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Abstract

Existing Graph Neural Networks (GNNs) compute the message exchange
between nodes by either aggregating uniformly (convolving) the features of
all the neighboring nodes, or by applying a non-uniform score (attending)
to the features. Recent works have shown the strengths and weaknesses of
the resulting GNN architectures, respectively, GCNs and GATs. In this
work, we aim at exploiting the strengths of both approaches to their full
extent. To this end, we first introduce the graph convolutional attention
layer (CAT), which relies on convolutions to compute the attention scores.
Unfortunately, as in the case of GCNs and GATs, we show that there exists
no clear winner between the three—neither theoretically nor in practice—as
their performance directly depends on the nature of the data (i.e., of the
graph and features). This result brings us to the main contribution of our
work, the learnable graph convolutional attention network (L-CAT): a GNN
architecture that automatically interpolates between GCN, GAT and CAT
in each layer, by adding two scalar parameters. Our results demonstrate
that L-CAT is able to efficiently combine different GNN layers along the
network, outperforming competing methods in a wide range of datasets, and
resulting in a more robust model that reduces the need of cross-validating.

1 Introduction

In recent years, Graph Neural Networks (GNNs) (Scarselli et al., 2008) have become ubiqui-
tous in machine learning, emerging as the standard approach in many settings. For example,
they have been successfully applied for tasks such as topic prediction in citation networks (Sen
et al., 2008); molecule prediction (Gilmer et al., 2017); and link prediction in recommender
systems (Wu et al., 2020a). These applications typically make use of message-passing
GNNs (Gilmer et al., 2017), whose idea is fairly simple: in each layer, nodes are updated by
aggregating the information (messages) coming from their neighboring nodes.

Depending on how this aggregation is implemented, we can define different types of GNN lay-
ers. Two important and widely adopted layers are graph convolutional networks (GCNs) (Kipf
& Welling, 2017), which uniformly average the neighboring information; and graph attention
networks (GATs) (Velickovic et al., 2018), which instead perform a weighted average, based
on an attention score between receiver and sender nodes. More recently, a number of works
have shown the strengths and limitations of both approaches from a theoretical (Fountoulakis
et al., 2022; Baranwal et al., 2021; 2022), and empirical (Knyazev et al., 2019) point of view.
These results show that their performance depends on the nature of the data at hand (i.e.,
the graph and the features), thus the standard approach is to select between GCNs and
GATs via computationally demanding cross-validation.

In this work, we aim to exploit the benefits of both convolution and attention operations in
the design of GNN architectures. To this end, we first introduce a novel graph convolutional
attention layer (CAT), which extends existing attention layers by taking the convolved
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features as inputs of the score function. Following (Fountoulakis et al., 2022), we rely
on a contextual stochastic block model to theoretically compare GCN, GAT, and CAT
architectures. Our analysis shows that, unfortunately, no free lunch exists among these three
GNN architectures since their performance, as expected, is fully data-dependent.

This motivates the main contribution of the paper, the learnable graph convolutional attention
network (L-CAT): a novel GNN which, in each layer, automatically interpolates between the
three operations by introducing only two scalar parameters. As a result, L-CAT is able to
learn the proper operation to apply at each layer, thus combining different layer types in the
same GNN architecture while overcoming the need to cross-validate—a process that was
prohibitively expensive prior to this work. Our extensive empirical analysis demonstrates
the capabilities of L-CAT on a wide range of datasets, outperforming existing baseline GNNs
in terms of both performance, and robustness to input noise and network initialization.

2 Preliminaries

Assume as input an undirected graph G = (V,E), where V = [n] denotes the set of vertices
of the graph, and E ⊆ V × V the set of edges. Each node i ∈ [n] is represented by a
d-dimensional feature vector Xi ∈ Rd, and the goal is to produce a set of predictions {ŷi}ni=1.

To this end, a message-passing GNN layer yields a representation h̃i ∈ Rd′
for each node

i, by collecting and aggregating the information from each of its neighbors into a single
message; and using the aggregated message to update its representation from the previous
layer, hi ∈ Rd. For the purposes of this work, we can define this operation as the following:

h̃i = f(h′
i) where h′

i
def
=

∑
j∈N∗

i

γijWvhj , (1)

where N∗
i is the set of neighbors of node i (including i), Wv ∈ Rd′×d a learnable matrix, f

an elementwise function, and γij ∈ [0, 1] are coefficients such that
∑

j γij = 1 for each node i.

Let the input features be h0
i = Xi, and hL

i = ŷi the predictions, then we can readily define
a message-passing GNN (Gilmer et al., 2017) as a sequence of L layers as defined above.
Depending on the way the coefficients γij are computed, we identify different GNN flavors.

Graph convolutional networks (GCNs) (Kipf & Welling, 2017) are simple yet effective.
In short, GCNs compute the average of the messages, i.e., they assign the same coefficient
γij = 1/|N∗

i | to every neighbor:

h̃i = f(h′
i) where h′

i
def
=

1

|N∗
i |

∑
j∈N∗

i

Wvhj , (2)

Graph attention networks take a different approach. Instead of assigning a fixed value
to each coefficient γij , they compute it as a function of the sender and receiver nodes. A
general formulation for these models can be written as follows:

h̃i = f(h′
i) where h′

i
def
=

∑
j∈N∗

i

γijWvhj and γij
def
=

exp(Ψ(hi,hj))∑
ℓ∈N∗

i
exp(Ψ(hi,hℓ))

. (3)

Here, Ψ(hi,hj)
def
= α(Wqhi,Wkhj) is known as the score function (or attention architecture),

and provides a score value between the messages hi and hj (or more generally, between
a learnable mapping of the messages). From these scores, the (attention) coefficients are
obtained by normalizing them, such that

∑
j γij = 1. We can find in the literature different

attention layers and, throughout this work, we focus on the original GAT (Velickovic et al.,
2018) and its extension GATv2 (Brody et al., 2022):

GAT: Ψ(hi,hj) = LeakyRelu
(
a⊤[Wqhi||Wkhj ]

)
, (4)

GATv2: Ψ(hi,hj) = a⊤LeakyRelu (Wqhi +Wkhj) , (5)

where the learnable parameters are now the attention vector a; and the matrices Wq, Wk,
and Wv. Following previous work (Velickovic et al., 2018; Brody et al., 2022), we assume
that these matrices are coupled, i.e., Wq = Wk = Wv. Note that the difference between the
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two layers lies in the position of the vector a: by taking it out of the nonlinearity, Brody
et al. (2022) increased the expressiveness of GATv2. Now, the product of a and a weight
matrix does not collapse into another vector. More importantly, the addition of two different
attention layers will help us show the versatility of the proposed models later in §6.

3 Previous work

In recent years, there has been a surge of research in GNNs. Here, we discuss other GNN
models, attention mechanisms, and the recent findings on the limitations of GCNs and GATs.

The literature on GNNs is extensive (Wu et al., 2020b; Hamilton et al., 2017a; Battaglia
et al., 2018; Lee et al., 2019), and more abstract definitions of a message-passing GNN are
possible, leading to other lines of work trying different ways to compute messages, aggregate
them, or update the final message (Hamilton et al., 2017b; Xu et al., 2019; Corso et al., 2020).
Alternatively, another line of work fully abandons message-passing, working instead with
higher-order interactions (Morris et al., 2019). While some of this work is orthogonal—or
directly applicable—to the proposed model, in the main paper we focus on convolutional
and attention graph layers, as they are the most widely used (and cited) as of today.

While we consider the original GAT (Velickovic et al., 2018) and GATv2 (Brody et al., 2022),
our work can be directly applied to any attention model that sticks to the formulation in
Eq. 3. For example, some works propose different metrics for the score function, like the
dot-product (Brody et al., 2022), cosine similarity (Thekumparampil et al., 2018), or a
combination of various functions (Kim & Oh, 2021). Other works introduce transformer-
based mechanisms (Vaswani et al., 2017) based on positional encoding (Dwivedi & Bresson,
2020; Kreuzer et al., 2021) or on the set transformer (Wang et al., 2021a). Finally, there also
exist attention approaches designed for specific type of graphs, such as relational (Yun et al.,
2019; Busbridge et al., 2019) or heterogeneous graphs (Wang et al., 2019b; Hu et al., 2020b).

3.1 On the limitations of GCN and GAT networks

Baranwal et al. (2021) studied classification on a simple stochastic block model, showing
that, when the graph is neither too sparse nor noisy, applying one layer of graph convolution
increases the regime in which the data is linearly separable. However, this result is highly
sensitive to the graph structure, as convolutions essentially collapse the data to the same
value in the presence of enough noise. More recently, Fountoulakis et al. (2022) showed that
GAT is able to remedy the above issue, and provides perfect node separability regardless
of the noise level in the graph. However, a classical argument (see Anderson (2003)) states
that in this particular setting a linear classifier already achieves perfect separability. These
works, in summary, showed scenarios for which GCNs can be beneficial in the absence of
noise, and that GAT can outperform GCNs in other scenarios, leaving open the question of
which architecture is preferable in terms of performance.

4 Convolved attention: benefits and hurdles

In this section, we propose to combine attention with convolution operations. To motivate
it, we complement the results of Fountoulakis et al. (2022), providing a synthetic dataset for
which any 1-layer GCN fails, but 1-layer GAT does not. Thus, proving a clear distinction
between GAT and GCN layers. Besides, we show that convolution helps GAT as long as
the graph noise is reasonable. The proofs for the two statements in this section appear in
Appendix A and follow similar arguments as in Fountoulakis et al. (2022).

This dataset is based on the contextual stochastic block model (CSBM) (Deshpande et al.,
2018). Let ε1, . . . , εn be iid. uniform samples from {−1, 0, 1}. Let Ck = {j ∈ [n] | εj = k}
for k ∈ {−1, 0, 1}. We set the feature vector Xi ∼ N (εiµ, I · σ2) where µ ∈ Rd, σ ∈ R, and
I ∈ {0, 1}d×d is the identity matrix. For a given pair p, q ∈ [0, 1] we consider the stochastic
adjacency matrix A ∈ {0, 1}n×n defined as follows: for i, j ∈ [n] in the same class (intra-edge),
we set aij ∼ Ber(p);1 for i, j in different classes (inter-edge), we set aij ∼ Ber(q). We denote

1Ber(·) denote the Bernoulli distribution.
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by (X,A) ∼ CSBM(n, p, q,µ, σ2) a sample obtained according to the above random process.
Our task is then to distinguish (or separate) nodes from C0 vs. C−1 ∪ C1.

Note that, in general, it is impossible to separate C0 from C−1 ∪ C1 with a linear classifier
and, using one convolutional layer is detrimental for node classification on the CSBM:2

although the convolution brings the means closer and shrinks the variance, the geometric
structure of the problem does not change. On the other hand, we prove that GAT is able to
achieve perfect node separability when the graph is not too sparse:

Theorem 1. Suppose that p, q = Ω(log2 n/n) and ∥µ∥2 = ω(σ
√
log n). Then, there exists

a choice of attention architecture Ψ such that, with probability at least 1− on(1) over the
data (X,A) ∼ CSBM(n, p, q,µ, σ2), GAT separates nodes C0 from C1 ∪ C−1.

Moreover, we show using methods from Baranwal et al. (2021), that the above classification
threshold ∥µ∥ can be improved when the graph noise is reasonable. Specifically, by applying
convolution prior to the attention score, the variance of the data is greatly reduced, and if
the graph is not too noisy, the operation dramatically lowers the bound in Thm. 1. We
exploit this insight by introducing the graph convolutional attention layer (CAT):

Ψ(hi,hj) = α(Wh̃i,Wh̃j) where h̃i =
1

|N∗
i |

∑
ℓ∈N∗

i

hℓ , (6)

where h̃i are the convolved features of the neighborhood of node i. As we show now, CAT
improves over GAT by combining convolutions with attention, when the graph noise is low.

Corollary 2. Suppose p, q = Ω(log2 n/n) and ∥µ∥ ≥ ω
(
σ
√

(p+2q) logn
n(p−q)2

)
. Then, there is a

choice of attention architecture Ψ such that CAT separates nodes C0 from C1 ∪ C−1, with
probability at least 1− o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2).

The above proposition shows that under the CSBM data model, convolving prior to attention
changes the regime for perfect node separability by a factor of |p− q|

√
n/(p+ 2q). This is

desirable when |p− q|
√
n/(p+ 2q) > 1, since the regime for perfect classification is increased.

Otherwise, applying convolution prior to attention reduces the regime for perfect separability.
Therefore, it is not always clear whether convolving prior to attention is beneficial.

5 L-CAT: Learning to interpolate

From the previous analysis, we can conclude that it is hard to know a priori whether
attention, convolution, or convolved attention, will perform the best. In this section, we
argue that this issue can be easily overcome by learning to interpolate between the three.

First, note that GCN and GAT only differ in that GCN weighs all neighbors equally (Eq. 2)
and, the more similar the attention scores are (Eq. 3), the more uniform the coefficients γij
are. Thus, we can interpolate between GCN and GAT by introducing a learnable parameter.
Similarly, the formulation of GAT (Eq. 3) and CAT (Eq. 6) differ in the convolution within
the score, which can be interpolated with another learnable parameter.

Following this observation, we propose the learnable convolutional attention layer (L-CAT),
which can be formulated as an attention layer with the following score:

Ψ(hi,hj) = λ1 · α(Wh̃i,Wh̃j) where h̃i =
hi + λ2

∑
ℓ∈Ni

hℓ

1 + λ2|Ni|
, (7)

where λ1, λ2 ∈ [0, 1]. As mentioned before, this formulation lets L-CAT learn to interpolate
between GCN (λ1 = 0), GAT (λ1 = 1 and λ2 = 0), and CAT (λ1 = 1 and λ2 = 1).

L-CAT enables a number of non-trivial benefits. Not only can it switch between existing
layers, but it also learns the amount of attention necessary for each use-case. Moreover, by

2We note that this problem can be easily solved by two layers of GCN (Baranwal et al., 2022).
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Figure 1: Synthetic data results. The left-most plots show accuracy as we vary the noise
level q for ∥µ∥ = 0.1 and ∥µ∥ = 4.3. The right-most plots show the accuracy as we change
the norm of the means ∥µ∥ for q = 0.1 and q = 0.3. We use two vertical lines to present the
classification threshold stated in Thm. 1 (solid line) and Cor. 2 (dashed line).

comprising the three layers in a single learnable formulation, it removes the necessity of
cross-validating the type of layer, as their performance is data-dependent (see §§3.1 and 4).
Remarkably, it allows to easily combine different layer types within the same architecture.

While we focus on GCN, L-CAT can be easily used with other GNN architectures such as
PNA (Corso et al., 2020) and GCNII (Chen et al., 2020), as L-CAT interpolates between
two different adjacency matrices. For further details and results, refer to App. F.

6 Experiments

In this section, we first validate our theoretical findings on synthetic data (§6.1). Then,
we show through various node classification tasks that (L-)CAT is as competitive as the
baseline models (§6.2). Lastly, we move to more demanding scenarios from the Open Graph
Benchmark (Hu et al., 2020a), demonstrating that L-CAT is a more flexible and robust
alternative to its baseline methods (§6.3) that reduces the need of cross-validating without
giving up on performance. Refer to Apps. B to F for details and additional results. The
code to reproduce the experiments can be found at https://github.com/psanch21/LCAT.

6.1 Synthetic data

First, we empirically validate our theoretical results (Thm. 1 and Cor. 2). We aim to better
understand the behavior of each layer as the properties of the data change, i.e., the noise
level q (proportion of inter-edges) and the distance between the means of consecutive classes
∥µ∥. We provide extra results and additional experiments in App. B.

Experimental setup. As data model, we use the proposed CSBM (see §4) with n = 10000,
p = 0.5, σ = 0.1, and d = n/

(
5 log2(n)

)
. All results are averaged over 50 runs, and

parameters are set as described in App. A. We conduct two experiments to assess the
sensitivity to structural noise. First, we vary the noise level q between 0 and 0.5, leaving the
mean vector µ fixed. We test two values of ∥µ∥: the first corresponds to the easy regime
(∥µ∥ = 10σ

√
2 log n) where classes are far apart; and the second correspond to the hard

regime (∥µ∥ = σ) where clusters are close. In the second experiment we instead sweep
∥µ∥ in the range

[
σ/20, 20σ

√
2 log n

]
, covering the transition from hard (small ∥µ∥) to easy

(large ∥µ∥) settings. Here, we fix q to 0.1 (low noise) and 0.3 (high noise). In both cases, we
compare the behavior of 1-layer GAT and CAT, and include GCN as the baseline.

Results. The two left-most plots of Fig. 1 show node classification performance for the hard
and easy regimes, respectively, as we vary the noise level q. In the hard regime, we observe
that GAT is unable to achieve separation for any value of q, whereas CAT achieves perfect
classification when q is small enough. This exemplifies the advantage of CAT over GAT as
stated in Cor. 2. When the distance between the means is large enough, we see that GAT
achieves perfect results independently of q, as stated in Thm. 1. In contrast, when CAT fails
to satisfy the condition in Cor. 2 (as we increase q), it achieves inferior performance.

The right-most part of Fig. 1 shows the results when we fix q and sweep ∥µ∥. In these two
plots, we can appreciate the transition in the accuracy of both GAT and CAT as a function
of ∥µ∥. We observe that GAT achieves perfect accuracy when the distance between the
means satisfies the condition in Thm. 1 (solid vertical line in Fig. 1). Moreover, we can see
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Table 1: Test accuracy (%) of the considered models for different datasets (sorted by their
average node degree), and averaged over ten runs. Bold numbers are statistically different to
their baseline model (α = 0.05). Best average performance is underlined.

Dataset
Amazon

Computers
Amazon
Photo

GitHub
Facebook
PagePage

Coauthor
Physics

TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

GCN 90.59 ± 0.36 95.13 ± 0.57 84.13 ± 0.44 94.76 ± 0.19 96.36 ± 0.10 57.83 ± 1.13

GAT 89.59 ± 0.61 94.02 ± 0.66 83.31 ± 0.18 94.16 ± 0.48 96.36 ± 0.10 57.59 ± 1.20
CAT 90.58 ± 0.40 94.77 ± 0.47 84.11 ± 0.66 94.71 ± 0.30 96.40 ± 0.10 58.09 ± 1.61
L-CAT 90.34 ± 0.47 94.93 ± 0.37 84.05 ± 0.70 94.81 ± 0.25 96.35 ± 0.10 57.88 ± 2.07

GATv2 89.49 ± 0.53 93.47 ± 0.62 82.92 ± 0.45 93.44 ± 0.30 96.24 ± 0.19 57.70 ± 1.17
CATv2 90.44 ± 0.46 94.81 ± 0.55 84.10 ± 0.88 94.27 ± 0.31 96.34 ± 0.12 57.99 ± 2.02
L-CATv2 90.33 ± 0.44 94.79 ± 0.61 84.31 ± 0.59 94.44 ± 0.39 96.29 ± 0.13 57.89 ± 1.53

the improvement CAT obtains over GAT. Indeed, when ∥µ∥ satisfies the conditions of Cor. 2
(dashed vertical line in Fig. 1), the classification threshold is improved. As we increase q we
see that the gap between the two vertical lines decreases, which means that the improvement
of CAT over GAT decreases as q increments, exactly as stated in Cor. 2.

6.2 Real data

We study now the performance of the proposed models in a comprehensive set of real-world
experiments, in order to gain further insights of the settings in which they excel. Specifically,
we found CAT and L-CAT to outperform their baselines as the average node degree increases.
For a detailed description of the datasets and additional results, refer to Apps. C, D and F.

Models. We consider as baselines a simple GCN layer (Kipf & Welling, 2017), the original
GAT layer (Velickovic et al., 2018) and its recent extension, GATv2 (Brody et al., 2022).
Based on the two attention models, we consider their CAT and L-CAT extensions. To
ensure fair comparisons, all layers use the same number of parameters and implementation.

Datasets. We consider six node classification datasets. The Facebook/GitHub/TwitchEN
datasets involve social-network graphs (Rozemberczki et al., 2021), whose nodes represent ver-
ified pages/developers/streamers; and where the task is to predict the topic/expertise/explicit-
language-use of the node. The Coauthor Physics dataset (Shchur et al., 2018) represents a
co-authorship network whose nodes represent authors, and the task is to infer their main
research field. The Amazon datasets represent two product-similarity graphs (Shchur et al.,
2018), where each node is a product, and the task is to infer its category.

Experimental setup. To ensure the best results, we cross-validate all optimization-related
hyperparameters for each model using GraphGym (You et al., 2020). All models use four
GNN layers with hidden size of 32, and thus have an equal number of parameters. For
evaluation, we take the best-validation configuration during training, and report test-set
performance. For further details, refer to App. D.

Results are presented in Table 1. In contrast with §6.1, we here find GCN to be a strong
contender, reinforcing its viability in real-world data despite its simplicity. We observe
both CAT and L-CAT not only holding up the performance with respect to their baselines
models for all datasets, but in most cases also improving the test accuracy in a statistically
significant manner. These results validate the effectiveness of CAT as a GNN layer, and
show the viability of L-CAT as a drop-in replacement, achieving good results on all datasets.
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)As explained in §4, CAT differs from a usual GAT in that

the score is computed with respect to the convolved features.
Intuitively, this means that CAT should excel in those settings
where nodes are better connected, allowing CAT to extract
more information from their neighborhoods. Indeed, in the
inset figure we can observe the improvement in accuracy of
CAT with respect to its baseline model, as a function of the
average node degree of the dataset, and the linear regression
fit of these results (dashed line). This plot includes all datasets
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Table 2: Test performance of the considered models on four OGB datasets, averaged over
five runs. Bold numbers are statistically different to their baseline model (α = 0.05). Best
average performance is underlined. Left table: accuracy (%); right table: AUC-ROC (%).

Dataset arxiv products mag

GCN 71.58 ± 0.20 74.12 ± 1.20 32.77 ± 0.36

GAT 71.58 ± 0.16 78.53 ± 0.91 32.15 ± 0.31
CAT 72.14 ± 0.21 77.38 ± 0.36 31.98 ± 0.46
L-CAT 71.99 ± 0.08 77.19 ± 1.11 32.47 ± 0.38

GATv2 71.73 ± 0.24 76.40 ± 0.71 32.76 ± 0.18
CATv2 72.03 ± 0.09 74.81 ± 1.12 32.43 ± 0.22
L-CATv2 71.97 ± 0.22 76.37 ± 0.92 32.68 ± 0.50

proteins

80.10 ± 0.55

79.08 ± 1.47
73.26 ± 1.65
79.63 ± 0.71

78.65 ± 1.44
74.33 ± 0.94
79.07 ± 0.98

(from the manuscript and App. D), and shows a positive trend between node connectivity
and improved performance achieved by CAT.

6.3 Open Graph Benchmark

In this section, we assess the robustness of the proposed models, in order to fully understand
their benefits. For further details and additional results, refer to App. E.

Datasets. We consider four datasets from the OGB suite (Hu et al., 2020a): proteins,
products, arxiv , and mag . Note that these datasets are significantly larger than those from
§6.2 and correspond to more difficult tasks, e.g., arxiv is a 40-class classification problem
(see Table 5 in App. C for details). This makes them more suitable for the proposed analysis.

Experimental setup. We adopt the same experimental setup as Brody et al. (2022) for
the proteins , products , and mag datasets. For the arxiv dataset, we use instead the example
code from OGB (Hu et al., 2020a), as it yields better performance than that of Brody et al.
(2022). Just as in §6.2, we compare with GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), GATv2 (Brody et al., 2022), and their CAT and L-CAT counterparts. We
cross-validate the number of heads (1 and 8), and select the best-validation models during
training. All models are identical except for their λ values.

Results are summarized in Table 2. Here we do not observe a clear preferred baseline: GCN
performs really well in proteins and mag ; GAT excels in products; and GATv2 does well in
arxiv and mag . While CAT obtains the best results on arxiv , its performance on proteins
and products is significantly worse than the baseline model. Presumably, an excessive amount
of inter-edges could explain why convolving the features prior to computing the score is
harmful, as seen in §6.1. As we explore in §6.3.2, however, CAT improves over its baseline
for most proteins scenarios, specially with a single head. In stark contrast, L-CAT performs
remarkably well, improving the baseline models in all datasets but products—even on those
in which CAT fails—demonstrating the adaptability of L-CAT to different scenarios.

To better understand the training dynamics of the models, we plot in Fig. 2a the test accuracy
of GCN and the GATv2 models during training on the arxiv dataset. Interestingly, despite
all models obtaining similar final results, CATv2 and L-CATv2 drastically improved their
convergence speed and stability with respect to GATv2, matching that of GCN. To understand
the behavior of L-CATv2, Fig. 2b shows the evolution of the λ parameters. We observe that,
to achieve these results, L-CATv2 converged to a GNN network that combines three types of
layers: the first layer is a CATv2 layer, taking advantage of the neighboring information; the
second layer is a quasi-GCN layer, in which scores are almost uniform and some neighboring
information is still used in the score computation; and the third layer is a pure GCN layer,
in which all scores are uniformly distributed. It is important to remark that these dynamics
are fairly consistent, as L-CATv2 reached the same λ values over all five runs.
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Figure 2: Behavior of GCN and GATv2-based models during training on the arxiv dataset.
(a) CAT and L-CAT converge quicker and more stably than their baseline model. (b) L-CAT
consistently converges to the same architecture: a CAT →quasi-GCN→GCN network.

6.3.1 Robustness to noise

One intrinsic aspect of real world data is the existence of noise. In this section, we explore
the robustness of the proposed models to different levels of noise, i.e., we attempt to simulate
scenarios where there exist measurement inaccuracies in the input features and edges.
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Experimental setup. We consider the arxiv dataset, and
the same experimental setup as in §6.3. We conduct two
experiments. First, we introduce to the node features
additive noise of the form N (0,1σ), and consider different
levels of noise, σ ∈ {0, 0.25, 0.5, 0.75, 1}. Then, as in (Brody
et al., 2022), we simulate edge noise by adding fake edges
with probability Bern(p) for p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
Results are shown in the inset figures for feature (top) and
edge noise (bottom), summarizing the performance of all
models over five runs and two numbers of heads (1 and 8).
Baseline attention models are quite sensitive to feature noise,
but are more robust to edge noise, as they can drop inter-
class edges (see §3.1). GCNs, as expected, are instead more
robust to feature noise, but suffer more in the presence of
edge noise. In concordance with the synthetic experiments
(see §§4 and 6.1), CAT is able to leverage convolutions as
a variance-reduction technique, reducing the variance and
improving its robustness to feature noise. Remarkably, L-
CAT proves to be the most robust for both types of noise:
by adapting the amount of attention used in each layer, it
outperforms existing methods and reduces the variance.

6.3.2 Robustness to network initialization

Another important aspect for real-world applications is robustness to network initialization,
i.e., the ability to obtain satisfying performance independently of the initial parameters.
Otherwise, a practitioner can waste lots of resources trying initilizations or, even worse, give
up on a model just because they did not try the initial parameters that yield great results.

Experimental setup. We follow once again the same setup for proteins as in §6.3. We
consider two different network initializations. The first one, uniform, uses uniform Glorot
initilization (Glorot & Bengio, 2010) with a gain of 1, which is the standard initialization
used throughout this work. The second one, normal , uses instead normal Glorot initializa-
tion (Glorot & Bengio, 2010) with a gain of

√
2. This is the initialization employed on the

original GATv2 paper (Brody et al., 2022) exclusively for the proteins dataset.

Results—segregated by number of heads—are shown in Table 3, while the results for GCN
appear in the inset table. These results show that the baseline models perform poorly on the

8



Published as a conference paper at ICLR 2023

Table 3: Test AUC-ROC (%) on the proteins dataset for attention models with two different
network initializations (see §6.3.2), using 1 head (top) and 8 heads (bottom).

GAT CAT L-CAT GATv2 CATv2 L-CATv2
1
h uniform 59.73 ± 3.61 64.32 ± 2.33 77.77 ± 1.28 59.85 ± 2.73 64.32 ± 2.33 79.08 ± 0.95

normal 66.38 ± 6.94 73.26 ± 1.65 78.06 ± 1.25 69.13 ± 8.48 74.33 ± 0.94 79.07 ± 0.98

8
h uniform 72.23 ± 2.86 73.60 ± 1.14 78.85 ± 1.57 75.21 ± 1.61 74.16 ± 1.30 78.77 ± 0.97

normal 79.08 ± 1.47 74.67 ± 1.15 79.63 ± 0.71 78.65 ± 1.44 73.40 ± 0.56 79.30 ± 0.49

average 69.36 ± 8.52 73.93 ± 1.35 78.58 ± 1.48 70.71 ± 8.70 71.55 ± 4.54 79.05 ± 0.91
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Figure 3: Distribution of λ1, λ2 on proteins dataset for L-CAT across initializations.

uniform initialization. However, this is somewhat alleviated when using 8 heads in the atten-
tion models. Moreover, all baselines significantly improve with normal initialization, being
GCN the best model, and attention models obtaining 79% accuracy on average with 8 heads.

GCN

uniform 61.08 ± 2.56
normal 80.10 ± 0.55

average 70.59 ± 10.21

Compared to the baselines, CAT does a good job and improves
the performance in all cases except for normal with 8 heads.
Remarkably, L-CAT consistently obtains high accuracy in all
scenarios and runs. To emphasize consistency, bottom row shows
the average accuracy across runs, showing that L-CAT is clearly
more robust to parameter initialization than competing models.

To understand this performance, we inspect the distribution of λ1, λ2 for L-CAT in Fig. 3.
Here, we can spot a few interesting patterns. Consistently, the first and last layers are always
GCNs, while the inner layers progressively admit less attention. Second, the number of
heads affects the amount of attention allowed in the network; the more heads, the more
expressive the layer tends to be, and more attention is permitted. Third, L-CAT adapts to
the initialization used: in uniform, it allows more attention in the second layer; in normal , it
allows more attention in the score inputs. These results consolidate the flexibility of L-CAT.

7 Conclusions and future work

In this work, we studied how to combine the strengths of convolution and attention layers in
GNNs. We proposed CAT, which computes attention with respect to the convolved features,
and analyzed its benefits and limitations on a new synthetic dataset. This analysis revealed
different regimes where one model is preferred over the others, reinforcing the idea that
selecting between GCNs, GATs, and now CATs, is a difficult task. For this reason, we
proposed L-CAT, a model which interpolates between the three via two learnable parameters.
Extensive experimental results demonstrated the effectiveness of L-CAT, yielding great
results while being more robust than other methods. As a result, L-CAT proved to be a
viable drop-in replacement that removes the need to cross-validate the layer type.

We strongly believe learnable interpolation can get us a long way, and we hope L-CAT to
motivate new and exciting work. Specially, we are eager to see L-CAT in real applications,
and thus finding out what combining different GNN layers across a model (without the
hurdle of cross-validating all layer combinations) can lead to in the real-world.

9
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A Theoretical results

A.1 A hard example for GCN

In this subsection, we present a dataset and classification task for which GCN performs
poorly. Note that we follow the similar techniques and notation as (Fountoulakis et al.,
2022), as described in the main paper.

We recall our data model. Fix n, d ∈ N and let ε1, . . . , εn be i.i.d uniformly sampled from
{−1, 0, 1}. Let Ck = {j ∈ [n] | εj = k} for k ∈ {−1, 0, 1}. For each index i ∈ [n], we set the
feature vector Xi ∈ Rd as Xi ∼ N (εi · µ, I · σ2), where µ ∈ Rd, σ ∈ R and I ∈ {0, 1}d×d is
the identity matrix. For a given pair p, q ∈ [0, 1] we consider the stochastic adjacency matrix
A ∈ {0, 1}n×n defined as follows. For i, j ∈ [n] in the same class, we set aij ∼ Ber(p), and
if i, j are in different classes, we set aij ∼ Ber(q). We let D ∈ Rn×n be a diagonal matrix
containing the degrees of the vertices. We denote by (X,A) ∼ CSBM(n, p, q,µ, σ2) a sample
obtained according to the above random process.

The task we wish to solve is classifying C0 vs C−1 ∪ C1. Namely, we want our model φ to
satisfy φ(Xi) < 0 if and only if i ∈ C0. Moreover, note that the posed problem is not linearly
classifiable.

To this end, we start by stating an assumption on the choice of parameters. This assumption
is necessary to achieve degree concentration in the graph.

Assumption 1. p, q = Ω(log2 n/n) .

We now show the distribution of the convolved features. The following lemma can be easily
obtained using the techniques in Baranwal et al. (2021).

Lemma 3. Fix p, q satisfying Assumption 1. With probability at least 1− o(1) over A and
{εi}i,

(D−1AX)i ∼ N
(
εi ·

p− q

p+ 2q
µ,

σ2

n(p+ 2q)

)
, ∀i ∈ [n].

To prove the above lemma, we need the following definition of our high probability event.

Definition 1. We define the even E as the intersection of the following events over A and
{εi}i:
1. E1 is the event that |C0| = n

3 ±O(
√
n log n), |C1| = n

3 ±O(
√
n log n)

and |C−1| = n
3 ±O(

√
n log n).

2. E2 is the event that for each i ∈ [n], Dii =
n(p+2q)

3

(
1± 10√

logn

)
.

3. E3 is the event that for each i ∈ [n] and k ∈ {−1, 0, 1},

|Ni ∩ Ck| =

Dii · p
p+2q ·

(
1± 10√

logn

)
if i ∈ Ck

Dii · q
p+2q ·

(
1± 10√

logn

)
if i /∈ Ck

.

The following lemma is a direct application of Chernoff bound and a union bound.

Lemma 4. With probability at least 1− 1/poly(n) the event E holds.

Proof of Lemma 3. By applying Lemma 4, and conditioned on E, for any i ∈ [n]

(D−1AX)i =
1

Dii

∑
j∈Ni

Xj =
1

Dii

 ∑
j∈Ni∩C−1

Xj +
∑

j∈Ni∩C0

Xj +
∑

j∈Ni∩C1

Xj

 .

Using the definition of E and properties of Gaussian distributions the lemma follows.
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Lemma 3 shows that essentially, the convolution reduced the variance and moved the means
closer, but the structure of the problem stayed exactly the same. Therefore, one layer of
GCN cannot separate C0 from C−1 ∪ C1 with high probability.

A.2 A solution for GAT and CAT

In what follows, we show that GAT is able to handle the above classification task easily
when the distance between the means is large enough. Then, we show how the additional
convolution on the inputs to the score function improves the regime of perfect classification
when the graph is not too noisy. Our main technical lemma considers a specific attention
architecture and characterize the attention scores for our data model.

Lemma 5. Suppose that p, q satisfy Assumption 1, ∥µ∥ ≥ ω
(
σ
√
log n

)
, fix the LeakyRelu

constant β ∈ (0, 1) and R ∈ R. Then, there exists a choice of attention architecture Ψ such
that with probability at least 1 − on(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2) the
following holds.

Ψ(Xi,Xj) =



10Rβ∥µ∥(1± o(1)) if i, j ∈ C2
1

−2R∥µ∥(1 + 2β)(1± o(1)) if i, j ∈ C2
−1

−2R∥µ∥(1 + 5β)(1± o(1)) if i ∈ C1, j ∈ C−1

10Rβ∥µ∥(1± o(1)) if i ∈ C−1, j ∈ C1

−R
2 ∥µ∥(1− 21β)(1± o(1)) if i ∈ C0, j ∈ C1

−R
2 ∥µ∥(1− 11β)(1± o(1)) if i ∈ C0, j ∈ C−1

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C1, j ∈ C0

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C−1, j ∈ C0

2Rβ∥µ∥(1± o(1)) if i, j ∈ C2
0

.

Proof. We consider as an ansatz the following two layer architecture Ψ.

w̃
def
=

µ

∥µ∥ , S
def
=



1 1
−1 −1
1 −1
−1 1
0 1
1 0
0 −1
−1 0


, b

def
=



−3/2
−3/2
−3/2
−3/2
−1/2
−1/2
−1/2
−1/2


· ∥µ∥, r

def
= R ·



2
−2
−2
2
−1
−1
−1
−1


,

where R > 0 is an arbitrary scaling parameter. The output of the attention model is defined
as

Ψ(Xi,Xj)
def
= rT · LeakyRelu

(
S ·

[
w̃TXi

w̃TXj

]
+ b

)
.

Let ∆ij
def
= S ·

[
w̃TXi

w̃TXj

]
+ b ∈ R8, and note that for each element t ∈ [8] of ∆ij , we have that

(∆ij)t = St,1w̃
TXi + St,2w̃

TXj + bt. Note that the random variable (∆ij)t is distributed
as follows:

(∆ij)t ∼



N
(
(St,1 + St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i, j ∈ C2
1

N
(
−(St,1 + St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i, j ∈ C2
−1

N
(
(St,1 − St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C1, j ∈ C−1

N
(
−(St,1 − St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C−1, j ∈ C1

N
(
St,2w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C0, j ∈ C1

N
(
−St,2w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C0, j ∈ C−1

N
(
St,1w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C1, j ∈ C0

N
(
−St,1w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C−1, j ∈ C0

N
(
bt, ∥St,∗∥2σ2

)
if i, j ∈ C2

0

.
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Therefore, for a fixed i, j ∈ [n]2 we have that the entries of ∆ij are distributed as follows
(where we use N y

x as abbreviation for the Gaussian N (x, y))[
N 4σ2

∥µ∥
2

N 4σ2

−7∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

N σ2

∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

]
for i, j ∈ C2

1 ,[
N 4σ2

− 7∥µ∥
2

N 4σ2

∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

N σ2

∥µ∥
2

]
for i, j ∈ C2

−1,[
N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

∥µ∥
2

N 4σ2

− 7∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

N σ2

∥µ∥
2

N σ2

− 3∥µ∥
2

]
for i, j ∈ C1 × C−1,[

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 7∥µ∥
2

N 4σ2

∥µ∥
2

N σ2

∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

]
for i, j ∈ C−1 × C1,[

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N σ2

∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

]
for i, j ∈ C0 × C1,[

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

∥µ∥
2

N σ2

− ∥µ∥
2

]
for i, j ∈ C0 × C−1,[

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− 3∥µ∥
2

]
for i, j ∈ C1 × C0,[

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

∥µ∥
2

]
for i, j ∈ C−1 × C0,[

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

]
for i, j ∈ C2

0 ,

Next, we will use the following lemma regarding LeakyRelu concentration.

Lemma 6 (Lemma A.6 in Fountoulakis et al. (2022)). Fix s ∈ N, and let z1, . . . , zs be
jointly Gaussian random variables with marginals zi ∼ N (µi, σ

2
i ). There exists an absolute

constant C > 0 such that with probability at least 1− os(1), we have

LeakyRelu(zi) = LeakyRelu (µi)± Cσi

√
log s, for all i ∈ [s].

Using Lemma 6 with the assumption on ∥µ∥ and a union bound, we have that with probability
at least 1− on(1), LeakyRelu(∆ij) is (up to 1± o(1))[

∥µ∥
2

−7β∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

]
for i, j ∈ C2

1 ,[
− 7β∥µ∥

2
∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

∥µ∥
2

]
for i, j ∈ C2

−1,[
− 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2 − 7β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

∥µ∥
2 − 3β∥µ∥

2

]
for i, j ∈ C1 × C−1,[

− 3β∥µ∥
2 − 3β∥µ∥

2 − 7β∥µ∥
2

∥µ∥
2

∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

]
for i, j ∈ C−1 × C1,[

−β∥µ∥
2 − 5β∥µ∥

2 − 5β∥µ∥
2 −β∥µ∥

2
∥µ∥
2 −∥µ∥

2 − 3β∥µ∥
2 −∥βµ∥

2

]
for i, j ∈ C0 × C1,[

− 5β∥µ∥
2 −β∥µ∥

2 −β∥µ∥
2 − 5β∥µ∥

2 − 3β∥µ∥
2 −β∥µ∥

2
∥µ∥
2 −β∥µ∥

2

]
for i, j ∈ C0 × C−1,[

−β∥µ∥
2 − 5β∥µ∥

2 −β∥µ∥
2 − 5β∥µ∥

2 −β∥µ∥
2

∥µ∥
2 −β∥µ∥

2 − 3β∥µ∥
2

]
for i, j ∈ C1 × C0,[

− 5β∥µ∥
2 −β∥µ∥

2 − 5β∥µ∥
2 −β∥µ∥

2 −β∥µ∥
2 − 3β∥µ∥

2 −∥βµ∥
2

∥µ∥
2

]
for i, j ∈ C−1 × C0,[

− 3β∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2 − 3β∥µ∥

2 −β∥µ∥
2 −β∥µ∥

2 −β∥µ∥
2 −β∥µ∥

2

]
for i, j ∈ C2

0 .
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Then,

rT · LeakyRelu(∆ij) =



10Rβ∥µ∥(1± o(1)) if i, j ∈ C2
1

−2R∥µ∥(1 + 2β)(1± o(1)) if i, j ∈ C2
−1

−2R∥µ∥(1 + 5β)(1± o(1)) if i ∈ C1, j ∈ C−1

10Rβ∥µ∥(1± o(1)) if i ∈ C−1, j ∈ C1

−R
2 ∥µ∥(1− 21β)(1± o(1)) if i ∈ C0, j ∈ C1

−R
2 ∥µ∥(1− 11β)(1± o(1)) if i ∈ C0, j ∈ C−1

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C1, j ∈ C0

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C−1, j ∈ C0

2Rβ∥µ∥(1± o(1)) if i, j ∈ C2
0

,

and the proof is complete.

Next we will define our high probability event.

Definition 2. E ′ def
= E ∩E∗, where E∗ is the event that for a fixed w ∈ Rd, all i ∈ [n] satisfy

|wTXi −E[wTXi]| ≤ 10σ∥w∥2
√
log n.

The following lemma is obtained by using Lemma 4 with standard Gaussian concentration
and a union bound.

Lemma 7. With probability at least 1− 1/poly(n) event E ′ holds.

Corollary 8. Suppose that p, q satisfy Assumption 1, ∥µ∥ = ω(σ
√
log n) and fix R ∈ R.

Then, there exists a choice of attention architecture Ψ such that with probability 1− on(1)
over (A,X) ∼ CSBM(n, p, q,µ, σ2) it holds that

γij =


3
np (1± o(1)) if i, j ∈ C2

0 ∪ C2
1

3
nq (1± o(1)) if i, j ∈ C−1 × C1
3
nq exp(−Θ(R∥µ∥)) if i, j ∈ C−1 × C−1 ∪ C0
3
np exp(−Θ(R∥µ∥)) otherwise

,

where R is a parameter of the architecture.

Proof. The proof is immediate. First applying the ansatz from Lemma 5 with β < 1/25,
Lemma 7 and a union bound. Using the definition of γij concludes the proof.

Next, we prove Thm. 1 that the model distinguish nodes from C0 for any choice of p, q
satisfying Assumption 1. We restate the theorem for convince.

Theorem 9 (Formal restatement of Thm. 1). Suppose that p, q satisfy Assumption 1 and
∥µ∥2 = ω(σ

√
log n). Then, there exists a choice of attention architecture Ψ such that with

probability at least 1− on(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the estimator

x̂i
def
=

∑
j∈Ni

γijw̃
TXj + b where w̃ = µ/∥µ∥, b = −∥µ∥/2

satisfies x̂i < 0 if and only if i ∈ C0.

Proof. Let Ψ be the architecture from Cor. 8 and let R satisfy R∥µ∥2 = ω(1). We will
compute the mean and variance of the estimator x̂i conditioned on E ′. Suppose that i ∈ C0.
By using Cor. 8, Definition 2 and our assumption on ∥µ∥ and R, we have

max

{
3

np
exp(−Θ(R∥µ∥)), 3

nq
exp(−Θ(R∥µ∥))

}
= o

(
1

n(p+ 2q)

)
,
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and therefore

E
[
x̂i | E ′] = E

 ∑
k∈{−1,0,1}

∑
j∈Ni∩Ck

γijw̃
TXj | E ′

− ∥µ∥
2

= E[|C0 ∩Ni| | E ′]

(
± 3

np
(1± o(1)) · 10σ

√
log n

)
+E[|C1 ∩Ni| | E ′]

(
o

(
1

n(p+ 2q)

)
· (∥µ∥ ± 10σ

√
log n)

)
+E[|C−1 ∩Ni| | E ′]

(
o

(
1

n(p+ 2q)

)
· (−∥µ∥ ± 10σ

√
log n)

)
− ∥µ∥

2

= −∥µ∥
2

(1± o(1)).

By similar reasoning we have that for i ∈ C−1 ∪ C1, E
[
x̂i | E ′] = ∥µ∥

2 (1± o(1)).

Next, we claim that for each i ∈ [n] the random variable x̂i given E ′ is sub-Gaussian with a
small sub-Gaussian constant compared to the above expectation. The following lemma is a
straightforward adaptation of Lemma A.11 in Fountoulakis et al. (2022), and we provide its
proof for completeness.

Lemma 10. Conditioned on E ′, the random variables {x̂i}i are sub-Gaussian with parameter

σ̃2
i = O

(
σ2

np

)
if i ∈ C0 ∪ C1 and σ̃2

i = O
(

σ2

nq

)
otherwise.

Proof. Fix i ∈ [n], and write Xi = εiµ+ σgi where gi ∼ N (0, Id), and εi denotes the class
membership. Consider x̂i as a function of g = [g1 ◦ g2 ◦ · · · ◦ gn] ∈ Rnd, where ◦ denotes
vertical concatenation. Namely, consider the function

x̂i = fi(g)
def
=

∑
j∈Ni

γij(g) w̃
T (εjµ+ σgj)− ∥µ∥/2, i ∈ [n].

Since g ∼ N (0, Ind), proving that x̂i given E ′ is sub-Gaussian for each i ∈ [n], reduces to
showing that the function fi : Rnd → R is Lipschitz over E ⊆ Rnd defined by E ′ and the

relation Xi = εiµ+σgi. That is, E
def
=

{
g ∈ Rnd

∣∣ |w̃Tgi| ≤ 10
√
log n,∀i ∈ [n]

}
. Specifically,

we show that conditioning on the event E ′ (which restricts g ∈ E), the Lipschitz constant

Lfi of fi satisfies Lfi = O
(

σ√
np

)
for i ∈ C0 ∪ C1 and Lfi = O

(
σ
nq

)
otherwise, and hence

proving the claim.

First note that event E ′ induce a transformation which transforms isotropic Gaussians to
truncated Gaussians vectors. Similarly to Fountoulakis et al. (2022), we can show that this
transformation can be obtained by a push-forward mapping whose Lipschitz constant is 1.

v̄ = M(v)
def
= [τ(v1), τ(v2), . . . , τ(vn)]

T (8)

where τ(x)
def
= Φ−1((1− 2c)Φ(x) + c) for c = Φ(−10

√
log n).

To compute the Lipschitz constant of fi(g) for i ∈ [n], let us denote X = [X1 ◦X2 ◦ · · · ◦Xn]
and consider the function

f̃i(X)
def
=

∑
j∈Ni

γij(X) w̃TXj , i ∈ [n]

Let us assume without loss of generality that i ∈ C0 (the cases for i ∈ C1 and i ∈ C−1

are obtained identically). Conditioning on the event E ′, which imposes the restriction that

X ∈ Ẽ where

Ẽ
def
=

{
X ∈ Rnd

∣∣ |Xi − εiµ| ≤ 10σ
√
log n, ∀i ∈ [n]

}
.
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Conditioning on E ′ (which restricts X,X′ ∈ Ẽ), using Cor. 8 and recalling that R satisfies
R∥µ∥2 = ω(1), we get3∣∣∣f̃i(X)− f̃i(X

′)
∣∣∣

≃

∣∣∣∣∣∣
∑

j∈Ni∩C0

3

np
w̃T (Xj −X′

j) +
∑

j∈Ni∩C1

3

np
· e−Θ(R∥µ∥2)w̃T (Xj −X′

j) +
∑

j∈Ni∩C−1

3

np
· e−Θ(R∥µ∥2)w̃T (Xj −X′

j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣


3
np (1± o(1))w̃ if j ∈ Ni ∩ C0
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C1
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C−1

0 if j /∈ Ni


T

j∈[n]

(X−X′)

∣∣∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥∥∥∥


3
np (1± o(1))w̃ if j ∈ Ni ∩ C0
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C1
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C−1

0 if j /∈ Ni


j∈[n]

∥∥∥∥∥∥∥∥∥
2

∥X−X′∥2

≤
√

3

np
(1 + o(1))∥w̃∥2 ∥X−X′∥2

=

√
3

np
(1 + o(1)) ∥X−X′∥2 .

This shows the Lipschitz constant of f̃i(X) over Ẽ satisfies Lf̃i
= O

(
1√
np

)
. On the other

hand, by viewing X as a function of g, it is straightforward to see that the function

h(g) : Rnd → Rnd defined by h(g)
def
= X(g) has Lipschitz constant Lh = σ, as

∥h(g)− h(g′)∥2 = ∥εµ+ σg − (εµ+ σg′)∥2 = σ∥g − g′∥2.
Therefore, since fi(g) = f̃i(h(g)) and g ∈ E if and only if X ∈ Ẽ, we have that, conditioning
on E ′, the function x̂i = fi(g) is Lipschitz continuous with Lipschitz constant Lfi = Lf̃i

Lh =

O
(

σ√
np

)
. Since g ∼ N (0, Ind), we know that x̂i is sub-Gaussian with sub-Gaussian constant

σ̃2 = L2
fi

= O
(

σ2

np

)
.

The following lemma will be used for bounding the misclassification probability.

Lemma 11 (Rigollet & Hütter (2015)). Let x1, . . . , xn be sub-Gaussian random variables
with the same mean and sub-Gaussian parameter σ̃2. Then,

E

[
max
i∈[n]

(xi −E[xi])

]
≤ σ̃

√
2 log n.

Moreover, for any t > 0

Pr

[
max
i∈[n]

(xi −E[xi]) > t

]
≤ 2n exp

(
− t2

2σ̃2

)
.

We bound the probability of misclassification

Pr

[
max
i∈C0

x̂i ≥ 0

]
≤ Pr

[
max
i∈C0

x̂i > t+E[x̂i]

]
,

for t < |E[x̂i]| = ∥µ∥2

2 (1± o(1)). By Lemma 10, picking t = Θ
(
σ
√
log |C0|

)
and applying

Lemma 11 implies that the above probability is 1/poly(n).

3We drop the (1±o(1)) in the first line of the computation for compactness and use ≃ as notation.
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Similarly for class C1 ∪ C−1 we have that the misclassification probability is

Pr

[
min

i∈C1∪C−1

x̂i ≤ 0

]
= Pr

[
− max

i∈C1∪C−1

(−x̂i) ≤ 0

]
= Pr

[
max

i∈C1∪C−1

(−x̂i) ≥ 0

]
≤ Pr

[
max

i∈C1∪C−1

−x̂i > t−E[x̂i]

]
,

for t < E[x̂i]. Picking t = Θ
(
σ
√
log |C1 ∪ C−1|

)
and applying Lemma 11 and a union bound

over the misclassification probabilities of both classes conclude the proof of the corollary.

Combining Thm. 9 with Lemma 3, we immediately get Cor. 2 which we restate below.

Corollary 12. Suppose p, q = Ω(log2 n/n) and ∥µ∥ ≥ ω
(
σ
√

(p+2q) logn
n(p−q)2

)
. Then, there is a

choice of attention architecture Ψ such that, with probability at least 1− o(1) over the data
(X,A) ∼ CSBM(n, p, q,µ, σ2), CAT separates nodes C0 from C1 ∪ C−1.
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B Synthetic experiments

In this section, we present the complete results for the synthetic data experiments of §6.1.
First, we describe the parameterization we use for the 1-layer GCN, GAT, and CAT models;
then, we verify the behavior of the normalized score function (γij) matches that of the theory
presented in Cor. 8. In particular, we visualize the average of the following three groups of
gammas (Fig. 4):

• Gammas γij included in i, j ∈ C2
0 ∪ C2

1 . Solid lines.

• Gammas γij included in i, j ∈ C−1 × C1. Dashed lines.

• The rest of gammas. Dotted lines.

For completeness, we also include the empirical results that validate Thm. 1 and Cor. 2,
which were discussed already in §6.1.

Experimental setup. We assume the following parametrization for the 1-layer GCN, GAT,
and CAT:

h′
i =

∑
j∈Ni

γijw̃
TXj

− C · ∥µ∥/2 , (9)

where Ni are the set of neighbors of node i, Xj are the features of node j—obtained from
the CSBM described in §4, and h′

i are the logits of the prediction of node i. Note that for
GCN we have γij =

1
|N∗

i |
. Otherwise, we consider the following parameterization of the score

function Ψ:

γij =
exp (Ψ(hi,hj))∑

k∈N∗
i
exp(Ψ(hi,hk))

where (10)

Ψ(hi,hj)
def
= rT · LeakyRelu

(
S ·

[
w̃Thi

w̃Thj

]
+ b

)
. (11)

For these experiments, we define the parameters w̃, S, b and r as in the proofs in App. A:

w̃
def
=

µ

∥µ∥ , S
def
=



1 1
−1 −1
1 −1
−1 1
0 1
1 0
0 −1
−1 0


, b

def
=



−3/2
−3/2
−3/2
−3/2
−1/2
−1/2
−1/2
−1/2


· ∥µ∥ · C, r

def
= R ·



2
−2
−2
2
−1
−1
−1
−1


, (12)

where R > 0 and C > 0 are arbitrary scaling parameters. Both C and R and input to
the score function are set different for each of the models, as indicated in Table 4. In
particular, we set R = 7

∥µ∥ for both GAT and CAT such that: i) all γij are distinguishable

as we decrease ∥µ∥; and ii) we avoid numerical instabilities in the implementation when
computing the exponential of R× ∥µ∥ in order to obtain γij (see Cor. 8), as the exponential
of small or large values leads to under/overflow issues. As for C, we set C = 1 for GAT and
C = (p− q)/(p+ 2q) for CAT such that we counteract the fact that the distance between
classes shrink as we increase q, see Lemma 3:

Regarding the data model, we set (as described in §6.1) n = 10000, p = 0.5, σ = 0.1, and
d = n/

(
5 log2(n)

)
. We set the slope of the LeakyReLU activation to β = 1/5 for the GAT

and β = 0.01 for CAT, such that the proof of Cor. 8 is valid. As described in the main paper,
to assess the sensitivity to structural noise, we present the complete results for two sets of
experiments. First, we vary the noise level q between 0 and 0.5, fixing the mean vector µ. We
test two values of ∥µ∥: the first corresponds to the easy regime (∥µ∥ = 10σ

√
2 log n ≈ 4.3)

where classes are far apart; and the second correspond to the hard regime (∥µ∥ = σ = 0.1)
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Table 4: Parameters for the synthetic experiments.

Model C R hi

GCN 0 − −
GAT 1 7

∥µ∥ Xi

CAT p−q
p+2q

7
∥µ∥

1
|N∗

i |
∑

k∈N∗
i
Xk
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Figure 4: Synthetic data results. On the top row, we show the node classification, and in
the following two rows we show the γij values for GAT and CAT respectively. In the two
left-most figures, we show how the results vary with the noise level q for ∥µ∥ = 0.1 and
∥µ∥ = 4.3. In the two right-most figures, we show how the results vary with the norm of the
means ∥µ∥ for q = 0.1 and q = 0.3. We use two vertical lines to present the classification
threshold stated in Thm. 1 (solid line) and Cor. 2 (dashed line).

where the distance between the clusters is small. In the second experiment we modify
instead the distance between the means, sweeping ∥µ∥ in the range

[
σ/20, 20σ

√
2 log n

]
which corresponds to [0.005, 8.58], and thus covering the transition from the hard setting
(small ∥µ∥) to the easy one (large ∥µ∥). In these experiments, we fix q to 0.1 (low noise)
and 0.3 (high noise).

Results are summarized in Fig. 4. The top row contains the node classification performance
for each of the models (i.e., Fig. 1), the next two rows contain the γij values for GAT and
CAT respectively. The two left-most columns of Fig. 4 show the results for the hard and
easy regimes, respectively, as we vary the noise level q. In the hard regime, we observe
that GAT is unable to achieve separation for any value of q, whereas CAT achieves perfect
classification when q is small enough. The gamma plots help shed some light on this question.
For GAT, we observe that the gammas represented with the dotted and solid lines collapse
for any value of q (see middle plot), while this does not happen for CAT when the noise
level is low (see bottom plot). This exemplifies the advantage of CAT over GAT as stated in
Cor. 2. When the distance between the means is large enough, we see that GAT achieves
perfect results independently of q, as stated in Thm. 1. We also observe that, in this case,
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Figure 5: Synthetic data results learning C, λ1 and λ2. On the top row, we show the node
classification accuracy, and in the bottom row we show the learned values of λ1 and λ2 for
L-CAT. In the two left-most figures, we show how the results vary with the noise level q for
∥µ∥ = 0.1 and ∥µ∥ = 4.3. In the two right-most figures, we show how the results vary with
the norm of the means ∥µ∥ for q = 0.1 and q = 0.3. We use two vertical lines to present the
classification threshold stated in Thm. 1 (solid line) and Cor. 2 (dashed line).

the gammas represented with the dotted and solid lines do not collapse for any value of
q. In contrast, as we increase q, CAT fails to satisfy the condition in Cor. 2, and therefore
achieves inferior performance. We note that the low performance is due to the fact that all
gammas collapse to the same value for large noise levels.

For the second set of experiments (two right-most columns of Fig. 1), where we fix q and
sweep ∥µ∥, we observe that, for both values of q, there exists a transition in the accuracy of
both GAT and CAT as a function of ∥µ∥. As shown in the main manuscript, GAT achieves
perfect accuracy when the distance between the means satisfies the condition in Thm. 1
(solid vertical line in Fig. 1). Moreover, we can see the improvement CAT obtains over
GAT. Indeed, when ∥µ∥ satisfies the conditions of Cor. 2 (dashed vertical line in Fig. 1),
the classification threshold is improved. As we increase q, we see that the gap between the
two vertical lines decreases, which means that the improvement decreases as q increments,
exactly as stated in Cor. 2. This transition from the hard regime to the easy regime is also
observed in the gamma plots: we observe the largest difference in value between the different
groups of lambdas for values of ∥µ∥ that satisfy the condition in Thm. 1 (that is to the right
of the vertical lines).

B.1 Other experiments

In the following, we extend the results for the synthetic data presented above. In particular,
we aim to evaluate if L-CAT is able to achieve top performance regardless of the scenario.
That is, we want to evaluate if L-CAT consistently performs at least as good as the best-
performing model. We change the fixed-parameter setting of the previous section and,
instead, we evaluate the performance of GCN, GAT, CAT and L-CAT when we learn the
model-dependent parameters.

Experimental setup. We assume the same parametrization for the 1-layer GCN, GAT
and CAT described in Eq. 9 and Eq. 11. For L-CAT, we add the parameters λ1 and λ2, as
indicated in Eq. 7. We fix the parameters shared among the models, that is, w̃, S, b, r, and
R, with the values indicated in Eq. 12. Different from previous experiments, we now learn C
and, for L-CAT, we also learn λ1 and λ2. We choose to fix part of the parameters (instead
of learning them all) to keep the problem as similar as possible to the theoretical analysis we
provided in §4 and App. A. If we instead learn all the parameters, it takes a single dimension
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of the features to be (close to) linearly separable to find a solution that achieves a similar
performance regardless of the model, which hinders the analysis. This is a consequence of
the probabilistic nature of the features. One way of solving this issue would be to make
n big enough. Instead, we opt to have a fixed n and reduce the degrees of freedom of the
models by fixing the parameters shared across all models. The rest of the experimental setup
matches the one from App. B. Additionally, we use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.05, and we train for 100.

Results are summarized in Fig. 5. The top row contains the node classification performance
for every model, while the bottom row contains the learned values of λ1 (solid line) and
λ2 (dashed line) with L-CAT. The two left-most columns of Fig. 5 show the results for the
hard and easy regimes, respectively, as we vary the noise level q. In the hard regime, we see
rather noisy results. Still, the behaviour is similar to that of Fig. 4: the performance of CAT
degrades as we increase q. We also observe that, on average, CAT outperforms GAT. In this
case, we observe that L-CAT achieves similar performance as CAT, which can be explained
by inspecting the learned values of lambda in the bottom row. We observe that λ1 = 1 and
λ2 ≥ 0.5 on average for all values of q. This indicates that L-CAT is closer to CAT than to
GAT. When the distance between the means is large enough (i.e., ∥µ∥ = 4.3), we see that
GAT achieves perfect results independently of q while the performance of CAT deteriorates
with large values of q, the same trend as in Fig. 4. Remarkably, we observe that L-CAT
also achieves perfect results independently of q. If we inspect the lambda values, we first
see that λ = 1 for all q, thus the interpolation happens between CAT and GAT. Looking at
the values of λ2, we observe that, for small values of q, λ2 is pretty noisy, which is expected
since any solution achieves perfect performance. Interestingly, we have that λ2 = 0 for large
values of q, with negligible variance. This indicates that L-CAT learns that it must behave
like GAT in order to perform well.

For the second set of experiments (two right-most columns of Fig. 5), we fix q and sweep
∥µ∥ like we did in Fig. 4. Here, we observe a similar trend: for both values of q, there exists
a transition in the accuracy of both GAT and CAT as a function of ∥µ∥. Yet once again,
we observe that L-CAT consistently achieves a similar performance to the best-performing
model in every situation.

C Dataset description

We present further details about the datasets used in our experiments, summarized in Table 5.
All datasets are undirected (or transformed to undirected otherwise) and transductive.

The upper rows of the table refer to datasets used in §6.2 taken from the PyTorch Geometric
framework.4 The following paragraphs present a short description of such datasets.

Amazon Computers & Photos are datasets taken from Shchur et al. (2018), in which
nodes represent products, and edges indicate that the products are usually bought together.
The node features are a Bag of Words (BoW) representation of the product reviews. The
task is to predict the category of the products.

GitHub is a dataset introduced in Rozemberczki et al. (2021), in which nodes correspond
to developers, and edges indicate mutual follow relationship. Node features are embeddings
extracted from the developer’s starred repositories and profile information (e.g., location
or employer). The task is to infer whether a node relates to web or machine learning
development.

FacebookPagePage is a dataset introduced in Rozemberczki et al. (2021), where nodes
are Facebook pages, and edges imply mutual likes between the pages. Nodes features are
text embeddings extracted from the pages’ description. The task consist on identifying the
page’s category.

TwitchEN is a dataset introduced in Rozemberczki et al. (2021). Here, nodes correspond
to Twitch gamers, and links reveal mutual friendship. Node features are an embedding of

4https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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games liked, location, and streaming habits. The task is to infer if a gamer uses explicit
content.

Coauthor Physics & CS are datasets introduced in Shchur et al. (2018). In this case,
nodes represent authors which are connected with an edge if they have co-authored a paper.
Node features are BoW representations of the keywords of the author’s papers. The task
consist on mapping each author to their corresponding field of study.

DBLP is a dataset introduced in Bojchevski & Günnemann (2018) that represents a citation
network. In this dataset, nodes represent papers and edges correspond to citations. Node
features are BoW representations of the keywords of the papers. The task is to predict the
research area of the papers.

PubMed, Cora & CiteSeer are citation networks introduced in Yang et al. (2016). Nodes
represent documents, and edges refer to citations between the documents. Node features are
BoW representations of the documents. The task is to infer the topic of the documents.

The bottom rows of Table 5 refer to the datasets from Open Graph Benchmark (OGB) (Hu
et al., 2020a) 5 used in §6.3. We include a short description of them in the paragraphs below.

ogbn-arxiv is a citation network of computer science papers in arXiv (Wang et al., 2020).
Nodes represent papers, and directed edges refer to citations among them. Node features
are embeddings of the title and abstract of the papers. The task is to predict the research
area of the nodes.

ogbn-products contains a co-purchasing network (Bhatia et al., 2016). Nodes represent
products, and links are present whenever two products are bought together. Node features
are embeddings of a BoW representation of the product description. The task is to infer the
category of the products.

ogbn-mag is a heterogeneous network formed from a subgraph of the Microsoft Academic
Graph (MAG) (Wang et al., 2020). Nodes can belong to one of these four types: authors,
papers, institutions and fields of study. Moreover, directed edges belong to one of the
following categories: “author is affiliated with an institution,” “author has written a paper,”
“paper cites a paper,” and “paper belongs to a research area.” Only nodes that are papers
contain node features, which are a text embedding of the document content. The task is to
predict the venue of the nodes that are papers.

ogbn-proteins is a network whose nodes represent proteins and edges indicate different
types of associations among them. This dataset does not contain node features. The tasks
are to predict multiple protein functions, each of them being a binary classification problem.

D Real data experiments

D.1 Experimental details

Computational resources. We used CPU cores to run this set of experiments. In
particular, for each trial, we used 2 CPU cores and up to 16GB of memory. We ran the
experiments in parallel using a shared cluster with 10000 CPU cores approximately.

General experimental setup. As mentioned in §6.2, we repeat all experiments 10 times,
which correspond to 10 different random initialization of the parameters of the GNNs. In
all cases, we choose the model parameters with the best validation performance during
training. In order to run the experiments and collect the results, we used the GraphGym
framework (You et al., 2020), which includes the data processing and loading of the datasets,
as well as the evaluation and collection of the results. We split the datasets in 70% training,
15% validation, and 15% test.

We cross-validate the number of message-passing layers in the network (2, 3, 4), as well as the
learning rate ([0.01, 0.005]). Then, we report the results of the best validation error among
the 4 possible combinations. However, in practice we found the best performance always to

5https://ogb.stanford.edu/docs/nodeprop
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Table 5: Dataset statistics. On the top part of the table, we show the datasets used in §6.2.
On the bottom part of the table, we show the datasets used in §6.3.

Name #Nodes #Edges
Avg.
degree

#Node
feats.

#Edge
feats.

#Tasks Task Type

AmazonComp. 13,752 491,722 35.76 767 - 1 10-class clf.
AmazonPhoto 7,650 238,162 31.13 745 - 1 8-class clf.
GitHub 37,700 578,006 15.33 128 - 1 Binary clf.
FacebookP. 22,470 342,004 15.22 128 - 1 4-class clf.
CoauthorPh. 34,493 495,924 14.38 8415 - 1 5-class clf.
TwitchEN 7,126 77,774 10.91 128 - 1 Binary clf.
CoauthorCS 18,333 163,788 8.93 6805 - 1 15-class clf.
DBLP 17,716 105,734 5.97 1639 - 1 4-class clf.
PubMed 19,717 88,648 4.50 500 - 1 3-class clf.
Cora 2,708 10,556 3.90 1433 - 1 7-class clf.
CiteSeer 3,327 9,104 2.74 3703 - 1 6-class clf.

ogbn-arxiv 169,343 1,166,243 6.89 128 - 1 40-class clf.
ogbn-products 2,449,029 123,718,280 50.52 100 - 1 47-class clf.
ogbn-mag 1,939,743 21,111,007 18.61 128 4 1 349-class clf.
ogbn-proteins 132,534 79,122,504 597.00 - 8 112 Multi-task

use 4 message-passing layers, and thus the only difference in configuration lies in the learning
rate.

We use residual connections between the GNN layers, 4 heads in the attention models, and
the Parametric ReLU (PReLU) (He et al., 2015) as the nonlinear activation function. We do
not use batch normalization (Ioffe & Szegedy, 2015), nor dropout (Srivastava et al., 2014).
We use the Adam optimizer (Kingma & Ba, 2015) with β = (0.9, 0.999), and an exponential
learning-rate scheduler with γ = 0.998. We train all the models for 2500 epochs. Importantly,
we do not use weight decay, since this will bias the solution towards λ1 = 0 and λ2 = 1.

We use the Pytorch Geometric (Fey & Lenssen, 2019) implementation of L-CAT for all exper-
iments, switching between models by properly by setting λ1 and λ2. We parametrize λ1 and
λ2 as free-parameters in log-space that pass through a sigmoid function—i.e., sigmoid(10x)—
such that they are constrained to the unit interval, and they are learned quickly.

D.2 Additional results

Table 6 shows the results presented in the main paper (with the addition of a dense feed-
forward network), while Table 7 presents the results for the remaining datasets, with smaller
average degree.

If we focus on Table 7, we observe that all models perform equally well, yet in a few cases
CAT and L-CAT are significantly better than the baselines—e.g., L-CATv2 in CoauthorCS ,
or L-CAT in Cora. Following a similar discussion as the one presented in the main paper,
these results indicates that L-CAT achieves similar or better performance than baseline
models and thus, should be the preferred architecture.

Competitive performance without the graph. We also include in Tables 6 and 7 the
performance of a feed-forward network, referred to as Dense (first row). Note that the only
data available to this model are the node features, and thus no graph information is provided.
Therefore, we should expect a significant drop in performance, which indeed happens for
some datasets such as Amazon Computers (≈ 7% drop), FacebookPagePage (≈ 20% drop),
DBLP (≈ 9% drop) and Cora (≈ 14% drop). Still, we found that for other commonly
used datasets the performance is similar, e.g., Coauthor Physics and PubMed ; or it is even
better CoauthorCS . These results manifest the importance of a proper benchmarking, and of
carefully considering the datasets used to evaluate GNN models.
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Table 6: Test accuracy (%) of the considered convolution and attention models for different
datasets (sorted by their average node degree), and averaged over ten runs. Bold numbers
are statistically different to their baseline model (α = 0.05). Best average performance is
underlined.

Dataset
Amazon

Computers
Amazon
Photo

GitHub
Facebook
PagePage

Coauthor
Physics

TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

Dense 83.73 ± 0.34 91.74 ± 0.46 81.21 ± 0.30 75.89 ± 0.66 95.41 ± 0.14 56.26 ± 1.74

GCN 90.59 ± 0.36 95.13 ± 0.57 84.13 ± 0.44 94.76 ± 0.19 96.36 ± 0.10 57.83 ± 1.13

GAT 89.59 ± 0.61 94.02 ± 0.66 83.31 ± 0.18 94.16 ± 0.48 96.36 ± 0.10 57.59 ± 1.20
CAT 90.58 ± 0.40 94.77 ± 0.47 84.11 ± 0.66 94.71 ± 0.30 96.40 ± 0.10 58.09 ± 1.61
L-CAT 90.34 ± 0.47 94.93 ± 0.37 84.05 ± 0.70 94.81 ± 0.25 96.35 ± 0.10 57.88 ± 2.07

GATv2 89.49 ± 0.53 93.47 ± 0.62 82.92 ± 0.45 93.44 ± 0.30 96.24 ± 0.19 57.70 ± 1.17
CATv2 90.44 ± 0.46 94.81 ± 0.55 84.10 ± 0.88 94.27 ± 0.31 96.34 ± 0.12 57.99 ± 2.02
L-CATv2 90.33 ± 0.44 94.79 ± 0.61 84.31 ± 0.59 94.44 ± 0.39 96.29 ± 0.13 57.89 ± 1.53

Table 7: Test accuracy (%) of the considered convolution and attention models for different
datasets (sorted by their average node degree), and averaged over ten runs. Bold numbers
are statistically different to their baseline model (α = 0.05). Best average performance is
underlined.

Dataset CoauthorCS DBLP PubMed Cora CiteSeer
Avg. Deg. 8.93 5.97 4.5 3.9 2.74

Dense 94.88 ± 0.21 75.46 ± 0.27 88.13 ± 0.33 72.75 ± 1.72 73.02 ± 1.01

GCN 93.85 ± 0.23 84.18 ± 0.40 88.50 ± 0.18 86.68 ± 0.78 75.76 ± 1.09

GAT 93.80 ± 0.38 84.15 ± 0.39 88.62 ± 0.18 85.95 ± 0.95 75.40 ± 1.43
CAT 93.70 ± 0.31 84.10 ± 0.29 88.58 ± 0.25 85.85 ± 0.79 75.64 ± 0.91
L-CAT 93.65 ± 0.23 84.13 ± 0.26 88.45 ± 0.32 86.66 ± 0.87 75.04 ± 1.12

GATv2 93.19 ± 0.64 84.33 ± 0.18 88.52 ± 0.27 85.65 ± 1.01 75.14 ± 1.20
CATv2 93.51 ± 0.34 84.15 ± 0.41 88.54 ± 0.29 85.50 ± 0.94 74.68 ± 1.30
L-CATv2 93.65 ± 0.20 84.31 ± 0.31 88.48 ± 0.24 85.75 ± 0.72 75.04 ± 1.30

E Open Graph Benchmark experiments

E.1 Experimental details

Computational resources. For this set of experiments, we had at our disposal a set of 16
Tesla V100-SXM GPUs with 160 CPU cores, shared among the rest of the department.

Statistical significance. For each CAT and L-CAT model, we highlight significant improve-
ments according to a two-sided paired t-test (α = 0.05), with respect to its corresponding
baseline model. For example, for L-CATv2 with 8 heads we perform the test with respect to
GATv2 with 8 heads.

General experimental setup. As mentioned in §6.3, we repeat all experiments with OGB
datasets 5 times. In all cases, we choose the model parameters with the best validation
performance during training. Moreover, when we show the results without specifying the
number of heads, we take the model with the best validation error among the two models
with 1 and 8 heads.

We use the same implementation of L-CAT for all experiments, switching between models
by properly setting λ1 and λ2. Experiments on arxiv , mag , products use a version of L-CAT
implemented in Pytorch Geometric (Fey & Lenssen, 2019). Experiments on proteins use a
version of L-CAT implemented in DGL (Wang et al., 2019a). We parametrize λ1 and λ2 as
free-parameters in log-space that pass through a sigmoid function—i.e., sigmoid(10x)—such
that they are constrained to the unit interval, and they are learned quickly.
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ArXiv. As described in §6.3, we use the example code from the OGB framework (Hu
et al., 2020a). The network is composed of 3 GNN layers with a hidden size of 128. We use
batch normalization (Ioffe & Szegedy, 2015) and a dropout (Srivastava et al., 2014) of 0.5
between the GNN layers, and Adam (Kingma & Ba, 2015) with a learning rate of 0.01. We
use the ReLU as activation function. For the initial experiments, we train for 1500 epochs,
while we train for 500 epochs for the noise experiments in §6.3.1. This is justified given the
convergence plots in Fig. 2.

MAG. We adapted the official code from (Brody et al., 2022). The network is composed of
2 layers with 128 hidden channels. This time, we use layer normalization (Ba et al., 2016)
and a dropout of 0.5 between the layers. Again, we use ReLU as the activation function,
and add residual connections to the network. As with arxiv , we use Adam (Kingma & Ba,
2015) with learning rate 0.01. We set a batch size of 20000 and train for 100 epochs.

Products. We use the same setup as (Brody et al., 2022), with a network of 3 GNN layers and
128 hidden dimensions. We apply residual connections once again, with a dropout (Srivastava
et al., 2014) of 0.5 between layers. This time, we use ELU as the activation function. The
batch size is set to 256. Adam (Kingma & Ba, 2015) is again the optimizer in use, this time
with a learning rate of 0.001. We train for 100 epochs, although we apply early stopping
whenever the validation accuracy stops increasing for more than 10 epochs. Note the training
split of this dataset only contains 8% of the data.

Proteins. We follow once more the setup of (Brody et al., 2022). The network we use has
6 GNN layers of hidden size 64. Dropout (Srivastava et al., 2014) is set to 0.25 between
layers, with an input dropout of 0.1. At the beginning of the network, we place a linear
layer followed by a ReLU activation to encode the nodes, and a linear layer at the end of the
network to predict the class. Moreover, we use batch normalization (Ioffe & Szegedy, 2015)
between layers and ReLU as the activation function. We train the model for 1200 epochs at
most, with early stopping after not improving for 10 epochs.

E.2 Additional results

We show in Tables 8 to 10 the results of the main paper for the arxiv , mag , products datasets,
respectively, without selecting the best configuration for each type of model. That is, we
show the results for both number of heads. Note that we already show the full table of
results for the protein datasets in the main paper (Table 3). All the trends discussed in the
main paper hold.

Table 8: Test accuracy on the arxiv dataset for attention models using 1 head and 8 heads.

GCN GAT CAT L-CAT GATv2 CATv2 L-CATv2

1h 71.58 ± 0.19 71.58 ± 0.15 72.04 ± 0.20 72.00 ± 0.11 71.70 ± 0.14 72.02 ± 0.08 71.96 ± 0.21
8h − 71.63 ± 0.11 72.14 ± 0.20 71.98 ± 0.08 71.72 ± 0.24 71.76 ± 0.14 71.91 ± 0.16

Table 9: Test accuracy on the mag dataset for attention models using 1 head and 8 heads.

GCN GAT CAT L-CAT GATv2 CATv2 L-CATv2

1h 32.77 ± 0.36 32.35 ± 0.24 31.98 ± 0.46 32.47 ± 0.38 32.76 ± 0.18 32.43 ± 0.22 32.68 ± 0.50
8h − 32.15 ± 0.31 31.58 ± 0.22 32.49 ± 0.21 32.85 ± 0.21 32.34 ± 0.18 32.38 ± 0.28

Table 10: Test accuracy on the products dataset for attention models using 1 head and 8
heads.

GCN GAT CAT L-CAT GATv2 CATv2 L-CATv2

1h 74.12 ± 1.20 78.53 ± 0.91 77.38 ± 0.36 77.19 ± 1.11 73.81 ± 0.39 74.81 ± 1.12 76.37 ± 0.92
8h − 78.23 ± 0.25 76.63 ± 1.15 76.56 ± 0.45 76.40 ± 0.71 75.20 ± 0.92 74.70 ± 0.28

Extrapolation ablation study. Due to page constraints, these results were not added
to the main paper. Here, we study two questions. First, how important are λ1 and λ2 in
the formulation of L-CAT (Eq. 7)? For the sake of completeness, the second question we

30



Published as a conference paper at ICLR 2023

attempt to answer here is whether we can obtain similar performance by just interpolating
between GCN and GAT (fixing λ2 = 0)? Note that we theoretically showed in §§4 and 6.1
that CAT fills up a gap between GCN and GAT, making it preferable in certain settings.

To this end, we repeat the experiments for network-initialization robustness in §6.3.2, since
they showed to be the best ones to tell apart the performance across models. We include
three additional models: GCN-GAT, which interpolates between GCN and GAT (or GATv2)
by learning λ1 and fixing λ2 = 0; CAT-λ1 which interpolates between GCN and CAT by
learning λ1 and fixing λ2 = 1; and CAT-λ2, which interpolates between GAT and CAT by
learning λ2 and fixing λ1 = 1.

Results using GAT and shown in Table 11, and using GATv2 in Table 12. We can observe
that GCN-GAT obtains results in between GCN and GAT for all settings, despite being
able to interpolate between both layers in each of the six layers of the network. Regarding
learning λ1 and λ2, we can observe that there is a clear difference between learning boths
(L-CAT), and learning a single one. For both attention models, CAT-λ1 obtains better results
than CAT-λ2 in all settings, but uniform with 8 heads. Still, the results of both variants
are substantially worse than those of L-CAT in all cases, demonstrating the importance of
learning to interpolate between the three layer types.

Table 11: Test accuracy on the proteins dataset for GCN (Kipf & Welling, 2017) and
GAT (Velickovic et al., 2018) attention models using two network initializations, and two
numbers of heads (1 and 8).

GCN GCN-GAT GAT CAT L-CAT CAT-λ1 CAT-λ2

uniform initialization

1h 61.08 ± 2.86 70.44 ± 1.56 59.73 ± 4.04 74.19 ± 0.72 77.77 ± 1.44 71.97 ± 3.78 73.55 ± 1.36
8h − 68.51 ± 0.91 72.23 ± 3.20 73.60 ± 1.27 78.85 ± 1.76 76.43 ± 2.47 72.76 ± 2.79

normal initialization

1h 80.10 ± 0.61 66.51 ± 3.23 66.38 ± 7.76 73.26 ± 1.84 78.06 ± 1.40 76.77 ± 1.91 73.39 ± 1.25
8h − 69.93 ± 1.93 79.08 ± 1.64 74.67 ± 1.29 79.63 ± 0.79 78.86 ± 1.07 73.32 ± 1.15

Table 12: Test accuracy on the proteins dataset for GCN (Kipf & Welling, 2017) and
GATv2 (Brody et al., 2022) attention models using two network initializations, and two
numbers of heads (1 and 8).

GCN GCN-GATv2 GATv2 CATv2 L-CATv2 CATv2-λ1 CATv2-λ2

uniform initialization

1h 61.08 ± 2.86 69.69 ± 1.59 59.85 ± 3.05 64.32 ± 2.61 79.08 ± 1.06 63.24 ± 1.55 73.41 ± 0.34
8h − 69.94 ± 1.62 75.21 ± 1.80 74.16 ± 1.45 78.77 ± 1.09 77.61 ± 1.32 73.96 ± 1.27

normal initialization

1h 80.10 ± 0.61 68.54 ± 1.63 69.13 ± 9.48 74.33 ± 1.06 79.07 ± 1.09 78.41 ± 0.93 74.07 ± 1.17
8h − 68.71 ± 1.96 78.65 ± 1.61 73.40 ± 0.62 79.30 ± 0.55 78.76 ± 1.41 73.22 ± 0.77
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F Extending L-CAT to other GNN models

Due to their simplicity and popularity, in the manuscript we focus on the simplest form of
GCNs, as described in §2. However, we consider important to remark that L-CAT can be
effortless extended to a large range of existing GNN models. A more general formulation of
a message-passing GNN layer than the one given in Eq. 1 is the following:

h̃i = f(h′
i) where h′

i
def
=

⊕
j∈N∗

i

γ̂ijM (hi,hj ; θM ) , (13)

where γ̂ij is a scalar value,
⊕

refers to any permutation invariant operation—e.g., sum,
mean, maximum, or minimum operations—and M is the message operator, which can be
parameterized, and produces a message based on the sender and receiver representations.
This formulation comprises most GNN architectures present in the current literature. For
example:

• GCN (Kipf & Welling, 2017): h′
i =

∑
j∈N∗

i
γ̂ijWvhj where γ̂ij =

1
|N∗

i |
as consider in the

main paper, or γ̂ij = 1√
djdi

, where di is the number of neighbors of node i (including

self-loops), if we consider the symmetric normalized adjacency matrix instead.

• GIN (Xu et al., 2019): h′
i = (1 + ε)γ̂iihi +

∑
j∈Ni

γ̂ijhj with γ̂ij = 1.

• PNA (Corso et al., 2020): h′
i =

⊕
j∈N∗

i
γ̂ijM (hi,hj ; θM ) where γ̂ij = 1, M is an

multi-layer perceptron, and
⊕

is a set of permutation invariant operations, e.g.,
⊕

=
[µ, σ,max,min].

• GCNII (Chen et al., 2020): h′
i =

(
αh0

i + (1− α)
∑

j∈N∗
i
γ̂ijhj

)
((1− β)I + βWv) where,

just as in the GCN case, γ̂ij =
1√
djdi

, and 0 ≤ α, β ≤ 1.

In all the models above, the values γ̂ij are taken from the adjacency matrix A (whose entries
are 1 if there exists an edge between nodes i and j, and 0 otherwise), or a matrix derived
from it, e.g., the symmetric normalized adjacency matrix.

Note that the attention coefficients γij defined in Eq. 3 can be understood as an attention-
equivalent of the adjacency matrix. Indeed, by defining Aatt as a matrix whose entries are
|N∗

i |γij , one can obtain a row-stochastic matrix that can substitute the adjacency matrix
of any GNN model. This technique to generalize attention models to GNN variants more
complex than a GCN has been successfully applied in prior literature (Wang et al., 2021b).

With this new interpretation of attention-models, the interpolation performed by L-CAT
(see Eq. 7) can similarly be re-interpreted. Indeed, L-CAT learns to interpolate between the
adjacency matrix A, and an attention-based adjacency matrix Aatt, which can be produced
by either GAT (Eq. 3) or CAT (Eq. 6), depending on the value of λ2.

F.1 PNA experiments

In Tables 13 and 14, we show the results—for the datasets described in App. C—using
L-CAT and CAT in conjunction with the PNA model (Corso et al., 2020). First, we note that
standard PNA works quite well in most cases. Second, if we focus on Table 13, we observe
that the standard attention models (i.e., PNAGAT and PNAGATv2) perform significantly
worse than the other approaches, in particular on datasets with large average degree, e.g.,
on Amazon Computers. Finally, we observe that the L-CAT models (i.e., L-PNACAT and
L-PNACATv2) drastically improve the performance of their attention counterparts and
achieve similar performance as the PNA model, with lower performance on the GitHub and
Facebook datasets and higher performance on Cora and CiteSeer .

To keep the same number of parameters, we reuse the PNA weights to compute the attention
scores (Wq = Wk = Wv). However, this could be detrimental, as the role of Wv is completely
different from that of Wq and Wv. Tables 15 and 16 show the same experiments as before,
but using different parameters to compute the keys and queries (i.e., Wq = Wk ̸= Wv). We

32



Published as a conference paper at ICLR 2023

observe that the increase of parameters generally helps both CAT and L-CAT models, now
outperform the base PNA model in some settings.

Table 13: Test accuracy (%) of the PNA (Corso et al., 2020) models for different datasets
(sorted by average node degree), averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset
Amazon

Computers
Amazon
Photo

GitHub
Facebook
PagePage

Coauthor
Physics

TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

PNA 86.51 ± 1.22 93.23 ± 0.65 82.33 ± 0.51 94.28 ± 0.34 96.09 ± 0.14 59.25 ± 1.19

PNAGAT 57.59 ± 10.19 74.78 ± 8.74 72.77 ± 2.06 71.49 ± 11.23 96.05 ± 0.25 54.22 ± 3.02
PNACAT 81.48 ± 3.81 91.73 ± 1.24 75.55 ± 3.33 93.10 ± 0.41 96.16 ± 0.15 59.11 ± 1.94
L-PNACAT 86.45 ± 1.42 92.76 ± 0.74 78.74 ± 2.91 93.59 ± 0.39 96.24 ± 0.13 59.12 ± 2.74

PNAGATv2 36.93 ± 4.07 60.13 ± 4.81 73.93 ± 1.89 58.91 ± 3.42 95.61 ± 0.29 54.45 ± 1.60
PNACATv2 79.08 ± 2.62 88.61 ± 3.24 75.11 ± 2.79 92.77 ± 0.50 96.06 ± 0.18 56.72 ± 2.43
L-PNACATv2 85.10 ± 1.70 92.19 ± 0.55 79.79 ± 1.40 93.54 ± 0.36 96.03 ± 0.19 58.19 ± 1.53

Table 14: Test accuracy (%) of the PNA (Corso et al., 2020) models for different datasets
(sorted by average node degree), averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset CoauthorCS DBLP PubMed Cora CiteSeer
Avg. Deg. 8.93 5.97 4.5 3.9 2.74

PNA 93.30 ± 0.31 83.37 ± 0.32 88.37 ± 0.73 84.94 ± 1.19 73.92 ± 0.97

PNAGAT 92.46 ± 0.95 83.42 ± 0.39 88.40 ± 0.33 84.67 ± 0.69 74.64 ± 0.82
PNACAT 92.90 ± 0.24 83.35 ± 0.40 88.24 ± 0.30 85.58 ± 1.00 74.94 ± 1.68
L-PNACAT 93.11 ± 0.24 83.21 ± 0.55 88.22 ± 0.40 85.77 ± 1.01 75.08 ± 1.05

PNAGATv2 90.14 ± 0.82 83.37 ± 0.34 88.14 ± 0.45 85.04 ± 0.86 74.50 ± 1.18
PNACATv2 92.78 ± 0.27 83.22 ± 0.38 88.28 ± 0.30 85.41 ± 0.98 74.42 ± 1.11
L-PNACATv2 93.02 ± 0.37 83.54 ± 0.65 88.23 ± 0.58 85.48 ± 0.98 74.76 ± 1.57

Table 15: Test accuracy (%) of the PNA (Corso et al., 2020) extended models with Wq =
Wk ̸= Wv for different datasets, averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset
Amazon

Computers
Amazon
Photo

GitHub
Facebook
PagePage

Coauthor
Physics

TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

PNA 86.51 ± 1.22 93.23 ± 0.65 82.33 ± 0.51 94.28 ± 0.34 96.09 ± 0.14 59.25 ± 1.19

PNAGAT 48.65 ± 19.25 68.01 ± 20.32 72.97 ± 1.07 70.17 ± 12.02 96.02 ± 0.34 53.27 ± 2.54
PNACAT 83.45 ± 2.60 91.62 ± 1.30 75.35 ± 2.71 93.31 ± 0.55 96.22 ± 0.13 59.23 ± 2.25
L-PNACAT 87.18 ± 1.22 92.79 ± 0.63 79.64 ± 2.54 93.78 ± 0.39 96.31 ± 0.17 59.09 ± 2.50

PNAGATv2 39.49 ± 4.09 62.19 ± 11.30 73.97 ± 1.67 63.00 ± 4.95 95.83 ± 0.36 55.21 ± 1.05
PNACATv2 81.20 ± 3.63 91.32 ± 0.80 74.57 ± 2.18 92.98 ± 0.36 96.14 ± 0.16 56.21 ± 2.01
L-PNACATv2 86.22 ± 0.83 92.98 ± 0.89 79.78 ± 2.48 93.44 ± 0.37 96.13 ± 0.12 60.26 ± 1.25
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Table 16: Test accuracy (%) of the PNA (Corso et al., 2020) extended models with Wq =
Wk ̸= Wv for different datasets, averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset CoauthorCS DBLP PubMed Cora CiteSeer
Avg. Deg. 8.93 5.97 4.5 3.9 2.74

PNA 93.30 ± 0.31 83.37 ± 0.32 88.37 ± 0.73 84.94 ± 1.19 73.92 ± 0.97

PNAGAT 92.50 ± 0.46 83.22 ± 0.45 88.43 ± 0.29 84.89 ± 1.15 75.76 ± 1.29
PNAGAT 92.97 ± 0.47 83.28 ± 0.59 88.27 ± 0.43 85.09 ± 0.70 75.44 ± 1.51
PNAGAT 93.17 ± 0.30 83.50 ± 0.29 88.54 ± 0.45 85.63 ± 0.92 75.22 ± 1.12

PNAGATv2 90.00 ± 1.01 83.40 ± 0.48 88.14 ± 0.31 85.16 ± 0.91 76.14 ± 1.33
PNAGATv2 92.74 ± 0.20 83.05 ± 0.49 88.38 ± 0.31 85.21 ± 0.83 75.80 ± 1.26
PNAGATv2 93.02 ± 0.30 83.24 ± 0.44 88.28 ± 0.35 85.04 ± 0.94 75.80 ± 1.19

Table 17: Test accuracy (%) of the GCNII (Chen et al., 2020) models for different datasets,
averaged over ten runs. Bold numbers are statistically different to their baseline model
(α = 0.05). Best average performance is underlined.

Dataset
Amazon

Computers
Amazon
Photo

GitHub
Facebook
PagePage

Coauthor
Physics

TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

GCNII 90.82 ± 0.20 95.51 ± 0.48 84.11 ± 0.76 94.03 ± 0.30 96.58 ± 0.11 60.94 ± 1.66

GCNIIGAT 89.04 ± 0.87 94.74 ± 0.57 82.34 ± 0.64 91.18 ± 0.82 96.69 ± 0.13 57.76 ± 1.76
GCNIICAT 89.83 ± 0.42 95.31 ± 0.25 83.15 ± 0.51 93.25 ± 0.37 96.69 ± 0.09 60.51 ± 1.12
L-GCNIICAT 90.03 ± 0.42 95.23 ± 0.39 83.50 ± 0.57 93.71 ± 0.33 96.87 ± 0.14 61.14 ± 1.64

GCNIIGATv2 84.26 ± 2.80 89.23 ± 5.30 81.23 ± 0.45 83.82 ± 1.24 96.14 ± 0.28 56.25 ± 1.56
GCNIICATv2 89.59 ± 0.45 95.03 ± 0.55 82.45 ± 0.30 92.55 ± 0.52 96.50 ± 0.09 59.04 ± 1.49
L-GCNIICATv2 89.81 ± 0.48 95.24 ± 0.35 83.05 ± 0.49 93.68 ± 0.35 96.75 ± 0.11 61.10 ± 1.11

F.2 GCNII experiments

Similarly, we have run the experiments from §6.2, this time combining GCNII (Chen et al.,
2020) with GAT, CAT, and L-CAT as explained above. Results are shown in Tables 17
and 18, in which we can observe that the baseline model obtains the best results so far in
the manuscript (in comparison with both GCN and PNA). And just as before, we observe
again that CAT and L-CAT always improve with respect to their base models, staying on
par with the baseline GNCII model and, sometimes, even outperforming the baseline model
on average (e.g., Coauthor Physics , TwitchEN ). As with the experiments for PNA, Tables 19
and 20 shows the results when the attention matrices are different from the value matrix
(Wq = Wk ̸= Wv). We can similarly observe that most of the results are improved with the
additional parameters, beating the baseline model in different datasets.

Table 18: Test accuracy (%) of the GCNII (Chen et al., 2020) models for different datasets,
averaged over ten runs. Bold numbers are statistically different to their baseline model
(α = 0.05). Best average performance is underlined.

Dataset CoauthorCS DBLP PubMed Cora CiteSeer
Avg. Deg. 8.93 5.97 4.5 3.9 2.74

GCNII 95.36 ± 0.18 83.86 ± 0.14 89.05 ± 0.28 86.49 ± 0.79 76.46 ± 0.71

GCNIIGAT 95.32 ± 0.27 83.45 ± 0.60 88.24 ± 0.34 85.72 ± 1.05 75.78 ± 0.77
GCNIICAT 95.12 ± 0.25 83.86 ± 0.23 88.65 ± 0.40 85.51 ± 0.95 76.60 ± 0.50
L-GCNIICAT 95.30 ± 0.29 83.76 ± 0.26 88.72 ± 0.35 85.48 ± 0.96 76.76 ± 0.51

GCNIIGATv2 93.37 ± 0.73 83.70 ± 0.42 88.49 ± 0.34 85.82 ± 1.35 75.98 ± 0.71
GCNIICATv2 95.01 ± 0.32 83.93 ± 0.36 88.60 ± 0.27 85.72 ± 1.03 76.62 ± 0.63
L-GCNIICATv2 95.29 ± 0.23 83.93 ± 0.41 89.12 ± 0.35 85.73 ± 0.88 76.22 ± 0.98
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Table 19: Test accuracy (%) of the GCNII (Chen et al., 2020) extended models with
Wq = Wk ̸= Wv for different datasets, averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset
Amazon

Computers
Amazon
Photo

GitHub
Facebook
PagePage

Coauthor
Physics

TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

GCNII 90.82 ± 0.20 95.51 ± 0.48 84.11 ± 0.76 94.03 ± 0.30 96.58 ± 0.11 60.94 ± 1.66

GCNIIGAT 89.24 ± 0.59 94.66 ± 0.59 82.45 ± 0.65 90.90 ± 0.71 96.90 ± 0.16 58.12 ± 2.02
GCNIICAT 89.94 ± 0.40 95.03 ± 0.37 83.12 ± 0.37 93.39 ± 0.31 96.59 ± 0.07 59.60 ± 0.76
L-GCNIICAT 90.35 ± 0.46 95.53 ± 0.35 83.48 ± 0.47 93.63 ± 0.39 96.80 ± 0.09 60.77 ± 2.15

GCNIIGATv2 85.70 ± 2.58 91.24 ± 2.43 81.43 ± 0.39 84.59 ± 0.79 96.55 ± 0.20 55.23 ± 2.15
GCNIICATv2 89.56 ± 0.67 95.46 ± 0.54 82.50 ± 0.47 93.04 ± 0.40 96.55 ± 0.10 59.57 ± 1.45
L-GCNIICATv2 90.24 ± 0.32 95.53 ± 0.28 83.34 ± 0.45 93.67 ± 0.47 96.73 ± 0.14 60.65 ± 1.13

Table 20: Test accuracy (%) of the GCNII (Chen et al., 2020) extended models with
Wq = Wk ̸= Wv for different datasets, averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset CoauthorCS DBLP PubMed Cora CiteSeer
Avg. Deg. 8.93 5.97 4.5 3.9 2.74

GCNII 95.36 ± 0.18 83.86 ± 0.14 89.05 ± 0.28 86.49 ± 0.79 76.46 ± 0.71

GCNIIGAT 95.36 ± 0.20 83.60 ± 0.32 88.33 ± 0.35 85.26 ± 1.19 76.30 ± 0.78
GCNIICAT 95.20 ± 0.12 83.89 ± 0.29 88.45 ± 0.29 86.44 ± 1.22 76.70 ± 0.60
L-GCNIICAT 95.47 ± 0.16 83.70 ± 0.40 88.08 ± 0.47 86.02 ± 1.43 76.54 ± 0.59

GCNIIGATv2 93.97 ± 0.57 83.67 ± 0.24 88.24 ± 0.16 85.28 ± 1.11 76.58 ± 0.64
GCNIICATv2 95.05 ± 0.33 83.78 ± 0.35 88.35 ± 0.34 86.49 ± 0.90 75.28 ± 0.84
L-GCNIICATv2 95.45 ± 0.18 83.86 ± 0.24 88.06 ± 0.32 86.49 ± 1.31 76.80 ± 0.42
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