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Abstract
Learning multiple proxy tasks is a popular training strategy in
semi-supervised video anomaly detection. However, the traditional
method of learning multiple proxy tasks simultaneously is prone
to suboptimal solutions, and simply executing multiple proxy tasks
sequentially cannot ensure continuous performance improvement.
In this paper, we thoroughly investigate the impact of task compo-
sition and training order on performance enhancement. We find
that ensuring continuous performance improvement in multi-task
learning requires different but continuous optimization objectives
in different training phases. To this end, a training strategy based on
progressive learning is proposed to enhance the multi-task learning
in VAD. The learning objectives of the model in previous phases
contribute to the training in subsequent phases. Specifically, we
decompose video anomaly detection into three phases: perception,
comprehension, and inference, continuously refining the learning
objectives to enhance model performance. In the three phases, we
perform the visual task, the semantic task and the open-set task
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in turn to train the model. The model learns different levels of
features and focuses on different types of anomalies in different
phases. Extensive experiments demonstrate the effectiveness of our
method, highlighting that the benefits derived from the progressive
learning transcend specific proxy tasks.
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1 Introduction
Video Anomaly Detection (VAD) is an essential task in multimedia
interpretation, referring to the detection of unexpected events in
videos. The primary challenge of VAD is the sparsity of abnormal
samples, limiting the possibility of training efficient detectors in a
fully supervised manner. Consequently, previous research in VAD
predominantly falls into two categories: weakly supervisedmethods
[8, 30, 41, 44, 48, 56, 60] that learns with video-level annotations,
and semi-supervised methods that only learn from normal frames
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Figure 1: AUC (%) performances of anomaly detection when
learning multiple pretext tasks on the Avenue [27] and Cam-
pus [3] datasets. Dashed lines indicate learning multiple
proxy tasks simultaneously. Solid lines indicate training dif-
ferent tasks at different phases. "Pre", "Rec", and "Cls" rep-
resent the visual proxy tasks "prediction", "reconstruction",
and "classification", respectively. "SR" represents the seman-
tic proxy task "semantic reconstruction". "VL" represents the
open-set proxy task "vision-language".

[5, 25, 26, 43, 50]. Our work focuses on the latter, which aligns with
real-world settings.

Semi-supervised methods typically employ single or multiple
proxy tasks to model normal patterns, with samples deviating from
the established model labeled as anomalies. The single-proxy task
method [5, 24, 35, 47, 50] is simple and effective when dealing with
data involving a single scenario. In order to make the detector more
adaptable to the complex and dynamic scenarios of the real world,
some works [10, 11, 25] attempt to introduce multi-task learning to
guide the model in acquiring distinct features for different types of
anomalies. However, recent research [39] indicates that optimizing
multiple proxy tasks simultaneously may not result in the expected
performance enhancement. As shown by the dashed lines in Fig. 1,
it could potentially be inferior to the performance of performing
the single proxy task.

To ensure that multi-task learning achieves the desired perfor-
mance improvements for VAD, a straightforward approach is to
learn multiple proxy tasks sequentially, rather than attempting to
learning them simultaneously. As depicted in Fig. 1, the sequential
learning strategy yields superior performance gains compared to
both the single-proxy task design and the simultaneous learning of
multiple tasks, across datasets representing both single and complex
scenarios (the Avenue [27] and Campus [3] datasets, respectively).
However, not every set of proxy tasks and any training order can
guarantee continuous performance improvement. Therefore, we
ask the following questions in this paper: for the training of video
anomaly detector, (i) which proxy tasks are necessary, and (ii)
what sequence of training is reasonable and effective.

In fact, proxy tasks and training sequence are not completely
decoupled. To ensure effective performance enhancement, proxy
tasks in different training phases should entail distinct optimization
objectives. To maintain the continuity of performance improve-
ment, the optimization objectives across different training phases
should be be consecutive. In a word, the selection of proxy tasks

(a) Single Task Framework

Proxy TaskEncoder Decoder Encoder

Proxy Task 1Head

Head

Head

Proxy Task 2

Proxy Task N

…

(b)  Multi-Task Framework

…

(c) Progressive Learning Design (Ours)

Encoder

Perception

Phase

Comprehension

Phase

Inference

Phase

Visual

Proxy Tasks 

Semantic

Proxy Tasks 

Open-set

Proxy Task 

Scene-independent  anomalies Scene-dependent anomalies Unseen anomalies

appearance and motion feature Semantic feature

P
re

d
ic

ti
o

n

R
ec

o
n

st
ru

ct
io

n

C
la

ss
if

ic
at

io
n

P
u

zz
le

E
v

en
t 

R
es

to
ra

ti
o
n

V
is

io
n

-

la
n

g
u

ag
e

… … …

General feature

Figure 2: Comparison on the various designs of VAD frame-
work. (a) Most solutions perform a single proxy task to train
the detector. (b) Multi-task learning solutions share a back-
bone with divided task heads, learning multiple proxy tasks
simultaneously. (c) Our proposed progressive learning design
is a multi-phase training strategy for the purpose of anomaly
detection, continuously refining learning objectives to tackle
more challenging tasks.

and the training sequence should complement each other, different
training phases require a series of consecutive optimization objec-
tives. Therefore, the ideal approach is progressive learning rather
than simply sequential learning, i.e., the learning objectives of the
preceding phase contributing to the training for subsequent tasks.

Inspired by the human cognitive process, we decompose video
anomaly detection into three phases: perception, comprehension, and
inference. As shown in Fig. 2, our progressive learning design is a
multi-phase training strategy for the purpose of anomaly detection,
continuously refining learning objectives to tacklemore challenging
tasks. In the perception phase, the model aims to learn low-level vi-
sual information, laying the foundation for understanding the scene.
In the comprehension phase, the model aims to learn semantic fea-
tures in the scene, understanding the activities within the scene.
In the inference phase, the model utilizes the learned knowledge
and context to detect anomalies. Additionally, the decomposition
approach enables the model to learn different levels of features at
different phases, focusing on different types of anomalies. In the
perception phase, the model focuses on obvious scene-independent
anomalies (such as fire, smoke). In the comprehension phase, it
combines scene information to address scene-dependent anomalies.
In the inference phase, the model learns general features to address
unseen anomalies encountered during training.

Correspondingly, Answer to Question 1: The training of de-
tector requires three types of proxy tasks: the visual proxy task
for perceiving pixel features, the semantic proxy task for compre-
hending semantic features, and the open-set proxy task for learning
general features for inference. Answer to Question 2: The train-
ing sequence begins with visual proxy tasks, followed by semantic
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proxy tasks, and concludes with open-set proxy tasks. To this end,
we adopt the widely-used frame prediction task as the visual proxy
task in the perception phase. As for the semantic proxy tasks in
the comprehension, we propose a simple yet effective semantic
reconstruction task leveraging the semantic consistency of context.
During the inference phase, we adhere to previous work [26] by
training the model with virtual data [1] to enhance its ability to
detect unseen anomalies.

We conduct experiments on four challenging datasets (Avenue
[27], ShanghaiTech [28], UCF-Crime [41] and Campus [3]). The
experiments show that our proposed method outperforms the
State-Of-The-Art (SOTA) methods and enhances the performance
of multi-task learning. Furthermore, extensive experiments with
widely-used proxy tasks demonstrate that the benefits derived from
progressive learning extend beyond specific proxy tasks. In sum-
mary, our contributions can be summarized as follows:
• A training strategy based on progressive learning is proposed
to enhance the efficacy of multi-task learning in VAD. We
demonstrate the necessity of reasonable task composition
and training sequences, rather than simply learning multiple
tasks simultaneously or sequentially.
• Video anomaly detection is decomposed into three phases:
perception, comprehension and inference. Themodel focuses
on different types of anomalies in different phases.
• Extensive experiments demonstrate the effectiveness of our
method, highlighting that the benefits derived from the pro-
gressive learning transcend specific proxy tasks.

2 Related Work
2.1 Video Anomaly Detection
Previous semi-supervised anomaly detection methods can mainly
be classified into two categories: single-proxy-task [4, 17, 19, 35,
47] and multi-proxy-task methods [10, 11, 25]. Specifically, the
term "semi-supervised" refers to methods that only use normal
data during training. Most semi-supervised methods train models
to perform a single proxy task on normal samples and assume
that the model cannot perform the proxy task well on anomalous
samples. The reconstruction task [12, 15, 29, 33, 58] to reconstruct
the current frame and the prediction task [5, 23, 46, 53] to predict
future frames are two commonly used proxy tasks, where frames
with large reconstruction or prediction errors are recognized as
anomalous. In addition, some work synthesize virtual anomaly data
[1, 26] or proposes more complex proxy tasks to learn semantic
features of normal patterns, including event completion [52], jigsaw
puzzles [45], event restoration [50], and causal consistency [24].

While the single-proxy-task design yields promising results on
datasets featuring a single scene, its performance falls short of ex-
pectations in real-world scenarios characterized by diverse scenes.
This discrepancy arises from inconsistencies between the tasks
during training (such as frame reconstruction or frame prediction)
and those encountered during testing (such as anomaly detection).
Therefore, recent works [9–11, 25, 31, 43] utilize multiple proxy
tasks to train the model. For instance, Some works introduce in-
formation from other modalities, such as optical flow [25, 31] and
skeletal information [43], where proxy tasks for each modality are
jointly used as learning objectives. Some scene-aware methods

[2, 43, 55] separately design proxy tasks for scenes and objects to
learn multi-level features. Meanwhile, other research [9–11, 43]
designs an shared backbone with multiple task heads to simultane-
ously learn multiple proxy tasks targeting different anomalies.

However, the exploration of leveraging multiple proxy tasks to
improve anomaly detection performance has not been thoroughly
investigated in these studies. The challenge lies in the fact that
simultaneously learning multiple proxy tasks can often lead to con-
vergence to suboptimal solutions. Different from these methods,
we extensively explore the impact of task composition and training
sequence on multi-task learning in VAD. We find that in order to
ensure continuous performance improvement, different but con-
secutive optimization objectives in different training phases are
necessary. Based on this principle, we propose optimizing multiple
proxy tasks through the progressive learning strategy. In addition,
the gains from progressive learning are not limited to specific proxy
tasks and their performance.

2.2 Multi-task Learning
Multitask learning [18, 20, 21, 32] is attracting increasing attention
in the field of deep learning. Some methods achieve simultaneous
learning of multiple tasks by designing complex network architec-
tures [16] and optimization strategies [14, 38]. These methods are
supervised and aim to improve the overall performance of multiple
tasks. Unlike these methods, we aim for continuous performance
improvement of the model as tasks are added. To achieve this, we
perform different tasks at different training phases, progressively
enhancing the model’s performance. Progressive learning offers
different but continuous optimization objectives at different train-
ing phases, with learning from previous phases aiding training in
subsequent phases.

In video anomaly detection, prior work [39] attempts to sequen-
tially learn multiple proxy tasks to ensure performance enhance-
ment from multi-task learning. They arrange the training order
based on the difficulty of tasks. However, continuous performance
improvement is not available for sequential learning in all combi-
nation of tasks. Instead of executing the proxy tasks sequentially,
we implement them in phases at various levels to ensure that the
objectives are distinct yet consecutive. Specifically, inspired by the
cognitive principle of understanding from the surface to the core,
we decompose video anomaly detection into perception, compre-
hension, and reasoning phases. The model learns different proxy
tasks at each phase to progressively acquire features at different
levels. This decomposition allows the model to focus on different
types of anomalies at different phases.

3 Method
3.1 Overview
Our proposed video anomaly detection framework progressively
learns multiple proxy tasks to ensure that the model performance
continuously improves as more tasks are learned. We aim to design
a series of different and consecutive optimization objectives in
different training phases, so that the feature learned in the previous
training task contributes to the subsequent training. Specifically, we
decompose video anomaly detection into three consecutive phases:
perception, comprehension, and inference.
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Table 1: Introduction to the proposed progressive learning:
In each column, from left to right, are the different phases
and the corresponding types of target anomalies, the level of
features to be learned, and the types of proxy tasks

Phase Target Learned Feature Proxy Tasks

Percep-
tion

Scene-
independent
Anomalies

Pixel-Level Visual Tasks
color classification
shape reconstruction

optical flow prediction

Comprehen-
sion

Scene-
dependent
Anomalies

Semantic-Level Semantic Tasks
spatial feature completion
temporal feature restoration
scene feature jigsaw puzzle

Inference Unseen
Anomalies

General
Feature

Open-Set Tasks
virtual data
pseudo labels

vision-language

The overall design of our proposed progressive learning is de-
scribed in Table 1. For a normal video clip𝑉 : In the perception phase,
we perform visual proxy tasks to learn pixel features of normal
patterns, such as color, shape, and optical flow. In the comprehen-
sion phase, we perform semantic proxy tasks to learn semantic
features of normal patterns, such as spatial features, temporal fea-
tures, and scene semantics. In the inference phase, we perform the
open-set proxy task to learn more discriminative general features.
The open-set approach in VAD refers to the use of synthetic virtual
anomalies or the acquisition of pseudo-anomalies to supplement
the supervision instead of training with only normal data. In the
process of progressive learning, the pixel features learned by the
model in the perception phase provide the basis for comprehension,
while the semantic features learned in the comprehension phase
help the model to learn genreal features.

The network comprises three task heads and an encoder 𝐹 . All
task heads share the same backbone encoder 𝐹 to leverage knowl-
edge learned from the previous phases, and all proxy tasks within
the same phase share the same task head 𝐻 . Next, we illustrate our
progressive learning strategy with examples of frame prediction ,
semantic reconstruction, and virtual data-based classification tasks.

3.2 Data Acquisition
Pre-trained video parsing networks are widely used in VAD meth-
ods [10, 11, 25, 43] to extract different visual information. In this
work, we utilize pre-trained networks to organize the training data.

In the perception phase, we perform the prediction task to learn
pixel features. Given a video clip 𝑉 , we use YOLOv3 [34] to extract
all foreground objects in the video frame. Each object is identified by
an RoI bounding box. For each RoI, we construct a spatio-temporal
cube (STC) that contains not only the objects in the frame, but also
the contents of the same bounding box from the previous 𝑡 frames,
where 𝑡 = 4. The width and height of the STCs are resized to 48.

In the comprehension phase, we perform the semantic recon-
struction task to learn semantic features. In order to simultaneously
learn the semantic features of the scene, we extracted the scene
features of the background. For each frame in the clip 𝑉 , we use
DeepLabV3+ [6] to generate segmentation maps while masking

foreground object categories. We then perform max-pooling, re-
shaping, averaging, and 𝑙2 normalization on all segmentation maps
to obtain a scene feature 𝑓 𝑠𝑐𝑒𝑛𝑒 ∈ R𝐷𝐵 , where 𝐷𝐵 depends on the
size of the video frame.

In the inference phase, we train the classification taskwith virtual
data to learn highly discriminative features. Following previous
work [26], we use the virtual dataset UBnormal [1]. Unlike the
previous two phases, the initial input to the model is video frames
rather than object-level STCs.

3.3 Network Architecture
We employ the U-net [39] with deleted skip connections as the
backbone network 𝐹 and use it as a shared base for the proxy tasks.
Each training phase introduces into its top a task head, denoted
𝐻𝑝𝑒𝑟 , 𝐻𝑐𝑜𝑚𝑝 , and 𝐻𝑖𝑛𝑓 , which are used to process the feature em-
beddings extracted from the backbone network. All task heads
contain spatio-temporal averaging pooling layers to ensure that the
dimensionality of the deep feature embeddings remains consistent,
even though the temporal lengths may be different.

In perception phase and comprehension phase, we use task heads
to embed the video features extracted by the backbone network
into the low-dimensional features to get the representation. To be
specific, the pixel feature representation and the semantic feature
representation are obtained in the prediction task and the seman-
tic reconstruction task, respectively. In inference phase, we use
fully connected layers as classifiers at the end of 𝐻𝑖𝑛𝑓 for perform-
ing classification task with virtual data. It should be noted that
the parameters of the backbone are trainable. Since the learning
objectives of previous phases contribute to subsequent training,
retaining knowledge from earlier proxy tasks is advantageous. Al-
though there are three parallel task heads in our architecture, only
one task head performs the corresponding proxy task to optimize
the shared backbone in each training phase.

3.4 Training Phases and Proxy Tasks
Perception Phase.We perform the frame prediction task as the
visual proxy task to learn pixel-level features. We train our model
to predict future frames based on a clip 𝑉 consisting of 2𝑇 + 1
consecutive frames. In order to fully learn the pixel features of the
normal model and provide a basis for subsequent learning. We train
the model to predict future frames in two directions, forward and
backward.

Formally, We construct a forward clip
−→
V = [X1,X2, . . . ,X𝑇 ] and

a backward clip
←−
V = [X2𝑇+1,X2𝑇 , . . . ,X𝑇+2] as the initial inputs. X

does not represent the video frames in the clip, but the combination
of all the spatio-temporal cube in each frame. The object-level 𝑋𝑇+1
of the middle frame is the prediction target. We use the shared
backbone 𝐹 to encode these two clips first and use the prediction
header 𝐻𝑝𝑒𝑟 to predict 𝑋𝑇+1. The final prediction X̂ is calculated
as:

X̂ =
𝐻per (𝐹 (

−→
V )) + 𝐻per (𝐹 (

←−
V ))

2
. (1)

where (· ) represents the process of feature processing by the net-
work. We use the 𝑙2 normalization to evaluate the difference be-
tween the prediction and the ground truth 𝑋𝑇+1. The prediction
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loss L𝑝𝑟𝑒 is given as:

Lpre =
X̂ − X𝑇+12 . (2)

To generate smooth prediction frames, we also utilize gradient loss.
The gradient loss Lgd is calculated as:

Lgd =
∇X̂ − ∇X𝑇+11 , (3)

where ∇ and |· |1 represent gradient computation and 𝑙1 normaliza-
tion, respectively. The prediction loss Lpre and gradient loss Lgd
are the optimization objectives in this phase.
Comprehension Phase. In order to further learn the higher-level
semantic features of the video clip𝑉 , we introduce a semantic recon-
struction task as the semantic proxy tasks. We design a contrastive
learning mechanism to perform semantic reconstruction task based
on the following facts. In the context of video frames, frame 𝐼𝑎𝑛𝑐
should exhibit semantic consistency with its neighboring frames
due to their temporal continuity, as opposed to disjoint frames.

To perform the proposed semantic reconstruction tasks, we select
positive video clips and negative clips containing only one anchor
frame 𝐼𝑎𝑛𝑐 , respectively. The negative clip contains 𝑇 continuous
frames, while the positive clip has a length of 𝑇 − 1. The reason for
this phenomenon is that we use masking to select the anchor frame.
Given an initial continuous clip of length 𝑇 , we uniformly select
a frame from the interval [2,𝑇 − 1] as the anchor frame 𝐼𝑎𝑛𝑐 . And
the leading and alternate of the missing frames are concatenated
together to form positive video clip 𝑉𝑑 .

Accordingly, we learn the motion information in the video by
triplet loss [37] taking the discontinuous video clips 𝑣𝑑

𝑖
as the an-

chor point, the masked frames 𝐼𝑚 as the positive samples, and the
continuous video clips 𝑣𝑐

𝑖
as the negative samples. Defining the

cosine similarity computation operation as 𝑠𝑖𝑚(· , · ), the semantic
reconstruction loss is denoted as:

L𝑆𝑅 =
1
𝑁

𝑁∑︁
𝑖=1

max(0, 𝛾 − (𝑝+𝑖 − 𝑝
−
𝑖 )) (4)

𝑝+𝑖 = sim
(
𝐻𝑐𝑜𝑚 ( [𝐹 (𝑉𝑑

𝑖 ), 𝑓
𝑠𝑐𝑒𝑛𝑒 ], [𝐹 (𝐼𝑖 ), 𝑓 𝑠𝑐𝑒𝑛𝑒 ])

)
, (5)

𝑝−𝑖 = sim
(
𝐻𝑐𝑜𝑚 ( [(𝑉𝑑

𝑖 ), 𝑓
𝑠𝑐𝑒𝑛𝑒 ], [𝐹 (𝑉 𝑐

𝑖 ), 𝑓
𝑠𝑐𝑒𝑛𝑒 ])

)
, (6)

where 𝑝+
𝑖
and 𝑝−

𝑖
denote the similarity between positive sample

pairs and negative sample pairs in the triplet loss, respectively. [·]
denotes the concatenation. The semantic reconstruction loss L𝑆𝑅
is the optimization objective in comprehension phase.
Inference Phase. With the help of virtual data containing anoma-
lous data, we use the classification task as the open-set proxy task.
With 𝑁 samples in a training batch, cross-entropy loss L𝐶𝐸 is used
to optimize the model, and the optimization objectives in this phase
is L𝑐𝑙𝑠 :

L𝑐𝑙𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

(
L𝐶𝐸

(
𝑃1

(
𝐹
(
𝑣𝑎𝑛𝑜𝑚𝑖

) )
1 +𝑃1

(
𝐹
(
𝑣𝑛𝑜𝑟𝑖

) )
0

))
, (7)

where (· ) represents the process of feature processing by the net-
work, 𝐹 and 𝐻𝑖𝑛𝑓 represent the shared backbone network and the
task head of inference phase, respectively, and 𝑣𝑛𝑜𝑟

𝑖
and 𝑣𝑎𝑛𝑜𝑚

𝑖
rep-

resent the 𝑖𝑡ℎ normal and anomalous frame in the virtual data,
respectively.

Table 2: Ablation experiments on the multi-task learning.
We report the AUC (%) scores on ShanghaiTech and Campus
datasets. ’FP’, ’Rec’, ’SR’, ’Jig’, and ’VL’ stand for the proxy
tasks of frame prediction, reconstruction, proposed semantic
reconstruction, jigsaw puzzle, and vision-language, respec-
tively. In addition, "Vir" stands for we use virtual data for
classification training.

ID FP Rec SR Jig VL Vir AUC
ShTech Campus

1 - - - ✓ - - 76.5 62.6
2 ✓ - - - ✓ - 70.1 61.9
3 - ✓ - - ✓ - 71.3 61.1
4 - - ✓ - - ✓ 78.8 65.2
5 ✓ ✓ - - ✓ - 73.9 64.4
6 ✓ - ✓ - - ✓ 79.0 67.2
7 - ✓ ✓ ✓ - - 78.4 61.8
8 ✓ ✓ - ✓ - ✓ 81.2 68.8
9 ✓ ✓ ✓ ✓ ✓ ✓ 75.8 65.6

3.5 Anomaly Detection
During testing, we first calculate the prediction error 𝐿𝑝𝑟𝑒 for each
frame in clip 𝑉 , calculated as:

L𝑝𝑟𝑒 (V) =
𝐻pre (𝐹 (V)) − X𝑇+1


2 . (8)

We then assign the anomaly score of any frame in which no salient
objects are detected to 0. For a frame with𝑚 salient objects, the
maximum anomaly score 𝑆𝑚𝑎𝑥 between these objects is:

Smax = max
{
L𝑝𝑟𝑒 (V1) ,L𝑝𝑟𝑒 (V2) , . . . ,L𝑝𝑟𝑒 (V𝑚)

}
(9)

Following [39], frame-level anomaly scores are further smoothed
by a median filter with a window size of 17 to ensure temporal
consistency of the video.

4 Experiments
4.1 Experimental settings
Scene-Independent Anomaly Dataset Avenue [27] contains 16
training videos and 21 test videos with 47 abnormal events, includ-
ing running and throwing. The scenes in this dataset are single
and the anomalies are related to human. ShanghaiTech [28] has 13
scenes with complex lighting conditions and different perspectives.
In addition, the dataset includes anomalies caused by sudden move-
ments, such as chasing and arguing. The different perspectives and
the unfixed position of the camera lead to a large variation of both
the object scale and the anomaly scale in the scene. UCF-Crime
[41] comprises 13 anomaly types, spanning a total of 128 hours of
video footage. The training set contains video-level labels, whereas
the testing set includes frame-level labels.
Scene-Dependent Anomaly Dataset. Campus [3] is currently
the most challenging dataset in its field with 43 scenes, 28 classes
of anomalous events and 16 hours of videos. Especially, it contains
scene-dependent anomalies, which means an normal event may be
abnormal in another scene. Detecting scene-dependent anomalies
requires the model to understand the scene and learn semantic
features rather than overfit.
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Table 3: AUC (%) performance of models trained with different combinations of tasks using different learning sequences and
models trained simultaneously with the same weights for all tasks on the ShanghaiTech and Campus datasets. The results
indicate that our progressive learning approach achieves the maximum performance improvement when learning multiple
auxiliary tasks, and the performance gains are not limited to specific tasks.

Dataset
Progressive Simultaneous

Learning Order AUC AUCPhase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

ShanghaiTech

Pre →SR → Virtual 73.1 79.2 83.8 79.0
Pre →Virtual →SR 73.1 72.0 75.5 79.0
SR →Pre →Virtual 76.1 75.5 76.8 79.0
Cls →Virtual →SR 65.4 64.2 73.2 70.1
- →Virtual →SR - 68.8 76.2 72.1

Rec →Jigsaw →VL 71.9 81.2 82.3 80.2
Rec →Completion →VL 71.9 79.8 81.9 79.5
Rec →Completion →Pseudo 71.9 79.8 81.1 80.0

Pre→ Rec - → Pseudo 76.0 76.0 79.3 79.0
Pre→ Rec → SR - 76.0 85.0 85.0 82.3
Pre→ Rec → Jig → Virtual 76.0 85.9 88.6 79.2
Pre→ Rec → Jig→ Completion → Virtual 76.0 86.1 88.8 78.1

Pre→ Rec→ Cls → SR→ Jig→ Completion → Virtual 76.8 86.4 88.8 77.9

Campus

Pre →SR → Virtual 57.9 66.2 69.4 67.2
Pre →Virtual →SR 57.9 57.0 68.1 67.2
SR →Pre →Virtual 65.4 64.8 66.1 67.2
Cls →Virtual →SR 54.2 53.9 62.8 62.0
- →Virtual →SR - 58.1 64.3 64.2

Rec →Jigsaw →VL 55.1 71.2 72.1 68.0
Rec →Completion →VL 55.1 67.9 70.6 67.2
Rec →Completion →Pseudo 55.1 67.9 71.1 67.8

Pre→ Rec - → Pseudo 58.2 58.2 60.6 61.3
Pre→ Rec → SR - 58.2 69.9 69.9 66.1
Pre→ Rec → Jig → Virtual 58.2 71.2 73.3 70.2
Pre→ Rec → Jig→ Completion → Virtual 58.2 72.3 75.1 66.9

Pre→ Rec→ Cls → SR→ Jig→ Completion → Virtual 59.1 74.5 75.8 66.8

Evaluation Metrics. The area under the ROC curve (AUC) serves
as a commonly usedmetric for evaluation and comparison. A higher
AUC score indicates a better anomaly detection capability.

4.2 Implementation Details
We train and evaluate our method with an NVIDIA RTX 3090 GPU.
In the training phase, we resize the resolution of all input video
clips to 256 × 256 pixels, while the values of the pixels in all frames
are normalized to the range [0, 1]. For the pre-training of the three
proxy tasks, we utilize AdamW as the optimizer while the length of
the continuous video clips is set to𝑇 = 9 frames. The initial learning
rate is set to 0.0003 and is gradually decayed following the scheme
of cosine annealing. In our reported experimental performance, the
shared backbone network 𝐹 consists of a convolutional layer and
three convolutional blocks. The structure and all experiments are
implemented in PyTorch.

4.3 Ablation Study
Given the diversity of perspectives and scenes within the Shang-
haiTech and Campus datasets, we conduct comprehensive ablation
experiments on both datasets.

In addition, to demonstrate that progressive learning is not lim-
ited to specific tasks, we also conduct experiments with other proxy
tasks besides the three mentioned above. For the visual proxy
task, we select the reconstruction [39] and classification [39] tasks.
For the semantic proxy task, we select the event completion [52]
and puzzle task [45]. For the open-set proxy task, we select the
background-agnostic [11] of synthesizing pseudo anomalies and
the Vision-Language task [49] of generating novel anomalies using
pre-trained multi-modal model.
Preliminary Experiments on Multi-Tasks Learning. As shown
in Fig. 1, simultaneous multi-task learning in VAD may lead to
model convergence to the sub-optimal point. We perform experi-
ments using more proxy tasks and the results are reported in Table
2. According to the experimental results, executing all proxy tasks
does not yield the best performance (ID 8, 9). In fact, its performance
is inferior to executing a single proxy task (ID 1). The experiments
for IDs 6, 8 achieve superior performance with fewer proxy tasks.
Notably, the experiment with ID 9 showed improved performance
on the Campus dataset compared to experiments with IDs 1 and 7.
However, the performance on the ShanghaiTech dataset decreased,
indicating that the model’s boost in performance on one task came
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at the expense of performance on other tasks. In addition, executing
visual, semantic and open-set proxy tasks simultaneously will all
yield better performance (ID 6, 8).
Ablation Study on Proxy Tasks Composition. As shown in
Table 3, we conduct ablation experiments with different combina-
tions of tasks. Models in which all three types of proxy tasks are
performed tend to obtain better performance when the training
order is consistent. The performance of the model is significantly
lower when a phase of the proxy task is missing. This improve-
ment is not limited to specific tasks. When there are more semantic
proxy tasks, the model achieves better performance on the Campus
dataset, which is attributed to the fact that the Campus dataset
contains mainly scene-dependent anomalies.
Ablation Study on Learning Sequences. As shown in Table 3,
only the models that followed this training order of "Visual proxy
tasks→ Semantic proxy tasks→ Open-set proxy tasks" are con-
tinuously improving in performance. This is because progressive
learning provides different but consecutive learning objectives. The
learning objectives of the previous task help to learn the subsequent
learning objectives. When the training sequence is not progressive
learning, the model’s performance will show a decrease rather than
a continuous increase during training.
Sensitivity to the Number of Proxy Tasks in Each Phase. In
Section 3, we perform only one proxy task at each phase in order
to succinctly present the training strategy for progressive learning.
In fact, the performance of the model improves as more tasks are
performed at each phase (there is an edge effect). As shown in
Table 3, following the learning sequence of progressive learning, the
performance of the model continuously improves with the increase
of tasks. However, there is a marginal effect of performance growth
with each phase of the task.

Table 4: Ablation experiments for simultaneous learning
of reweighted multiple proxy tasks. We report AUC (%) on
ShanghaiTech and Campus datasets. The best performing
results are marked in bold.

𝜔1 : 𝜔2 : 𝜔3
AUC

ShanghaiTech Campus
6:3:1 70.3 60.5
4:2:1 72.9 62.1
1:2:1 82.2 66.9
1:3:1 81.5 68.0
1:2:4 78.4 65.3
1:3:6 77.5 65.0

Progressive Learning 83.8 69.4

Ablation Study on Re-weighting.We conducted the following
experiments to verify that our progressive learning approach cannot
be replaced by reweighting of multiple proxy tasks. We assign
different weights to each stage of the training tasks then learn
them simultaneously. Higher weights represent that in learning
the model pays more attention to the learning objective of this
training task. The experimental results are shown in Table 4. The
combination of proxy tasks in this experiment is: prediction →
semantic reconstruction→ virtual data.

Table 5: Ablation Experiments for Each Phase. We report
AUC (%) on Avenue, Campus, and Ubnormal datasets.

Phase Avenue Campus Ubnormal
Per 86.9 57.9 60.1
Und 85.8 64.3 62.1
Inf 83.2 58.1 66.5
Per + Und 92.0 66.2 63.9
Per + Inf 92.5 57.0 67.6
Und + Inf 89.2 65.5 69.2
Per + Und + Inf 93.6 69.4 71.8

Ablation Experiments on Each Training Phase. We conduct
ablation experiments on three datasets, containing different types
of anomalies, to show the effectiveness of each phase (Avenue
dataset [27] for scene-independent anomalies, Campus dataset[3]
for scene-dependent anomalies, UBnormal dataset [1] for unseen
anomalies). The proxy tasks we perform in each of the three phases
are frame prediction, semantic reconstruction and applying virtual
data for training. Note that the virtual data we use for training is
the training set of UBnormal to avoid the problem of data leakage.
As shown in Table 5, after training on a particular phase, the model
achieves significant improvements on the corresponding dataset.

4.4 Comparisons with State-Of-The-Arts
We compare the proposed framework with SOTA methods with
AUC(%). It is worth noting that only a few works [1, 11, 26] in the
current literature utilize virtual data for feature learning (marked
with ∗ in Table 6). To ensure fair comparison, we report the per-
formance of models trained with and without virtual data (i.e.,
whether open-set proxy tasks are performed during training). Fur-
thermore, to fully demonstrate the effectiveness of progressive
learning, we train models using two sets of proxy tasks and report
performance accordingly. These sets consist of: a baseline version
𝑚𝑜𝑑𝑒𝑙𝑏𝑎𝑠𝑒 trained with simple direct proxy tasks (prediction, se-
mantic reconstruction, and virtual data-based classification), and
a sota version𝑚𝑜𝑑𝑒𝑙𝑠𝑜𝑡𝑎 trained with multiple widely-used proxy
tasks (prediction, reconstruction, jigsaw puzzle, and virtual data-
based classification).

Formally, the training sequence for𝑚𝑜𝑑𝑒𝑙∗
𝑏𝑎𝑠𝑒

is: prediction→
semantic reconstruction→ virtual data. The training sequence for
𝑚𝑜𝑑𝑒𝑙∗𝑠𝑜𝑡𝑎 is: prediction→ reconstruction→ jigsaw→ virtual data.
Results on Avenue. As shown in Table 6, our method achieved
the highest AUC scores, obtaining a AUC of 94.5%. With the simple
proxy tasks, our method still scored the best performance with
93.6% AUC scores.
Results on ShanghaiTech. Our proposed progressive learning
method yields a AUC of 88.6% on the ShanghaiTech dataset. With
the virtual data [26], we improve the AUC by 1.9% and by 3.8%
when performing widely-used proxy tasks instead of simple tasks.
With the simple proxy tasks, our method still achieves an AUC
score of 83.8%, which is superior to most methods. In compari-
son with the method [39] sequentially learning multiple proxy
tasks, our method achieves a significant improvement of 10.0%. The
huge improvement over sequential learning and methods that learn
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Table 6: Comparison with SOTA methods of the AUC(%) on
Avenue and ShanghaiTech datasets. The best performing
results are marked in bold.

ye
ar Method Task AUC

Avenue ShTech

Be
fo
re

20
21

Liu et al. [23] single 85.1 72.8
Gong et al. [13] multiple 83.8 71.2
Ionescu et al. [19] single 87.4 78.7
Park et al. [33] multiple 88.5 70.5
Liu et al. [25] multiple 91.1 76.2
Lv et al. [29] multiple 89.5 73.8
Georgescu et al. [10] multiple 91.5 82.4
Georgescu et al. [11]∗ multiple 92.3 82.7

20
22

Wang et al. [46] single 88.3 76.6
Wang et al. [45] single 92.2 84.3
Zaheer et al. [54] multiple 74.2 79.6
Chen et al. [5] multiple 90.3 78.1
Zhong et al. [59] multiple 89.0 74.5
Cho et al. [7] single 88.0 76.3
Yang et al. [51] single 89.9 74.7
Ristea et al. [35] multiple 92.9 83.6
Acsintoae et al. [1]∗ multiple 93.0 83.7

20
23

Yang et al. [50] single 89.9 73.8
Cao et al. [3] single 86.8 79.2
Liu et al. [22] single 92.8 78.8
Singh et al. [40] multiple 86.0 76.6
Sun et al. [43] multiple 92.4 83.0
Sun et al. [42] single 91.5 78.6
Shi et al. [39] multiple 91.5 78.6
Liu et al. [26]∗ single 90.9 78.8
Liu et al. [26] ∗ multiple 93.6 85.0

20
24

Zhang et al. [57]∗ multiple 93.2 86.2
Ristea et al. [36] ∗ multiple 91.3 79.1
𝑚𝑜𝑑𝑒𝑙∗

𝑏𝑎𝑠𝑒
(Ours) multiple 93.6 83.8

𝑚𝑜𝑑𝑒𝑙∗𝑠𝑜𝑡𝑎(Ours) multiple 94.5 88.6

Table 7: Results of AUC(%) on UCF-Crime dataset. The best
performing results are marked in bold.

Method Reference Task AUC
Park et al. [33] CVPR20 multiple 68.9
Georgescu et al. [10] CVPR21 multiple 74.6
Wang et al. [46] TNNLS22 single 72.9
Sun et al. [43] CVPR23 multiple 75.5
𝑚𝑜𝑑𝑒𝑙∗

𝑏𝑎𝑠𝑒
(Ours) - multiple 79.9

𝑚𝑜𝑑𝑒𝑙∗𝑠𝑜𝑡𝑎(Ours) - multiple 83.2

multiple proxy tasks simultaneously demonstrates the benefits of
progressive learning for model training.
Results on UCF-Crime. Due to the absence of published re-
sults (methods only learning from normal data) on the UCF-Crime
dataset, we implement the code from the existing literature [10,

Table 8: Results of the AUC(%) on Campus dataset. The best
performing results are marked in bold.

Method Reference Task AUC
Liu et al. [23] CVPR18 single 57.9
Gong et al. [13] CVPR19 multiple 61.9
Ionescu et al. [19] CVPR19 single 59.3
Park et al. [33] CVPR20 multiple 62.5
Liu et al. [25] ICCV21 multiple 63.7
Georgescu et al. [10] CVPR21 multiple 65.9
Wang et al. [46] TNNLS22 single 61.9
Wang et al. [45] ECCV22 single 65.8
Cao et al. [3] CVPR23 single 68.2
Zhang et al. [57] CVPR24 multiple 70.1
𝑚𝑜𝑑𝑒𝑙∗

𝑏𝑎𝑠𝑒
(Ours) - multiple 69.4

𝑚𝑜𝑑𝑒𝑙∗𝑠𝑜𝑡𝑎(Ours) - multiple 73.3

33, 43, 46]. As shown in Table 7, our proposed method achieves an
improvement compared to the second best method by 4.4% when
only learning simple tasks, and 7.7% when learning complex tasks.
Results on Campus.As shown in Table 8, our method achieves the
highest AUC score of 73.3%. Without the complex proxy tasks, our
method still obtain an AUC of 69.4%, surpassing other multi-task
methods [10, 13, 25, 33].

Compared to the Avenue dataset, which features a single scene,
the latter three datasets contain a greater variety of scenes and
anomaly types. The superior performance of progressive learn-
ing on the four datasets and the improvement on the latter three
datasets demonstrate its effectiveness.

5 Conclusion
In this paper, we thoroughly investigate the impact of task compo-
sition and training sequence on the performance improvement of
video anomaly detection in multi-task learning. To ensure sustained
performance improvement as the number of tasks increases, we
propose progressive learning of multiple proxy tasks. Progressive
learning provides different but continuous optimization objectives
at different phases of training, allowing knowledge learned in previ-
ous phases to contribute to subsequent training phases. Specifically,
we decompose video anomaly detection into three training phases:
perception, comprehension, and inference. Extensive experiments
on four challenging datasets not only demonstrate the effectiveness
of our proposed method but also show that the gains brought by
progressive learning are not limited to specific tasks.
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