http://jmlr.org/papers/v23/19-1047.html
http://jmlr.org/papers/v23/19-1047.html
https://doi.org/10.48550/arXiv.2205.06342
https://doi.org/10.48550/arXiv.2002.03704
http://arxiv.org/abs/2002.03704
http://arxiv.org/abs/2002.03704
https://doi.org/10.48550/arXiv.2211.06291
https://doi.org/10.48550/arXiv.1710.11278
http://arxiv.org/abs/1710.11278
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2410.00496
https://doi.org/10.48550/arXiv.2011.14522
https://doi.org/10.48550/arXiv.2011.14522
https://doi.org/10.48550/arXiv.1712.02390
https://arxiv.org/abs/1712.02390 [cs]
http://arxiv.org/abs/1712.02390
https://doi.org/10.48550/arXiv.1805.10157
https://arxiv.org/abs/1805.10157 [stat]
http://arxiv.org/abs/1805.10157
https://doi.org/10.48550/arXiv.1603.04733
https://arxiv.org/abs/1603.04733 [stat]
http://arxiv.org/abs/1603.04733
https://doi.org/10.48550/arXiv.1811.04504
https://arxiv.org/abs/1811.04504 [cs]
http://arxiv.org/abs/1811.04504
http://arxiv.org/abs/1811.04504
https://doi.org/10.48550/arXiv.2404.11599
https://doi.org/10.48550/arXiv.2404.11599

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[49] J. Z. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, and B. Lakshminarayanan. “Sim-
ple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance
Awareness”. In: Advances in Neural Information Processing Systems (NeurIPS). Oct. 2020.
DOI: 10.48550/arXiv.2006.10108 (cit. on p. 6).

[50] M. E. Khan, A. Immer, E. Abedi, and M. Korzepa. “Approximate Inference Turns Deep
Networks into Gaussian Processes”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2019. DOI: 10.48550/arXiv.1906.01930 (cit. on p. 6).

[51] A. Immer, M. Korzepa, and M. Bauer. “Improving predictions of Bayesian neural nets via lo-
cal linearization”. In: International Conference on Artificial Intelligence and Statistics (AIS-
TATS). 2021 (cit. on p. 6).

[52] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antorán, and J. M. Hernández-Lobato.
“Bayesian Deep Learning via Subnetwork Inference”. In: International Conference on Ma-
chine Learning (ICML). 2021. DOI: 10.48550/arXiv.2010.14689 (cit. on p. 6).

[53] A. Kristiadi, A. Immer, R. Eschenhagen, and V. Fortuin. “Promises and Pitfalls of the Lin-
earized Laplace in Bayesian Optimization”. In: Advances in Approximate Bayesian Inference
(AABI). 2023. DOI: 10.48550/arXiv.2304.08309 (cit. on p. 6).

[54] T. Cinquin, M. Pförtner, V. Fortuin, P. Hennig, and R. Bamler. “FSP-Laplace: Function-Space
Priors for the Laplace Approximation in Bayesian Deep Learning”. In: Advances in Neural
Information Processing Systems (NeurIPS). Oct. 2024. DOI: 10.48550/arXiv.2407.
13711. URL: http://arxiv.org/abs/2407.13711 (cit. on pp. 6, 9).

[55] S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective.
June 25, 2020. DOI: 10.48550/arXiv.1912.02757. arXiv: 1912.02757[stat].
URL: http://arxiv.org/abs/1912.02757 (visited on 05/15/2025) (cit. on p. 6).

[56] A. G. Wilson and P. Izmailov. “Bayesian Deep Learning and a Probabilistic Perspective of
Generalization”. In: Advances in Neural Information Processing Systems (NeurIPS). 2020.
DOI: 10.48550/arXiv.2002.08791 (cit. on p. 6).

[57] V. D. Wild, S. Ghalebikesabi, D. Sejdinovic, and J. Knoblauch. “A Rigorous Link between
Deep Ensembles and (Variational) Bayesian Methods”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2023. DOI: 10.48550/arXiv.2305.15027 (cit. on
p. 6).

[58] T. Abe, E. K. Buchanan, G. Pleiss, R. Zemel, and J. P. Cunningham. “Deep Ensembles
Work, But Are They Necessary?” In: Advances in Neural Information Processing Systems
(NeurIPS). 2022. DOI: 10.48550/arXiv.2202.06985 (cit. on p. 6).

[59] N. Dern, J. P. Cunningham, and G. Pleiss. Theoretical Limitations of Ensembles in the Age
of Overparameterization. arXiv:2410.16201 [stat]. Oct. 2024. DOI: 10.48550/arXiv.
2410.16201 (cit. on p. 6).

[60] C. Mingard, G. Valle-Pérez, J. Skalse, and A. A. Louis. “Is SGD a Bayesian sampler? Well,
almost.” In: Journal of Machine Learning Research (JMLR) (2020) (cit. on p. 6).

[61] J. A. Lin, J. Antorán, S. Padhy, D. Janz, J. M. Hernández-Lobato, and A. Terenin. “Sampling
from Gaussian Process Posteriors using Stochastic Gradient Descent”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2023. DOI: 10.48550/arXiv.2306.11589
(cit. on p. 6).

[62] J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington.
“Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent”. In:
Journal of Statistical Mechanics: Theory and Experiment 2020.12 (2020). DOI: 10.1088/
1742-5468/abc62b (cit. on p. 6).

[63] J. Lai, M. Xu, R. Chen, and Q. Lin. Generalization Ability of Wide Neural Networks on R.
Feb. 12, 2023. DOI: 10.48550/arXiv.2302.05933. arXiv: 2302.05933[stat].
URL: http://arxiv.org/abs/2302.05933 (visited on 05/15/2025) (cit. on p. 6).

[64] G. Yang. “Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Ar-
chitecture are Gaussian Processes”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2019. DOI: 10.48550/arXiv.1910.12478 (cit. on p. 6).

[65] G. Yang. Tensor Programs II: Neural Tangent Kernel for Any Architecture. 2020. DOI: 10.
48550/arXiv.2006.14548 (cit. on p. 6).

13

https://doi.org/10.48550/arXiv.2006.10108
https://doi.org/10.48550/arXiv.1906.01930
https://doi.org/10.48550/arXiv.2010.14689
https://doi.org/10.48550/arXiv.2304.08309
https://doi.org/10.48550/arXiv.2407.13711
https://doi.org/10.48550/arXiv.2407.13711
http://arxiv.org/abs/2407.13711
https://doi.org/10.48550/arXiv.1912.02757
https://arxiv.org/abs/1912.02757 [stat]
http://arxiv.org/abs/1912.02757
https://doi.org/10.48550/arXiv.2002.08791
https://doi.org/10.48550/arXiv.2305.15027
https://doi.org/10.48550/arXiv.2202.06985
https://doi.org/10.48550/arXiv.2410.16201
https://doi.org/10.48550/arXiv.2410.16201
https://doi.org/10.48550/arXiv.2306.11589
https://doi.org/10.1088/1742-5468/abc62b
https://doi.org/10.1088/1742-5468/abc62b
https://doi.org/10.48550/arXiv.2302.05933
https://arxiv.org/abs/2302.05933 [stat]
http://arxiv.org/abs/2302.05933
https://doi.org/10.48550/arXiv.1910.12478
https://doi.org/10.48550/arXiv.2006.14548
https://doi.org/10.48550/arXiv.2006.14548

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[66] A. Jacot, F. Gabriel, and C. Hongler. “Neural Tangent Kernel: Convergence and Generaliza-
tion in Neural Networks”. In: Advances in Neural Information Processing Systems (NeurIPS).
2018. DOI: 10.48550/arXiv.1806.07572 (cit. on p. 6).

[67] V. Muthukumar, A. Narang, V. Subramanian, M. Belkin, D. Hsu, and A. Sahai. “Classification
vs regression in overparameterized regimes: Does the loss function matter?” In: Journal of
Machine Learning Research (JMLR) (Oct. 2021). DOI: 10.48550/arXiv.2005.08054
(cit. on p. 7).

[68] D. Hsu, V. Muthukumar, and J. Xu. On the proliferation of support vectors in high dimensions.
2022. DOI: 10.48550/arXiv.2009.10670. URL: http://arxiv.org/abs/
2009.10670 (cit. on p. 7).

[69] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. “On Calibration of Modern Neural Net-
works”. In: International Conference on Machine Learning (ICML). 2017. DOI: 10.48550/
arXiv.1706.04599 (cit. on pp. 8, 33, 41).

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to doc-
ument recognition”. In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324. ISSN:
1558-2256. DOI: 10.1109/5.726791. URL: https://ieeexplore.ieee.org/
document/726791 (cit. on pp. 8, 39, 40).

[71] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016, pp. 770–778. ISBN: 978-1-4673-8851-1. DOI: 10.1109/CVPR.
2016.90. URL: http://ieeexplore.ieee.org/document/7780459/ (cit. on
pp. 8, 41).

[72] N. Mu and J. Gilmer. “MNIST-C: A Robustness Benchmark for Computer Vision”. In: ICML
Workshop on Uncertainty and Robustness in Deep Learning. June 2019. DOI: 10.48550/
arXiv.1906.02337. URL: http://arxiv.org/abs/1906.02337 (cit. on pp. 8,
39).

[73] D. Hendrycks and T. Dietterich. “Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations”. In: International Conference on Learning Representations
(ICLR). 2019. DOI: 10.48550/arXiv.1903.12261. URL: http://arxiv.org/
abs/1903.12261 (cit. on pp. 8, 39).

[74] D. R. Burt, S. W. Ober, A. Garriga-Alonso, and M. van der Wilk. Understanding Variational
Inference in Function-Space. Nov. 2020. DOI: 10.48550/arXiv.2011.09421 (cit. on
p. 9).

[75] S. Qiu, T. G. J. Rudner, S. Kapoor, and A. G. Wilson. “Should We Learn Most Likely Func-
tions or Parameters?” In: Advances in Neural Information Processing Systems (NeurIPS).
2023. DOI: 10.48550/arXiv.2311.15990 (cit. on p. 9).

[76] T. G. J. Rudner, Z. Chen, Y. W. Teh, and Y. Gal. “Tractable Function-Space Variational Infer-
ence in Bayesian Neural Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2023. DOI: 10.48550/arXiv.2312.17199 (cit. on p. 9).

[77] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
ISBN: 978-0-521-83378-3 (cit. on p. 17).

[78] Y. Nesterov. “A method for solving the convex programming problem with convergence rate
O(1

k2)”. In: Dokl Akad Nauk SSSR 269 (1983), p. 543 (cit. on p. 19).
[79] B. T. Polyak. “Some methods of speeding up the convergence of iteration methods”. In:

USSR Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17. DOI:
10.1016/0041-5553(64)90137-5 (cit. on p. 19).

[80] A. Krizhevsky et al. Learning multiple layers of features from tiny images. Tech. rep. 2009
(cit. on p. 39).

[81] Y. Le and X. Yang. “Tiny ImageNet Visual Recognition Challenge”. In: Stanford CS 231N
(2015). URL: http://cs231n.stanford.edu/tiny-imagenet-200.zip (cit.
on p. 39).

[82] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. Tech. rep. 2018.
URL: http://arxiv.org/abs/1706.02677 (cit. on p. 40).

14

https://doi.org/10.48550/arXiv.1806.07572
https://doi.org/10.48550/arXiv.2005.08054
https://doi.org/10.48550/arXiv.2009.10670
http://arxiv.org/abs/2009.10670
http://arxiv.org/abs/2009.10670
https://doi.org/10.48550/arXiv.1706.04599
https://doi.org/10.48550/arXiv.1706.04599
https://doi.org/10.1109/5.726791
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
https://doi.org/10.48550/arXiv.1906.02337
https://doi.org/10.48550/arXiv.1906.02337
http://arxiv.org/abs/1906.02337
https://doi.org/10.48550/arXiv.1903.12261
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
https://doi.org/10.48550/arXiv.2011.09421
https://doi.org/10.48550/arXiv.2311.15990
https://doi.org/10.48550/arXiv.2312.17199
https://doi.org/10.1016/0041-5553(64)90137-5
http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://arxiv.org/abs/1706.02677

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[83] S. L. Smith and Q. V. Le. “A Bayesian Perspective on Generalization and Stochastic Gradient
Descent”. In: International Conference on Learning Representations (ICLR). 2018. DOI: 10.
48550/arXiv.1710.06451 (cit. on p. 40).

[84] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. “Don’t Decay the Learning Rate, In-
crease the Batch Size”. In: International Conference on Learning Representations (ICLR).
2018. DOI: 10.48550/arXiv.1711.00489 (cit. on p. 40).

[85] T. maintainers and contributors. TorchVision: PyTorch’s Computer Vision library. https:
//github.com/pytorch/vision. 2016 (cit. on p. 41).

15

https://doi.org/10.48550/arXiv.1710.06451
https://doi.org/10.48550/arXiv.1710.06451
https://doi.org/10.48550/arXiv.1711.00489
https://github.com/pytorch/vision
https://github.com/pytorch/vision

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

This supplementary material contains additional results and proofs for all theoretical statements.
References referring to sections, equations or theorem-type environments within this document are
prefixed with ‘S’, while references to, or results from, the main paper are stated as is.

S1 Theoretical Results 16
S1.1 Overparametrized Linear Regression . 17

S1.1.1 Characterization of Implicit Bias (Proof of Theorem 1) 17
S1.1.2 Non-Asymptotic Error Analysis . 20
S1.1.3 Connection to Ensembles . 22

S1.2 Binary Classification of Linearly Separable Data . 23
S1.2.1 Preliminaries . 24
S1.2.2 Gradient Flow for the Expected Loss . 24
S1.2.3 Complete Proof of Theorem 2 . 27

S1.3 NLL Overfitting and the Need for (Temperature) Scaling 32

S2 Parametrization, Feature Learning and Hyperparameter Transfer 33
S2.1 Definitions of Stability and Feature Learning . 34
S2.2 Initialization Scaling for a Linear Network . 34
S2.3 Proposed Scaling . 36
S2.4 Details on Hyperparameter Transfer Experiment . 37

S3 Experiments 38
S3.1 Setup and Details . 38

S3.1.1 Datasets . 39
S3.1.2 Metrics . 39

S3.2 Time and Memory-Efficient Training . 40
S3.3 In- and Out-of-distribution Generalization . 40

S3.3.1 Architectures, Training, and Methods . 40
S3.3.2 In-Distribution Generalization and Uncertainty Quantification 43
S3.3.3 Robustness to Input Corruptions . 44
S3.3.4 Comparison to Generalized VI with 2-Wasserstein Regularization 44

S1 THEORETICAL RESULTS

Lemma S1
Let q(w) = N (w;µ,Σ), p(w) = N (w;µ0,Σ0) such that µ,µ0 ∈ RP , Σ,Σ0 ∈ RP×P posi-
tive semi-definite and let VA ∈ RP×N , VB ∈ RP×(P−N) be matrices with pairwise orthonormal
columns that together define an orthonormal basis of RP , i.e. for V = [VA VB] it holds that
V V T = V TV = I and span(V) = RP . Assume further that

V T
AΣVA = 0, (S11)

then the squared 2-Wasserstein distance is given by

W2
2(q, p) =

∥∥V T
Aµ− V T

Aµ0

∥∥2
2
+W2

2

(
N
(
V T
Bµ,V T

BΣVB

)
,N

(
V T
Bµ0,V

T
BΣ0VB

))
+ C, (S12)

where the constant C is independent of (µ,Σ).

Proof. Consider the matrix

V TΣV =

[
0N×N V T

AΣVB

V T
BΣVA V T

BΣVB

]
.

Since V TΣV is symmetric positive semi-definite, its off-diagonal block V T
AΣVB satisfies

(I − 00†)V T
AΣVB = 0 ⇐⇒ V T

AΣVB = 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

by Boyd and Vandenberghe [A5.5, 77]. Therefore, we have

V TΣV =

[
0N×N V T

AΣVB

V T
BΣVA V T

BΣVB

]
=

[
0N×N 0N×(P−N)

0(P−N)×N V T
BΣVB

]
. (S13)

The squared 2-Wasserstein distance between q(w) and p(w) is given by

W2
2(q, p) = ∥µ− µ0∥22 + tr(Σ− 2(Σ

1
2Σ0Σ

1
2)

1
2 +Σ0).

For the squared norm term it holds by unitary invariance of ∥·∥2 that

∥µ− µ0∥22 = ∥V T(µ− µ0)∥22 =

∥∥∥∥[V T
A (µ− µ0)

V T
B (µ− µ0)

]∥∥∥∥2
2

=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+

∥∥V T
Bµ− V T

Bµ0

∥∥2
2
.

Now for the trace term we have that

tr(V V T(Σ− 2(Σ
1
2Σ0Σ

1
2)

1
2 +Σ0))

= tr(V TΣV)− 2 tr(V T(Σ
1
2Σ0Σ

1
2)

1
2V) + tr(V TΣ0V)

= tr(V T
AΣVA) + tr(V T

BΣVB) + tr(V T
AΣ0VA) + tr(V T

BΣ0VB)− 2 tr(V T(Σ
1
2Σ0Σ

1
2)

1
2V)

+c
= tr(V T

BΣVB) + tr(V T
BΣ0VB)− 2 tr(V T(Σ

1
2Σ0Σ

1
2)

1
2V)

(S14)
where we used Eq. (S11) and +c

= denotes equality up to constants independent of (µ,Σ).

Now by Eq. (S13), we have that Σ = VBMV T
B for M = V T

BΣVB and its unique principal square
root is given by Σ

1
2 = VBM

1
2V T

B since

(VBM
1
2V T

B)(VBM
1
2V T

B) = VBM
1
2 I(P−N)×(P−N)M

1
2V T

B = Σ.

It also holds that the unique principal square root

(Σ
1
2Σ0Σ

1
2)

1
2 = VB(M

1
2V T

BΣ0VBM
1
2)

1
2V T

B

since direct calculation gives

(VB(M
1
2V T

BΣ0VBM
1
2)

1
2V T

B)(VB(M
1
2V T

BΣ0VBM
1
2)

1
2V T

B)

= VBM
1
2V T

BΣ0VBM
1
2V T

B = Σ
1
2Σ0Σ

1
2 .

Therefore we have that
tr(V T(Σ

1
2Σ0Σ

1
2)

1
2V) = tr(V TVB(M

1
2V T

BΣ0VBM
1
2)

1
2V T

B V) = tr((M
1
2V T

BΣ0VBM
1
2)

1
2).

Putting it all together we obtain

W2
2(q, p)

+c
=

∥∥V T
Aµ− V T

Aµ0

∥∥2
2
+
∥∥V T

Bµ− V T
Bµ0

∥∥2
2
+ tr(V T

BΣVB) + tr(V T
BΣ0VB)− 2 tr(V T(Σ

1
2Σ0Σ

1
2)

1
2V)

=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+
∥∥V T

Bµ− V T
Bµ0

∥∥2
2
+ tr(V T

BΣVB) + tr(V T
BΣ0VB)− 2 tr((M

1
2V T

BΣ0VBM
1
2)

1
2)

=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+W2

2

(
N
(
V T
Bµ,V T

BΣVB

)
,N

(
V T
Bµ0,V

T
BΣ0VB

))
which completes the proof.

S1.1 OVERPARAMETRIZED LINEAR REGRESSION

S1.1.1 CHARACTERIZATION OF IMPLICIT BIAS (PROOF OF THEOREM 1)

Theorem 1 (Implicit Bias in Regression)
Let fw(x) = xTw be an overparametrized linear model with P > N . Define a Gaussian prior
p(w) = N

(
w;µ0,S0S

T
0

)
and likelihood p(y | w) = N

(
y; fw(X), σ2I

)
and assume a varia-

tional family qθ(w) = N
(
w;µ,SST

)
with θ = (µ,S) such that µ ∈ RP and S ∈ RP×R where

R ≤ P . If the learning rate sequence (ηt)t is chosen such that the limit point θGD
⋆ = limt→∞ θGD

t
identified by gradient descent, initialized at θ0 = (µ0,S0), is a (global) minimizer of the expected
log-likelihood ℓ̄(θ), then

θGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈argmin ℓ̄(θ)

W2
2(qθ, p) . (7)

Further, this also holds in the case of stochastic gradient descent and when using momentum.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Weightsw

L
os

s

Training

X

Y

Prediction

InitializationwA InitializationwB

(a) NN trained with no explicit regularization.

Weight Distributions q(w)

E
xp

ec
te

d
L

os
s

Training

X

Y

Prediction

Init. = Prior qA Init. = Prior qB

(b) BNN trained with no explicit regularization.

Figure S1: Implicit regularization in standard neural networks versus in probabilistic networks. Left
panels: A neural network trained without explicit regularization can converge to different global
minima of the loss. Optimization of the weights will implicitly regularize towards one or the other.
Right panels: Analogously, there are multiple distributions over neural networks that are global min-
ima of the expected loss. Optimization of the distribution over the weights will implicitly regularize
towards one or the other. Our approach uses this implicit regularization instead of an explicit regu-
larization to a prior.

Proof. Let θ⋆ = (µ⋆,S⋆) be a minimizer of ℓ̄(θ). By assumption it holds that the expected negative
log-likelihood is equal to the following non-negative loss function up to an additive constant:

ℓ̄(θ) = Eqθ(w)(ℓ(y, fw(X))) = Eqθ(w)(− log p(y | w))

+c
=

1

2σ2
Eqθ(w)

(
∥y −Xw∥22

)
=

1

2σ2

(
∥y −Xµ∥22 + tr(XΣXT)

)
≥ 0,

where Σ = SST and non-negativity follows from Σ being symmetric positive semi-definite. There-
fore any (global) minimizer θ⋆ = (µ⋆,Σ⋆) necessarily satisfies

∥y −Xµ⋆∥22 = 0, (S15)

tr(XΣ⋆X
T) = 0. (S16)

Let V = [Vrange Vnull] ∈ RP×P be the orthonormal matrix of right singular vectors of X =

UΛV T, where Vrange ∈ RP×N and Vnull ∈ RP×(P−N). Since X ∈ RN×P and we are in the
overparametrized regime, i.e. P > N , the optimal mean parameter decomposes into the least-
squares solution and a null space contribution

µ⋆ = Vrangeu⋆ + Vnullz = X†y + Vnullz. (S17)

Furthermore, it holds for positive semi-definite Σ ∈ RP×P that

0 ≤ tr(XΣXT) = tr(UΛV TΣV ΛUT) = tr(ΛV TΣV Λ)

= tr([ΛN×N 0]

[
V T

rangeΣVrange ∗
∗ ∗

] [
ΛN×N

0

]
)

= tr(ΛN×NV T
rangeΣVrangeΛN×N)

=

N∑
i=1

λ2
i [V

T
rangeΣVrange]ii

where λ2
i > 0 are the squared singular values of X , which are strictly positive since rank(X) = N .

Therefore using Equation (S16) any global minimizer necessarily satisfies [V T
rangeΣ⋆Vrange]ii = 0

for i ∈ {1, . . . , N}. Now since V T
rangeΣ⋆Vrange is symmetric positive semi-definite and its diagonal

is zero, so is its trace and therefore the sum of its non-negative eigenvalues is necessarily zero. Thus
all eigenvalues are zero and therefore

V T
rangeΣVrange = 0. (S18)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Now by Lemma S1 we have that the squared 2-Wasserstein distance between qθ⋆
(w) =

N (w;µ⋆,Σ⋆) and the initialization p(w) = N (w;µ0,Σ0) is given up to a constant independent
of (µ⋆,Σ⋆) by

W2(qθ⋆
, p)

+c
=

∥∥V T
rangeµ⋆ − V T

rangeµ0

∥∥2
2
+W2

2

(
N
(
V T

nullµ⋆,V
T

nullΣ⋆Vnull
)
,N

(
V T

nullµ0,V
T

nullΣ0Vnull
))

=
∥∥X†y − V T

rangeµ0

∥∥2
2
+W2

2

(
N
(
V T

nullµ⋆,V
T

nullΣ⋆Vnull
)
,N

(
V T

nullµ0,V
T

nullΣ0Vnull
))

+c
= W2

2

(
N
(
V T

nullµ⋆,V
T

nullΣ⋆Vnull
)
,N

(
V T

nullµ0,V
T

nullΣ0Vnull
))

Therefore among variational distributions qθ⋆
with parameters θ⋆ that minimize the expected loss

ℓ̄(θ), any such θ⋆ that minimizes the squared 2-Wasserstein distance to the prior satisfies

(V T
nullµ⋆

=:z

,V T
nullΣ⋆Vnull

=:M

) = (V T
nullµ0,V

T
nullΣ0Vnull). (S19)

(Stochastic) Gradient Descent It remains to show that (stochastic) gradient descent identifies a
minimum of the expected loss ℓ̄(θ), such that the above holds. By assumption we have for the loss
on a batch Xb of data that

ℓ̄(θ) = Eqθ(w)(ℓ(yb, fw(Xb))) = Eqθ(w)(− log p(yb | w))

+c
=

1

2σ2

(
∥yb −Xbµ∥22 + tr(XbΣXT

b)
)
,

Therefore, at convergence of (stochastic) gradient descent the variational parameters θ∞ =
(µ∞,S∞) are given by

µ∞ = µ0 −
∞∑
t=1

ηt∇µℓ̄b(θt−1) = µ0 +

∞∑
t=1

ηt
σ2

XT
b (yb −Xbµt−1)

as well as

S∞ = S0 −
∞∑
t=1

ηt∇S ℓ̄b(θt−1) = S0 −
∞∑
t=1

ηt
σ2

XT
b XbSt−1

and therefore

z∞ = V T
nullµ∞ = V T

nullµ0 +

∞∑
t=1

ηt
σ2

V T
null X

T
b (yb −Xbµt−1)

∈range(XT
b)

= V T
nullµ0

V T
nullS∞ = V T

nullS0 −
∞∑
t=1

ηt
σ2

V T
null XT

b XbSt−1

columns ∈range(XT
b)

= V T
nullS0

where we used continuity of linear maps between finite-dimensional spaces. It follows that

M∞ = V T
nullΣ∞Vnull = V T

nullS∞ST
∞Vnull = V T

nullS0S
T
0 Vnull = V T

nullΣ0Vnull.

Therefore any limit point of (stochastic) gradient descent that minimizes the expected log-likelihood
also minimizes the 2-Wasserstein distance to the prior, since θ∞ satisfies Equation (S19).

Momentum In case we are using (stochastic) gradient descent with momentum, the updates are
given by

µt+1 = µt + γt∆µt − ηt∇µℓ̄b(θt + αt∆θt)

St+1 = St + γt∆St − ηt∇S ℓ̄b(θt + αt∆θt)
(S20)

where

∆θt =

(
∆µt

∆St

)
= θt − θt−1, ∆θ0 = 0.

for parameters γt, αt ≥ 0, which includes Nesterov’s acceleration (γt = αt) [78] and heavy ball
momentum (αt = 0) [79].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To prove that the updates of the variational parameters are always orthogonal to the null space of Xb,
we proceed by induction. The base case is trivial since ∆θ0 = 0. Assume now that V T

null∆µt = 0
and V T

null∆St = 0, then by Equation (S20), we have

V T
null∆µt+1 = V T

null(µt+1 − µt) = γtV
T

null∆µt − ηtV
T

null∇µℓ̄b(θt + αt∆θt) = 0

V T
null∆St+1 = V T

null(St+1 − St) = γtV
T

null∆St − ηtV
T

null∇S ℓ̄b(θt + αt∆θt) = 0

where we used the induction hypothesis and the fact that the gradients are orthogonal to the null
space as shown earlier.

Therefore by the same argument as above we have that θ∞ computed via (stochastic) gradient
descent with momentum satisfies Equation (S19), which directly implies Theorem 1.

S1.1.2 NON-ASYMPTOTIC ERROR ANALYSIS

Theorem S3 (Non-Asymptotic Error of Gradient Flow)
Let fw(x) = xTw be a linear model. Define a prior p(w) = N

(
w;µ0,S0S

T
0

)
and assume

noise-free observations y(·) = fw(·) for w ∼ p(w). Further, define a variational distribution
qθ(w) = N

(
w;µ,SST

)
with θ = (µ,S) such that µ ∈ RP and S ∈ RP×R where R ≤ P . Let

θ(t) = (µ(t),S(t)) be the variational parameters at time t ≥ 0 given by the gradient flow of the
expected loss

θ̇(t) = −∇θ ℓ̄(θ(t)) (S21)
initialized at θ(0) = (µ0,S0). Then the expected squared error of the mean prediction

E(y
ytest

)((ytest − fµ(t)(xtest)
)2)

= Varw∼qθ(t)
(fw(xtest)) (S22)

at any test point xtest ∈ RP . In other words, assuming the training and test data are drawn from
the prior predictive, the predictive error of fµ(t)(·) at any time t ≥ 0 is exactly quantified by
the predictive uncertainty of the variational distribution, not only at initialization and in the limit
t → ∞.

Proof. The dynamics of the variational parameters as defined by the gradient flow in Equation (S21)
are given by

µ̇(t) = −∇µℓ̄(µ(t)) = XT(y −Xµ(t)) = −XTX(µ(t)−w) =
d

dt
(µ(t)−w),

Ṡ(t) = −∇S ℓ̄(S(t)) = −XTXS(t).

Since these dynamics are matrix differential equations, the mean and covariance parameters as a
function of time are given by

µ(t) = w + e−XTXt(µ0 −w), (S23)

S(t) = e−XTXtS0. (S24)

Thus the expected predictive error at time step t ≥ 0 is given by

E(y
ytest

)(∥∥ytest − fµ(t)(xtest)
∥∥2
2

)
= E(X

xtest

)
w

(∥∥ytest − xT
testµ(t)

∥∥2
2

)
= Ew

(∥∥∥xT
testw − xT

test

(
w + e−XTXt(µ0 −w)

)∥∥∥2
2

)
= Ew

(∥∥∥xT
teste

−XTXt(µ0 −w)
∥∥∥2
2

)
where we used Equation (S23). We have since E(w) = µ0, that the above

= tr
(
Cov(w − µ0) e

−XTXtxtestx
T
teste

−XTXt
)

= tr
(
xT
teste

−XTXtS0S
T
0 e

−XTXtxtest

)
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

= tr
(
xT
testStS

T
t xtest

)
= Varw∼qθ(t)

(fw(xtest))

where we used Equation (S24) in the second-to-last equality. This completes the proof.

Theorem S4 (Non-Asymptotic Error of SGD)
Let fw(x) = xTw be a linear model. Define a prior p(w) = N

(
w;µ0,S0S

T
0

)
and assume

noise-free observations y(·) = fw(·) for w ∼ p(w). Further, define a variational distribution
qθ(w) = N

(
w;µ,SST

)
with θ = (µ,S) such that µ ∈ RP and S ∈ RP×R where R ≤ P .

Assume the expected loss is given by ℓ̄(θ) = Eqθ(w)

(
1
2∥y −Xw∥22

)
and let θ(t) = (µ(t),S(t))

be the variational parameters at step t of (stochastic) gradient descent with learning rate sequence
(ηt)t, initialized at θ(0) = (µ0,S0). Then the expected squared error of the mean prediction

E(y
ytest

)((ytest − fµ(t)(xtest)
)2)

= Varw∼qθ(t)
(fw(xtest)) (S25)

at any test point xtest ∈ RP . In other words, assuming the training and test data are drawn from
the prior predictive, the predictive error of fµ(t)(·) at any optimization step t is exactly quantified
by the predictive uncertainty of the variational distribution.

Further, if the learning rate ηt ≤ 1
λmax(XT

t Xt)
for all steps t, then

tr(Covw∼qθ(t+1)
(w)) ≤ tr(Covw∼qθ(t)

(w)), (S26)

i.e. uncertainty about the parameters decreases monotonically during optimization.

Proof. The expected loss is given up to an additive constant by

ℓ̄(θ) = Eqθ(w)(ℓ(y, fw(X)))
+c
=

1

2
(∥y −Xµ∥22 + tr(XSSTXT)).

Now let (Xt,yt) be the minibatch at step t ≥ 1. Then it holds that

fµ(t)(xtest)− ytest = xT
test(µ(t)−w). (S27)

Further, the mean parameters identified by SGD are given by

µ(t)−w = µ(t− 1)−w − ηt∇µℓ̄(θ(t− 1))

= µ(t− 1)−w − ηtX
T
t (Xtµ(t− 1)− yt)

= µ(t− 1)−w − ηtX
T
t Xt(µ(t− 1)−w)

= (I − ηtX
T
t Xt)(µ(t− 1)−w)

=

t∏
j=1

(I − ηjX
T
j Xj)(µ(0)−w),

= Bt(µ0 −w)

where we defined Bt =
∏t

j=1(I − ηjX
T
j Xj). The covariance parameters are given by

S(t) = S(t− 1)− ηt∇S ℓ̄(θ(t− 1))

= S(t− 1)− ηtX
T
t XtS(t− 1)

= (I − ηtX
T
t Xt)S(t− 1)

=

t∏
j=1

(I − ηjX
T
j Xj)S(0)

= BtS0

Therefore the predictive error at step t ∈ {0, 1, . . . } is given by

E(y
ytest

)(∥∥ytest − fµ(t)(xtest)
∥∥2
2

)
= E(X

xtest

)
w

(∥∥ytest − xT
testµ(t)

∥∥2
2

)
21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

= Ew

(∥∥xT
test(µ(t)−w)

∥∥2
2

)
= Ew

(∥∥xT
testBt(µ0 −w)

∥∥2
2

)
We have since E(µ0 −w) = 0, that the above

= tr(BT
t xtestx

T
testBt Cov(w − µ0))

= tr(xT
testBtS0S

T
0 B

T
t xtest)

= tr(xT
testS(t)S(t)

Txtest)

= Varw∼qθ(t)
(fw(xtest)) .

This proves Equation (S25).

To prove the second statement, we begin by showing that I−ηtX
T
t Xt has a spectrum in the interval

[0, 1]. We have by Weyl’s theorem, since I and Ct+1 := −ηt+1X
T
t+1Xt+1 are hermitian, that

λp(I) + λmin(Ct+1) ≤ λp(I +Ct+1) ≤ λp(I) + λmax(Ct+1)

⇐⇒ 1− ηt+1λmax(X
T
t+1Xt+1) ≤ λp(I +Ct+1) ≤ 1− ηt+1λmin(X

T
t+1Xt+1)

=⇒ 1−
λmax(X

T
t+1Xt+1)

λmax(XT
t+1Xt+1)

≤ λp(I +Ct+1) ≤ 1

⇐⇒ 0 ≤ λp(I +Ct+1) ≤ 1

where we used the assumption on the learning rate that ∀t : ηt ≤ 1
λmax(XT

t Xt)
. Now by von

Neumann’s trace inequality, it holds that

tr(Covw∼qθ(t+1)
(w)) = tr((I − ηt+1X

T
t+1Xt+1)StS

T
t (I − ηt+1X

T
t+1Xt+1)

T)

= tr(StS
T
t (I − ηt+1X

T
t+1Xt+1)(I − ηt+1X

T
t+1Xt+1))

≤
P∑

p=1

λp(StS
T
t)λp((I − ηt+1X

T
t+1Xt+1)

2)

=

P∑
p=1

λp(StS
T
t)λp((I − ηt+1X

T
t+1Xt+1))

2

≤
P∑

p=1

λp(StS
T
t)

= tr(Covw∼qθ(t)
(w)).

S1.1.3 CONNECTION TO ENSEMBLES

Proposition S1 (Connection to Ensembles)
Consider an ensemble of overparametrized linear models fw(x) = xTw initialized with weights
drawn from the prior w

(i)
0 ∼ N

(
w;µ0,S0S

T
0

)
. Assume each model is trained independently to

convergence via (S)GD such that w(i)
⋆ = argminw ℓ(y, fw(X)). Then the distribution over the

weights of the trained ensemble qEns(w) is equal to the variational approximation qθ⋆
(w) learned

via (S)GD initialized at the prior hyperparameters θ0 = (µ0,S0), i.e.

qEns(w) = qθGD
⋆
(w). (S28)

Proof. The parameters w
(i)
∞ of the (independently) trained ensemble members identified via

(stochastic) gradient descent are given by

w(i)
∞ = argmin

w∈F
∥w −w

(i)
0 ∥2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where F = {w ∈ RP | fw(X) = Xw = y} is the set of interpolating solutions [5, Sec. 2.1]. Since
we can write F equivalently via the minimum norm solution and an arbitrary null space contribution,
s.t. F = {w = X†y +wnull | wnull ∈ null(X)} we have

= X†y + argmin
wnull∈null(X)

∥wnull − (w
(i)
0 −X†y)∥2

= X†y + projnull(X)

w
(i)
0 − X†y

∈range(XT)


where we used the characterization of an orthogonal projection onto a linear subspace as the (unique)
closest point in the subspace. Finally, we use that the minimum norm solution is in the range space
of the data and rewrite the projection in matrix form, s.t.

= X†y + Pnullw
(i)
0 .

Therefore the distribution over the parameters w(i)
∞ of the ensemble members computed via (S)GD

with initial parameters w0 ∼ N
(
w;µ0,S0S

T
0

)
is given by

qEns(w) = N

w;X†y + Pnullµ0

=µEns

,PnullS0

=SEns

ST
0 P

T
null

.

Now the expected negative log-likelihood of the distribution over the parameters of the trained en-
semble members qEns(w) with hyperparameters θEns = (µEns,SEns) is

ℓ̄(θEns)
+c
=

1

2σ2

(
∥y −XµEns∥22 + tr(XSEnsS

T
EnsX

T)
)
= 0

and therefore θEns is a minimizer of the expected log-likelihood. Further it holds that
z = V T

null(Pnullµ0) = V T
nullµ0

M = V T
null(PnullS0)(PnullS0)

TVnull = V T
nullS0S

T
0 Vnull = V T

nullΣ0Vnull

and thus by Equation (S19), the distribution of the trained ensemble parameters minimizes the 2-
Wasserstein distance to the prior distribution, i.e.

qEns = argmin
q(w)=N (w;µ,Σ)

W2
2(q(w),N (w;µ0,Σ0)) .

Combining this with the characterization of the variational posterior in Theorem 1 proves the claim.

S1.2 BINARY CLASSIFICATION OF LINEARLY SEPARABLE DATA

In this subsection we provide proofs of claims from Section 4.2. We begin with presenting some
preliminary results from Soudry et al. [4] which will be used throughout the proof. Next, we will
analyze the gradient flow of the expected loss. We extend the results for the gradient flow to gradient
descent and derive the characterization of the implicit bias, completing the proof of Theorem 2.
Theorem 2 (Implicit Bias in Binary Classification)
Let fw(x) = xTw be an (overparametrized) linear model and define a Gaussian prior p(w) =
N
(
w;µ0,S0S

T
0

)
. Assume a variational distribution qθ(w) = N

(
w;µ,SST

)
over the weights

w ∈ RP with variational parameters θ = (µ,S) such that S ∈ RP×R and R ≤ P . Assume we
are using the exponential loss ℓ(u) = exp(−u) and optimize the expected empirical loss ℓ̄(θ) via
gradient descent initialized at the prior, i.e. θ0 = (µ0,S0), with a sufficiently small learning rate η.
Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

θrGD
t = (µrGD

t ,SrGD
t) =

(
1

log(t)µ
GD
t + Pnull(X)µ0,S

GD
t

)
(9)

converge to a limit point θrGD
⋆ = limt→∞ θrGD

t for which it holds that
θrGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈Θ⋆

W2
2(qθ, p) . (10)

where the feasible set Θ⋆ = {(µ,S) | Prange(XT)µ = ŵ and ∀n : Varqθ (fw(xn)) = 0}
consists of mean parameters which, if projected onto the training data, are equivalent to the L2 max
margin vector and covariance parameters such that there is no uncertainty at training data.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

S1.2.1 PRELIMINARIES

Recall that the expected loss is given by

ℓ̄(θ) =
∑N

n=1 Eqθ(w)

(
ℓ(ynx

T
nw)

)
, (S29)

and specifically, for the exponential loss, we have

ℓ̄(θ) = ℓ̄(µ,S) =
∑N

n=1 exp
(
−xT

nµ+ 1
2x

T
nSS

Txn

)
. (S30)

Throughout these proofs, for any mean parameter iterate µt, we define the residual as

rt = µt − ŵ log t− w̃ (S31)

where ŵ is the solution to the hard margin SVM, and w̃ is the vector which satisfies

∀n ∈ S : η exp
(
−xT

nw̃
)
= αn, (S32)

where weights αn are defined through the KKT conditions on the hard margin SVM problem, i.e.

ŵ =
∑
n∈S

αnxn. (S33)

In Lemma 12 (Appendix B) of Soudry et al. [4], it is shown that, for almost any dataset, there are no
more than P support vectors and αn ̸= 0,∀n ∈ S . Furthermore, we denote the minimum margin to
a non-support vector as:

κ = min
n/∈S

xT
nŵ > 1. (S34)

Finally, we define PS ∈ RP×P as the orthogonal projection matrix to the subspace spanned by the
support vectors, and P̄S = I − PS as the complementary projection.

S1.2.2 GRADIENT FLOW FOR THE EXPECTED LOSS

Similar as in Soudry et al. [4], we begin by studying the gradient flow dynamics, i.e. taking the
continuous time limit of gradient descent:

θ̇t = −∇ℓ̄(θt), (S35)

which can be written componentwise as:

µ̇t = −∇µℓ̄(µt,St) =

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xn (S36)

Ṡt = −∇S ℓ̄(µt,St) = −
N∑

n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xnx

T
nSt. (S37)

We begin by showing that the total uncertainty, as measured by the Frobenius norm of the covariance
factor, is bounded during the gradient flow dynamics. To that end, we derive the following dynamics:

d

dt

1

2
∥St∥2F = tr(ST

t Ṡt) = −
N∑

n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
∥xT

nSt∥2 ≤ 0, (S38)

and therefore
∥St∥2F ≤ ∥S0∥2F . (S39)

Finally, by Cauchy-Schwarz inequality, we have that

∥StS
T
t ∥F ≤ ∥St∥2F ≤ ∥S0∥2F . (S40)

We continue by studying the convergence behavior of the mean parameter µt.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Mean parameter Our goal is to show that ∥rt∥ is bounded. Equation (S31) implies that

ṙt = µ̇t −
1

t
ŵ = −∇µℓ̄(µt,St)−

1

t
ŵ. (S41)

This in turn implies that

1

2

d

dt
∥rt∥2 = ṙTt rt

=

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt −

1

t
ŵTrt

=
∑
n∈S

exp

(
− log(t)ŵTxn − w̃Txn +

1

2
xT
nStS

T
t xn − xT

nrt

)
xT
nrt −

1

t
ŵTrt

+
∑
n/∈S

exp

(
− log(t)ŵTxn − w̃Txn +

1

2
xT
nStS

T
t xn − xT

nrt

)
xT
nrt

=

[
1

t

∑
n∈S

exp
(
−w̃Txn

)(
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt

]

+

[∑
n/∈S

(
1

t

)ŵTxn

exp

(
−w̃Txn +

1

2
xT
nStS

T
t xn

)
exp

(
−xT

nrt
)
xT
nrt

]
.

(S42)

where in last line we used the fact that ŵTxn = 1 for n ∈ S as in (S32), and that∑
n∈S exp(−xT

nw̃)xn = ŵ as in (S33). We begin by examining the first bracket, studying three
possible cases for each of the summands. First, note that if xT

nrt ≤ 0, then since 1
2x

T
nStS

T
t xn ≥ 0,

we have that (
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤ 0. (S43)

Next, by defining B := ∥S0∥2F maxn ∥xn∥2, if 0 < xT
nrt <

B
2 , we have that∣∣∣∣(exp(−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt

∣∣∣∣ < (
exp

(
B

2

)
− 1

)
B

2
, (S44)

and if xT
nrt ≥ B

2 , we have that(
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤ 0. (S45)

Finally, for arbitrary ϵ ≥ max{B, 1}, if |xT
nrt| ≥ ϵ, we have that(

exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤

(
exp

(
−B

2

)
− 1

)
ϵ < 0, (S46)

Furthermore, let γ∗ = minn∈S w̃Txn and γ∗ = maxn∈S w̃Txn. Now, by taking ϵ ≥ max{B, 1}
large enugh such that∣∣∣∣exp(−γ∗)

(
exp

(
−B

2

)
− 1

)
ϵ

∣∣∣∣ ≥ |S| exp(−γ∗)

(
exp

(
B

2

)
− 1

)
B

2
, (S47)

if there exists a support vector n ∈ S such that |xT
nrt| ≥ ϵ, then

1

t

∑
n∈S

exp
(
−w̃Txn

)(
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤ 0. (S48)

The idea of this is that if there exists a support vector such that |xT
nrt| is sufficiently big, then the

first bracket in Eq. (S42) is negative.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

On the other hand, for the second bracket in Eq. (S42), note that for n /∈ S, we have that xT
nŵ ≥ κ,

and hence ∑
n/∈S

(
1

t

)ŵTxn

exp

(
−w̃Txn +

1

2
xT
nStS

T
t xn

)
exp

(
−xT

nrt
)
xT
nrt

≤ 1

tκ
exp

(
1

2
∥S0∥2F max

n
xT
nxn

)∑
n/∈S

exp
(
−w̃Txn

)
= O

(
1

tκ

)
,

(S49)

where in the last line we used that ze−z ≤ 1,∀z ∈ R and fact that ∥StS
T
t ∥F ≤ ∥S0∥2F < ∞.

We will now combine the results from above to show that the residual rt is bounded in the following
way: if there exists a support vector n ∈ S such that |xT

nrt| ≥ ϵ for big enough ϵ > 0, then
1
2

d
dt∥rt∥

2 = O(t−κ). If such a support vector does not exist at time t, we will show that rt is
containted inside a compact set. To that end, if ∥PSrt∥ ≥ ϵ1, we have that

max
n∈S

∣∣xT
nrt

∣∣2 ≥ 1

|S|
∑
n∈S

∣∣xT
nPSrt

∣∣2 =
1

|S|
∥∥XT

SPSrt
∥∥2 ≥ 1

|S|
σ2
min(XS)ϵ

2
1, (S50)

where in the first inequality we used the fact that P T
S xn = xn for n ∈ S. Hence by choosing ϵ1

such that σ2
min(XS)ϵ

2
1/|S| = ϵ2, where the ϵ is chosen in Eq. (S47), we have that

∥PSrt∥ ≥ ϵ1 ⇒ 1

2

d

dt
∥rt∥2 = O

(
t−κ

)
. (S51)

On the other hand, if ∥PSrt∥ ≤ ϵ1, recall that

rt = (µt − µ0) + µ0 − ŵ log t− w̃, (S52)

and since all updates to the mean parameter are in the space spanned by the support vectors (As-
sumption 2), we have that

P̄Srt = P̄Sµ0 − P̄Sw̃. (S53)
We can now conclude that

∥PSrt∥ ≤ ϵ1 ⇒ ∥rt∥ ≤ ∥PSrt∥+ ∥P̄Srt∥ ≤ ϵ1 + ∥P̄Sµ0∥+ ∥P̄Sw̃∥ < ∞. (S54)

Finally, combining the results from Eq. (S49) and Eq. (S54), recalling that κ > 1, we have that ∥rt∥
is bounded for all t > 0. This completes the first part of the proof and shows that

µt = ŵ log t+ w̃ + rt = ŵ log t+O(1), (S55)

and in particular

lim
t→∞

µt

∥µt∥
=

ŵ

∥ŵ∥
. (S56)

We proceed by showing that the limit covariance parameter vanishes in the span of the support
vectors.

Covariance parameter We begin by substituting the definition of the residual rt (S31) into the
gradient flow dynamics for the covariance factor St:

Ṡt = −∇S ℓ̄(µt,St)

= −
N∑

n=1

exp
(
−µT

t xn + 1
2x

T
nStS

T
t xn

)
xnx

T
nSt.

(S57)

Next, we split the sum into contributions from support vectors and non–support vectors. For n ∈ S,
we use the property xT

nŵ = 1; for n /∈ S, the margin is strictly larger than one, which introduces
higher–order decay in t:

Ṡt = −
∑
n∈S

1

t
exp

(
−w̃Txn − rTt xn

)
exp

(
1
2x

T
nStS

T
t xn

)
xnx

T
nSt

−
∑
n/∈S

(
1
t

)xT
nŵ

exp
(
−w̃Txn − rTt xn

)
exp

(
1
2x

T
nStS

T
t xn

)
xnx

T
nSt.

(S58)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Since rt is bounded (from the previous part of the proof), the exponential prefactor is uniformly
bounded away from zero. We formalize this by defining

C := min
n∈[N]

min
t≥0

exp
(
−w̃Txn − rTt xn

)
> 0. (S59)

We also let σmin denote the smallest non–zero eigenvalue of the matrix
∑

n∈S xnx
T
n. Finally, to

measure the size of St restricted to the support–vector subspace, we define

∆t := tr
(
PSStS

T
t PS

)
.

We now compute the derivative of ∆t over time. Differentiating and substituting the dynamics of
St yields

1
2

d
dt∆t = tr

(
PSṠtS

T
t PS

)
= −1

t

∑
n∈S

exp
(
−w̃Txn − rTt xn

)
exp

(
1
2x

T
nStS

T
t xn

)
tr
(
PSxnx

T
nStS

T
t PS

)
+O

(
1
tκ

)
.

(S60)

At this point we use two facts: 1. from (S59), the exponential prefactor is bounded below by C > 0,
2. from the definition of σmin, we can control the quadratic form

∑
n∈S xnx

T
n. Applying both gives

1
2

d
dt∆t ≤ −Cσmin

t
∆t +O

(
1
tκ

)
. (S61)

Finally, by Grönwall’s lemma, there exists a constant K > 0 and a starting time t0 > 0 such that

∆t ≤ ∆t0

(
t
t0

)−2Cσmin

+
K

2Cσmin + κ− 1
t−(κ−1), ∀t ≥ t0. (S62)

Since both |S|Cσmin > 0 and κ > 1, we conclude that ∆t → 0 as t → ∞. In words: the covariance
factor vanishes when projected onto the span of the support vectors, i.e.

∀n ∈ S : lim
t→∞

xT
nStS

T
t xn = 0, (S63)

as claimed.

S1.2.3 COMPLETE PROOF OF THEOREM 2

We will now extend the results for the gradient flow to gradient descent and then use these results to
characterize the implicit bias of gradient descent as generalized variational inference.

Throughout this proof, let

At =

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xnx

T
n (S64)

be a positive definite matrix at iteration t. We begin the section with a few lemmata which will be
used throughout the proof.
Lemma S2
Suppose that we start gradient descent from (µ0,S0). If η < λmax(A0)

−1, then for the gradient
descent iterates

St+1 = St − η∇S ℓ̄(µt,St), (S65)
we have that ∥St∥F ≤ ∥S0∥F for all t ≥ 0.

Proof. First, note that the gradient descent update for the covariance factor is given by

St+1 = St(I − ηAt), (S66)

and hence we have that

∥St+1∥F = ∥St(I − ηAt)∥F ≤ ∥St∥F ∥(I − ηAt)∥2. (S67)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Now, since η ≤ λmax(A0)
−1 ≤ λmax(At)

−1 for all t ≥ 0 and noting that At ⪰ 0, we have that

∥(I − ηAt)∥2 ≤ 1, (S68)

and therefore
∥St+1∥F ≤ ∥St∥F . (S69)

Finally, we can conclude that ∥St∥F ≤ ∥S0∥F for all t ≥ 0, as required.

Lemma S3
Suppose that we start gradient descent from (µ0,S0). If η < λmax(A0)

−1, then for the gradient
descent iterates

µt+1 = µt − η∇µℓ̄(µt,St), (S70)

we have that
∑∞

u=0 ∥∇µℓ̄(µu,Su)∥2 < ∞. Consequently, we also have that
limt→∞ ∥∇µℓ̄(µt,St)∥2 = 0.

Proof. Note that our loss function is not globally smooth in µ. However, if we initialize at (µ0,S0),
the gradient descent iterates with η < λmax(A0)

−1 maintain bounded local smoothness. The state-
ment now follows directly from Lemma 10 in Soudry et al. [4].

Lemma S4
By choosing ϵ1 as in Eq. (S51), if ∥PSrt∥ ≥ ϵ1, we have that

(rt+1 − rt)
T
rt ≤ O

(
1

tκ

)
+O

(
1

t2

)
∥rt∥. (S71)

If ∥PSrt∥ < ϵ1, there exists a constant C such that

(rt+1 − rt)
T
rt ≤ C. (S72)

Proof. We follow similar steps as in the gradient flow case. It holds that

(rt+1 − rt)
Trt

= (−η∇µ(µt,St)− ŵ (log(t+ 1)− log(t)))
T
rt

= η

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt − ŵTrt log(1 + t−1)

= ŵTrt(t
−1 − log(1 + t−1)) + η

∑
n/∈S

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt

+ η
∑
n∈S

[
−1

t
exp

(
−w̃Txn

)
+ exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)]
xT
nrt,

(S73)

where in the last equality we used Equation (S33) to expand ŵTrt. Furthermore, we can bound all
four terms as follows, beginning with the first term:

ŵTrt(t
−1 − log(1 + t−1)) ≤ ∥rt∥O

(
1

t2

)
, (S74)

where we used that log(1 + t−1) = t−1 +O
(
t−2

)
. For the second term, using the same argument

as in Equation (S49), we derive that

η
∑
n/∈S

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt ≤ O

(
1

tκ

)
. (S75)

For the third item, from Eq. (S48) and Eq. (S50), we have that ∥PSrt∥ ≥ ϵ1 implies that

η
∑
n∈S

[
−1

t
exp

(
−w̃Txn

)
+ exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)]
xT
nrt ≤ 0. (S76)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The first result follows from combining the above three inequalities.

Next, if ∥PSrt∥ < ϵ1, by defining B := ∥S0∥2F , following the steps in Eq. (S44), we have that

η
∑
n/∈S

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt ≤ η|S|

(
exp

(
B

2

)
− 1

)
B

2
, (S77)

and hence, combining this with Assumption 2 which implies that rt is bounded as in Eq. (S54), one
can find a constant C such that

(rt+1 − rt)
T
rt ≤ C. (S78)

Proof of Theorem 2

Proof. As in the simple version of the proof, we begin by considering the convergence behavior of
the mean parameter µt.

Mean parameter Our goal is again to show that ∥rt∥ is bounded. To that end, we will provide an
upper bound to the following equation

∥rt+1∥2 = ∥rt+1 − rt∥2 + 2 (rt+1 − rt)
T
rt + ∥rt∥2 (S79)

First, consider the first term in the above equation:

∥rt+1 − rt∥2

= ∥µt+1 − ŵ log(t+ 1)− w̃ − µt + ŵ log(t) + w̃∥2

= ∥ − η∇µℓ̄(µt,St)− ŵ log(1 + t−1)]∥2

≤ 2
[
η2∥∇µℓ̄(µt,St)∥2 + ∥ŵ∥2 log2(1 + t−1)

]
≤ 2

[
η2∥∇µℓ̄(µt,St)∥2 + ∥ŵ∥2t−2

]
(S80)

where in the first inequality we used the standard inequality that (x+ y)2 ≤ 2(x2 + y2), and in the
second inequality we used the fact that log(1 + x) ≤ x for x ≥ 0. Now, from Lemma S3 and the
fact that t−2 is summable, we conclude that there exists C1 < ∞ such that

∞∑
t=1

∥rt+1 − rt∥2 ≤ C1 < ∞. (S81)

Next, for the second term, recall that in Lemma S4 we showed that if ∥PSrt∥ ≥ ϵ1, then, for some
constants C2, C3 < ∞, we have that, eventually

(rt+1 − rt)
T
rt ≤ C2

1

tκ
+ C3

1

t2
∥rt∥, (S82)

and that if ∥PSrt∥ < ϵ1, then there exists a constant C4 < ∞ such that

(rt+1 − rt)
T
rt ≤ C4. (S83)

We will show that when ∥PSrt∥ < ϵ1, the residual rt is contained in a compact set, and when
∥PSrt∥ ≥ ϵ1, the residual rt can’t escape to infinity. We now formally show this claim.

Let S1 be the frst time such that ∥PSrt∥ ≥ ϵ1, if such a time does not exist, we are done since the
support vectors span the data and hence ∥rt∥ is bounded. Now, let T1 be the first time after S1 such
that ∥PSrt∥ < ϵ1, where we allow T1 = ∞ if such a time does not exist. Continuing in this manner,
we define the sequences S1 < T1 < S2 < T2 < . . ., where we allow Ti = ∞ for some i.

We prooced by showing that ∥rt∥ is uniformly bounded on each of the intervals [Si, Ti). To that
end, note that for t ∈ [Si, Ti), we have that

∥rt+1∥2 − ∥rt∥2 ≤ 2C2
1

tκ
+ 2C3

1

t2
∥rt∥+ ∥rt+1 − rt∥2, (S84)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

and hence, using the fact that κ > 1, by the discrete version of Grönwall’s lemma, that

max
t∈[Si,Ti)

(∥rt∥2 − ∥rSi
∥2) ≤ K, (S85)

for some constant K < ∞ independent of i. Furthemore, we also know from Eq. (S83) that

∥rSi
∥ ≤ ϵ1 + 2C4 + ∥rSi

− rSi−1∥2 ≤ ϵ1 + 2C4 +max
t≥0

∥rt+1 − rt∥2 < ∞, (S86)

showing that the first jump outisde the ϵ1-ball is bounded. Combining the two results, we conclude
that ∥rt∥ is uniformly bounded on each of the intervals [Si, Ti).

Finally, by noting that the support vectors span the data, we have that ∥rt∥ is uniformly bounded
on each of the intervals [Ti, Si+1). Combining the two results, we conclude that ∥rt∥ is uniformly
bounded for all t ≥ 0 and hence we have that

lim
t→∞

µt

∥µt∥
=

ŵ

∥ŵ∥
(S87)

and the following lemma.
Lemma S5
For the mean parameter µt, we have that

µt = log(t)ŵ +O(1). (S88)

Proof. This follows immediately from the definition of the residual in Equation (S31):

µt = ŵ log t+ rt + w̃t,

and the fact that rt and w̃t are bounded as we showed above.

We continue with the analysis of the covariance parameter over optimization iterations.

Covariance parameter As before, let ∆t = tr(PSStS
T
t PS) be the trace of the projection of the

covariance parameter on the space of support vectors in S . By following the ideas from the gradient
flow case, we have the following dynamics:

∆t+1 = tr(PS (I − ηAt)StS
T
t (I − ηAt)

T
PS)

= tr(PSStS
T
t PS)− 2η tr(PSStS

T
t AtPS) + η2 tr(PSAtStS

T
t AtPS)

≤ ∆t −
2η

t
Cσmin tr(PSStS

T
t PS) +O

(
1

tκ

)
+O

(
1

t2

)
= ∆t −

2η

t
Cσmin∆t +O

(
1

tκ

)
+O

(
1

t2

)
,

(S89)

where we used the same arguments as in Equation (S60) to derive the last inequality, in addition to
noting that λmax(A

2
t) ≤ O

(
1
t2

)
in order to bound the last term. Hence, we can write

∆t+1 −∆t ≤ −2η

t
Cσmin∆t +O

(
1

tκ

)
+O

(
1

t2

)
. (S90)

Again, by the discrete version of Grönwall’s lemma, we derive the equivalent result to Eq. (S62).
Now, noting that

∑
t
1
t diverges, the fact that κ > 1 and ηCσmin > 0, we conclude that ∆t converges

to zero. This implies that the covariance parameter converges to zero in the span of the support
vectors, i.e.

∀n ∈ S : lim
t→∞

xT
nStS

T
t xn = 0, (S91)

as desired.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Characterization as Generalized Variational Inference As a final step we need to show that
the solution identified by gradient descent if appropriately transformed identifies the minimum 2-
Wasserstein solution in the feasible set. Define the feasible set

Θ⋆ = {(µ,S) | PSµ = ŵ and ∀n ∈ S : Varqθ (fw(xn)) = 0} (S92)

= {(µ,S) | PSµ = ŵ and ∀n ∈ S : xT
nSS

Txn = 0} (S93)

and the variational parameters identified by rescaled gradient descent as

θrGD
⋆ = lim

t→∞
θrGD
t = lim

t→∞

(
1

log(t)
µt + Pnull(X)µ0,St

)
. (S94)

It holds by Lemma S5 that

PSµ
rGD
⋆ = PS

(
lim
t→∞

1

log(t)
µt

)
+ 0 = PSŵ = ŵ (S95)

and additionally by Equation (S91) we have for all n ∈ S that

xT
nS

rGD
⋆ (SrGD

⋆)Txn = lim
t→∞

xT
nSt(St)

Txn = 0. (S96)

Therefore, the limit point θrGD
⋆ of rescaled gradient descent is in the feasible set. It remains to show

that it is also a minimizer of the 2-Wasserstein distance to the prior / initialization. We will first
show a more general result that does not require Assumption 2.

To that end define
(
VS VX⊥S Vnull(X)

)
∈ RP×P where VS ∈ RP×PS is an orthonormal basis

of the span of the support vectors range(XT
S), VX⊥S ∈ RP×(N−PS) an orthonormal basis of its

orthogonal complement in range(XT) and Vnull(X) ∈ RP×(P−N) the corresponding orthonormal
basis of the null space null(X) of the data. Let V =

(
VS Vnull(X)

)
∈ RP×(P−N+PS) and define

the projected variational distribution and prior onto the span of the support vectors and the null space
of the data as

qproj
θ (w̃) = N

(
w̃;PV µ,PV ΣP T

V

)
= N

(
w̃; µ̃, Σ̃

)
(S97)

pproj(w̃) = N
(
w̃;PV µ0,PV Σ0P

T
V

)
= N

(
w̃; µ̃0, Σ̃0

)
(S98)

where w̃ ∈ RP−N+PS . Now earlier we showed that the limit point of rescaled gradient descent is
in the feasible set, defined in Equation (S94), and thus the same holds for the projected limit point
of rescaled gradient descent, i.e.

(µ̃rGD
⋆ , S̃rGD

⋆) ∈ Θ⋆ (S99)

in particular

PSµ̃
rGD
⋆ = PSµ

rGD
⋆ = ŵ, (S100)

∀n ∈ S : xT
nS̃

rGD
⋆ (S̃rGD

⋆)Txn = xT
nS

rGD
⋆ (SrGD

⋆)Txn = 0. (S101)

Therefore, we have for all n ∈ S that

0 = xT
nS̃

rGD
⋆ (S̃rGD

⋆)Txn = ∥(S̃rGD
⋆)Txn∥22 ⇐⇒ (S̃rGD

⋆)Txn = 0 (S102)

⇐⇒ (S̃rGD
⋆)TVS = 0 (S103)

and thus V T
S S̃rGD

⋆ (S̃rGD
⋆)TVS = 0. Therefore by Lemma S1 it holds for the squared 2-Wasserstein

distance between the projected limit point of rescaled gradient descent and the projected prior that

W2
2

(
qproj
θ∗

, pproj
)

+c
=

∥∥V T
S µ̃− V T

S µ̃0

∥∥2
2
+W2

2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
=

∥∥∥∥(V T
S µ̃− V T

S µ̃0

0

)∥∥∥∥2
2

+W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
=

∥∥∥∥V (
V T
S µ̃− V T

S µ̃0

0

)∥∥∥∥2
2

+W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

= ∥PSµ̃− PSµ̃0∥22 +W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
= ∥ŵ − PSµ̃0∥22 +W2

2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
+c
= W2

2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
where we used that PSµ̃ = ŵ for any (µ̃, S̃) in the feasible set Θ⋆. Therefore it suffices to show
that the projected solution θ̃rGD

⋆ minimizes

W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
≥ 0. (S104)

We have using the definition of the iterates in Equation (9) that

V T
nullµ̃

rGD
⋆ = V T

nullPV

(
lim
t→∞

1

log(t)
µt + Pnull(X)µ0

)
(S105)

= V T
null(ŵ + Pnull(X)µ0) = V T

nullµ0 (S106)

where we used ŵ ∈ range(XT
S). Further, it holds for the gradient of the expected loss (S30) with

respect to the covariance factor parameters that

V T
nullS̃

rGD
⋆ = V T

nullPV SrGD
⋆ = V T

nullS
rGD
⋆ = V T

null

(
S0 −

∞∑
t=1

ηt∇S ℓ̄(µt,St)

∈range(XT)

)
(S107)

= V T
nullS0 = V T

nullPV S0 = V T
nullS̃0. (S108)

Therefore we have that

W2
2

(
N
(
V T

nullµ̃
rGD
⋆ ,V T

nullΣ̃
rGD
⋆ Vnull

)
,N

(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
= 0 (S109)

and thus the projected variational parameters θ̃rGD
⋆ are both feasible (S99) and minimize the squared

2-Wasserstein distance to the projected initialization / prior (S104). This completes the proof for the
generalized version of Theorem 2 without Assumption 2, which we state here for convenience.
Lemma S6
Given the assumptions of Theorem 2, except for Assumption 2 meaning the support vectors XS do
not necessarily span the data, it holds for the limit point of rescaled gradient descent that

θrGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈Θ⋆

W2
2

(
qproj
θ , pproj

)
. (S110)

If in addition Assumption 2 holds, i.e. the support vectors span the training data X , such that

span({xn}n∈[N]) = span({xn}n∈S), (S111)

then the orthogonal complement of the support vectors in range(XT) has dimension N − PS = 0
and thus the projection PV = IP×P is the identity and therefore

qproj
θ = qθ and pproj = p. (S112)

This completes the proof of Theorem 2.

S1.3 NLL OVERFITTING AND THE NEED FOR (TEMPERATURE) SCALING

In Theorem 2, we assume we rescale the mean parameters. This is because the exponential loss can
be made arbitrarily small for a mean vector that is aligned with the L2 max-margin vector simply
by increasing its magnitude. In fact, the sequence of mean parameters identified by gradient descent
diverges to infinity at a logarithmic rate µGD

t ≈ log(t)ŵ as we show4 in Lemma S5 and illustrate in
Figure S2 (right panel).

4This has been observed previously in the deterministic case (see Theorem 3 of Soudry et al. [4]) and thus
naturally also appears in our probabilistic extension.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0 5000 10000

Epoch

10−1

V
al

id
at

io
n

E
rr

or
↓

0 5000 10000

Epoch

10−1

100

V
al

id
at

io
n

N
L

L
↓

0 5000 10000

Epoch

5

10

15

N
or

m
of

M
ea

n
Pa

ra
m

s.

Implicit Bias VI Implicit Bias VI + Theoretical Scaling Implicit Bias VI + Temperature Scaling

Figure S2: NLL overfitting in classification due to implicit bias of the mean parameters. As shown
here for a two-hidden layer neural network on synthetic data, when training with vanilla SGD the
mean parameters diverge to infinity ∥µt∥2 ≈ O(log(t)) (right) and thus the classifier will eventually
overfit in terms of negative log-likelihood (left and middle). Rescaling the GD iterates as in Theo-
rem 2 or using temperature scaling [69] avoids overfitting.

This bias of the mean parameters towards the max-margin solution does not impact the train loss or
validation error, but leads to overfitting in terms of validation NLL (see Figure S2) as long as there
is at least one misclassified datapoint x, since then the (average) validation NLL is given by

ℓ̄(θGD
t) = Eq

θGD
t

(w)

(
exp(−yxTw)

)
= exp(xTµGD

t + 1
2x

TSGD
t (SGD

t)Tx)

≈ exp(log(t)xTŵ + 1
2x

TSGD
t (SGD

t)Tx) → ∞ as t → ∞.
(S113)

However, by rescaling the mean parameters as we do in Theorem 2, this can be prevented as Fig-
ure S2 (middle panel) illustrates for a two-hidden layer neural network on synthetic data. Such
overfitting in terms of NLL has been studied extensively empirically with the perhaps most com-
mon remedy being Temperature Scaling (TS) [69]. As we show empirically in Figure S2, instead
of using the theoretical rescaling, using temperature scaling performs very well, especially in the
non-asymptotic regime, which is why we also adopt it for our experiments in Section 5.

The aforementioned divergence of the mean parameters to infinity also explains the need for the pro-
jection of the prior mean parameters in Equation (9), since any bias from the initialization vanishes
in the limit of infinite training. At first glance the additional projection seems computationally pro-
hibitive for anything but a zero mean prior, but close inspection of the implicit bias of the covariance
parameters S in Theorem 2 shows that at convergence

∀n : Varqθ (fw(xn)) = xT
nSS

Txn = 0 =⇒ range(S) ⊂ null(X) (S114)

Meaning we can approximate a basis of the null space of the training data by computing a QR
decomposition of the covariance factor in O

(
PR2

)
once at the end of training. For R = P the

inclusion becomes an equality and the projection can be computed exactly.

S2 PARAMETRIZATION, FEATURE LEARNING AND HYPERPARAMETER
TRANSFER

Notation For this section we need a more detailed neural network notation. Denote an L-hidden
layer, width-D feedforward neural network by f(x) ∈ RD

out, with inputs x ∈ RDin , weights W (l),
pre-activations h(l)(x) ∈ RD(l)

, and post-activations (or “features”) g(l)(x) ∈ RD(l)

. That is,
h(1)(x) = W (1)x and, for l ∈ 1, . . . , L− 1,

g(l)(x) = ϕ
(
h(l)(x)

)
, h(l+1)(x) = W (l+1)g(l)(x),

and the network output is given by f(x) = W (L+1)g(L)(x), where ϕ (•) is an activation function.

For convenience, we may abuse notation and write h(0)(x) = x and h(L+1)(x) = f(x). Through-
out we use •(l) to indicate the layer, subscript •t to indicate the training time (i.e., epoch),
∆•t = •t − •0 to indicate the change since initialization, and [•]i, [•]ij to indicate the compo-
nent within a vector or matrix.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

S2.1 DEFINITIONS OF STABILITY AND FEATURE LEARNING

The following definitions extend those of Yang and Hu [43] to the variational setting.
Definition S1 (bc scaling)
In layer l, the variational parameters are initialized as

[µ
(l)
0]i ∼ N

(
0, D−2b(l)

)
, [S

(l)
0]ij ∼ N

(
0, D−2b̃(l)

)
and the learning rates for the mean and covariance parameters, respectively, are set to

η(l) = ηD−c(l) , η̃(l) = ηD−c̃(l) .

The hyperparameter η represents a global learning rate that can be tuned, as for example in the
hyperparameter transfer experiment from Section 3.4.

For the next two definitions, let mr (X) = Ez((X − Ez(X))r) denote the rth central moment
moment of a random variable X with respect to z, which represents all reparameterization noise in
the random variable X . All Landau notation in Section S2 refers to asymptotic behavior in width D
in probability over reparameterization noise z. We say that a vector sequence {vD}∞D=1, where each

vD ∈ RD, is O(D−a) if the scalar sequence {
√

1
D∥vD∥2}∞D=1 = {RMSE(vD)}∞D=1 is O(D−a).

Definition S2 (Stability of Moment r)
A neural network is stable in moment r, if all of the following hold for all x and l ∈ {1, . . . , L}.

1. At initialization (t = 0):

(a) The pre- and post-activations are Θ(1):

mr(h
(l)
0 (x)),mr(g

(l)
0 (x)) = Θ(1)

(b) The function is O(1):
mr(f0(x)) = O(1)

2. At any point during training t > 0:

(a) The change from initialization in the pre- and post-activations are O(1):

∆mr(h
(l)
t (x)),∆mr(g

(l)
t (x)) = O(1)

(b) The function is O(1):
mr(ft(x)) = O(1)

Definition S3 (Feature Learning of Moment r)
Feature learning occurs in moment r in layer l if, for any t > 0, the change from initialization is
Ω(1):

∆mr

(
g
(l)
t (x)

)
= Ω(1).

As we will see later, Figure S5 and Figure S6 investigate feature learning for the first two moments.

S2.2 INITIALIZATION SCALING FOR A LINEAR NETWORK

In this section we illustrate how the initialization scaling {(b(l), b̃(l))} can be chosen for stability.
For simplicity, we consider a linear feedforward network of width D evaluated on a single input
x ∈ RD

in . We assume a Gaussian variational family that factorizes across layers. This implies the
hidden units evolve as h(l+1)

t = W
(l+1)
t h

(l)
t and the weights are linked to the variational parameters

by vec(W
(l)
t) = µ

(l)
t + S

(l)
t z.

Therefore, the mean and variance of the ith component hidden units in layer l ∈ {1, . . . , L + 1},
where i ∈ 1 . . . , D(l), are given by

Ez

(
[h

(l)
t]i

)
= [µ

(l)
t]TI Ez

(
h
(l−1)
t

)
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Varz

(
[h

(l)
t]i

)
= [µ

(l)
t]TIC

(l−1)
t [µ(l)]I + tr([S

(l)
t]TI,:A

(l−1)
t [S

(l)
t]I,:),

where I = {iD(l−1), . . . , (i+1)D(l−1)} and the second moment of and covariance of layer-l hidden
units are denoted by

A
(l)
t = Ez

(
h
(l)
t h

((l))T
t

)
C

(l)
t = A

(l)
t − Ez

(
h
(l)
t

)
Ez

(
h
(l)
t

)T

.

Mean We start with the mean of the hidden units, which conveniently depends only on the mean
variational parameters and the previous layer hidden units.

Ez

(
[h

(l)
0]i

)
=

D(l−1)∑
j=1

[µ
(l)
0]Ij Ez

(
[h

(l−1)
0]j

)
= O

(√
D(l−1) ·D−b(l) · 1

)
=


O
(
D−b(1)

)
l = 1

O
(
D−(b(l)− 1

2)

)
l ∈ {2, . . . , L+ 1}

.

Therefore, we require b(1) ≥ 0 and b(l) ≥ 1
2 for l ∈ {2, . . . , L+ 1}.

Variance Next we examine the variance of hidden units. Consider the first term, which represents
the contribution of the mean parameters.

[µ
(l)
0]TIC

(l−1)
0 [µ(l)]I =

D(l−1)∑
j=1

[µ
(l)
0]2Ij [C

(l−1)
0]j,j +

D(l−1)∑
j ̸=j′

[µ
(l)
0]Ij [C

(l−1)
0]j,j′ [µ

(l)
0]Ij′

= O
(
D(l−1) ·D−2b(l) · 1

)
+O

(√
D(l−1)(D(l−1) − 1) ·D−b(l) · 1 ·D−b(l)

)
= O

(
D(l−1) ·D−2b(l)

)
=

O
(
D−2b(1)

)
l = 1

O
(
D−(2b(l)−1)

)
l ∈ l ∈ {2, . . . , L+ 1}.

Therefore, we require b(1) ≥ 0 and b(l) ≥ 1
2 for l ∈ {2, . . . , L + 1}. Notice these are the same

requirements as above for the mean of the hidden units. We summarize the scaling for the mean
parameters as

b(l) ≥
{
0 l = 1
1
2 l ∈ {2, . . . , L+ 1}. (S115)

Now consider the second term in the variance of the hidden units. Assume the rank scales with the
input and output dimension of a layer as R(l) = (D(l−1)D(l))p

(l)

, where p(l) ∈ [0, 1].

tr([S
(l)
0]TI,:A

(l−1)
0 [S

(l)
0]I,:) =

R(l)∑
r=1

[S
(l)
0]TI,rA

(l−1)
0 [S

(l)
0]I,r

=

R(l)∑
r=1

D(l−1)∑
j=1

[S
(l)
0]2Ij ,r[A

(l−1)
0]j,j +

D(l−1)∑
j ̸=j′

[S
(l)
0]Ij ,r[A

(l−1)
0]j,j′ [S

(l)
0]Ij′ ,r


= O

(
R(l)D(l−1) ·D−2b̃(l) · 1

)
+O

(√
R(l)D(l−1)(D(l−1) − 1) ·D−b̃(l) · 1 ·D−b̃(l)

)
= O

(
R(l)D(l−1)D−2b̃(l)

)
35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

=


O
(
D−(2b̃(1)−p(1))

)
l = 1

O
(
D−(2b̃(l)−1−2p(l))

)
l ∈ {2, . . . , L}

O
(
D−(2b̃(L+1)−1−p(L+1))

)
l = L+ 1.

Therefore we require b̃(0) ≥ p(1)

2 , b̃(l) ≥ 1
2 + p(l) for l ∈ {2, . . . , L}, and b̃(L+1) ≥ 1

2 + p(L+1)

2 .
Notice we can write these conditions in terms of the mean scaling as

b̃(l) ≥ b(l) +


p(l)

2 l = 1

p(l) l ∈ {2, . . . , L}
p(l)

2 l = L+ 1.

(S116)

S2.3 PROPOSED SCALING

The previous section derives the necessary conditions for stability at initialization. Recall from
Section 3.4 that we propose scaling the contribution of the covariance parameters to the forward
pass, i.e. the Sz term, by R−1/2 since each element in the term is a sum over R random variables,
where R is the rank of S. In the more detailed notation of this section, the proposed scaling implies
the forward pass in a linear layer is given by

[h
(l)
t]i = [Wt]:,ih

(l−1)
t =

(
[µ

(l)
t]I +R−1/2[S

(l)
t]Iz

(l)
)
h
(l−1)
t . (S117)

In practice, rather than scaling [S
(l)
t]Iz

(l) by R−1/2 in the forward pass, we apply Lemma J.1 from
Yang et al. [41] to instead scale the initialization by R−1/2 and, in SGD, the learning rate by R−1.
Scaling by the rank allows treating the mean and covariance parameters as if they were weights
parameterized by µP in a non-probabilistic network, inheriting any scaling that has already been
derived for that architecture.

From Table 3 of Yang et al. [41], we therefore scale the mean parameters as

b(l) =


0 l = 1

1/2 l ∈ {2, . . . , L}
1 l = L+ 1

and c(l) =


−1 l = 1

0 l ∈ {2, . . . , L}
1 l = L+ 1.

(S118)

Assuming R(l) = (D(l−1)D(l))p
(l)

as before, where p(l) ∈ [0, 1], we the scale the covariance
parameters as

b̃(l) = b(l) +


p(l)

2 l = 1

p(l) l ∈ {2, . . . , L}
p(l)

2 l = L+ 1

and c̃(l) = c(l) +


p(l) l = 1

2p(l) l ∈ {2, . . . , L}
p(l) l = L+ 1.

(S119)

By comparing to Equations S115 and S116, we see the mean and covariance parameters in all but
the output layer are initialized as large as possible while still maintaining stability. The output layer
parameters scale to zero faster, since, as in µP for the weights of non-probabilistic networks, we set
b(L+1) to 1 instead of 1/2.

Note that in Section S2.2 we did not consider input and output dimensions that scaled with the width
D for simplicity. For our experiments, we take the exact µP initialization and learning rate scaling
from Yang et al. [41] — which includes, for example, a 1/fan in scaling in the input layer — for
the means and then make the rank adjustment for the covariance parameters as described above.

We investigate the proposed scaling in Figures S4 and S5. We train two-hidden-layer (L = 2) MLPs
of hidden sizes 8, 16, 32, and 64 on a single observation (x, y) = (1, 1) using a squared error loss.
We use SGD with a learning rate of 0.05. For the variational networks, we assume a multivariate
Gaussian variational family with a full rank covariance.

Figures S3 and S4 show the RMSE of the change in the hidden units from initialization, ∆g
(l)
t (x) =

g
(l)
t (x) − g

(l)
0 (x), as a function of the hidden size. The RMSE of the hidden units at initialization,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

g
(l)
0 is also shown in blue. Each panel corresponds to a layer of the network, so the first two panels

correspond to features g
(1)
t (x) and g

(2)
t (x), respectively, while the third panel corresponds to the

output of the network, g(3)
t (x) = ft(x). The difference between the figures is the paramaterization.

Figure S3 uses standard parameterization (SP) while Figure S4 uses maximal update parametrization
(µP). We observe that (a) the features change more under µP than SP and (b) training is more stable
across hidden sizes under µP than SP, especially for smaller networks.

Figures S5 and S6 show the analogous results for a variational network. The top row shows the
change in the mean of the hidden units, while the bottom row shows the change in the standard
deviation. As in the non-probabilistic case, we observe that (a) both the mean and standard deviation
of the features change more under µP than SP and (b) training is more stable across hidden sizes
under µP than SP, especially for smaller networks.

23 24 25 26

Hidden Size

0

1

2

3

R
M

SE
(g

(l
)

t
−

g
(l

)
0

)

l = 1

23 24 25 26

Hidden Size

l = 2

23 24 25 26

Hidden Size

l = 3

0

1

2

3

R
M

SE
(g

(l
)

0
)

Epochs (t)
0
1

2
4

8
16

32
64

128
256

512
1024

2048
4096

Figure S3: MLP, Standard Parameterization. RMSE of the change in the hidden units and, in blue,
their initial values. Shaded region represents 95% confidence interval over 5 random initializations.
The MLP is trained under SP.

23 24 25 26

Hidden Size

0

1

2

3

R
M

SE
(g

(l
)

t
−

g
(l

)
0

)

l = 1

23 24 25 26

Hidden Size

l = 2

23 24 25 26

Hidden Size

l = 3

0

1

2

3

R
M

SE
(g

(l
)

0
)

Epochs (t)
0
1

2
4

8
16

32
64

128
256

512
1024

2048
4096

Figure S4: MLP, Maximal Update Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The MLP is trained under µP.

S2.4 DETAILS ON HYPERPARAMETER TRANSFER EXPERIMENT

As discussed in Section 3.4 we train two-hidden-layer MLPs of width 128, 256, 512, 1024, and 2048
on CIFAR-10. For comparability to Figure 3 in Tensor Programs V [41] we use the same hyperpa-

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0

1

2

3

R
M

SE
(E

(g
(l

)
t

)
−
E(

g
(l

)
0

)

l = 1 l = 2 l = 3

23 24 25 26

Hidden Size

0

1

2

R
M

SE
(S

td
(g

(l
)

t
)
−

St
d(

g
(l

)
0

)

23 24 25 26

Hidden Size
23 24 25 26

Hidden Size

0

1

2

3

R
M

SE
(E

(g
(l

)
0

)

0

1

2

R
M

SE
(S

td
(g

(l
)

0
)

Epochs (t)
0
1

2
4

8
16

32
64

128
256

512
1024

2048
4096

Figure S5: Variational MLP, Standard Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The variational MLP is trained under SP with a full rank covariance in each layer.

rameters but applied to the mean parameters.5 For the input layer, we scale the mean parameters at
initialization by a factor of 16 and in the forward pass by a factor of 1/16. For the output layer, we
scale the mean parameters by 0.0 at initialization and by 32.0 in the forward pass. We use 20 epochs,
batch size 64, and a grid of global learning rates ranging from 2−8 to 20 with cosine annealing dur-
ing training. For the grid search results shown in the right panel of Figure 3, we use validation NLL
for model selection and then evaluate the relative test error compared to the best performing model
for that width across parameterizations and learning rates.

S3 EXPERIMENTS

This section outlines in more detail the experimental setup, including datasets (Section S3.1.1),
metrics (Section S3.1.2), architectures, the training setup and method details (Section S3.3.1). It also
contains additional experiments to the ones in the main paper (Sections S3.2, S3.3.2 and S3.3.3).

S3.1 SETUP AND DETAILS

In all of our experiments we used the following datasets and metrics.

5Specifically, we used the hyperparameters as indicated here: https://github.com/microsoft/
mup/blob/main/examples/MLP/demo.ipynb

38

https://github.com/microsoft/mup/blob/main/examples/MLP/demo.ipynb
https://github.com/microsoft/mup/blob/main/examples/MLP/demo.ipynb

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

0

1

2

3

R
M

SE
(E

(g
(l

)
t

)
−
E(

g
(l

)
0

)

l = 1 l = 2 l = 3

23 24 25 26

Hidden Size

0

1

2

R
M

SE
(S

td
(g

(l
)

t
)
−

St
d(

g
(l

)
0

)

23 24 25 26

Hidden Size
23 24 25 26

Hidden Size

0

1

2

3

R
M

SE
(E

(g
(l

)
0

)

0

1

2

R
M

SE
(S

td
(g

(l
)

0
)

Epochs (t)
0
1

2
4

8
16

32
64

128
256

512
1024

2048
4096

Figure S6: Variational MLP, Maximal Update Parametrization. RMSE of the change in the hidden
units and, in blue, their initial values. Shaded region represents 95% confidence interval over 5
random initializations. The variational MLP is trained under µP with a full rank covariance in each
layer.

S3.1.1 DATASETS

Table S1: Benchmark datasets used in our experiments. All corrupted datasets are only intended for
evaluation and thus only have test sets consisting of 15 different corruptions of the original test set.

Dataset N Ntest Din C Train / Validation Split

MNIST [70] 60 000 10 000 28 × 28 10 (0.9, 0.1)
CIFAR-10 [80] 50 000 10 000 3 × 32 × 32 10 (0.9, 0.1)
CIFAR-100 [80] 50 000 10 000 3 × 32 × 32 100 (0.9, 0.1)
TinyImageNet [81] 100 000 10 000 3 × 64 × 64 200 (0.9, 0.1)

MNIST-C [72] - 150 000 28 × 28 10 -
CIFAR-10-C [73] - 150 000 3 × 32 × 32 10 -
CIFAR-100-C [73] - 150 000 3 × 32 × 32 100 -
TinyImageNet-C [73] - 150 000 3 × 64 × 64 200 -

S3.1.2 METRICS

Accuracy The (top-k) accuracy is defined as

Accuracyk(y, ŷ) =
1

Ntest

Ntest∑
n=1

1(yn∈ŷ1:k
n). (S120)

Negative Log-Likelihood (NLL) The (normalized) negative log likelihood for classification is
given by

NLL(y, ŷ) = − 1

Ntest

Ntest∑
n=1

log p̂ŷn , (S121)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

where p̂ŷn
is the probability a model assigns to the predicted class ŷn.

Expected Calibration Error (ECE) The expected calibration error measures how well a model
is calibrated, i.e. how closely the predicted class probability matches the accuracy of the model.
Assume the predicted probabilities of the model on the test set are binned into a given binning of the
unit interval. Compute the accuracy aj and average predicted probability p̂j of each bin, then the
expected calibration error is given by

ECE =

J∑
j=1

bj |aj − p̂j |, (S122)

where bj is the fraction of datapoints in bin j ∈ {1, . . . , J}.

S3.2 TIME AND MEMORY-EFFICIENT TRAINING

To keep the time and memory overhead low during training, we would like to draw as few samples
of the parameters as possible to evaluate the training objective ℓ̄(θ). Drawing M parameter samples
for the loss increases the time and memory overhead of a forward and backward pass M times
(disregarding parallelism). Therefore it is paramount for efficiency to use as few parameter samples
as possible, ideally M = 1.

When drawing fewer samples from the variational distribution, the variance in the training loss and
gradients increases. In practice this means one has to potentially choose a smaller learning rate to
still achieve good performance. This is analogous to the previously observed linear relationship
Nb ∝ η between the optimal batch size Nb and learning rate η [e.g., 82–84]. Figure S7 shows this
relationship between the number of parameter samples used for training and the learning rate on
MNIST for a two-hidden layer MLP of width 128.

100 101 102

Parameter Samples

0.00

0.05

0.10

Te
st

E
rr

or
↓

100 101 102

Parameter Samples

0.0

0.2

0.4

Te
st

N
L

L
↓

100 101 102

Parameter Samples

10−2

10−1

Te
st

E
C

E
↓

Learning Rate
0.003 0.01 0.03 0.1 0.3

Figure S7: Generalization versus number of parameter samples. For a fixed number of epochs and
batch size, fewer samples require a smaller learning rate. For a fixed learning rate, generalization
performance quickly plateaus with more parameter samples.

As Figure S8 shows, when using momentum, generalization performance tends to increase, but only
if either the number of samples is increased, or the learning rate is decreased accordingly. A similar
relationship between noise in the objective and the use of momentum has previously been observed
by Smith and Le [83], which propose and empirically verify a scaling law for the optimal batch size
Nb ∝ η

1−γ as a function of the momentum parameter γ > 0.

S3.3 IN- AND OUT-OF-DISTRIBUTION GENERALIZATION

This section recounts details of the methods we benchmark in Section 5, how they are trained and
additional experimental results.

S3.3.1 ARCHITECTURES, TRAINING, AND METHODS

Architectures We use convolutional architectures for all experiments in Section 5. For MNIST,
we use a standard LeNet-5 [70] with ReLU activations. For CIFAR-10, CIFAR-100 and TinyIma-

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

100 101 102

Parameter Samples

0.00

0.05

0.10

Te
st

E
rr

or
↓

100 101 102

Parameter Samples

0.0

0.2

0.4

Te
st

N
L

L
↓

100 101 102

Parameter Samples

10−2

10−1

Te
st

E
C

E
↓

Learning Rate
0.003 0.01 0.03 0.1 0.3

Figure S8: Generalization versus number of parameter samples when using momentum. Using mo-
mentum improves generalization performance, but when using fewer parameter samples, a smaller
learning rate is necessary than for vanilla SGD as predicted by ??.

102 103

Optimizer Step

0.0

0.2

0.4

V
al

id
.E

rr
or
↓

102 103

Optimizer Step

0

2

V
al

id
.N

L
L
↓

102 103

Optimizer Step

0.0

0.2

0.4

0.6

V
al

id
.E

C
E
↓

Parameter Samples
1
2

4
8

16
32

64
128

1
2

4
8

16
32

64
128

Figure S9: Validation error during training for different numbers of parameter samples. The dif-
ference in generalization error between different number of parameter samples vanishes with more
optimization steps both for SGD () and when using momentum (), if the learning rate is suffi-
ciently small (in this example η = 0.003).

geNet we use a ResNet-34 [71] where the first layer is a 2D convolution with kernel size=3,
stride=1 and padding=1 to account for the image resolution of CIFAR and TinyImageNet and
the normalization layers are GroupNorm layers. We use pretrained weights from ImageNet for all
but the first and last layer of the ResNets from torchvision [85] and fully finetune all parameters
during training.

Training We train all models using SGD with momentum (γ = 0.9) with batch size Nb = 128
and learning rate η = 0.005 for 200 epochs. We do not use a learning rate scheduler since we found
that neither cosine annealing nor learning rate warm-up improved the results.

Temperature Scaling [69] For temperature scaling we optimize the scalar temperature param-
eter in the last layer on the validation set via the L-BFGS implementation in torch with an
initial learning rate ηTS = 0.1, a maximum number of 100 iterations per optimization step and
history size=100.

Laplace Approximation (Last-Layer, GS + ML) [26] As recommended by Daxberger et al.
[26] we use a post-hoc KFAC last-layer Laplace approximation with a GGN approximation to the
Hessian. We tune the hyperparameters post-hoc using type-II maximum likelihood (ML). As an
alternative we also do a grid search (GS) for the prior scale, which we found to be somewhat more
robust in our experiments. Finally, we compute the predictive using an (extended) probit approxi-
mation. Our implementation of the Laplace approximation is a thin wrapper of laplace [26] and
we use its default hyperparameters throughout.

41

https://aleximmer.com/Laplace/

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Weight-space VI (Mean-field) [30, 31] For variational inference, we used a mean-field variational
family and trained via an ELBO objective with a weighting of the Kullback-Leibler regularization
term to the prior. We chose a unit-variance Gaussian prior with mean that was set to the pretrained
weights, except for the in- and output layer which had zero mean. We found that using a KL weight
and more than a single sample (here M = 8) was necessary to achieve competitive performance.
The KL weight was chosen to be inversely proportional to the number of parameters of the model, for
which we observed better performance than a KL weight that was independent of the architecture.
At test time we compute the predictive by averaging logits using 32 samples.

Implicit Bias VI [ours] For all architectures in Section 5 we use a Gaussian in- and output layer
with a low-rank covariance (R = 10, 20). We train with a single parameter sample M = 1 through-
out and do temperature scaling at the end of training on the validation set with the same settings as
when just performing temperature scaling. We do temperature scaling in classification due to the
specific form of the implicit bias in classification as described in Section S1.3. Since IBVI trains
by optimizing a minibatch approximation of the expected negative log-likelihood (an average over
log-probabilities with respect to parameter samples), we also average log-probabilities at test-time
to compute the predictive distribution over class probabilities. Although we did not see a significant
difference between averaging log-probabilities, probabilities or logits. Like for WSVI we use 32
samples at test time.

SWAG [28] We used a slightly modified implementation of SWAG based on
torch-uncertainty and the original implementation by Maddox et al. [28]. The begin-
ning of the averaging cycle set to half the number of total epochs and a cycle length of one, i.e.
SWAG updates happen every epoch. For all other hyperparameters we use the default settings.

Deep Ensembles [29] We use five ensemble members initialized and trained independently. We
compute the predictive by averaging the predicted probabilities of the ensemble members in line with
standard practice [29]. We did not see a significant difference in performance between averaging
logits or averaging class probabilities.

42

https://github.com/ENSTA-U2IS-AI/torch-uncertainty

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

S3.3.2 IN-DISTRIBUTION GENERALIZATION AND UNCERTAINTY QUANTIFICATION

The full results from the in-distribution generalization experiment in Section 5 can be found in
Figure S10. The same experiment but done in the Maximal Update parametrization is depicted in
Figure S11. When finetuning a pretrained model, we found that on some datasets (CIFAR-100,
TinyImageNet) µP resulted in somewhat lower performance, contrary to the results in Section 3.4,
where we trained from scratch. This suggests that, when pretraining, there may be a modification to
the parametrization that could improve generalization.

0.01

0.02

Te
st

E
rr

or
↓

MNIST

0.075

0.100

0.125

CIFAR10

0.10

0.15

Te
st

To
p-

5
E

rr
or
↓ CIFAR100

0.150

0.175

O
O

M

TinyImageNet

0.05

0.10

Te
st

N
L

L
↓

0.5

1.0

1

2

2

3

O
O

M

10−2

10−1

Te
st

E
C

E
↓

0.0

0.5

0.0

0.5

0.0

0.5

O
O

M

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure S10: In-distribution generalization and uncertainty quantification (Standard parametriza-
tion).

0.008

0.010

0.012

Te
st

E
rr

or
↓

MNIST

0.075

0.100

CIFAR10

0.1

0.2

Te
st

To
p-

5
E

rr
or
↓ CIFAR100

0.2

0.4

O
O

M

TinyImageNet

0.0

0.5

Te
st

N
L

L
↓

0.3

0.4

0.5

1.5

2.0

3

4

O
O

M

10−2

10−1

Te
st

E
C

E
↓

0.1

0.2

0.1

0.2

0.2

0.4

O
O

M

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure S11: In-distribution generalization and uncertainty quantification (Maximal Update
parametrization).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

S3.3.3 ROBUSTNESS TO INPUT CORRUPTIONS

Besides the benchmark in Figure S11, we also evaluated the models trained using the Maximal
Update parametrization on the corrupted datasets. The results can be found in Figure S12.

0.1

0.2

Te
st

E
rr

or
↓

MNISTC

0.26

0.28

CIFAR10C

0.35

0.40

0.45

Te
st

To
p-

5
E

rr
or
↓ CIFAR100C

0.65

0.70

0.75

O
O

M

TinyImageNetC

0.5

1.0

1.5

Te
st

N
L

L
↓

1

2

3

4

5

6

7

O
O

M

10−1

Te
st

E
C

E
↓

0.1

0.2

0.2

0.4

0.25

0.50

O
O

M

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure S12: Generalization on robustness benchmark problems (Maximal Update parametrization).

S3.3.4 COMPARISON TO GENERALIZED VI WITH 2-WASSERSTEIN REGULARIZATION

Theorems 1 and 2 characterize the implicit bias of gradient descent for an overparametrized lin-
ear model as a preference for distributions minimizing the expected loss, which are closest in 2-
Wasserstein distance to the initialization. Given this characterization, by the KKT conditions there
exists a Lagrange multiplier λ ≥ 0 such that the optimal variational parameters θGD

⋆ define a sta-
tionary point of the following unconstrained optimization objective:

ℓ̄r(θ) = ℓ̄(θ) + λW2
2(qθ, p) . (S123)

In other words, Implicit Bias VI is equivalent to Generalized VI (GVI) with a 2-Wasserstein regu-
larizer and some regularization strength λ ≥ 0 for overparametrized linear models.

Experiment Results To understand the difference in performance between IBVI and Generalized
VI with a 2-Wasserstein regularizer for deep neural networks, we trained models via the GVI ob-
jective in Equation (S123) for different regularization strengths λ ≥ 0 with the same setup as in
Section 5. The results on in-distribution test data can be found in Figure S13 and the results for
corrupted test data are in Figure S14. Both on in- and out-of-distribution data GVI performs similar
or worse than IBVI for all regularization strengths we tested in terms of test error. IBVI and GVI
perform roughly similar in terms of uncertainty quantification with GVI only performing better for
regularization strengths that harm accuracy.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

0.0100

0.0125

0.0150

Te
st

E
rr

or
↓

MNIST

0.09

0.10

0.11
CIFAR10

0.04

0.06
Te

st
N

L
L
↓

0.4

0.6

0.005

0.010

Te
st

E
C

E
↓

0.025

0.050

0.075

Method
Standard
Implicit Bias VI (Low-rank)

Generalized VI (Low-rank)
λ = 0.0001

λ = 0.001

λ = 0.01

λ = 0.1

λ = 1.0

Figure S13: In-distribution generalization and uncertainty quantification of IBVI and GVI.

0.12

0.14

0.16

Te
st

E
rr

or
↓

MNISTC

0.250

0.275

0.300

CIFAR10C

0.5

1.0

Te
st

N
L

L
↓

1

2

0.05

0.10

Te
st

E
C

E
↓

0.1

0.2

Method
Standard
Implicit Bias VI (Low-rank)

Generalized VI (Low-rank)
λ = 0.0001

λ = 0.001

λ = 0.01

λ = 0.1

λ = 1.0

Figure S14: Out-of-distribution generalization and uncertainty quantification of IBVI and GVI.

45

	1 Introduction
	2 Background
	3 Variational Deep Learning via Implicit Regularization
	3.1 Training via the Expected Loss
	3.2 Implicit Bias of SGD as Generalized Variational Inference
	3.3 Computational Efficiency
	3.4 Parametrization, Feature Learning and Hyperparameter Transfer
	3.5 Related Work

	4 Theoretical Analysis
	4.1 Linear Regression
	4.2 Binary Classification of Linearly Separable Data

	5 Experiments
	6 Conclusion
	S1 Theoretical Results
	S1.1 Overparametrized Linear Regression
	S1.2 Binary Classification of Linearly Separable Data
	S1.3 NLL Overfitting and the Need for (Temperature) Scaling

	S2 Parametrization, Feature Learning and Hyperparameter Transfer
	S2.1 Definitions of Stability and Feature Learning
	S2.2 Initialization Scaling for a Linear Network
	S2.3 Proposed Scaling
	S2.4 Details on Hyperparameter Transfer Experiment

	S3 Experiments
	S3.1 Setup and Details
	S3.2 Time and Memory-Efficient Training
	S3.3 In- and Out-of-distribution Generalization

