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ABSTRACT

Modern deep learning models generalize remarkably well in-distribution, despite
being overparametrized and trained with little to no explicit regularization. In-
stead, current theory credits implicit regularization imposed by the choice of ar-
chitecture, hyperparameters and optimization procedure. However, deep neural
networks can be surprisingly non-robust, resulting in overconfident predictions
and poor out-of-distribution generalization. Bayesian deep learning addresses this
via model averaging, but typically requires significant computational resources as
well as carefully elicited priors to avoid overriding the benefits of implicit regu-
larization. Instead, in this work, we propose to regularize variational neural net-
works solely by relying on the implicit bias of (stochastic) gradient descent. We
theoretically characterize this inductive bias in overparametrized linear models as
generalized variational inference and demonstrate the importance of the choice
of parametrization. Empirically, our approach demonstrates strong in- and out-
of-distribution performance without additional hyperparameter tuning and with
minimal computational overhead.

1 INTRODUCTION

The success of deep learning across many application domains is, on the surface, remarkable, given
that deep neural networks are usually overparameterized and trained with little to no explicit regular-
ization. The generalization properties observed in practice have been explained by implicit regular-
ization instead, resulting from the choice of architecture [1], hyperparameters [2, 3], and optimizer
[4-10]. Notably, the corresponding inductive biases often require no additional computation, in
contrast to enforcing a desired inductive bias through explicit regularization.

In the last two decades, there has been an increasing focus on improving the reliability and robust-
ness of deep learning models via (approximately) Bayesian approaches [11] to improve performance
on out-of-distribution data [12], in continual learning [13] and sequential decision-making [14].
However, despite its promise, in practice, Bayesian deep learning can suffer from issues with prior
elicitation [15], can be challenging to scale [16], and explicit regularization via a prior combined
with approximate inference may result in pathological inductive biases and uncertainty [17-20].

In this work, we demonstrate both theoretically and empirically how to exploit the implicit bias of
optimization for approximate inference in probabilistic neural networks, thus regularizing training
implicitly rather than explicitly via the prior. This not only narrows the gap to how standard neural
networks are trained, but also reduces the computational overhead of training compared to varia-
tional inference. More specifically, we propose to learn a variational distribution over the weights
of a deep neural network by maximizing the expected log-likelihood in analogy to training via max-
imum likelihood in the standard case. However, in contrast to variational Bayes, there is no explicit
regularization via a Kullback-Leibler divergence to the prior. Surprisingly, we show theoretically
and empirically that training this way does not cause uncertainty to collapse away from the training
data, if initialized and parametrized correctly. More so, for overparametrized linear models we rigor-
ously characterize the implicit bias of SGD as generalized variational inference with a 2-Wasserstein
regularizer penalizing deviations from the prior. Figure 1 illustrates our approach on a toy example.

Contributions In this work, we propose a new approach to Bayesian deep learning that gener-
alizes robustly by exploiting the implicit regularization of (stochastic) gradient descent. We fully



Under review as a conference paper at ICLR 2026

Standard NN Implicit Bias VI (ours) Mean-field VI (KL) Generalized VI (W3)

—2 4 —2 - 4

(a) Implicit regularization. (b) Explicit regularization.

Figure 1: Variational deep learning via implicit regularization. Neural networks generalize well
without explicit regularization due to implicit regularization from the architecture and optimization.
We can exploit this implicit bias for variational deep learning, removing the computational overhead
of explicit regularization and narrowing the gap to deep learning practice. As illustrated for a two-
hidden layer MLP and proven rigorously for overparametrized linear models in Theorems 1 and 2,
the implicit bias of (S)GD in variational networks (see (a)) can be understood as generalized vari-
ational inference with a 2-Wasserstein regularizer (see (b)). This differs from the standard ELBO
objective with a KL divergence to the prior as used for example in mean-field VI (see (b)).

characterize this implicit bias for regression (Theorem 1) and binary classification (Theorem 2) in
overparameterized linear models, generalizing results for non-probabilistic models and drawing a
rigorous connection to generalized Bayesian inference. We also demonstrate the importance of the
parametrization for the inductive bias and its impact on hyperparameter choice. In several bench-
marks, we demonstrate competitive performance to state-of-the-art baselines for Bayesian deep
learning, at minimal computational overhead compared to standard neural networks. Finally, we
provide an open-source implementation of our approach as a standalone library: inferno.

2 BACKGROUND

Given a training dataset (X, y) = {(x,,y»)})_, of input-output pairs, supervised learning seeks a
function f,, () to predict the corresponding output y(x) for a test input . The parameters w € R
of the function are typically trained via empirical risk minimization, i.e.

w, € argmin/, (w) with 4. (w) = Uy, fu (X)) + Ir(w), (1)

where the loss £(y, f,(X)) encourages fitting the training data and the regularizer r(w), given
some A > 0, discourages overfitting, which can lead to poor generalization on test data.

Implicit Bias of Optimization One remarkable observation in deep learning is that training over-
parametrized neural networks (P > N) with gradient descent without explicit regularization can
nonetheless lead to effective (in-distribution) generalization, despite there being many global min-
ima of the loss corresponding to functions f,, which achieve zero training error [21]. This can be
explained by the optimizer, initialization, and parametrization implicitly regularizing the optimiza-
tion problem arg min,, ¢(y, f., (X)), thereby preferring certain global minima [e.g. 4, 5, 7, 22, 23].
Nonetheless, deep neural networks can be surprisingly brittle when predicting out-of-distribution,
often displaying overconfidence and a significant drop in generalization performance.

Bayesian Deep Learning Approximate Bayesian techniques like the Laplace approximation [24—
26], stochastic weight averaging [27, 28], deep ensembles [29], and variational approaches [30-33]
attempt to address the aforementioned shortcomings of deep learning by learning a distribution over
functions as opposed to merely a point estimate. The idea being that a weighted combination of
models, all of which achieve low training error, generalizes more robustly while at the same time
providing uncertainty quantification.

Variational Inference In Bayesian inference this weighted combination is defined by the posterior
distribution p(w | X,y) x p(y | X, w)p(w) over weights, induced by a likelihood p(y | w) and
a choice of prior p(w) that expresses an explicit preference for some models over others. Approxi-
mating the posterior with gg (w) =~ p(w | X, y) by maximizing a lower bound to the log-evidence
leads to the following variational optimization problem [34]:

0, € arg;nin 2,.(0) s.t. £,(0) = Eqgy(w)(—logp(y | w)) + KL(go(w) || p(w))  (2)
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Equation (2) is an instance of the empirical risk minimization objective in Equation (1), with the key
difference that one optimizes over variational parameters 8 of a family of distributions gg(w) € Q.
If that family includes the posterior, gg(w) = p(w | X,y) is the unique global minimum. In
the case of a potentially misspecified prior or likelihood, the variational formulation (2) can be
generalized to arbitrary loss functions ¢ and statistical distances D to the prior [35-37], such that

er(e) = qu(w)(é(ya fw(X))) + )\D(qg,p). 3)

3  VARIATIONAL DEEP LEARNING VIA IMPLICIT REGULARIZATION

Our overarching goal is to enable deep neural networks to generalize robustly out-of-distribution
without sacrificing their in-distribution performance, at minimal computational overhead. We ap-
proach this goal within the framework of Bayesian deep learning, by learning a distribution over
neural networks f,,, induced by a parametrized variational distribution gg(w) over its weights.
However, rather than approximating the Bayesian posterior, which trades off training error against
an explicit, a priori preference for certain models, we enforce that all models have zero training
error while using implicit regularization to weight them. Doing so preserves the implicit regular-
ization of the optimizer, which determines the generalization performance of neural networks to a
substantial degree, rather than purely relying on explicit regularization induced by the prior. Impor-
tantly, this approach leads to robust out-of-distribution generalization, while providing uncertainty
quantification at small computational overhead over standard deep learning.

3.1 TRAINING VIA THE EXPECTED LOSS

We propose to train a variational neural network defined by an architecture f,, and a variational
distribution over weights gg (w) by minimizing the expected loss £(0) in analogy to how deep neural
networks are usually trained. In other words, the optimal variational parameters are given by

0, € arg;nin}qu(w)(g(y,fw(X))) A Blorp). “4)

:=£7(9) !

At first glance removing the divergence term from the variational objective in Eq. (3) seems prob-
lematic because the new objective is clearly minimized when the variational distribution is a point
mass at the minimum loss solution, i.e. gg, (W) = Jy, (w) Where w, € argmin,, {(y, fu,(X)).
This seemingly defeats the point of a Bayesian deep learning framework, given that there is no
variability in predictions on test data. Moreover, the new objective no longer involves a prior dis-
tribution, ostensibly removing the ability to manually favor some models over others entirely. The
key to understanding our approach is that, in the overparameterized setting, a point mass is only one
of many optima corresponding to distributions gg, (w), and it is the implicit bias of the optimiza-
tion procedure that chooses among them. As we will see, if one trains an overparametrized linear
model via the expected loss using (stochastic) gradient descent, this implicit bias can be explicitly
characterized to depend on the initialization.

3.2 IMPLICIT BIAS OF SGD AS GENERALIZED VARIATIONAL INFERENCE

Assume we train an overparametrized linear model with a Gaussian variational family via the ex-
pected loss. For an appropriate learning rate sequence, (stochastic) gradient descent converges to a
global minimum SP € arg min £(@) of the training objective. As we show in Section 4, if SGD is
initialized to the prior, i.e. gg,(w) = p(w), its implicit bias can be understood as selecting the dis-
tribution over models with zero training error which is closest to the prior in 2-Wasserstein distance:

: 2
gooo =  argmin  W3(qge,p) -
)
s.t. @€arg min £(0)

Therefore, we can interpret the implicit bias of (S)GD when training a variational linear model as
performing generalized variational inference. More precisely, the above is equivalent to ggep mini-
mizing the objective in Equation (3) for a certain regularization strength, but with a regularizer that
is not a KL divergence as it would be for standard variational inference, but rather a 2-Wasserstein
distance to the prior. This characterization directly generalizes results for (non-probabilistic) mod-
els, where the implicit bias of SGD selects minima that are close to the initialization in Euclidean
distance [5, 21]. We therefore call our method Implicit Bias Variational Inference (IBVI). From a
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practical perspective, by exploiting the implicit regularization of SGD, rather than performing gen-
eralized variational inference directly, we no longer need to compute the regularizer explicitly or
allocate memory for the prior hyperparameters. '

Section 4 provides a detailed version of the regression result introduced here and proves a similar
result for binary classification. Our experiments in Section 5 focus on the application to deep neural
networks, where we generally expect the implicit regularization to be more complex.

3.3 COMPUTATIONAL EFFICIENCY

In practice, we minibatch the expected loss both over training data and parameter samples w,,, drawn
from the variational distribution gg(w) such that

U0) = Eggw) (LY. fuo (X)) = 557 Somty Sy U, o, (20)). )

The training cost is primarily determined by two factors. The number of parameter samples M we
draw for each evaluation of the objective, and the variational family, which determines the number
of additional parameters of the model and the cost for sampling a set of parameters in each forward
pass. We wish to keep the overhead compared to a vanilla deep neural network as small as possible.

Training With A Single Parameter Sample (M = 1) When SGD
drawing fewer parameter samples w,,, the training objective in 0.10

Eq. (5) becomes noisier similar to using a smaller batch size.

This is concerning since the optimization procedure may not 0.05 -

converge given this additional noise. However, one can train
with a single parameter sample only, simply by reducing the
learning rate appropriately, as we show experimentally in Fig- 0.00 e
ure 2 and Section S3.2. Therefore, given a set of sampled pa-
rameters, the cost of a forward and backward pass is identical

Test Error |

SGD + Momentum

to a standard neural network (up to the overhead of the covari- = 040

ance parameters). When using fewer parameter samples in the e

expected loss, training is unstable unless the learning rate is cho- M 0.05 1

sen sufficiently small. For a fixed number of optimizer steps this é oS
decreases performance, but either training for more steps, or us- 0.00 “——rrrr—r—rrrrry
ing momentum closes this gap. 100 101 102

Parameter Samples
Variational Family and Covariance Structure We choose a
Gaussian variational distribution gg(w) over (a subset of the) Figure 2:
weights of the neural network. While at first glance this may single parameter sample given
seem restrictive, there is ample evidence that variational fami- a small enough learning rate.
lies in deep neural networks do not need to be complex to be Lighter color shades correspond
expressive [38, 39]. In fact, in analogy to deep feedforward NNs ¢, "«maller learning rates. See
with ReL.U activations being universal approximators [40], one 4145 Section S3.2.
can show that Bayesian neural networks with ReL.U activations
and at least one Gaussian hidden layer are universal conditional distribution approximators, meaning
they can approximate any continuous conditional distribution arbitrarily well [39]. As we show in
Section 4, training an overparametrized linear model with SGD via the expected loss amounts to
generalized variational inference if the covariance is factorized, i.e. ¥ = SST where § € RFXE
is a dense matrix with rank R < P. The implicit bias of SGD for arbitrary parametrizations of the
covariance matrix remains an open problem. Throughout our experiments we use Gaussian layers
with factorized covariances for all architectures.

Training with a

3.4 PARAMETRIZATION, FEATURE LEARNING AND HYPERPARAMETER TRANSFER

The inductive bias of SGD depends on the initialization and choice of parametrization, a bijective
map p : ©' — © reparametrizing a (variational) model such that fg = f,¢). When training
deep neural networks, it is not unusual to use layer-specific learning rates. These can be absorbed
into the weights of the model and the initialization, meaning they effectively just define a different

"We only need them to initialize the optimizer after which we can free up the allocated memory.
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Figure 3: Hyperparameter Transfer. When scaling the size of a neural network, one has to re-tune
the hyperparameters, such as the learning rate, when using the standard parametrization (SP). The
same is true for probabilistic networks as we show here on CIFAR-10 (left). However, when using
our proposed extension of the maximal update parametrization (uP) [41] to probabilistic networks,
one can tune the learning rate on a small model and achieve optimal generalization for larger models
by “transferring” the optimal learning rate from a smaller model (center and right).

parametrization [Lemma J.1, 41]. While parameterization is well-studied for non-probabilistic deep
learning, it has been identified as one of the “grand challenges of Bayesian computation” [42].

In deep learning, the “standard parameterization” (SP) initializes the weights of a neural network
randomly from a distribution with variance < 1/fan_in (e.g., as in Kaiming initialization, the
PyTorch default) and makes no further adjustments to the forward pass or learning rate. In contrast,
the maximal update parametrization (uP) [43] ensures feature learning even as the width of the
network tends to infinity. In addition, under P, hyperparameters like the learning rate, can be tuned
on a small model and transferred to a large-scale model [41].

Given our interpretation of training via the expected loss as generalized variational inference with a
prior implied by the parametrization and initialization, a natural question is whether we can extend
P to the variational setting and thus inherit its inductive bias. In the probabilistic setting, feature
learning occurs when the distribution over hidden units changes from initialization. At any point
during training, the ith hidden unit in layer [ is a function of four random variables: the variational
mean and covariance parameters (u, S), Gaussian noise z, and the previous layer hidden units:

h" (z) = W;hV (@) = (u; + Siz)h ) (). ©6)
The parameters are random because of the stochasticity in the initialization and/or optimization
procedure, while the noise is randomly drawn during each forward pass. Since the S;z term is
a sum over R terms, where R is the rank of S € R*%_ applying the central limit theorem we
propose scaling this term by R~'/2 and then applying P to the mean and covariance parameters.
In practice, we implement the scaling via an adjustment to the covariance initialization and learning
rate. Section S2 in the supplement provides empirical investigating of this scaling, demonstrating
feature learning in the last hidden layer as the width is increased.

Figure 3 demonstrates that our proposed maximal update parametrization enables hyperparameter
transfer in a probabilistic model. We train two-hidden-layer MLPs on CIFAR10, using a low rank
covariance in the final two layers. Under standard parametrization (left panel), the learning rate
that results in the smallest training loss decreases with hidden size. In contrast, under ;P (middle
panel), it remains the same across hidden sizes. The right panel of Fig. 3 demonstrates the practical
implications for model selection. For each parametrization and each hidden size D, we select the
learning rate based on a grid search. In “transferred grid search” we do a grid search using the
smallest model (hidden size 128) and transfer the best validating learning rate to the hidden size D
model, whereas in “grid search” we perform the grid search on the hidden size D model. Relative
to the test accuracy of the best performing model across learning rate and parametrization, we see
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that (a) uP outperforms SP, though the gap decreases with hidden size, and (b) the transfer strategy
works well for P but poorly for SP once the hidden size exceeds 256.

3.5 RELATED WORK

Variational inference in the context of Bayesian deep learning has seen rapid development in re-
cent years [30-33, 44, 45]. Using a Wasserstein regularizer [37] in the context of generalized VI
[36] is arguably most related to our work, given our theoretical results. Structure in the variational
parameters has always played an important role for computational reasons [38, 46, 47] and often
only a few layers are treated probabilistically [39], with some methods only considering the last
layer, effectively treating the neural network as a feature extractor [48, 49]. The Laplace approxi-
mation if applied in the last-layer also falls under this category, which has the advantage that it can
be applied post-hoc [13, 24-26, 50-54]. Deep ensembles repeat the standard training process using
multiple random initializations [29, 55] and have been linked to Bayesian methods [56, 57] with cer-
tain caveats [58, 59]. While we use SGD only to optimize the variational parameters and arguably
average over samples by using momentum, SGD has also been used widely to directly approximate
samples from a target distribution [27, 56, 60, 61], a popular example being stochastic weight aver-
aging (SWA) [27, 28]. Our theoretical analysis extends recent developments on the implicit bias of
overparameterized linear models [4, 5, 7] to the probabilistic setting. For classification, works have
focused on convergence rates [6], SGD [7], SGD with momentum [8], and the multiclass setting
[10]. Results on the implicit bias of neural network training [22] often assume large widths [9, 62—
65] allowing similar arguments as for linear models. The former is exemplified by the neural tangent
parametrization, under which neural networks behave like kernel methods in the infinite width limit
[66]. Yang et al. [41, 43, 64, 65] developed an alternative parameterization that still admits feature
learning in the infinite width limit, which we extended to the case of variational networks.

4 THEORETICAL ANALYSIS

Consider an overparameterized linear model with a Gaussian prior, trained via the expected loss
using (stochastic) gradient descent. We show that, in both regression (Theorem 1) and binary clas-
sification (Theorem 2), our approach can be understood as generalized variational inference with a
2-Wasserstein regularizer, which penalizes deviation from the prior among models with zero training
error. Theorems 1 and 2 recover analogous results for non-probabilistic models [4, 5, 21].

4.1 LINEAR REGRESSION

Theorem 1 (Implicit Bias in Regression)
Let fu,(x) = x"w be an overparametrized linear model with P > N. Define a Gaussian prior
p(w) = N (w; po, SoS] ) and likelihood p(y | w) = N (y; fu(X),02I) and assume a varia-
tional family qg(w) = N (w; p, SST) with @ = (p, S) such that p € RY and S € R”*F where
R < P. If the learning rate sequence (1) is chosen such that the limit point 6S° = lim,_,,, OSP
identified by gradient descent, initialized at 6y = (fo, So), is a (global) minimizer of the expected
log-likelihood £(0), then

%P ¢ argmin  W3(qe,p). (7

0=(n,S) _
s.t. @€arg min £(0)

Further, this also holds in the case of stochastic gradient descent and when using momentum.

Proof. See Section S1.1.1. O

Theorem 1 states that, among those variational parameters which minimize the expected loss, SGD
(with momentum) converges to the unique variational distribution which is closest in 2-Wasserstein
distance to the prior. This characterization of the implicit regularization of SGD as generalized varia-
tional inference differs from a standard ELBO objective (2) in VI via the choice of regularizer. Since
the variational parameters minimize the expected loss in Equation (7), all samples from the predic-
tive distribution interpolate the training data (see Figure 1(b), right panel), the same way a standard
neural network would. In contrast, when training with a KL regularizer, the uncertainty does not
collapse at the training data (see Figure 1(b), left panel), in fact a KL regularizer would diverge to
infinity for a Gaussian with vanishing variance. Now, for test points that are increasingly out-of-
distribution, i.e. less aligned with the span of the training data, the variational predictive matches
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the prior predictive more closely. Interestingly, ggcp is equal to the distribution over weights of an
ensemble of linear models initialized from the prior and trained independently (see Section S1.1.3).
Next, we prove a similar result for binary classification.

4.2 BINARY CLASSIFICATION OF LINEARLY SEPARABLE DATA

Consider a binary classification problem with labels y,, € {—1,1}, a linear model f,,(z) = = w

and a variational distribution gg(w) with variational parameters 6. The expected empirical loss
is £(0) = 3,.cin) Egow) (£(ynz,w)) . We assume without loss of generality” that all labels are
positive, i.e. y, = 1 for all n, and that the dataset is linearly separable.

Assumption 1 The dataset is linearly separable: 3w € RY such that Vn : w'a,, > 0.

For an overparametrized linear model, if X € R has full row rank the dataset is guaranteed to
be linearly separable.3 Define the solution to the hard margin SVM, the Ly max margin vector as

W = argmin |w|3 st w'xz, >1, (8
weRP

and the set of support vectors S = argmin,, ¢y x4 indexing the data points on the margin.
We make the following additional assumption which is satisfied with high probability under mild
assumptions on the training data distribution and degree of overparametrization [67, 68].
Assumption 2 The SVM support vectors span the dataset: span({z, }ne[n]) = span({Z, fnes)-

We can now characterize the implicit bias in the case of binary classification.

Theorem 2 (Implicit Bias in Binary Classification)

Let fu,(z) = xTw be an (overparametrized) linear model and define a Gaussian prior p(w) =
N(w; Ko, SOS(T). Assume a variational distribution qg(w) = N (w; , SST) over the weights
w € RY with variational parameters @ = (p, S) such that S € RP*® and R < P. Assume we
are using the exponential loss {(u) = exp(—u) and optimize the expected empirical loss ¢(0) via
gradient descent initialized at the prior, i.e. 0y = (o, So), with a sufficiently small learning rate 1.
Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

agGD = (“’;GD7 S;GD) = (logl(t) H?D + Pnull(X)lJ/Oa StGD) (9)

converge to a limit point O™°P = lim,_, o, 0:°P for which it holds that

6"°P ¢ argmin W2(qe, ) - (10)
0=(p,S)
5.1. €O,

where the feasible set ©, = {(1t,S) | Papge(xmypt = W and Vn : Vary,(fw(z,)) = 0}

consists of mean parameters which, if projected onto the training data, are equivalent to the Lo max
margin vector and covariance parameters such that there is no uncertainty at training data.

Proof. See Section S1.2. O

Theorem 2 states that the mean parameters p; converge to the L, max-margin vector w in the span
of the training data, i.e. the data manifold, and there uncertainty collapses to zero. This is analogous
to the regression case, where zero training loss enforces interpolation of the training data. In the
null space of the training data, i.e. off of the data manifold, the model falls back on the prior as
enforced by the 2-Wasserstein distance. The assumption of an exponential loss is standard in the
literature and we expect this to extend to (binary) cross-entropy in the same way it does in results
for standard neural networks [4, 68, 10]. Similarly, we conjecture that Theorem 2 can be extended
to SGD with momentum [cf. 7, 8]. While Theorem 2 is similar to Theorem 1, there are some subtle
differences. First, the feasible set for the minimization problem in Equation (10) is not the set of
minima of the expected loss. This is because the exponential function does not have an optimum
in contrast to a quadratic function. However, the sequence of variational parameters identified by

2This is not a restriction since we can always absorb the sign into the inputs, such that &/, := 1, T.,.
3We can always choose w = X ' (X X 7)~'1, i.e. the weights linearly interpolating y = 1 = (1,...,1)".



Under review as a conference paper at ICLR 2026

CIFAR100 CIFAR100 CIFAR100

o £ o 2

g T -+ 210 Z 4h A

£ 015 1 3 :

w 2 27 g &

% - [ [aW) é‘) 2h

E 0.10 fom= - é _ g 2

g - - - 2 107 g

= 14 Z =

\S" Y\\Q \00 eﬁe‘
WNEERNE AR o
Method OV

s Standard Laplace (Last-layer, GS) mm Weight-space VI (Mean-field) SWAG
= Temperature Scaling Laplace (Last-layer, ML) e Implicit Bias VI (Low-rank) m=m= Ensemble

Figure 4: In-distribution generalization and uncertainty quantification. Implicit Bias VI (IBVI) has
similar test error to other Bayesian deep learning approaches and achieves competitive uncertainty
quantification on in-distribution data. While ensembles have improved accuracy, they come at an
additional memory overhead. Training a probabilistic model via IBVI has only a minor computa-
tional overhead during training, both in time and memory, over standard deep learning.

gradient descent still satisfies lim; . £(6;) = 0. Second, without transformation of the mean
parameters, the exponential loss results in the mean parameters being unbounded. This necessitates
the transformation in Equation (9) as we explain in detail in Section S1.3.

5 EXPERIMENTS

We benchmark the generalization and robustness of our approach, Implicit Bias VI (IBVI), against
standard neural networks and several baselines for uncertainty quantification, namely Temperature
Scaling (TS) [69], & [24-26], Weight-Space VI (WSVI)
[30, 31], [28] and Deep Ensembles (DE) [29], on a set of standard bench-
mark datasets for image classification and robustness to input corruptions. We use convolutional
architectures (LeNet5 [70] or ResNet34 [71]), which, for all datasets but MNIST, are initialized
with pretrained weights except for the input and output layer. All models were trained with SGD
with momentum v = 0.9 and a batch size of N, = 128 for 200 epochs in single precision on an
NVIDIA GH200 GPU. Results shown are averaged across five random seeds. A detailed description
of the datasets, metrics, models and training can be found in Section S3. An implementation of our
method is contained in the supplementary material and will be open-sourced upon publication.

In-Distribution Generalization and Uncertainty Quantification In order to assess the in-
distribution generalization, we measure the test error, negative log-likelihood (NLL) and calibra-
tion error (ECE) on MNIST, CIFAR10, CIFAR100 and TinyImageNet. As Figure 4 shows for CI-
FAR100, and Figure S10 for all datasets, the test error for post-hoc methods (TS, R )
is unchanged. As expected, and IBVI perform similarly with only Ensembles providing an
increase in accuracy, but at substantial memory overhead compared to most other approaches. Sim-
ilarity of IBVI to Ensembles is perhaps expected in light of their equivalence for linear models (see
Proposition S1). In-distribution uncertainty quantification measured in terms of NLL is improved
substantially by TS, DE and IBVI with only and WSVI showing occasional worsening of NLL
compared to the base model. The full results in Figure S10 show that TS, DE and IBVI consistently
are also the best calibrated. As described in Section 3.3, for IBVI we train with a single sample only
and a probabilistic input and output layer with low-rank covariance, reducing the memory overhead
compared to a standard neural network to as little as ~ 10% with similar training time (see Figure 4).
See Section S3.3.2 for the full experimental results including different parametrizations (SP vs uP).

Robustness to Input Corruptions We evaluate the robustness of the different models on
MNISTC [72], CIFAR10C, CIFAR100C and TinyImageNetC [73]. These are corrupted versions
of the original datasets, where the images are modified via a set of 15 corruptions, such as impulse
noise, blur, pixelation etc. We selected the maximum severity for each corruption and averaged
the performance across all. As expected, the performance of all models drops compared to the in-
distribution performance measured on the standard test sets as Figure 5 shows. Besides DE which
consistently show lower test error, also IBVI shows improved accuracy on corrupted data compared
to all other approaches. When using the maximal update parametrization, shows good ac-
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Figure 5: Generalization on robustness benchmark problems. When comparing different methods
for Bayesian deep learning with regards to robustness to 15 different input corruptions, our approach,
Implicit Bias VI, consistently has competitive uncertainty quantification across different datasets and
metrics without sacrificing accuracy compared to a non-probabilistic network.

curacy on the two larger datasets (see Figure S12). TS, DE and IBVI perform consistently well in
terms of uncertainty quantification (both for NLL and ECE) across all datasets, with being
somewhat competitive in terms of NLL. However, compared to the in-distribution setting IBVT has
better uncertainty quantification than the Ensembles across all datasets.

Limitations Compared to standard neural networks, when training via Implicit Bias VI, we ob-
served that often lower learning rates were necessary due to the additional stochasticity in the ob-
jective (see also Section 3.3). While this does not have a significant impact on generalization, it
sometimes requires slightly more epochs to achieve similar in-distribution performance to standard
neural networks. Effectively, early in training it takes a bit more time for IBVI to become sufficiently
certain about those features which are critical for in-distribution performance. This also means that
folk knowledge on learning rate settings for specific architectures may not immediately transfer. In
the experiments we train models with probabilistic in- and output layers with our approach, but we
have so far not explored other covariance structures or where in the network probabilistic layers are
most beneficial. While there is theoretical evidence that even just a single probabilistic hidden layer
may be sufficient [39], we believe there is potential for improvement. Beyond the prior induced by
the choice of parametrization, we did not experiment with more informative or learned priors, which
could potentially give significant performance improvements on certain tasks [15].

6 CONCLUSION

In this paper, we demonstrated how to improve the robustness of deep neural networks and while
quantifying predictive uncertainty by exploiting the implicit regularization of (stochastic) gradient
descent. We rigorously characterized this implicit bias for an overparametrized linear model and
showed that our approach is equivalent to generalized variational inference with a 2-Wasserstein
regularizer at reduced computational cost. We demonstrated the importance of parameterization and
how it impacts the inductive bias via the initialization — thus conferring desirable properties such
as learning rate transfer. Lastly, we empirically demonstrated competitive performance with state-
of-the-art methods for Bayesian deep learning on a set of in- and out-of-distribution benchmarks
with minimal computational overhead over standard deep learning. In principle, our approach is not
restricted to Gaussian variational families and should seamlessly extend to location-scale families,
which could further improve performance. Finally, it would be interesting to explore connections
between Implicit Bias VI and Bayesian deep learning in function-space [e.g., 37, 54, 74-76].
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S1 THEORETICAL RESULTS

Lemma S1

Let q(w) = N(w;u, %), p(w) = N(w; o, Bo) such that p, py € RY, .35 € REXE posi-
tive semi-definite and let Vo € RPN, Vg € REXP=N) be matrices with pairwise orthonormal
columns that together define an orthonormal basis of RY, i.e. for V.= [Va V3] it holds that

VVT = VTV = I and span(V) = RE. Assume further that
VIiZV, =0, (S11)
then the squared 2-Wasserstein distance is given by
2
W3(g,p) = ||V — Vi pol|, + W3 (N (VE 1, VB Vi), N (V5 o, V5 20 Vi) + C, (S12)

where the constant C' is independent of (p, X).

Proof. Consider the matrix

T [ onxn VIEVE
VIEV=lytsv, visvy|

Since VTV is symmetric positive semi-definite, its off-diagonal block V] £V} satisfies

(I-00NV/EV=0 << V,/EVz=0

16



Under review as a conference paper at ICLR 2026

by Boyd and Vandenberghe [AS.5, 77]. Therefore, we have

0 VIizV,
VTEV — N XN A B
[VBTEVA VIV

= (S13)

Onvxy  Onxr-n)
Op-nyxny VAEVp |’

The squared 2-Wasserstein distance between ¢(w) and p(w) is given by
1 11
W2(g,p) = [l — poll + tr(2 — 2(S2 X 22) = + 5).
For the squared norm term it holds by unitary invariance of ||| that

{VX (b — uo)}

2
2 2
VI (- po) :HV/IH_VATHOH2+||V§N_V§—HOH2~

2

e — poll3 =1V (1 — po)l3 =

Now for the trace term we have that

tr(VVT(E - 2(T72087)7 + %))

=tr(VTEV) = 2tr(VT(225,X2)2 V) + tr(VTE,V)
tr(ViBVa) + tr(VE EVg) + tr(VI Vi) + tr(VE 2o Vi) — 2tr(VT (22 XX7)2 V)
Lt (VIEVE) + tr(VE S Va) — 2tr(VT (B2 80%2)2 V)

where we used Eq. (S11) and £ denotes equality up to constants independent of (p, X). o1
Now by Eq. (S13), we have that ¥ = Vg MV for M = VJ £ V5 and its unique principal square
root is given by ¥ = VM %Vg since
(VEM:VE)(VEMEVE) = VeM I p_ny(p-nyM: V] = 2.
It also holds that the unique principal square root
(BE3X2)2 = V(M VIS Ve M?): V]
since direct calculation gives
(VB(M32V S0V M?): V] )(Vs(M* VSV M?)2 V}])
= VM3 VES VM3 V] = X3 5%3.
Therefore we have that
tr(VT(222022)2V) = tr(VT V(M2 VIS Ve M2):VIV) = tr(M: VIS,V M2)32).
Putting it all together we obtain
W3(q,p) |Vl — Vo[ + |Vl i — Vi o + tr(VI V) + (VIS V) — 20e(VT(S25,51)3V)
— VI = Vol + | Va i — Vasolfs + tr(VEEVE) + tr(VA S Vi) — 2te(M 3 VI S0V M?)3)

= |Vl — Vipols + WE(N (VI i, VIS V), N (VE 1o, VA S0 Vi)
which completes the proof. O

S1.1 OVERPARAMETRIZED LINEAR REGRESSION

S1.1.1 CHARACTERIZATION OF IMPLICIT BTIAS (PROOF OF THEOREM 1)

Theorem 1 (Implicit Bias in Regression)
Let fu,(x) = x"w be an overparametrized linear model with P > N. Define a Gaussian prior
plw) = N(w; po, SoS{) and likelihood p(y | w) = N (y; fu(X),0%I) and assume a varia-
tional family qg(w) = N(’u}; u, SST) with @ = (u, S) such that p € RY and S € RP*E where
R < P. Ifthe learning rate sequence (n;); is chosen such that the limit point HSD = lim;_ oo BtGD
identified by gradient descent, initialized at 6y = (o, So), is a (global) minimizer of the expected
log-likelihood £(8), then

0P ¢ argmin  W3(ge,p). (7

0=(p,S)
s.t. @€arg min £(0)

Further, this also holds in the case of stochastic gradient descent and when using momentum.
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Training Prediction Training Prediction
B /— )
«
3 /
1]
3 [ N 3 >
/ : / /
7 G Qa { /
Weights w X Weight Distributions q(w) X
Initialization w 4 Initialization w g Init. = Prior g4 Init. = Prior qp
(a) NN trained with no explicit regularization. (b) BNN trained with no explicit regularization.

Figure S1: Implicit regularization in standard neural networks versus in probabilistic networks. Left
panels: A neural network trained without explicit regularization can converge to different global
minima of the loss. Optimization of the weights will implicitly regularize towards one or the other.
Right panels: Analogously, there are multiple distributions over neural networks that are global min-
ima of the expected loss. Optimization of the distribution over the weights will implicitly regularize
towards one or the other. Our approach uses this implicit regularization instead of an explicit regu-
larization to a prior.

Proof. Let 0, = (4, S, ) be a minimizer of ¢(6). By assumption it holds that the expected negative
log-likelihood is equal to the following non-negative loss function up to an additive constant:

0(0) = Eqy(w) (LY, fu(X))) = Egy(w) (— log p(y | w))

e 1
£ 552 Eaa(w) (ly — Xwl]3)

1
= 53 (ly = Xpl3 + r(XEXT)) >0,

where ¥ = §ST and non-negativity follows from X being symmetric positive semi-definite. There-
fore any (global) minimizer 6, = (p,, 3,) necessarily satisfies

ly — X p. |3 =0, (S15)
tr(X2,XT) =0. (S16)
Let V. = [Viange Vaun] € RP*P pe the orthonormal matrix of right singular vectors of X =

UAVT, where Viange € REXN and Vo € REX(P=N) Since X € RV*F and we are in the
overparametrized regime, i.e. P > N, the optimal mean parameter decomposes into the least-
squares solution and a null space contribution

Hx = ‘/rangeu* + ‘/nullz == XTy + ‘/nullz~ (817)

Furthermore, it holds for positive semi-definite 3 € RP*P that
0<tr(XEZX") =tr(UAV'EVAUT) = tr(AVTZVA)

Ve ZV; A
= tr([Anxn 0][ e range I][ J\6><N:|)

= tI‘(ANXNVT E‘/;angeANXN)

range
N
_E ' 2y T iy
- )‘z [‘/rangez‘/mnge]“
i=1

where \? > 0 are the squared singular values of X, which are strictly positive since rank(X) = N.
Therefore using Equation (S16) any global minimizer necessarily satisfies [Vr;rngeE*ange]ii =0
fori € {1,...,N}. Now since VrlqgeE*V;ange is symmetric positive semi-definite and its diagonal
is zero, so is its trace and therefore the sum of its non-negative eigenvalues is necessarily zero. Thus

all eigenvalues are zero and therefore
Voo = Viange = 0. (S18)

range
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Now by Lemma S1 we have that the squared 2-Wasserstein distance between gg, (w) =
N (w; py, 3y) and the initialization p(w) = N (w; o, Xo) is given up to a constant independent
of (H’*v 2*) by

WQ(qe* ’p) = || rdngep‘* rdngep‘o H + W2 (N(‘/;mllll’*? %ullz*%ull) 5 N(‘/HIHH’O? ‘/;1?1—1120 ‘/IWH))
= ||XTy rdnge“OH + W2 (N(‘/nul]y'*a %ullz*%ull)aN(‘/ﬂj—lll’LOa ‘/;1—151120‘/111.111))
£ Wg (N(‘/nullp’*’ ‘/;mllz*‘/nlﬂl) ) N(V;uuNOa Vnuuzo Vnull))

Therefore among variational distributions gg, with parameters 6, that minimize the expected loss
£(0), any such 6, that minimizes the squared 2-Wasserstein distance to the prior satisfies

(\an-nﬂ*f lV;IuE*V;mHJ) = (V;IUNOa V;Iqu Viull)- (S19)
=z ::M

(Stochastic) Gradient Descent It remains to show that (stochastic) gradient descent identifies a
minimum of the expected loss £(8), such that the above holds. By assumption we have for the loss
on a batch X, of data that

0(8) = Eqy () (LY fro (X)) = Egg(w) (— log p(ys | w))
¢ 1
= @(Hyb - Xpp3 + tr( X, 2X))),

Therefore, at convergence of (stochastic) gradient descent the variational parameters 0,, =
(Koo, Soo) are given by

too = o — >V uls(01-1) = po + Z =Xy (yo — Xpprr-1)

t=1

as well as

S = So— > mVsh(0i-1) = So— > L X[ XySis
t=1 t=1

and therefore

Mt v
Zoo = Vuuﬂoc = ullHO + Z null Xb Yo — Xb,ut—l)J = VnIllHO
€range(X])

77t
nulIS nullSO E ull XbTXbSt—l = nIllSO
|

columns €range(X])
where we used continuity of linear maps between finite-dimensional spaces. It follows that

T T T T T T
Moo = nullzoo‘/null = ‘/nunSooSoo‘/null = ‘/HUHSOSO ‘/null = ‘/;m]]EO‘/null-

Therefore any limit point of (stochastic) gradient descent that minimizes the expected log-likelihood
also minimizes the 2-Wasserstein distance to the prior, since 8, satisfies Equation (S19).

Momentum In case we are using (stochastic) gradient descent with momentum, the updates are
given by ~

Mir1 = e+ Ve Apy — 0Vl (00 + A, (S20)
Sit1 =St + 1 AS: — 1 Vsly(0: + arAB:)

where

AG, — @’éﬁ) —0,-0,,. A8 —0.

for parameters ~;, oz > 0, which includes Nesterov’s acceleration (v = «;) [78] and heavy ball
momentum (a; = 0) [79].
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To prove that the updates of the variational parameters are always orthogonal to the null space of X,
we proceed by induction. The base case is trivial since Ay = 0. Assume now that V.| Ay, = 0
and V.I. AS, = 0, then by Equation (S20), we have

null
VnIuANtH = VnIn(HtH — ) = %VnInANt - ntVJnVu?b(Gt +aAB;) =0
VnIuASt—&-l = VnIn(St-H - St) = ’YtV;IuASt - 77tVnInVSEb(9t + atAgt) =0

where we used the induction hypothesis and the fact that the gradients are orthogonal to the null
space as shown earlier.

Therefore by the same argument as above we have that ., computed via (stochastic) gradient
descent with momentum satisfies Equation (S19), which directly implies Theorem 1. O

S1.1.2 NON-ASYMPTOTIC ERROR ANALYSIS

Theorem S3 (Non-Asymptotic Error of Gradient Flow)

Let fu(x) = x'w be a linear model. Define a prior p(w) = N(w; 1o, SOS(-)F) and assume
noise-free observations y(-) = fu(-) for w ~ p(w). Further, define a variational distribution
go(w) = N (w; pu, SST) with @ = (u, S) such that p € RY and S € RP*F where R < P. Let
0(t) = (u(t), S(t)) be the variational parameters at time t > 0 given by the gradient flow of the
expected loss

0(t) = —Val(6(t)) (S21)
initialized at 0(0) = (o, So). Then the expected squared error of the mean prediction
2
E(yy ) ((ytest - fy.(t) (wtest)) ) = VaI‘qug(f) (fw (xtest)) (S22)

at any test point ys; € RY. In other words, assuming the training and test data are drawn from
the prior predictive, the predictive error of f,(-) at any time t > 0 is exactly quantified by
the predictive uncertainty of the variational distribution, not only at initialization and in the limit
t — o0.

Proof. The dynamics of the variational parameters as defined by the gradient flow in Equation (S21)
are given by

() = =Vul(p(t) = XT(y — Xp(t) = - X" X (p(t) —w) = —(u(t) — w),
S(t) = -Vsl(S(t)) = -XTXS(t).

Since these dynamics are matrix differential equations, the mean and covariance parameters as a
function of time are given by

pt)=w+ e_XTXt(/,LO —w), (523)
S(t) = e X' Xtig,. (S24)

Thus the expected predictive error at time step ¢ > 0 is given by

By, ) (e = o (@ren)l2) = E( x 3, (e = 2Teaut0)])
(o))

T 2
N (T

where we used Equation (S23). We have since E(w) = p, that the above

-X"Xt T
=tr <COV(’LU — po)e Ttest Typgt €

T —-X"Xt T —-X"Xt
= tr (mteste So0S, ¢ H’Jtest)

—XTXt)
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=1tr (m;StStS;rwtest)

= Vaququ(t) (fw (wtest))
where we used Equation (S24) in the second-to-last equality. This completes the proof. O
Theorem S4 (Non-Asymptotic Error of SGD)
Let fu(x) = x'w be a linear model. Define a prior p(w) = N (w; po, SoS]) and assume

noise-free observations y(-) = fu(-) for w ~ p(w). Further, define a variational distribution
go(w) :N(w;u,SST) with @ = (p, S) such that p € RY and S € RP*E where R < P.

Assume the expected loss is given by {(8) = Eq (u) (%Hy - Xng) and let 0(t) = (u(t), S(t))

be the variational parameters at step t of (stochastic) gradient descent with learning rate sequence
(nt), initialized at 0(0) = (o, So). Then the expected squared error of the mean prediction

E( v ) ((ytest — f,u,(f)(mtest))Q) = Varwn~gg,, (fuw(@est)) (S25)

Ytest

at any test point iess € RY. In other words, assuming the training and test data are drawn from
the prior predictive, the predictive error of f,,)(-) at any optimization step t is exactly quantified
by the predictive uncertainty of the variational distribution.

; . 1
Further, if the learning rate n; < T (XTX)

for all steps t, then
tI‘(COVqu9<t+1) (w)) S tr(COV’le]e(t) (w))7 (826)

i.e. uncertainty about the parameters decreases monotonically during optimization.

Proof. The expected loss is given up to an additive constant by

el
1(60) = Eqgyw) (U(y, fur(X))) = 5 (Ily = Xpls + tr(XSSTXT)).
Now let (X, y;) be the minibatch at step ¢ > 1. Then it holds that

Fut) (Trest) = Yrest = ot (p(E) — w). (S27)
Further, the mean parameters identified by SGD are given by
ut) = w = plt — 1) —w — 5,9, 0(t - 1))
=pt—1)—w—nX (Xep(t —1) —y)
= p(t—1) —w — X X, (pu(t — 1) —w)

=T —n X! Xy)(p(t — 1) — w)
= [T =0 X7 X5)(n(0) — w),

j=1
= Bi(po — w)
where we defined B; = H§:1 (I —mn; XJ-TX ;). The covariance parameters are given by
S(t)=8(t—1) —nVst(0(t —1))
=S(t—1)—n XX S(t—1)
= (I —mX/[X,)S(t - 1)

Therefore the predictive error at step ¢ € {0, 1,... } is given by

E( y ) (Hytest - fu(t)(wtest)Hz) = E(mfit)“’ (Hytest - w;stu(t)‘lz)

Ytest
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:Ew(uw;ﬁw ~w)|l})
B [lehnBulato — w);)
We have since E(p9 — w) = 0, that the above
= tr(B/ @i By Cov(w — o))
= tr(x].y B:S0S] B iest)

= (wtcsts(t)s(t)thcst)
= Va rwNQG(t) (fw (mtest))

This proves Equation (S525).

To prove the second statement, we begin by showing that I —n; X, X has a spectrum in the interval
[0, 1]. We have by Weyl’s theorem, since I and Cyyq = —77t+1XtT+1Xt+1 are hermitian, that

Ap(I) + )\min(Ct—i-l) s (I + Ct+1) < >\ (I) + Alllax(ct—O—l)
= 1= D1 Amax (X1 Xer1) < AT+ Crp1) < 1 — 01 Amin (X1 Xv1)

)
>\max(X;r+1Xt+1)
= 1- <NIT+C <1
AmaX(X;rJrlXHl) p( t+1)
0< I +Ci1)<1
where we used the assumption on the learning rate that V¢ : 7, < ———~+——. Now by von

>\max (X;r Xt )
Neumann’s trace inequality, it holds that

(I = o1 X[ Xi41) 868 (I = o1 X Xoi1)T)
SiST (I — e X[ Xy )T = e X[ Xig)

—~

tr(COVque(Hl)(’w)) tr

tr

—~

/\p(StS;r)/\p((I - 77t+1X;r+1Xt+1)2)

Mw

]
Il
-

Ap(8:STN (T = me1 X1 X11))?

Il
M~

]
Il
_

]~

<D (SiS))

Il
_

p
tr(Covarnge(, (W)).

S1.1.3 CONNECTION TO ENSEMBLES

Proposition S1 (Connection to Ensembles)

Consider an ensemble of overparametrzzed linear models f,,(x) = x' w initialized with weights
drawn from the prior w(() ~ N(w ,uo, SOSO) Assume each model is trained independently to
convergence via (S)GD such that w;” = argmin,, ((y, fu,(X)). Then the distribution over the
weights of the trained ensemble qEnS(w) is equal to the variational approximation qg, (w) learned
via (S)GD initialized at the prior hyperparameters 0y = (o, So), i.e

ens(w) = ggon (w). (S28)

T

Proof. The parameters w(z) of the (independently) trained ensemble members identified via
(stochastic) gradient descent are given by

w') = arg min|jw — w(()i)Hg
weF
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where F' = {w € R | f,,(X) = Xw = y} is the set of interpolating solutions [5, Sec. 2.1]. Since
we can write F' equivalently via the minimum norm solution and an arbitrary null space contribution,
s.t. F' = {w = XTy -+ Wi | Wl € null(X)} we have

=XTy+ argmin [wun — (w’ — XTy)|
wpy €null(X)

= X1y + projuux) [ wd) = X'y
L1
€range(XT)

where we used the characterization of an orthogonal projection onto a linear subspace as the (unique)
closest point in the subspace. Finally, we use that the minimum norm solution is in the range space
of the data and rewrite the projection in matrix form, s.t.

= XTy + Pnunwéz).
Therefore the distribution over the parameters wc(fo) of the ensemble members computed via (S)GD
with initial parameters wg ~ N (w; 1o, SoSy ) is given by

QEns ('LU) = N wj rXer + PnullH’Oﬁ l-PnuH‘SVOJ SS—PIIIH

=HEns =SEns

Now the expected negative log-likelihood of the distribution over the parameters of the trained en-
semble members ggys(w) with hyperparameters Ogns = (LEns, Skns) 1S

Z(gEnS) = ﬁ(”y - XNEnsng + tr(XSEnSSgnSXT)) =0
and therefore g, is a minimizer of the expected log-likelihood. Further it holds that
z= V]qIn(PnuHNO) = ‘/nIllp’O
M = V0 1(PounS0) (Paut So) " Vil = V015084 Vaunt = Vil Zo Vaunl

nul n

and thus by Equation (S19), the distribution of the trained ensemble parameters minimizes the 2-
Wasserstein distance to the prior distribution, i.e.
. 2
gens = argmin Wi (g(w), N(w; po, X)) -
q(w)=N (w;p,X)

Combining this with the characterization of the variational posterior in Theorem 1 proves the claim.
O

S1.2 BINARY CLASSIFICATION OF LINEARLY SEPARABLE DATA

In this subsection we provide proofs of claims from Section 4.2. We begin with presenting some
preliminary results from Soudry et al. [4] which will be used throughout the proof. Next, we will
analyze the gradient flow of the expected loss. We extend the results for the gradient flow to gradient
descent and derive the characterization of the implicit bias, completing the proof of Theorem 2.

Theorem 2 (Implicit Bias in Binary Classification)

Let fo(x) = x"w be an (overparametrized) linear model and define a Gaussian prior p(w) =
N(w; Ko, SOSJ). Assume a variational distribution qg(w) = N(w; W, SST) over the weights
w € RY with variational parameters @ = (p, S) such that S € RY*% and R < P. Assume we
are using the exponential loss {(u) = exp(—u) and optimize the expected empirical loss ¢(0) via
gradient descent initialized at the prior, i.e. 6y = (o, So), with a sufficiently small learning rate 1.
Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

G;GD = (I'L;GDa Swch) = <log1(t) /'L?D + Pnull(X)NOa StGD) (9)
converge to a limit point O™°P = lim;_, o, 0:°P for which it holds that
0" ¢ arg min W% (go,p) - (10)
0=(u,S)
5.1. 0€O,

where the feasible set ©, = {(1t,S) | Pange(xT)t = W and Yn : Varg,(fw(®,)) = 0}
consists of mean parameters which, if projected onto the training data, are equivalent to the Lo max
margin vector and covariance parameters such that there is no uncertainty at training data.
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S1.2.1 PRELIMINARIES

Recall that the expected loss is given by

U6) = N | Egg ) (C(ynzw)) (S29)

and specifically, for the exponential loss, we have

00)=0(p,S) =" exp (—afp+ LalS8Tx,). (S30)
Throughout these proofs, for any mean parameter iterate p;, we define the residual as
Ty = py — wlogt — w (S31)
where w is the solution to the hard margin SVM, and w is the vector which satisfies
Vn €S :nexp (—wlﬁ;) = Qy, (S32)
where weights v, are defined through the KKT conditions on the hard margin SVM problem, i.e.
W= ant,. (S33)
nes

In Lemma 12 (Appendix B) of Soudry et al. [4], it is shown that, for almost any dataset, there are no
more than P support vectors and «v,, # 0,Vn € S. Furthermore, we denote the minimum margin to
a non-support vector as:
K = min :cTw > 1. (S34)
n¢S
Finally, we define Ps € RP*? as the orthogonal projection matrix to the subspace spanned by the
support vectors, and Ps = I — Ps as the complementary projection.

S1.2.2 GRADIENT FLOW FOR THE EXPECTED LOSS

Similar as in Soudry et al. [4], we begin by studying the gradient flow dynamics, i.e. taking the
continuous time limit of gradient descent:

6, = —VI(6,), (S35)
which can be written componentwise as:
=V, l( s, S¢) = Zexp ( wx, + sttsT )sr: (S36)
T I T T
S, = ~Vsl(ps, S) = Z exp (—ut T, + §wnStSt wn) Tnx, S (S37)

We begin by showing that the total uncertainty, as measured by the Frobenius norm of the covariance
factor, is bounded during the gradient flow dynamics. To that end, we derive the following dynamics:

= 2||St||F tr(S}S;) = Zexp < wlx, + scnStSchn> =TS, <o, (S38)

and therefore
IS¢l < 1Sl (S39)

Finally, by Cauchy-Schwarz inequality, we have that
1S:S7 ll7 < 118l < [1Soll%- (S40)

We continue by studying the convergence behavior of the mean parameter fis.
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Mean parameter Our goal is to show that ||7;|| is bounded. Equation (S31) implies that

1 - 1

Ty = I.l't - ;’UA) = —Vué(,u,t, St) - ;’UA) (S41)
This in turn implies that
1d
Sl = T
N 1 1
= Z exp (—,uthr:n + leStS;rmn) :clrt - E’UAJTT't
n=1
1
= Z exp (— log (¢ )wTacn —w'x, + 2wlStSTa:n - wlrt> a:lrt — ngrt
nes
S42
+ Z exp (— log(t)'LiJTacn —w'x, + ZmTS’tSTmn — a:lrt> IE;I;T‘t (542)
n¢S
1 1
= lt Z exp (—’LTJTwn) (exp (—azl’rt + QwIStStT:Bn) — 1) x ’I"t‘|
nes
1\ 1
+ Z (t> exp < W' @, + QmIStS wn> exp (fwlrt) wlrtl .
n¢S
where in last line we used the fact that w'a, = 1 for n € S as in (S32), and that

> es exp(—x W)@, = w as in (S33). We begin by examining the first bracket, studying three
possible cases for each of the summands. First, note that if wlrt < 0, then since a:TSt STa:n >0,
we have that

1
(exp <:1:Irt + 23315155;3:,1) — 1> mlrt <O0. (S543)

Next, by defining B := ||So||% max,, ||Z,||2,if 0 < & r; < £, we have that

1 B B
‘ <exp (—wlrt + leSt.S’tTa:n> - 1) wlrt < <eXp <2> - 1) 5 (S44)

andif 7 > £, we have that
1
(exp (mlrt + QmIStStTa:n> — 1> mlrt <0. (845)

Finally, for arbitrary € > max{B, 1}, if |x]r;| > ¢, we have that

(exp ( x! ot + QwIStSTwn) — 1) T, < (exp <_§) — 1) € <0, (846)

Furthermore, let 7, = min,cs W', and 7* = max,cs W' x,. Now, by taking ¢ > max{B, 1}
large enugh such that

ool (o (-2) 1)

if there exists a support vector n € S such that |z r;| > ¢, then

B B
> |S|exp(—7x) (eXp <2> - 1> X (S47)

1
- Z exp —w' x, (exp (—mlrt + 2:cIStSthcn> — 1> mlrt <0. (S48)

nES

The idea of this is that if there exists a support vector such that |z ;| is sufficiently big, then the
first bracket in Eq. (S42) is negative.
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On the other hand, for the second bracket in Eq. (S42), note that for n ¢ S, we have that wlﬁ) > K,
and hence

W' e
Z <1) n exp <—1I)Tq;n + ;mIStStTm") exp (—a;;l;rt) x;l;rt
" (549)
§ ti’i exp <;||SO||%* mTEL%X wl—wn) Z exp (*'IIJT;I}H) -0 <;> ’
n¢S
where in the last line we used that ze=* < 1,Vz € R and fact that ||S;S] ||z < ||So||% < .
We will now combine the results from above to show that the residual r; is bounded in the following

way if there exists a support vector n € S such that |z 7| > e for big enough ¢ > 0, then

14|r||> = O(t™*). If such a support vector does not exist at time ¢, we will show that r; is
containted inside a compact set. To that end, if HPsrt || > €1, we have that

max ‘m r,| |a: Pgrt| |XgP5rt|| (Xs)es (S50)
|3|

5l e

where in the first 1nequa11ty We used the fact that Pd x,, = x,, for n € S. Hence by choosing ¢;
such that 02, (Xs)e?/|S| = €2, where the € is chosen in Eq. (S47), we have that

1d
| Psri|| > €1 = f—||rt||2 ot™"). (S51)

On the other hand, if || Ps7|| < €1, recall that
re = (e — o) + o — wlogt — w, (S52)
and since all updates to the mean parameter are in the space spanned by the support vectors (As-
sumption 2), we have that ~ ~ ~
Ps’l"t == Psl,l,o - Pg’u~). (853)
We can now conclude that
[Psri|| < ex = [[rell < [ Psre]| + [[Psrell < €1 + [ Pspoll + [ Psw|| < oo (S54)

Finally, combining the results from Eq. (S49) and Eq. (S54), recalling that x > 1, we have that ||7||
is bounded for all ¢ > 0. This completes the first part of the proof and shows that

pe=wlogt+w+r; =wlogt+ O(1), (S55)
and in particular
im Ht =Y (S56)
t=oo [l ||

We proceed by showing that the limit covariance parameter vanishes in the span of the support
vectors.

Covariance parameter We begin by substituting the definition of the residual r; (S31) into the
gradient flow dynamics for the covariance factor S;:
St =—-Vg g_(l»l'tv St)

N
(S57)
= — Z exp ut x, + 2:cTStS a:n) TnT,, Ts,.

n=1

Next, we split the sum 1nt0 contributions from support vectors and non—support vectors. Forn € S,
we use the property )@ = 1; for n ¢ S, the margin is strictly larger than one, which introduces
higher—order decay in t

Sy =— Z % exp(f'zI)Ta:n — rtT:cn) exp(%mlStStTa:n) mnm;St

(S58)

— z (%) exp 1I;Ta:n — rtTa:n) exp(%mlStStT:cn) :cn:cZSt.
n¢S
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Since 7, is bounded (from the previous part of the proof), the exponential prefactor is uniformly
bounded away from zero. We formalize this by defining

. : ~T T
= — n— n . S5
C nrg[ljr\}] Itnzlglexp( w'x T, T ) >0 (859)

We also let oy,;, denote the smallest non—zero eigenvalue of the matrix Zne s mnml Finally, to
measure the size of S; restricted to the support—vector subspace, we define

A; = tr(PsS; S/ Ps).

We now compute the derivative of A; over time. Differentiating and substituting the dynamics of
S yields

%%At = tr(PsStSJPS)
1 -
=—3 ZS exp(f'men - rtTa:n) exp(%a:lStStTmn) tr(PgmnmlStStTPS) (860)
ne
+O(%).
At this point we use two facts: 1. from (S59), the exponential prefactor is bounded below by C' > 0,
2. from the definition of o,i,, We can control the quadratic form ) -, s x,x}. Applying both gives

o C'Umin

14, < A+ O(%). (S61)

Finally, by Gronwall’s lemma, there exists a constant X > 0 and a starting time £y > 0 such that

Vit > . (S62)

—2C0min K
A< A (E) = (n1),

+ 2C0omin +k—1

Since both |S|Copmin > 0 and x > 1, we conclude that A; — 0 as ¢t — oo. In words: the covariance
factor vanishes when projected onto the span of the support vectors, i.e.

Vn €S lim x' S8, Sz, =0, (S63)
as claimed. O

S1.2.3 COMPLETE PROOF OF THEOREM 2

We will now extend the results for the gradient flow to gradient descent and then use these results to
characterize the implicit bias of gradient descent as generalized variational inference.

Throughout this proof, let
al 1
A = ; exp (—utT:cn + QwIStStTwn> a:nazl (864)

be a positive definite matrix at iteration t. We begin the section with a few lemmata which will be
used throughout the proof.

Lemma S2
Suppose that we start gradient descent from (o, So). If 1 < Amax(Ao) ™Y, then for the gradient
descent iterates ~

Sip1 =8t —nVsl(p, Si), (S65)

we have that ||St||F < ||Sol|F for all t > 0.

Proof. First, note that the gradient descent update for the covariance factor is given by
St+1 = St (I — T]At), (566)
and hence we have that

[Sei1lle = 18:(I = nAyl[r < [ISi]pI(T —nAb)ll2- (S67)
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Now, since 7 < Amax(A0) ™ < Anax(A¢) "t forall t > 0 and noting that A; = 0, we have that
[(I =nAyl2 <1, (S68)

and therefore
[Sex1llr < (ISt F. (S69)

Finally, we can conclude that ||S;||r < ||Spl||F for all ¢ > 0, as required.
O

Lemma S3
Suppose that we start gradient descent from (19, So). If 1 < Amax(Ao)~?, then for the gradient
descent iterates

M1 = pe — 0V l(pe, Se), (S70)
we have that Y7, IV l(pu, SW)|? < oo Consequently, we also have that
limy— o0 |V uf(pee, S)|1? = 0.

Proof. Note that our loss function is not globally smooth in p. However, if we initialize at (g0, Sp),
the gradient descent iterates with n < )\max(Ao) maintain bounded local smoothness. The state-

ment now follows directly from Lemma 10 in Soudry et al. [4]. O
Lemma S4
By choosing € as in Eq. (S51), if || Ps7¢|| > €1, we have that
1
(Tt+1 —’I"t) T¢ <O< ) +O< )|’I"t| (871)

If | Psr|| < €1, there exists a constant C such that

(reg1 — )" 7 < C. (S72)

Proof. We follow similar steps as in the gradient flow case. It holds that
(Tt+1 - Tt)T"“t
= (=nVu(pe, Sp) — b (log(t + 1) —log(t))) " 74
N
=7 Z exp (—utTasn + QwZStSTwn> a:T’rt w'ry log(14t~1)
n=1 (573)
1
= r(t7 —log(1+t71))+1n Z exp <—utTwn + 2$IStStT$n> x'r
n¢S
1 1
+n 2 [_t exp —w acn) + exp (—p,tT:cn + 2:131.5}5':3:”)} J:I’l‘t,

where in the last equality we used Equation (S33) to expand ' r;. Furthermore, we can bound all
four terms as follows, beginning with the first term:

pTr (7 —log(14+t71)) < ||rt0<tl?>, (S74)

where we used that log(1 + t=!) = t~! + O(¢2). For the second term, using the same argument
as in Equation (S49), we derive that

1 1
n Z exp ( a:n + anStST:cn) x, T < O(t ) (875)

n¢S
For the third item, from Eq. (S48) and Eq. (S50), we have that || Psr;|| > €; implies that

1 1
n Z [t exp —w a:n) + exp <umen + QmIStStT:cnﬂ mlrt <O0. (S76)
nes
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The first result follows from combining the above three inequalities.
Next, if | Psr¢|| < €1, by defining B := ||So||%, following the steps in Eq. (S44), we have that
1 B B
n %exp (—utTwn + QwIStStTacn> xlr < n|S| (exp (2) - 1) X (S77)

and hence, combining this with Assumption 2 which implies that r; is bounded as in Eq. (S54), one
can find a constant C' such that
(reg1—7) 7 < C. (S78)

O
Proof of Theorem 2

Proof. As in the simple version of the proof, we begin by considering the convergence behavior of
the mean parameter fi;.

Mean parameter Our goal is again to show that ||r,|| is bounded. To that end, we will provide an
upper bound to the following equation

Ireal® = lIress = 7ol + 2 (res — ) e + e (§79)
First, consider the first term in the above equation:

741 — ][

= |1 — b log(t + 1) — & — pa; + b log(t) + ||

= || = 1V ullpe, Sp) — wlog(1 + ¢t~ )]|?

) (S80)
< 2PVl SOI? + b2 log? (1 + ¢ )|

< 2[0? Ve, S|P + )22

where in the first inequality we used the standard inequality that (x + y)? < 2(2? + y?), and in the
second inequality we used the fact that log(1 + x) < x for x > 0. Now, from Lemma S3 and the
fact that t—2 is summable, we conclude that there exists C; < oo such that

S s — 2 < €1 < o0 (S81)

t=1

Next, for the second term, recall that in Lemma S4 we showed that if | Psr:|| > €7, then, for some
constants Cy, C'3 < 0o, we have that, eventually

1 1
(reg1 — 1) 7y < Care + Casgliml. (S82)

and that if || Psr|| < €1, then there exists a constant Cy < oo such that

(res1 — Tt)T r: < Cy. (S83)

We will show that when || Psr;|| < €;, the residual 7; is contained in a compact set, and when
|| Ps7¢|| > €1, the residual r; can’t escape to infinity. We now formally show this claim.

Let S be the frst time such that | Psr;|| > €, if such a time does not exist, we are done since the
support vectors span the data and hence ||7;|| is bounded. Now, let T} be the first time after S; such
that || Ps|| < €1, where we allow T} = oo if such a time does not exist. Continuing in this manner,
we define the sequences 57 < 171 < Sy < T < ..., where we allow T; = oo for some 1.

We prooced by showing that ||7¢|| is uniformly bounded on each of the intervals [S;,T;). To that
end, note that for ¢ € [S;, T;), we have that

1 1
7ol = llmell < 202 + 2035 lIrell + Ires — Tl (S84)
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and hence, using the fact that £ > 1, by the discrete version of Gronwall’s lemma, that

2 ‘ 2 < K S85
e (rel* = s, °) < K, (585)

for some constant K < oo independent of ¢. Furthemore, we also know from Eq. (S83) that

Irs, |l < er+2Cs+|Irs, — rs,—1]]> < er +2C, + max [ree1 — rel? < o0, (S86)

showing that the first jump outisde the €;-ball is bounded. Combining the two results, we conclude
that ||| is uniformly bounded on each of the intervals [S;, T5).

Finally, by noting that the support vectors span the data, we have that ||7;|| is uniformly bounded
on each of the intervals [T}, S;+1). Combining the two results, we conclude that ||7|| is uniformly
bounded for all ¢ > 0 and hence we have that

lim = (S87)
t=oo [[el| |
and the following lemma.
Lemma S5
For the mean parameter i, we have that
pe =log(t)w + O(1). (S88)

Proof. This follows immediately from the definition of the residual in Equation (S31):
e = wlogt + vy + wy,

and the fact that r; and w; are bounded as we showed above. O

We continue with the analysis of the covariance parameter over optimization iterations.

Covariance parameter As before, let A; = tr(PsS; S Ps) be the trace of the projection of the
covariance parameter on the space of support vectors in S. By following the ideas from the gradient
flow case, we have the following dynamics:

Ay = tr(Ps (I - nAy) S, S] (I -nA,)" Ps)
= tr(PsS;S] Ps) — 2ntr(PsS;S A Ps) + n° tr(Ps A;S; S A; Ps)

2 1 1
<AL — goamin tr(PsS,S] Ps) + o(ﬁ) + 0<t2> (S89)

2 1 1
= At - TCUminAt + O(t“) + O(ﬂ)’

where we used the same arguments as in Equation (S60) to derive the last inequality, in addition to
noting that Ayax (A?) < O(t%) in order to bound the last term. Hence, we can write

2 1 1
At — A, < —T”C%mAt + O(ﬁ) + o<t2> (S90)

Again, by the discrete version of Gronwall’s lemma, we derive the equivalent result to Eq. (S62).
Now, noting that ) _, % diverges, the fact that x > 1 and nC'oyin > 0, we conclude that A, converges
to zero. This implies that the covariance parameter converges to zero in the span of the support
vectors, i.e.

VneS: lim x!S,Sx, =0, (S91)
t—o0

as desired.
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Characterization as Generalized Variational Inference As a final step we need to show that
the solution identified by gradient descent if appropriately transformed identifies the minimum 2-
Wasserstein solution in the feasible set. Define the feasible set

O, ={(,S) | Psp=w and Vn € S: Varg(fw(x,)) =0} (592)
={(n,8) | Psp=w and VneS:x S8 x, =0} (S93)
and the variational parameters identified by rescaled gradient descent as
1
rGD __ q: rGD __ 1
0* - tli>n,:>10 Bt - tll}/go (log(t) Mt + Pnull(X)lJ/O; St) . (S94)
It holds by Lemma S5 that
rGD : 1 ~ A
Psp,™ =Ps | lim ——p; | +0 = Psw = w (895)
t—oo log(t)

and additionally by Equation (S91) we have for all n € S that

x| 8P (ST Ty — Jim x) S, (S) "z, =0. (S96)
—00

Therefore, the limit point 8:CP of rescaled gradient descent is in the feasible set. It remains to show
that it is also a minimizer of the 2-Wasserstein distance to the prior / initialization. We will first
show a more general result that does not require Assumption 2.

To that end define (VS Vxis Vi X)) € RP*F where Vs € RP*Fs ig an orthonormal basis
of the span of the support vectors range(XJ), Vx s € RFX(N=Fs) an orthonormal basis of its
orthogonal complement in range(X ") and Vai(x) € RP*(P=N) the corresponding orthonormal

basis of the null space null(X) of the data. Let V' = (Vs V;luu(x)) € RPX(P=N+Ps) and define
the projected variational distribution and prior onto the span of the support vectors and the null space
of the data as

5 (w) = N (w; Py, PySPy) = N(u?; f, 53) (897)
PP (W) = N (w; Py po, PVEOPJ) = N('lb§ o, z~30) (598)

where w € RP=N*+Ps Now earlier we showed that the limit point of rescaled gradient descent is
in the feasible set, defined in Equation (S94), and thus the same holds for the projected limit point
of rescaled gradient descent, i.e.

(AP, S1°P) € o, (S99)
in particular
Pspi’ = Pspit® =, (S100)
VneS: xlSCP(S§CP) Ty, — & SCP (S Ty — 0. (S101)
Therefore, we have for all n € S that
0=, S (51) e, = [|(S°°) @, |} = (S1°) T2, =0 (S102)
— (S Tys =0 (S103)

and thus VJ S™6P(SP)TVg = 0. Therefore by Lemma S1 it holds for the squared 2-Wasserstein
distance between the projected limit point of rescaled gradient descent and the projected prior that

: o] c ~ ~ 2 - ~ - ~
Wg (qS“’J,pP OJ) = HVS M= VSTN0H2 + Wg (N(V;Ill“a VnInEVnull) 7N(‘/;1-1[1-11N07 V;luzovnull))

:H<V5Tﬂ—VsTﬂo)

2
0 +W3 <N<‘/n-1ll-llﬂ'a VnIuEVnull) 7/\[(‘41111!107 VnIuEOvnull))
2

_ HV (VsTﬂ OVsTllo>

2
+ W% (N(V;Juﬂa VnIllEVnull) »N(V;Iuﬂm VnIuZO Vnull))
2
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= |[Psf = Psfuoll3 + W3 (N (Vilusa. Vel Vaur ). N (Vilidio, Vil Zo Vi ) )
= ||1jj - PS["OHE + Wg <N<‘/nulll'l’7 Vullz‘/null) ,N(‘/;I"/jbo, ‘/;UIIZO‘/nuH)>
W3 (W (Vs Vel S Voun ) A (Viluso, Vil Zo Vi ) )

where we used that Psfi = w for any (f, 5‘) in the feasible set ©,. Therefore it suffices to show
érGD

that the projected solution minimizes
W5 (N( i V;unEVnull> N(%IuﬁO»VnIuio%un)) > 0. (S104)
We have using the definition of the iterates in Equation (9) that
_ . 1
Vaniti® = Vi, Py <tlggc mﬂt + Pnull(X)N0> (S105)
= V(o + Puix)to) = Vi iikto (S106)

where we used w € range(X]). Further, it holds for the gradient of the expected loss (S30) with
respect to the covariance factor parameters that

VS = Vily Py 8P = Vi8I = Vi (SO - vasf Kt St)) (5107)
= €range(XT) J
= VoiuSo = VaPv So = Vi So. (S108)
Therefore we have that
Wg (N (VnIuNr*GD Vnunzr*GDV;lull)aN (VnInl:LOa V;Iniovﬁull)) =0 (5109)

and thus the projected variational parameters é;GD are both feasible (S99) and minimize the squared
2-Wasserstein distance to the projected initialization / prior (S104). This completes the proof for the
generalized version of Theorem 2 without Assumption 2, which we state here for convenience.

Lemma S6
Given the assumptions of Theorem 2, except for Assumption 2 meaning the support vectors Xs do
not necessarily span the data, it holds for the limit point of rescaled gradient descent that

0P ¢ arg min Wz( proj ppr"j) . (S110)

0=(u,S)
s.1. 0€O,

If in addition Assumption 2 holds, i.e. the support vectors span the training data X, such that
span({mn}ne[N]) = Span({mn}nES)v (S111)

then the orthogonal complement of the support vectors in range(X ") has dimension N — Ps = 0
and thus the projection Py = Ipy p is the identity and therefore

¥ =g and pri=p (S112)
This completes the proof of Theorem 2.
O

S1.3 NLL OVERFITTING AND THE NEED FOR (TEMPERATURE) SCALING

In Theorem 2, we assume we rescale the mean parameters. This is because the exponential loss can
be made arbitrarily small for a mean vector that is aligned with the Lo max-margin vector simply
by increasing its magnitude. In fact, the sequence of mean parameters identified by gradient descent
diverges to infinity at a logarithmic rate uS° ~ log(#)w as we show* in Lemma S5 and illustrate in
Figure S2 (right panel).

“This has been observed previously in the deterministic case (see Theorem 3 of Soudry et al. [4]) and thus
naturally also appears in our probabilistic extension.
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Figure S2: NLL overfitting in classification due to implicit bias of the mean parameters. As shown
here for a two-hidden layer neural network on synthetic data, when training with vanilla SGD the
mean parameters diverge to infinity ||ge+]|2 &~ O(log(t)) (right) and thus the classifier will eventually
overfit in terms of negative log-likelihood (left and middle). Rescaling the GD iterates as in Theo-
rem 2 or using temperature scaling [69] avoids overfitting.

This bias of the mean parameters towards the max-margin solution does not impact the train loss or
validation error, but leads to overfitting in terms of validation NLL (see Figure S2) as long as there
is at least one misclassified datapoint x, since then the (average) validation NLL is given by
UOFP) = Eq g (w) (exp(—yzTw)) = exp(a’ uf® + 327 SFP(SFP) )
g (S113)
~ exp(log(t)x'w + L&' SPP(SFP)Tx) - 00 as ¢ — oo

However, by rescaling the mean parameters as we do in Theorem 2, this can be prevented as Fig-
ure S2 (middle panel) illustrates for a two-hidden layer neural network on synthetic data. Such
overfitting in terms of NLL has been studied extensively empirically with the perhaps most com-
mon remedy being Temperature Scaling (TS) [69]. As we show empirically in Figure S2, instead
of using the theoretical rescaling, using temperature scaling performs very well, especially in the
non-asymptotic regime, which is why we also adopt it for our experiments in Section 5.

The aforementioned divergence of the mean parameters to infinity also explains the need for the pro-
jection of the prior mean parameters in Equation (9), since any bias from the initialization vanishes
in the limit of infinite training. At first glance the additional projection seems computationally pro-
hibitive for anything but a zero mean prior, but close inspection of the implicit bias of the covariance
parameters S in Theorem 2 shows that at convergence

Vn : Varg, (fuw(®,)) = 2, 8S Tx, =0 = range(S) C null(X) (S114)

Meaning we can approximate a basis of the null space of the training data by computing a QR
decomposition of the covariance factor in O(PRQ) once at the end of training. For R = P the
inclusion becomes an equality and the projection can be computed exactly.

S2 PARAMETRIZATION, FEATURE LEARNING AND HYPERPARAMETER
TRANSFER

Notation For this section we need a more detailed neural network notation. Denote an L-hidden
layer, width-D feedforward neural network by f(x) € R , with inputs & € RP», weights W),

pre-activations AV)(z) € RP", and post-activations (or “features”) g)(xz) € RP". That is,
h(l)(w) =WWgand, forlel,...,L—1,

9" (@) = ¢ (R (@), KD (@) = WD g (a),
and the network output is given by f(z) = W (Lt g (z), where ¢ (o) is an activation function.

For convenience, we may abuse notation and write h(?) (2) = & and h(t*+1) (z) = f(a). Through-
out we use () to indicate the layer, subscript e, to indicate the training time (i.e., epoch),
Ae; = e, — o to indicate the change since initialization, and [e];, [e];; to indicate the compo-
nent within a vector or matrix.
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S2.1 DEFINITIONS OF STABILITY AND FEATURE LEARNING

The following definitions extend those of Yang and Hu [43] to the variational setting.

Definition S1 (bc scaling)
In layer [, the variational parameters are initialized as

[H(()l)}i NN(O,D_%“)), [S(()l)}ij N J\/(O,D_2E(l))
and the learning rates for the mean and covariance parameters, respectively, are set to
¥ = nD—C”) 7 = nD—E(”_
The hyperparameter 7 represents a global learning rate that can be tuned, as for example in the

hyperparameter transfer experiment from Section 3.4.

For the next two definitions, let m, (X) = E,((X —E.(X))") denote the rth central moment
moment of a random variable X with respect to z, which represents all reparameterization noise in
the random variable X . All Landau notation in Section S2 refers to asymptotic behavior in width D
in probability over reparameterization noise z. We say that a vector sequence {vp }%5_,, where each

vp € RP,is O(D~?) if the scalar sequence {4/ 5 [lvp||2}55_; = {RMSE(vp)}55_; is O(D~9).

Definition S2 (Stability of Moment r)
A neural network is stable in moment r, if all of the following hold for all z and [ € {1,...,L}.

1. At initialization (t = 0):
(a) The pre- and post-activations are O(1):

me (R (@), m, (g (x)) = O(1)

(b) The function is O(1):
mr(fo(x)) = O(1)

2. At any point during training ¢ > 0:

(a) The change from initialization in the pre- and post-activations are O(1):
l 1
Am, (b (@), Am, (g (2)) = O(1)
(b) The function is O(1):
mr(fi(z)) = O(1)

Definition S3 (Feature Learning of Moment 7)

Feature learning occurs in moment r in layer [ if, for any ¢ > 0, the change from initialization is
Q(1):

l
am, (g(2)) = 9(1).
As we will see later, Figure S5 and Figure S6 investigate feature learning for the first two moments.

S2.2 INITIALIZATION SCALING FOR A LINEAR NETWORK

In this section we illustrate how the initialization scaling {(b(), 5())} can be chosen for stability.
For simplicity, we consider a linear feedforward network of width D evaluated on a single input
x € RE. We assume a Gaussian variational family that factorizes across layers. This implies the

hidden units evolve as hglﬂ) = Wt(lﬂ)hgl) and the weights are linked to the variational parameters
by vec(Wt(l)) = p,gl) + Szfl)z.

Therefore, the mean and variance of the ith component hidden units in layer [ € {1,...,L + 1},
where i € 1...,DW, are given by

E.((n")) = ("7 E- (n )
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var. ([h{")) = ("7 C V1] + (SO AL VS0,

where I = {iDU=Y ... (i+1)DU~1} and the second moment of and covariance of layer-/ hidden
units are denoted by

l D, (T
A9 — B (WOR(T)

cV =AY _E, (hff’) E, (hg”)T .

Mean We start with the mean of the hidden units, which conveniently depends only on the mean
variational parameters and the previous layer hidden units.

p-1

E.(In"1) = > (w1, E- ()

=1
_ O(\/IWD*“” : 1)

o(p=") =1
O<D—<b“’—§>> le{2,...,L+1}
Therefore, we require b)) > 0and b > L fori € {2,..., L+ 1}.

Variance Next we examine the variance of hidden units. Consider the first term, which represents
the contribution of the mean parameters.

pi-=1 pai-1
! -1 ! -1 l -1 !
) TC V0 = 3 w318 s+ S w168 V)0 e,
j=1 J#5’

- O(DU—U D2 1) + O<\/D(ll)(D(ll) ~1)-p7"" 1. D—b(”>

= (’)(D(l—l) .D—2b<”)
16) D*Zb(l)) =1
6) D—(%(”-l)) lele{2,...,L+1).

Therefore, we require b > 0 and b® > % forl € {2,...,L + 1}. Notice these are the same
requirements as above for the mean of the hidden units. We summarize the scaling for the mean
parameters as

0 1=1
b<l>>{ (S115)
1 1e{2,...,L+1}.

Now consider the second term in the variance of the hidden un(ilt)s. Assume the rank scales with the
input and output dimension of a layer as R = (DU=1 DW)P™ "where p) € [0, 1].

RrM
! l— l l [— !
(ST AS V801 = D IS, AL VISP
r=1
RO [p-1) pai-1
l -1 I -1 l
=S D0 1883, A8 s+ YD 180, A1 18,
r=1 \ j=1 i#5’
- O(R“)D(l*l) .p~2" . 1) n 0<\/R<Z>D<l—1>(p<l—1> ~1).D 1. DB”))
_ O(R(Z)D(lfl)Dfﬂs(”)
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oD@ =) =1

{0 D-<25“’—1—2p“’>) le{2,...,L}
O(p- @) = g,
(1)

Therefore we require b(©) > e, b > i+ p® forl € {2,...,L}, and b)) > 1 4
Notice we can write these conditions in terms of the mean scaling as

el =1
B0 >0+ 0 pe 2, L) (S116)
el =L+

S2.3 PROPOSED SCALING

The previous section derives the necessary conditions for stability at initialization. Recall from
Section 3.4 that we propose scaling the contribution of the covariance parameters to the forward
pass, i.e. the Sz term, by R~1/2 since each element in the term is a sum over R random variables,
where R is the rank of S. In the more detailed notation of this section, the proposed scaling implies
the forward pass in a linear layer is given by

(") = Wil ™) = (1) + R2(80)20) B, (S117)

In practice, rather than scaling [S’,Sl)] 1z by R~1/2 in the forward pass, we apply Lemma J.1 from
Yang et al. [41] to instead scale the initialization by R~'/2 and, in SGD, the learning rate by R~'.
Scaling by the rank allows treating the mean and covariance parameters as if they were weights
parameterized by uP in a non-probabilistic network, inheriting any scaling that has already been
derived for that architecture.

From Table 3 of Yang et al. [41], we therefore scale the mean parameters as

0 =1 -1 I=1
VW ={1/2 1e{2,...,L} and D ={0 1e{2,...,L} (S118)
1 l=L+1 1 l=L+1.
Assuming RO = (DU DO a5 before, where p() € [0,1], we the scale the covariance
parameters as
el o1=1 p =1
bW =p®D +L{p® 1ef2,... L} and D =cO4{2p® 1e{2,...,L}  (S119)
p® l=L+1 p(l) l=L-+1.

m ‘

By comparing to Equations S115 and S116, we see the mean and covariance parameters in all but
the output layer are initialized as large as possible while still maintaining stability. The output layer
parameters scale to zero faster, since, as in uP for the weights of non-probabilistic networks, we set
b(E+D) to 1 instead of 1/2.

Note that in Section S2.2 we did not consider input and output dimensions that scaled with the width
D for simplicity. For our experiments, we take the exact uP initialization and learning rate scaling
from Yang et al. [41] — which includes, for example, a 1/fan_in scaling in the input layer — for
the means and then make the rank adjustment for the covariance parameters as described above.

We investigate the proposed scaling in Figures S4 and S5. We train two-hidden-layer (L = 2) MLPs
of hidden sizes 8, 16, 32, and 64 on a single observation (z,y) = (1,1) using a squared error loss.
We use SGD with a learning rate of 0.05. For the variational networks, we assume a multivariate
Gaussian variational family with a full rank covariance.

Figures S3 and S4 show the RMSE of the change in the hidden units from initialization, Agt(l) (z) =

g,gl) (z) — g(()l) (z), as a function of the hidden size. The RMSE of the hidden units af initialization,
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gél) is also shown in blue. Each panel corresponds to a layer of the network, so the first two panels

correspond to features g,gl)(z) and gt(z)(a:), respectively, while the third panel corresponds to the

output of the network, gt(B) (z) = fi(x). The difference between the figures is the paramaterization.

Figure S3 uses standard parameterization (SP) while Figure S4 uses maximal update parametrization
(uP). We observe that (a) the features change more under P than SP and (b) training is more stable
across hidden sizes under ¢P than SP, especially for smaller networks.

Figures S5 and S6 show the analogous results for a variational network. The top row shows the
change in the mean of the hidden units, while the bottom row shows the change in the standard
deviation. As in the non-probabilistic case, we observe that (a) both the mean and standard deviation
of the features change more under P than SP and (b) training is more stable across hidden sizes
under pP than SP, especially for smaller networks.
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Figure S3: MLP, Standard Parameterization. RMSE of the change in the hidden units and, in blue,
their initial values. Shaded region represents 95% confidence interval over 5 random initializations.
The MLP is trained under SP.
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Figure S4: MLP, Maximal Update Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The MLP is trained under uP.

S2.4 DETAILS ON HYPERPARAMETER TRANSFER EXPERIMENT

As discussed in Section 3.4 we train two-hidden-layer MLPs of width 128, 256, 512, 1024, and 2048
on CIFAR-10. For comparability to Figure 3 in Tensor Programs V [41] we use the same hyperpa-
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Figure S5: Variational MLP, Standard Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The variational MLP is trained under SP with a full rank covariance in each layer.

rameters but applied to the mean parameters.> For the input layer, we scale the mean parameters at
initialization by a factor of 16 and in the forward pass by a factor of 1/16. For the output layer, we
scale the mean parameters by 0.0 at initialization and by 32.0 in the forward pass. We use 20 epochs,
batch size 64, and a grid of global learning rates ranging from 278 to 2° with cosine annealing dur-
ing training. For the grid search results shown in the right panel of Figure 3, we use validation NLL
for model selection and then evaluate the relative test error compared to the best performing model
for that width across parameterizations and learning rates.

S3 EXPERIMENTS

This section outlines in more detail the experimental setup, including datasets (Section S3.1.1),
metrics (Section S3.1.2), architectures, the training setup and method details (Section S3.3.1). It also
contains additional experiments to the ones in the main paper (Sections S3.2, S3.3.2 and S3.3.3).

S3.1 SETUP AND DETAILS

In all of our experiments we used the following datasets and metrics.

3Specifically, we used the hyperparameters as indicated here: https://github.com/microsoft/
mup/blob/main/examples/MLP/demo.ipynb
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Figure S6: Variational MLP, Maximal Update Parametrization. RMSE of the change in the hidden
units and, in blue, their initial values. Shaded region represents 95% confidence interval over 5
random initializations. The variational MLP is trained under P with a full rank covariance in each

layer.

S3.1.1

DATASETS

Table S1: Benchmark datasets used in our experiments. All corrupted datasets are only intended for
evaluation and thus only have test sets consisting of 15 different corruptions of the original test set.

Accuracy

Dataset N Niest Din C'  Train / Validation Split
MNIST [70] 60000 10000 28 x 28 10 0.9,0.1)
CIFAR-10 [80] 50000 10000 3 x 32 x 32 10 0.9,0.1)
CIFAR-100 [80] 50000 10000 3 x32x32 100 0.9,0.1)
TinyImageNet [81] 100 000 10000 3 x 64 x 64 200 0.9,0.1)
MNIST-C [72] - 150000 28 x 28 10 -
CIFAR-10-C [73] - 150000 3 x 32 x 32 10 -
CIFAR-100-C [73] - 150000 3 x32x32 100 -
TinyImageNet-C [73] - 150000 3 x 64 x64 200 -
S3.1.2 METRICS
The (top-k) accuracy is defined as
Ntest

Accuracy,(y,9)

1

n=1

= — 1 ik
Niost Z (yn€GLF)

(S120)

Negative Log-Likelihood (NLL) The (normalized) negative log likelihood for classification is
given by

NLL(y,9) =

1 Niest

Ntest

n=1
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where py,, is the probability a model assigns to the predicted class 3y,.

Expected Calibration Error (ECE) The expected calibration error measures how well a model
is calibrated, i.e. how closely the predicted class probability matches the accuracy of the model.
Assume the predicted probabilities of the model on the test set are binned into a given binning of the
unit interval. Compute the accuracy a; and average predicted probability p; of each bin, then the
expected calibration error is given by

J
ECE = bjla; — p;l, (S122)
j=1
where b; is the fraction of datapoints in bin j € {1,...,J}.

S3.2 TIME AND MEMORY-EFFICIENT TRAINING

To keep the time and memory overhead low during training, we would like to draw as few samples
of the parameters as possible to evaluate the training objective £(8). Drawing M parameter samples
for the loss increases the time and memory overhead of a forward and backward pass M times
(disregarding parallelism). Therefore it is paramount for efficiency to use as few parameter samples
as possible, ideally M = 1.

When drawing fewer samples from the variational distribution, the variance in the training loss and
gradients increases. In practice this means one has to potentially choose a smaller learning rate to
still achieve good performance. This is analogous to the previously observed linear relationship
N, x n between the optimal batch size IV, and learning rate 7 [e.g., 82—84]. Figure S7 shows this
relationship between the number of parameter samples used for training and the learning rate on
MNIST for a two-hidden layer MLP of width 128.
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Figure S7: Generalization versus number of parameter samples. For a fixed number of epochs and
batch size, fewer samples require a smaller learning rate. For a fixed learning rate, generalization
performance quickly plateaus with more parameter samples.

As Figure S8 shows, when using momentum, generalization performance tends to increase, but only
if either the number of samples is increased, or the learning rate is decreased accordingly. A similar
relationship between noise in the objective and the use of momentum has previously been observed
by Smith and Le [83], which propose and empirically verify a scaling law for the optimal batch size

Ny x ﬁ as a function of the momentum parameter v > 0.

S3.3 IN- AND OUT-OF-DISTRIBUTION GENERALIZATION

This section recounts details of the methods we benchmark in Section 5, how they are trained and
additional experimental results.

S3.3.1 ARCHITECTURES, TRAINING, AND METHODS

Architectures We use convolutional architectures for all experiments in Section 5. For MNIST,
we use a standard LeNet-5 [70] with ReLU activations. For CIFAR-10, CIFAR-100 and TinyIma-
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Figure S8: Generalization versus number of parameter samples when using momentum. Using mo-
mentum improves generalization performance, but when using fewer parameter samples, a smaller
learning rate is necessary than for vanilla SGD as predicted by 2?.
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Figure S9: Validation error during training for different numbers of parameter samples. The dif-
ference in generalization error between different number of parameter samples vanishes with more
optimization steps both for SGD (—) and when using momentum (—), if the learning rate is suffi-
ciently small (in this example n = 0.003).

geNet we use a ResNet-34 [71] where the first layer is a 2D convolution with kernel_size=3,
stride=1 and padding=1 to account for the image resolution of CIFAR and TinyImageNet and
the normalization layers are GroupNorm layers. We use pretrained weights from ImageNet for all
but the first and last layer of the ResNets from t orchvision [85] and fully finetune all parameters
during training.

Training We train all models using SGD with momentum (y = 0.9) with batch size N, = 128
and learning rate n = 0.005 for 200 epochs. We do not use a learning rate scheduler since we found
that neither cosine annealing nor learning rate warm-up improved the results.

Temperature Scaling [69] For temperature scaling we optimize the scalar temperature param-
eter in the last layer on the validation set via the L-BFGS implementation in torch with an
initial learning rate s = 0.1, a maximum number of 100 iterations per optimization step and
history_size=100.

[26] As recommended by Daxberger et al.
[26] we use a post-hoc KFAC last-layer Laplace approximation with a GGN approximation to the
Hessian. We tune the hyperparameters post-hoc using type-II maximum likelihood (ML). As an
alternative we also do a grid search (GS) for the prior scale, which we found to be somewhat more
robust in our experiments. Finally, we compute the predictive using an (extended) probit approxi-
mation. Our implementation of the Laplace approximation is a thin wrapper of laplace [26] and
we use its default hyperparameters throughout.
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Weight-space VI (Mean-field) [30,31] For variational inference, we used a mean-field variational
family and trained via an ELBO objective with a weighting of the Kullback-Leibler regularization
term to the prior. We chose a unit-variance Gaussian prior with mean that was set to the pretrained
weights, except for the in- and output layer which had zero mean. We found that using a KL weight
and more than a single sample (here M = 8) was necessary to achieve competitive performance.
The KL weight was chosen to be inversely proportional to the number of parameters of the model, for
which we observed better performance than a KL weight that was independent of the architecture.
At test time we compute the predictive by averaging logits using 32 samples.

Implicit Bias VI [ours] For all architectures in Section 5 we use a Gaussian in- and output layer
with a low-rank covariance (R = 10, 20). We train with a single parameter sample M = 1 through-
out and do temperature scaling at the end of training on the validation set with the same settings as
when just performing temperature scaling. We do temperature scaling in classification due to the
specific form of the implicit bias in classification as described in Section S1.3. Since IBVI trains
by optimizing a minibatch approximation of the expected negative log-likelihood (an average over
log-probabilities with respect to parameter samples), we also average log-probabilities at test-time
to compute the predictive distribution over class probabilities. Although we did not see a significant
difference between averaging log-probabilities, probabilities or logits. Like for WSVI we use 32
samples at test time.

[28] We wused a slightly modified implementation of SWAG based on
torch—uncertainty and the original implementation by Maddox et al. [28]. The begin-
ning of the averaging cycle set to half the number of total epochs and a cycle length of one, i.e.
SWAG updates happen every epoch. For all other hyperparameters we use the default settings.

Deep Ensembles [29] We use five ensemble members initialized and trained independently. We
compute the predictive by averaging the predicted probabilities of the ensemble members in line with
standard practice [29]. We did not see a significant difference in performance between averaging
logits or averaging class probabilities.
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S3.3.2 IN-DISTRIBUTION GENERALIZATION AND UNCERTAINTY QUANTIFICATION

The full results from the in-distribution generalization experiment in Section 5 can be found in
Figure S10. The same experiment but done in the Maximal Update parametrization is depicted in
Figure S11. When finetuning a pretrained model, we found that on some datasets (CIFAR-100,
TinyImageNet) uP resulted in somewhat lower performance, contrary to the results in Section 3.4,
where we trained from scratch. This suggests that, when pretraining, there may be a modification to
the parametrization that could improve generalization.
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Figure S10: In-distribution generalization and uncertainty quantification (Standard parametriza-
tion).
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Figure S11: In-distribution generalization and uncertainty quantification (Maximal Update
parametrization).
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S3.3.3 ROBUSTNESS TO INPUT CORRUPTIONS

Besides the benchmark in Figure S11, we also evaluated the models trained using the Maximal
Update parametrization on the corrupted datasets. The results can be found in Figure S12.
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Figure S12: Generalization on robustness benchmark problems (Maximal Update parametrization).

S3.3.4 COMPARISON TO GENERALIZED VI WITH 2-WASSERSTEIN REGULARIZATION

Theorems 1 and 2 characterize the implicit bias of gradient descent for an overparametrized lin-
ear model as a preference for distributions minimizing the expected loss, which are closest in 2-
Wasserstein distance to the initialization. Given this characterization, by the KKT conditions there
exists a Lagrange multiplier A > 0 such that the optimal variational parameters @SP define a sta-
tionary point of the following unconstrained optimization objective:

0:(8) = £(8) + AW3(qe,p) - (S123)

In other words, Implicit Bias VI is equivalent to Generalized VI (GVI) with a 2-Wasserstein regu-
larizer and some regularization strength A > 0 for overparametrized linear models.

Experiment Results To understand the difference in performance between IBVI and Generalized
VI with a 2-Wasserstein regularizer for deep neural networks, we trained models via the GVI ob-
jective in Equation (S123) for different regularization strengths A > 0 with the same setup as in
Section 5. The results on in-distribution test data can be found in Figure S13 and the results for
corrupted test data are in Figure S14. Both on in- and out-of-distribution data GVI performs similar
or worse than IBVI for all regularization strengths we tested in terms of test error. IBVI and GVI
perform roughly similar in terms of uncertainty quantification with GVI only performing better for
regularization strengths that harm accuracy.
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Figure S13: In-distribution generalization and uncertainty quantification of IBVI and GVI.
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Figure S14: Out-of-distribution generalization and uncertainty quantification of IBVI and GVI.
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