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Abstract

Detecting Al-generated text is an increasing necessity to combat misuse of LLMs in educa-
tion, business compliance, journalism, and social media, where synthetic fluency can mask
misinformation or deception. While prior detectors often rely on token-level likelihoods or
opaque black-box classifiers, these approaches struggle against high-quality generations and
offer little interpretability. In this work, we propose DivEye, a novel detection framework
that captures how unpredictability fluctuates across a text using surprisal-based features.
Motivated by the observation that human-authored text exhibits richer variability in lexical
and structural unpredictability than LLM outputs, DivEye captures this signal through a
set of interpretable statistical features. Our method outperforms existing zero-shot detec-
tors by up to 33.2% and achieves competitive performance with fine-tuned baselines across
multiple benchmarks. DivEye is robust to paraphrasing and adversarial attacks, generalizes
well across domains and models, and improves the performance of existing detectors by up
to 18.7% when used as an auxiliary signal. Beyond detection, DivEye provides interpretable
insights into why a text is flagged, pointing to rhythmic unpredictability as a powerful and
underexplored signal for LLM detection.

1 Introduction

Large Language Models (LLMs) have become deeply integrated into daily human workflows, powering appli-
cations from personal assistants to academic writing (Alahdabl 2024; [Meyer et al., |2023} Lund et al.| [2023)
and content creation (Hu et al., |2024; [Yuan et all|2022)). Their fluency and generalization capabilities make
them highly useful, but this same fluency enables a growing number of concerning applications. Al-generated
text can now be seamlessly inserted into essays, news articles, legal briefs, scientific abstracts, and social
media posts, often without detection (De Giorgio et al.l [2025; [Papageorgiou et al., [2024; | Telenti et al.|, [2024;
Tornberg et al.), 2023).

As LLM-generated outputs grow more sophisticated and human-like, detecting them has become an increas-
ingly difficult challenge (Abdali et al., [2024; |Gameiro et al., 2024; Wu et al. |2025; [Zhang et al., 2024).
Reliable Al-text detection is crucial for mitigating risks such as misinformation, Al-assisted academic dis-
honesty, professional misconduct, and the inadvertent suppression of authentic human writing. Traditional
approaches to this problem rely on supervised detectors (Shukla et al., |2024; [Tolstykh et al., [2024} |Wang
et al, [2024b) trained on annotated datasets of AT and human-authored text. These models often incorporate
rich features, ranging from stylometry and structure to information-theoretic metrics, and achieve high per-
formance within the domain they were trained on. However, such methods struggle to generalize to unseen
models or domains (Doughman et all |2024; |Gameiro et al.l [2024), especially as new LLMs are frequently
released. In contrast, zero-shot detectors (Bao et al.l |2024; (Gehrmann et al., [2019; Mitchell et al., |2023;
Wang et al.| 2024al) offer a promising alternative by avoiding model-specific training. These approaches
either extract statistical cues from language model probability distributions or use LLMs themselves as
inference-time detectors, enabling model-agnostic detection at scale. Given the increasing deployment of
unknown or fine-tuned LLMs in the wild, zero-shot detection has become an essential tool for maintaining
platform integrity and addressing the forensic needs of Al-era communication.
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Figure 1: Overview of DivEye. DivEye extracts diversity-based features (see Section |3, Equation @ from
token-level surprisal patterns. These features can be used in two ways: (1) as a standalone detector, or (2)
as an enhancement to existing detectors, improving their performance.

Contributions. We introduce DivEyeEL a lightweight classifier trained on features extracted from off-the-
shelf LLMs in a zero-shot manner. These features capture diversity-based statistics of token-level surprisal,
which we leverage to improve Al-text detection. Our approach focuses on capturing the distributional
irregularities in Al-generated text that arise from differences in the generative process compared to human
writing.

e Zero-shot diversity detection: We propose DivEye, a lightweight classifier trained on zero-shot features
derived from token-level surprisal diversity metrics. These metrics capture fluctuations and patterns
that reflect the constrained and often repetitive generation process of LLMs. We provide a principled
motivation for each feature, connecting them to known properties of human vs. machine text generation,
and demonstrate how DivEye can improve Al-text detection using these features.

e Language & Model-agnostic detection: DivEye leverages zero-shot features, requiring no access to the
generator model’s internals or any fine-tuning. It operates purely on token probability sequences from an
off-the-shelf language model and generalizes across different languages and model families.

o Complementary to existing detectors: ~We show that DivEye captures statistical patterns that are dis-
tinct from those used by traditional detectors, which often rely on fine-tuned language representations
or classifier-based signals. When combined with these approaches, DivEye significantly boosts overall ro-
bustness, particularly against challenging high-quality generations and paraphrased adversarial examples.

e Strong generalization across domains and attacks: Extensive evaluations across three benchmarks and
varied testbeds reveal that DivEye not only achieves state-of-the-art accuracy in standard settings but
also remains robust when tested on unseen domains and language models.

2 Background and Problem Formulation

The emergence of LLM has led to a new era of machine-generated text that can closely mimic human
writing across a range of tasks. These models are trained to approximate the true conditional distribution
of natural language, denoted as Phyman (%t | <), by learning from massive corpora of human-written text
(Chen et al.| |2024; |Lu et al.| |2025). The LLM’s learned distribution is represented as Prim(z: | ©<¢), and
during inference, the model generates text by sampling tokens sequentially from this distribution. While
modern LLMs achieve remarkable fluency, they still constitute an imperfect approximation: Prim # Phuman
in general. At inference time, an LLM selects tokens by sampling from this learned distribution (Zhou et al.
2024)), which remains an approximation of the true distribution that governs human text generation (Ippolito
et al.,[2020; Jones et al., 2024)). This approximation gap, subtle as it may be, is the crux of Al text detection.

IThe code of our method and experiments is available at https://anonymous .4open.science/r/diveyel
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From a theoretical standpoint, prior works (Ghosal et al., 2023} [Sadasivan et al., 2025 highlight the fun-
damental limitations of Al text detection: as generative models approach the ideal of human-like language
modeling, distinguishing their outputs from real text becomes increasingly difficult, if not impossible. Yet,
as (Chakraborty et al. (2023)) point out, even models arbitrarily close to optimal remain statistically de-
tectable under certain conditions, particularly when multiple samples or robust features are available. This
theoretical detectability provides a foundation for practical detection methods that capitalize on the subtle
imperfections in current LLM outputs.

In practice, existing detection approaches fall into two broad categories: watermarking and zero-resource
detection. Watermarking techniques (Block et al., 2025 |Gloaguen et al., |2025; [Kirchenbauer et al., [2024;
Liang et al.,|2024; |Liu et al.||2024al) embed distinct patterns in generated text but necessitate access to model
internals or fine-tuning capabilities, rendering them unsuitable for black-box or adversarial settings, as well as
for practical cases of watermark-free Al text detection. In contrast, zero-resource detection methods require
no prior knowledge of the target model, instead relying on statistical or learned discrepancies between human
and Al text. These methods can be further categorized as statistical and training-based approaches.

Statistical / Zero-shot detection methods refers to identifying Al-generated text without task-specific
training, either by leveraging LLM probability cues or prompting LLMs directly as detectors. For example,
methods like Entropy (Lavergne et al, 2008)), LogRank (Ghosal et al., [2023)), DetectGPT (Bao et al., [2024;
Mitchell et al 2023, and Binoculars (Hans et al.l |2024)) use off-the-shelf LLMs to evaluate the consistency
of token predictions under masked or perturbed inputs. These methods assume that Al-generated texts
are sampled from a narrower, more concentrated conditional probability distribution than human writing,
resulting in greater token-level confidence and reduced lexical diversity.

Training-based / Fine-tuned detection methods (Chen et al.| 2023} Mao et al.| [2024; Hu et al.| 2023)
train classifiers, such as fine-tuned transformers on a labeled corpora of human and AI text. While these
models can be accurate, they often fail to generalize across domains or against adversarial paraphrasing,
especially when trained on specific generators or prompts. We discuss all related works in more detail in

Appendix [A]

Despite significant progress, no existing method fully resolves the problem of detecting Al-generated text in
the wild. Our work addresses this gap by approaching the problem from a new angle: instead of analyzing
individual token probabilities (Solaiman et al., 2019)) in isolation, we propose to measure statistical diversity
over token sequences, quantifying how text fluctuates in its use of surprising or predictable tokens. This
provides a more global signature of the generative process that is robust to paraphrasing, domain shifts, and
even partial text corruption.

3 DivEye: Methodologies

DivEye is built on the central observation that fluctuations in token-level surprisal provide a strong signal for
distinguishing machine- and human-generated text. By systematically analyzing the statistical variation of
surprisal across a sequence, DivEye captures distributional and temporal patterns that go beyond traditional
likelihood-based metrics. The name DivEye thus reflects our method’s focus on diversity-aware analysis of
language generation behavior.

3.1 Design Hypothesis

A central challenge in detecting Al-generated text (Ghosal et al.l |2023; [Sadasivan et al.,|[2025|) lies in the fact
that current models, though fluent, often prioritize coherence and consistency at the cost of variability and
unpredictability. By contrast, human writers naturally introduce irregularities, such as unexpected lexical
choices or structural shifts, that make their text inherently more diverse.

Our hypothesis is that human-written text inherently exhibits greater stylistic diversity and
unpredictability than Al-generated text. In everyday writing, humans make creative, spontaneous
choices, sometimes using unexpected words or phrases, that introduce bursts of surprise amid more routine
language. Our approach centers on the premise that Al-generated text, despite its fluency, often lacks
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the inherent diversity observed in human-written language. This divergence stems from the fundamental
objective of LLMs: to maximize the likelihood of generated sequences within their learned probability
distributions (Park & Choil 2024). Consequently, Al-generated text tends to exhibit a higher degree of
predictability, resulting in lower variability and surprisal compared to human-authored content. We support
this hypothesis through both intuitive reasoning and empirical evidence, as detailed in

Remark 1 Consider a text sequence X = (x1,x2,...,%,) generated either by a human or by a language
model M. The language model defines a probability distribution Pa(X) = [[;—; Pum (@ | 2<;) where each
token is chosen to maximize overall likelihood.

Humans, however, produce language through a complex, multi-layered cognitive process that balances infor-
mativeness, creativity, and contextual appropriateness, rather than strictly maximizing statistical likelihood.

Formally, the surprisal of token x; under model M is defined as:
Sn(xe) = —log Prr(xe | m<t)

Since M is trained to assign high probability to plausible continuations, its outputs tend to minimize surprisal
on average, implying that maximum likelihood generation compresses diversity:

Ex~py [Sn ()] < Ex~py [Sw ()]

where Py denotes the distribution of human-generated text.

Similarly, human language exhibits higher variance in surprisal due to spontaneous creative choices, idiomatic
expressions, and stylistic variation, causing:

Varx~p,, [Su(x:)] < Varxp, [Sn ()]

We validate this theoretical intuition through empirical experiments detailed below, which confirm statis-
tically significant differences in surprisal and diversity metrics between human-written and Al-generated
texts.

We collect 200 human-written essays and 200 GPT-4-Turbo-generated essays on comparable topics, provided
by BiScope (Guo et all |2024). For each essay, we computed the token-level surprisal scores using a fixed
language model evaluator (GPT-2) and then calculated the mean and variance of these surprisal values per
essay. Figure[2a]shows the histogram of mean surprisal scores across the two sets, while Figure[2h] displays the
histogram of surprisal variances. The human-written texts exhibit a noticeably wider spread and heavier tails
in both metrics, indicating greater unpredictability and stylistic variability. In contrast, the Al-generated
essays cluster around lower mean surprisal and exhibit significantly lower variance. These results empirically
confirm our theoretical claim: human language inherently reflects higher diversity and surprise,
whereas Al-generated language, optimized for likelihood, tends toward more predictable and
homogeneous patterns.

Rather than treating token-level surprisal in isolation, DivEye analyzes how it varies across an entire text to
capture higher-level stylistic patterns. By extracting global statistical features from surprisal sequences, our
method reveals differences in the rhythm and variability of unpredictability, traits that distinguish human
writing from the more uniform outputs of LLMs, as illustrated by the clear class separation in predicted
probabilities shown in Figure [3]

These features are theoretically grounded in the Uniform Information Density (UID) hypothesis, which posits
that optimal language speakers strives to distribute information uniformly |Jaeger & Levy| (2006)). However,
while human speakers aim for this efficiency, empirical evidence shows that natural language remains highly
nonstationary (Piantadosi et all [2011) and exhibits characteristic "burstiness" due to semantic shifts (Alt-
mann et al., [2009)). In contrast, LLMs, driven by likelihood-maximization objectives, often approximate the



Under review as submission to TMLR

2.0 M [ Human 0.61 M [ Human
[ GPT-4-Turbo [ GPT-4-Turbo
[ 0.5
1.51 W - B X L
; mli o i T
£1.01 F | €0.31 [ N N \
g | 8 P
| ' 0.2 1
I 1 : ol || T
v _1<
LA || - 14111
ool = [T} liml [ — 0.0LL .’ 0 e
' 2.0 25 3.0 3.5 4.0 s 6 7 8 9 10 11 12
Mean Surprisal Surprisal Variance
(a) Mean Surprisal Distribution (b) Surprisal Variance Distribution

Figure 2: Distribution of token-level surprisal metrics for human-written vs. GPT-4-Turbo-generated essays.
The left plot shows the histogram of mean surprisal per essay, while the right plot shows the histogram of
surprisal variance. Human-written texts exhibit higher dispersion and heavier tails in both distributions,
suggesting greater linguistic unpredictability and stylistic diversity. In contrast, GPT-4-Turbo outputs are
more concentrated and predictable, aligning with the likelihood-maximization objective of language models.
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Figure 3: Distributions of predicted class probabilities for diverse Al-text detectors. Trained and evaluated
on Testbed 4 of the MAGE benchmark, DivEye shows stronger separation between human-written and Label
1 Al-generated texts, indicating greater confidence and discriminative power.

theoretical UID optimum too strictly, resulting in unnaturally flat probability curves devoid of these organic
fluctuations (Holtzman et al.|, 2020). Consequently, we introduce first-order and second-order derivatives of
surprisal, as essential metrics to quantify this rhythmic unpredictability’, capturing the distinct structural
variance that separates human writings from LLMs.

3.2 Mathematical underpinning of DivEye

To robustly distinguish Al-generated text from human-written text, it is insufficient to rely solely on a single
measure such as perplexity 2024). Perplexity summarizes average token likelihood, but overlooks
how unpredictability fluctuates within a text. To better capture these patterns, DivEye computes higher-
order statistical features over surprisal sequences, revealing structural signals beyond aggregate likelihood.

Surprisal. Human language is inherently diverse and unpredictable, balancing consistent patterns
with bursts of creativity, often introducing novel expressions, grammatical deviations, and stylistic vari-
ation. These deviations result in varying levels of token predictability, which can be quantified using
surprisal (Kuribayashi et al.,, 2025) - a well-known information-theoretic measure defined as the negative
log-probability of a token under a language model:

S(xt) = —logP(xt | T1,T2,... 71‘,5_1)
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Given a text sequence X = {z1,xa,...,2,}, surprisal measures how "unexpected" each token is in context.
It can be computed directly from a model’s log-probabilities, providing a principled way to quantify the local
unpredictability of text.

Rather than examining individual token surprisals in isolation, we summarize their behavior through ag-
gregate metrics. The mean surprisal serves as a coarse indicator of how “expected” a text is on average:
Lower values suggest higher conformity to the model’s learned distribution, whereas higher values point to
more frequent unpredictability. However, as stated before, human writing is not merely unpredictable in
aggregate; it also exhibits fluctuations in predictability that correspond to stylistic variation, topic shifts, or
bursts of creativity. This motivates analyzing not just the mean but also the variance of surprisal, which
captures the extent of variation in token-level surprise throughout the text. Formally, this can be represented
as:

1< 1
Mean: pg = - ZS(mt); Variance: 0% = —— — us)? (1)

Mean and Variance are not sufficient. While mean and variance capture the central tendency and
spread of surprisal values, they overlook deeper structural signals that differentiate human and Al text.
Al-generated text is optimized for consistency, producing more symmetrical distributions centered around
high-probability tokens (Ippolito et al. [2020). Skewness (1) quantifies this asymmetry: a positive skew
suggests the presence of rare, surprising tokens typically found in human writing. Similarly, kurtosis (y2)
captures the frequency of extreme deviations from the norm. A high kurtosis indicates heavy-tailed behavior,
another hallmark of authentic, stylistically diverse writing. These higher-order moments allow DivEye to
detect subtle irregularities and stylistic outliers that can be missed by detectors focusing only on average
behavior.

1 < ([ S(zy) — ps 8 . 1 < [ S(zy) — ps :
k SS: Y1 = — —=1] : K 518t y9 = — —= ] -3 2
Skewness: 1 - E ( p ; urtosis: o - E p 3 (2)

t=1 t=1

Static metrics still miss temporal structure. While static surprisal statistics (mean, variance, skew-
ness, kurtosis) describe the overall distribution of token-level unpredictability, they fail to capture how this
unpredictability evolves throughout a sequence, a key trait distinguishing human and Al-generated text. To
model these temporal dynamics, we compute the first-order difference AS; = S(a¢) — S(x+—1), which reflects
immediate changes in surprisal. The mean (Au) and variance (Ao?) of AS; quantify the typical magnitude
and variability of these shifts, capturing stylistic volatility such as abrupt topic or tone changes commonly
found in human writing.

We further analyze the second-order difference A2S; = AS, — AS,_1, which tracks fluctuations in the rate of
change of surprisal. From this sequence, we extract three metrics: (1) variance (03 ), to capture the extent
of rapid or erratic stylistic transitions; (2) entropy (Haz), which reflects the irregularity of these transitions;
and (3) autocorrelation (p(AZ2S;)), which measures whether bursts of unpredictability cluster together, often
indicative of structured human creativity. These second-order metrics reveal rhythmic and non-stationary
patterns in human text that are typically absent in the more homogeneous output of LLMs, providing a
richer signal for robust Al-text detection. Mathematically, these can be defined as:

n

ASt = S((Et) — S({L‘tfl), AO'2 D) (3)
t:2
A’S, = AS, — A8 4, —paz)?, Har=—) pologpy,  (4)
t=3 b
E AQS — UA2 AQS — UA2
p(A2S)) = [(A%S, A0)2( 11— paz)] )
A2

where pa2 is mean of second-order differences, and py, is the empirical probability of a value falling into bin b
after discretizing A2S; for entropy computation. We provide empirical validation of these temporal features
and their individual contributions to detection performance in Appendix [B]
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Combinations. Collectively, DivEye, formalized as (D) in Equation @ encapsulates critical aspects of text
generation that distinguish human creativity from algorithmically generated predictability, thereby serving
as a robust basis for our detection framework.

2 2 2
D:{us70’s>71772®A:U/7AU ®0A27HA27PA2} (6)
—_— —— ——
Distribution 1st-Order 2nd-Order

Here, D is a vector of statistical features with a dimension of 9, including distributional properties, first-
order differences, and second-order differences of the text. We can apply any autoregressive LLM to generate
these feature vectors by passing the text tokens through the model to compute the features listed above,
which are then concatenated into the final vector D. We train a binary classifier using DivEye features,
optionally combined with predictions from an Al-text detector. Implementation details are further explained
in Algorithm [I] and Appendix [C].

DivEye as a booster. Existing detectors, whether fine-tuned classifiers or zero-shot LLM-based methods,
primarily rely on semantic or surface-level cues, and often falter against high-quality adversarial exam-
ples that closely mimic human writing. DivEye offers a complementary signal by capturing statistical and
temporal patterns of token-level unpredictability that are orthogonal to traditional features. We integrate
DivEye into both settings by augmenting detector outputs with its feature vector and training a lightweight
meta-classifier (e.g., XGBoost (Chen & Guestrinl 2016]) or Random Forest (Breiman), [2001))) over the com-
bined representation. Empirically, we find that this fusion significantly boosts performance, particularly
on adversarial and out-of-distribution examples, without requiring retraining or modification of the original
model.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our DivEye framework across a comprehensive suite of datasets that encompass
a wide range of generative models, domains, and adversarial strategies. Our primary benchmark is the
RAID dataset (Dugan et all [2024), which consists of carefully crafted adversarial examples designed to
evade standard detectors. To assess robustness under diverse generation conditions, we also evaluate on the
MAGE benchmark (Li et al.,[2024)), which spans eight distinct testbeds targeting various domains (e.g., Yelp
(Zhang et al.l 2015), XSum (Narayan et al., |2018]), SciXGen (Chen et al., [2021a)), CMV (Tan et all 2016))
and generator families (e.g., GPT (Radford et al., |2019)), OPT (Zhang et al.| 2022), Bloom (et al., 2023)).
This granular evaluation allows us to isolate and quantify the contribution of diversity metrics across specific
domains and model types. Details about each testbed in RAID & MAGE are discussed in Appendix [H|

Additionally, we incorporate HC3 (Guo et al., |2023), a large-scale, heterogeneous corpus of human and
machine text, which includes both English and Chinese instances of human and Al-generated Q&A data.
The inclusion of HC3 enables us to probe cross-linguistic generalization of our method.

Baselines. We compare DivEye with various baselines, including both traditional statistical detectors and
recent fine-tuned models. These include RADAR (Hu et al.l [2023), LogRank (Ghosal et al 2023)), Entropy
(Lavergne et al.l 2008)), FastDetect GPT (Bao et al., [2024), DetectLLM (Su et al.l 2023)), Binoculars (Hans
et al.l 2024), RAIDAR (Mao et al., 2024), OpenAlI Detector (Solaiman et al., [2019), Longformer (Beltagy
et al., [2020)), and BiScope (Guo et al., [2024). These baselines cover a range of techniques, from token-level
likelihood-based ranking to transformer-based classification. Additionally, we evaluate our framework against
several other open-source detectors listed on the RAID leaderboard, ensuring a fair and broad comparison
with state-of-the-art public tools across multiple detection paradigms.

Implementation Details & Metrics. Unless stated otherwise, we use GPT-2 to compute all DivEye fea-
ture vectors. Regardless, we studied the effect of DivEye with different LLMs as base models and summarized
the results in Section In score-only detection scenarios, predictions are based solely over concatenated
DivEye features. For both standalone and boosted setups, we train a lightweight XGBoost (Chen & Guestrin,
2016) classifier as a meta-model, using only DivEye features in the former, and concatenating them with
the original detector’s prediction scores in the latter. Each testbed in MAGE & RAID provides predefined
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Table 1: Performance of zero-shot methods on 6 diverse testbeds from MAGE. The OOD settings examine
the detection capability on texts from unseen domains or texts generated by new LLMs.

Settings Methods HumanAcc MachineAcc AvgAcc AUROC
Testbed 2,3,4: In-distribution detection
LogRank 58.81% 63.94% 61.38% 0.67
Entropy 76.43% 76.84% 76.64% 0.83
Detect LLM 66.36% 62.07% 64.21% 0.72
Arbitrary-domains & Model-specific (GPT-J [105]) FastDetectGPT 62.31% 50.49% 56.4% 0.59
Binoculars 60.11% 65.22% 62.67% 0.69
BiScope 89.62% 84.86% 87.24% 0.93
DivEye 90.63% 88.56% 89.60% 0.97
LogRank 89.61% 56.15% 72.88% 0.76
Entropy 85.96% 60.4% 73.18% 0.78
Detect LLM 88.54% 80.77% 84.66% 0.91
Fixed-domain (WP [35]) & Arbitrary-models FastDetectGPT 87.25% 54.08% 70.67% 0.76
Binoculars 80.80% 62.07% 71.44% 0.77
BiScope 91.78% 95.27% 93.53% 0.94
DivEye 92.22% 96.88% 94.55% 0.99
LogRank 84.91% 44.47% 64.69% 0.68
Entropy 75.68% 50.04% 62.86% 0.67
Detect LLM 64.74% 69.02% 66.88% 0.75
Arbitrary-domains & Arbitrary-models FastDetectGPT 93.65% 41.73% 67.69% 0.7
Binoculars 76.1% 54.89% 65.49% 0.71
BiScope 91.54% 58.70% 75.12% 0.86
DivEye 73.72% 82.57% 78.15% 0.88
Testbed 5,6,8: Out-of-distribution detection
LogRank 85.84% 19.82% 52.89% 0.52
Entropy 77.56% 34.74% 56.15% 0.59
Detect LLM 67.85% 58.5% 63.18% 0.68
Unseen Models (BLOOM-7B [31]) FastDetectGPT 94.57% 13.81% 54.19% 0.54
Binoculars 76.10% 54.89% 65.50% 0.71
BiScope 76.72% 50.47% 63.60% 0.72
DivEye 74.75% 77.06% 75.91% 0.86
LogRank 88.57% 49.8% 69.19% 0.74
Entropy 78.5% 58.16% 68.33% 0.74
Detect LLM 74.15% 71.52% 72.34% 0.79
Unseen Domains (WP [35]) FastDetectGPT 95.99% 47.17% 71.58% 0.74
Binoculars 78.93% 67.8% 73.37% 0.8
BiScope 80.1% 78.3% 79.2% 0.86
DivEye 94.64% 84.53% 89.59% 0.97
LogRank 83.87% 43.95% 63.91% 0.68
Entropy 74.93% 50.18% 62.55% 0.66
DetectLLM 63.66% 67.40% 65.53% 0.73
Unseen Domains & Unseen Models FastDetectGPT 93.38% 41.50% 67.44% 0.70
Binoculars 77.85% 69.39% 73.62% 0.81
BiScope 86% 82.58% 84.24% 0.92
DivEye 69.75% 83.22% 76.49% 0.87

training and test sets, which we use for model training and evaluation. We evaluate all models using Aver-
age Accuracy (AvgAcc), AUROC, TPRQFPR=5% and F1 score to capture overall, threshold-independent,
and balanced performance, respectively. For all methods, we independently optimize any required deci-
sion thresholds for AUROC and for TPRQFPR=5%, ensuring that each model is evaluated under its most
favorable threshold for each metric.

4.2 Performance of DivEye

We evaluate DivEye across a wide range of challenging testbeds to assess its robustness and adaptability to
both domain and model shifts. Table [I] presents the performance of DivEye on six distinct testbeds from the
MAGE benchmark (Li et al., 2024): three in-distribution and three out-of-distribution. Across all testbeds,
DivEye consistently achieves superior AUROC of 0.92 on average and AvgAcc compared to existing zero-shot
baselines, showcasing its ability to generalize effectively to both seen and unseen generation settings. We
demonstrate that human-written and machine-generated text can be distinguished based on the hypothesis
outlined in Section |3 We further include the corresponding TPRQFPR=5% performance in Table

Table [2[ benchmarks DivEye on the RAID dataset (Dugan et al.| [2024), which includes a suite of diverse
models, domains, attacks, and decoding strategies. DivEye outperforms a diverse set of zero-shot methods
by 26.11% and matches the performance of generative detection baselines, reaffirming its robustness to
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Figure 4: (a) Performance of DivEye across different domains, generated by GPT-J-6B. (b) Performance of
DivEye across various generator models. Results are based on the MAGE benchmark.

Table 2: Performance of zero-shot and open-source finetuned methods — 1.0] o0 o505 505
on RAID. Results are aggregated over 8 domains, 12 models, and 4 s : 0.816 "
decoding strategies. 0 denotes difference in AUROC from benchmark ' .
leader. go6
e 0.4
TPR@
Frameworks Type FPR=5% AUROC 1 0.2 =
e5-small-lora [30]  Fine-tuned 93.9% 0.986 0% 4T ouye GIIR  Openabetector
Classifier
DivE (0] 93.63 0.984 -0.20
ivEye (Ours) (zero-shot) % 7% Figure 5: F1 scores on HC3 show
Desklib AT [28] Fine-tuned 94.9% 0.973 -1.32%  that DivEye outperforms GLTR [39]
SuperAnnotate [95] Fine-tuned 70.3% 0.910 S1.71%  and OpenAl-Detector [93], with
Binoculars [46] Z?ro—shot 79.0% 0.844 -14.40% strong results across English and
RADAR [49] Fine-tuned 65.6% 0.819 -16.94% Chinese
GLTR [39)] Zero-shot 59.7% 0.727 -26.27% '

evasive generation strategies. Figures [ [7] & [§] demonstrate the performance of DivEye across different
domains and generator models, achieving competitive AUROC of 0.98 and 0.93, respectively. These results
highlight DivEye’s stability and high performance across heterogeneous scenarios, underscoring its domain
and model-agnostic nature.

Moreover, Appendix reports DivEye’s detection rates on all major models, including GPT-3.5-Turbo
(Brown et al. [2020) and GPT-4o (et al., 2024b)), Claude-3-Opus and Sonnet (Anthropic), as well as Gemini-
1.0-Pro (et al., |2025), demonstrating highly competitive accuracies across the board. Collectively, these
results confirm that DivEye provides a robust and adaptable foundation for detecting Al-generated text.

4.3 Robustness to Adversarial Attacks and Multilingual Text

To evaluate robustness, we assess DivEye on a diverse set of adversarial attacks, including paraphrasing
attacks from the MAGE dataset and transformation-based jailbreak attacks from the RAID benchmark.
Table [3] shows that DivEye consistently achieves strong detection performance under these challenging set-
tings. On the MAGE benchmark, DivEye outperforms the fine-tuned Longformer baseline in both average
accuracy and AUROC by 10.15% and 0.11 respectively. On the RAID benchmark, which reports only accu-
racy, DivEye achieves competitive results across a range of adversarial perturbations, outperforming several
zero-shot detectors, most notably surpassing Binoculars by 11.2%. A more detailed breakdown of perfor-
mance by individual attack type is provided in Appendix We also test DivEye’s robustness to diverse
adversarial scenarios, including character- and word-level perturbations, paraphrasing via commercial tools,
prompt obfuscations, and distributional shifts, and find that it consistently achieves exceptional detection
performance; a consolidated overview is provided in Appendix [E]
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Table 4: Integration with DivEye consistently boosts performance across detectors, particularly on diverse
domains (Testbed 4) and paraphrasing attacks (Testbed 7).

Methods HumanAcc MachineAcc AvgAcc AUROC 4: Boost
Testbed 4: Arbitrary Domains & Arbitrary Models
RADAR 47.74% 74.86% 61.30% 0.62 -
DetectLLM 64.74% 69.02% 66.88% 0.75 -
FastDetectGPT 93.65% 41.73% 67.69% 0.7 -
Binoculars 76.1% 54.89% 65.49% 0.71 -
BiScope 91.54% 58.70% 75.12% 0.86
DivEye 73.72% 82.57% 78.15% 0.88 -
DivEye + RADAR 74.69% 85.31% 80% 0.90 18.7%
DivEye + DetectLLM 75.44% 84.23% 79.34% 0.9 12.96%
DivEye + FastDetectGPT 79.42% 83.90% 81.66% 0.91 13.97%
DivEye + Binoculars 69.81% 83.47% 76.64% 0.87 11.15%
DivEye + BiScope 80.69% 88.31% 84.5% 0.93 9.38%
Testbed 7: Paraphrasing Attacks
BiScope 48.80% 89.79% 69.30% 0.81 -
DivEye 69.75% 83.22% 76.49% 0.87 -
DivEye + BiScope 65.38% 90.84% 78.11% 0.89 8.81%

We further evaluate DivEye’s multilingual generalizability using both English and Chinese splits of the HC3
dataset. Figure [5] illustrates that DivEye performs consistently well and has higher F1 scores across both
languages using GPT-2 (Radford et all 2019) & GPT-2-Chinese (CKIPLAB, [2024) for English and Chinese
respectively. This suggests that surprisal-based statistical features are not heavily language-specific and can
generalize across languages.

4.4 Efficiency Analysis

In addition to accuracy, we analyze the computational efficiency of DivEye. Figure [6D]illustrates the latency
of our method, showing that DivEye requires as little as 0.01 seconds per sample while outperforming
several fine-tuned and zero-shot detectors, achieving up to a 2971 x speedup compared to RAiDAR. Because
DivEye only requires a single forward pass through a small GPT-2 model and performs lightweight statistical
computations, it is significantly faster and more resource-efficient than larger fine-tuned transformers. This
enables deployment in latency-sensitive environments without compromising performance.

4.5 Effectiveness of Boosting by DivEye

We empirically verify that DivEye-based diver-  Taple 3: Performance of DivEye and baselines on adver-
sity features can act as performance boosters garial henchmarks, MAGE & RAID. * - RAID reports
for a wide range of detection models. To inte- TPR@QFPR=5% instead of AvgAcc.

grate DivEye, we concatenate its feature vec-

tor with the original model’s prediction scores Settings Methods AvgAcc AUROC
and train a lightweight XGBoost classifier as a
meta-model.

[MAGE] Testbed 8: Paraphrasing Attack
Longformer [LT] 69.34% 0.76
Table [ illustrates improvements in AU-  Paraphrased via Bichope [45;[ ’ 69.30‘%2 0.81
ROC and AvgAcc when diversity metrics  GPT-3.5-Turbo DivEye (Ours)  76.49% 0.87
are appended to existing frameworks such
as RADAR, Binoculars, DetectLLM, BiS-

[RAID] Adversarial Attacks”

cope and FastDetectGPT. Across all evaluated Paraphrase Desklib Al [28‘,‘ - 91.2% 0.948
baselines, the inclusion of diversity features Whitespace7, e5-small-lora 5]  85.7% 0.968
consistently leads to better detection scores by =~ Misspelling, Ho- ?;VEye (Ourg) 80.52% 0.951
. . . inoculars [46] 69.32% -
over 18.?%. .Addlplona.lly, existing frameworks moglyph, Article  pApAR (9] 63.9% 0.819
in combination with DivEye demonstrate sub- ~ Deletion & more  ~ 1p [39) 51.5% 0.709

stantial performance gains when evaluated
against paraphrasing attacks. This validates
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(a) DivEye using diverse base models. (b) Inference time comparison.

Figure 6: (a) Performance of DivEye across different base models (GPT-2, GPT-2-XL, Falcon-7B). (b)
Inference time (in sec) comparison of various methods.

the hypothesis that static and dynamic surprisal-based features capture orthogonal information to tradi-
tional heuristics, making them a valuable addition to any detection pipeline. We also investigate how much
DivEye contributes to the final prediction relative to the underlying detector. Appendix [D-4] reports a de-
tailed feature-importance analysis, highlighting the complementary signals captured by DivEye within the
boosted ensembles.

4.6 Ablation Studies

DivEye’s Performance on Different Base Models. To assess the adaptability of DivEye across
different language model backbones, we evaluate its performance, on Testbed 4 of the MAGE benchmark,
when instantiated with various base LLMs used to compute token-level surprisal. As shown in Figure
DivEye consistently performs well across all models, achieving an AUROC of 0.88 with GPT2, 0.91 with
Llama-3.1-8B, and 0.90 with Falcon-7B. Notably, even the smallest model, GPT2, performs competitively,
and human classification accuracy improves with larger models, suggesting that higher-capacity LMs better
capture stylistic diversity. These results highlight DivEye’s robustness and efficiency across scales, making
it suitable for resource-constrained settings. Appendix further reports baseline and DivEye performance
across various base models.

Relevance of DivEye’s Features. DivEye’s feature set (Equation @ captures token-level surprisal pat-
terns across multiple orders, including distributional moments, first-order shifts, and second-order dynamics.
To assess the contribution of each group, we compute feature importances from a trained XGBoost model.
On average, second-order features contribute the most (39.4%), followed by distributional features (34.2%)
and first-order differences (23.7%). The prominence of second-order features suggests that abrupt or unnat-
ural shifts in predictability are strong indicators of machine-generated text. While traditional distributional
statistics remain informative, they are insufficient on their own. These findings support DivEye’s central
claim about second-order features: modeling the evolution of surprisal yields stronger detection capabilities
than relying solely on static measures. Additionally, Appendix contains a detailed discussion about
the contribution of each component in DivEye, including both feature-importance estimates and statistical
leave-one-out ablation results.

5 Conclusion

We introduce DivEye, a lightweight classifier for Al-text detection that leverages zero-shot diversity features
from token-level surprisal. Our method is model-agnostic, computationally efficient, and demonstrates strong
generalization across detectors and datasets. Appendix [J] provides a detailed discussion of the method’s
limitations, broader impacts, and associated ethical considerations.
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A More Details on Related Work

In recent years, the challenge of identifying Al-generated text has garnered significant attention, giving
rise to a variety of detection approaches. These methods largely fall into two categories: watermark-based
techniques and zero-resource detection.

Watermarking. Watermarking embeds traceable patterns in a model’s outputs during training or gener-
ation, enabling downstream identification of machine-generated content (Ren et al. 2024; |Liu et al.l |2024a)).
While watermarking can be effective in controlled environments, it relies on access to or cooperation from the
model’s developers, an assumption that frequently fails in real-world or adversarial scenarios. Furthermore,
it is inherently unsuitable for practical situations where Al-generated text lacks any embedded watermark.
This limitation has led to growing interest in zero-resource detection methods, which make no assumptions
about access to the model’s internals or training data. Instead, these methods analyze the output text alone,
offering a more flexible and broadly applicable approach. Within this space, techniques can be further cate-
gorized into fine-tuned methods, which rely on labeled datasets, and zero-shot methods, which generalize to
unseen models without task-specific training.

Fine-tuned Detection. Fine-tuned detection methods represent a major strand of zero-resource detec-
tion, often leveraging fine-tuned classifiers built atop pre-trained language models (PLMs). A pivotal de-
velopment was the Grover model, which demonstrated that models trained on text from specific generators
can achieve high accuracy on in-distribution data, particularly when integrating Grover-specific layers. This
inspired a wave of PLM-based detectors, most notably OpenAl’s GPT-2 detector (Solaiman et al., [2019),
which uses a RoBERTa classifier trained on GPT-2 outputs. However, such detectors often struggle to
generalize across models, especially as newer LLMs introduce more fluent and coherent outputs.

To improve generalization and robustness, recent work has focused on feature augmentation. Stylometric
approaches, for instance, introduce handcrafted features that capture writing style discrepancies between
humans and machines (Mikros et al 2023)). These include measures of phraseology, punctuation, linguistic
diversity, and journalistic standards, which have proven useful for detecting Al-generated tweets and news
articles. Additional features such as perplexity statistics, sentiment, and error-based cues like grammatical
mistakes further enrich detection pipelines (Kumarage et al., 2023)).

Parallel efforts have explored structural features, incorporating models that explicitly account for the factual
or contextual structure of text. Techniques such as TriFuseNet combine stylistic and contextual branches
with fine-tuned BERT models, while others employ attentive-BiLSTMs to replace standard feedforward
layers, enhancing interpretability and robustness (Liu et al.l |2024b]).

Despite these advancements, fine-tuned detectors still require labeled training data and model-specific tuning
of PLMs, which can limit their scalability to novel or proprietary LLMs. Although these detectors perform
exceptionally well on data similar to their training sets, they face significant drawbacks, most notably, a
tendency to overfit to specific domains and a reliance on retraining for every newly emerging AI model,
which is unsustainable in light of the fast-paced evolution of generative technologies. This motivates the
development of methods, that leverage zero-shot features, such as DivEye, that aim to detect Al-generated
text without relying on supervised learning or access to model internals.

Zero-shot Detection. Recent research has focused on zero-shot detection strategies that require no fine-
tuning on labeled examples from the target generator. These methods typically leverage statistical cues from
PLM’s output distributions or repurpose LLMs themselves as detectors.

A prominent class of zero-shot detectors exploits the probability structure of text under language models. De-
tectGPT (Mitchell et al.|, 2023) detects machine-generated text by measuring how strongly the log-likelihood
drops under small semantic perturbations, leveraging the hypothesis that Al text lies in regions of higher
negative curvature than human text. On the other hand, FastDetectGPT (Bao et al., [2024) eliminates the
need for explicit perturbations by directly measuring curvature in conditional probabilities, observing that Al
text typically exhibits sharper transitions between tokens compared to human writing. These observations
are refined in DetectLLM (Su et al., [2023), which introduces the Log-Likelihood Log-Rank Ratio (LRR) and
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Figure 7: AUROC performance profiles of seven Al-detection tools evaluated on text generated by ten diverse
domains generated by arbitrary LLMs. Each spider plot corresponds to a specific domain, with radial axes
representing the AUROC score (ranging from 0 to 1) and angular axes representing the detection tools:
RADAR, Entropy, LogRank, FastDetectGPT, DetectLLM, OpenAl Detector, and DivEye.

Normalized Perturbed log-Rank (NPR) metrics to quantify the distinguishability of Al-generated content
using statistical features derived from token rankings.

Another line of work focuses on token predictability and entropy. LogRank (Ghosal et all 2023) investigates
the use of token rank distributions and demonstrates that log-rank statistics, such as the frequency of
top-ranked tokens, are reliable signals of AI authorship. This builds on early work such as entropy-based
detection (Lavergne et all 2008) and GLTR (Gehrmann et all 2019), which showed that humans tend to
use more surprising and diverse tokens, while LLMs often fall back on high-probability continuations.

Moving beyond single-directional statistics, BiScope (Guo et al.,[2024) proposes a bi-directional cross-entropy
framework that measures how well a model’s predicted logits align both with the ground truth next token

(forward loss) and with the previous token (backward loss). The key insight is that Al-generated text often
exhibits predictable forward progression but weaker backward association due to its autoregressive nature.
A shallow classifier trained on the joint distribution of these losses can reliably detect Al text with zero-shot
generalization.

Finally, Binoculars (Hans et al.| 2024) offers a model-agnostic strategy by comparing the statistical disagree-
ment between two LLMs on the same input. By contrasting the outputs of two diverse LLMs, the method
detects anomalies in token distributions that are characteristic of synthetic text. This ensemble-based dis-
agreement is found to correlate strongly with model-generated samples, providing a powerful signal without
the need for training data from either model.

Collectively, these techniques demonstrate that zero-shot detection can be achieved by carefully analyzing
how text aligns with the inductive biases and statistical signatures of language models, without any finetuning
or access to the original generator. They lay the foundation for our proposed method, DivEye, which further
capitalizes on diversity-based statistical properties to robustly differentiate Al- and human-written content.
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Figure 8: AUROC performance profiles of seven Al-detection tools evaluated on text generated by six
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AUROC score (ranging from 0 to 1) and angular axes representing the detection tools: RADAR, Entropy,
LogRank, FastDetectGPT, DetectLLM, OpenAl Detector, and DivEye.
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Figure 9: Ablation results on Testbed 4 of the MAGE benchmark showing the impact of temporal surprisal
features. Adding temporal dynamics to static surprisal statistics improves both accuracy (from 74.25% to
78.15%) and AUROC (from 0.82 to 0.88), demonstrating their complementary value for robust Al-generated
text detection.

B Motivation Behind Temporal Features

While static surprisal statistics such as mean, variance, skewness, and kurtosis provide useful summaries
of token-level unpredictability, they overlook the evolution of this unpredictability over time, a dimension
critical to distinguishing human and Al-generated text. Human authors naturally embed stylistic variability
through temporal fluctuations, such as abrupt topic shifts, tonal changes, and bursts of creativity, which
manifest as distinctive temporal dynamics in surprisal sequences.

Intuitively, these temporal features, as listed in Section [3] expose rhythmic and non-stationary patterns
characteristic of human creativity and coherence, typically absent in the more uniform output of large
language models.
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Table 5: TPRQFPR=5% on Testbed 8 (Unseen Domains & Models).

LogRank Entropy DetectLLM FastDetect Binoculars BiScope DivEye
TPR 47.1 30.1 51.5 76.3 68.7 99.8 99.6

Furthermore, through an ablation study on Testbed 4 of the MAGE benchmark (Figure @, we empirically
show that augmenting static surprisal features with temporal metrics leads to a measurable improvement
in classification accuracy. This highlights the complementary value of temporal dynamics in enhancing the
robustness of Al-generated text detection. Moreover, an analysis of feature importance (Appendix
reveals that temporal features collectively contribute more than static features, consistently ranking among
the most informative signals for distinguishing between human and Al-generated text.

Overall, these findings motivate the inclusion of temporal surprisal features as integral components of our
DivEye framework.

C Implementation of DivEye

We provide a detailed description of our DivEye implementation in Algorithm[I} This includes all steps from
surprisal computation to feature extraction and final classification. We use an XGBoost classifier for binary
classification as a preliminary choice, without extensive comparison to other classifiers, leaving exploration
of alternative models for future work. For completeness and reproducibility, we include all additional imple-
mentation details, such as hyperparameter configurations, model architectures, and experimental testbeds,
in Appendix [[]and Appendix [H]

Algorithm 1 DivEye: Algorithm for Feature Extraction & Training

Require: Text dataset D = {(z;,¢;)},, where x; is a text input and ¢; € {0,1} indicates whether it is
human-written (¢; = 1) or machine-generated (¢; = 0)
Require: Pretrained auto-regressive language model g4 (e.g., GPT-2)
Require: XGBoost classifier with hyperparameters ©
Ensure: Trained binary classifier fy
: Initialize an empty feature matrix F < [ ]
: for each (z;,¢;) € D do
Compute token-level log-likelihoods: y; < g¢(2:)
Convert to token-level surprisals: s; < —y;
Compute diversity features DivEye(x;) € R? as described in Equation @ using s;
Append (DivEye(z;),¢;) to F
end for
: Train binary classifier fy on feature set F using XGBoost with hyperparameters ©
return fy

© %0 N gk W

D Additional Results

In this section, we present additional supporting experiments that demonstrate the generalizability, robust-
ness, and complementary strengths of DivEye through various ablation studies.

D.1 Domain-Specific Performance of DivEye

Figure [7] presents the AUROC performance of seven detection methods evaluated across ten text domains
(Testbed 3 of the MAGE benchmark). DivEye consistently achieves the highest AUROC scores in every
domain - reaching up to 0.99 in WP, 0.97 in CMV, and 0.95 in SciXGen, outperforming other detectors by a
notable margin. This highlights DivEye’s adaptability and robustness in capturing domain-specific writing

24



Under review as submission to TMLR

patterns that other methods frequently miss. These results reinforce the advantage of leveraging surprisal
features for more generalizable and context-sensitive detection of Al-generated text.

D.2 Model-Specific Performance of DivEye

Figure [§] compares the AUROC performance of seven detection methods across text on generated by six
different large language models (Testbed 5 of the MAGE benchmark). DivEye achieves the highest AU-
ROC scores across all six models, demonstrating strong robustness (0.95 on GLB-130B, 0.89 on GPT-J,
0.85 on GPT-3.5-Turbo). This consistent performance highlights DivEye’s effectiveness in capturing tempo-
ral surprisal patterns that generalize well across different language model architectures, making it broadly
applicable for reliable Al-generated text detection.

D.3 Performance against other base models

We evaluate the robustness of all detectors across different backbone models and report results in Table [6]
These backbone models include GPT-2 (Radford et al., [2019), GPT-2-XL (Radford et al.l |2019), Falcon-7B
(Almazrouei et al., [2023]), L1ama-3.2-1B (et al.,[2024a)), Llama-3.1-8B (et al., [2024a)) and Mistral-7B-v0.3
(Jiang et al., |2023). Competing methods such as Binoculars, BiScope, and DetectLLM show moderate
variation with backbone choice, while FastDetect GPT and LogRank generally underperform. These results
highlight that DivEye maintains strong and stable detection capability regardless of the underlying base
model.

Table 6: Performance of different detectors across backbone models.

Backbone Model ‘ DivEye ‘ Binoculars ‘ BiScope ‘ LogRank ‘ DetectLLM ‘ FastDetectGPT

GPT-2 0.88 0.71 0.86 0.68 0.75 0.69
GPT-2-XL 0.89 0.73 0.86 0.68 0.76 0.70
Falcon-7B 0.90 0.73 0.89 0.70 0.80 0.72
Llama-3.2-1B 0.87 0.71 0.87 0.70 0.76 0.71
Llama-3.1-8B 0.91 0.77 0.90 0.72 0.81 0.73
Mistral-7B-v0.3 0.90 0.76 0.90 0.71 0.80 0.72

D.4 Relative Importance of DivEye in a Boosted Model

Figure [10]illustrates the relative feature importance of DivEye when integrated into boosted ensembles with
five existing AI detectors: BiScope (Guo et al.|2024)), OpenAI Detector (Solaiman et al.,|2019)), RADAR. (Hu
et al,2023), DetectLLM (Su et al.} [2023]), and Binoculars (Hans et al.,|2024)). DivEye contributes significantly
to the overall model, with particularly high importance when combined with RADAR (91.92%), OpenAl
Detector (90.26%), and Binoculars (89.71%). Even in ensembles with more advanced detectors like BiScope,
DivEye still adds valuable signal (32.93%). These results affirm the standalone strength of DivEye and its
utility in hybrid detection frameworks.

D.5 Results with Different Proprietary LLMs

Table [7] reports AUROC scores of DivEye on text generated by five proprietary LLMs, Claude-3 Opus,
Claude-3 Sonnet, Gemini 1.0-pro, GPT-3.5 Turbo, and GPT-4 Turbo, using data provided in the BiScope
paper (Guo et al.,[2024) across five domains. DivEye achieves consistently strong performance on the Normal
dataset (e.g., 1.000 on GPT-3.5 Turbo for Essay) and remains robust under paraphrased inputs, with AUROC
scores generally above 0.95. These results highlight DivEye’s ability to generalize across diverse generation
models and domains, even under text transformations.
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Figure 10: Feature importance of DivEye when integrated with various existing detectors. The plot shows
how much DivEye contributes to the overall detection model when combined with BiScope, OpenAl Detector,
RADAR, DetectLLM, and Binoculars. Higher values indicate stronger complementary impact from DivEye’s
diversity-based features.

Table 7: AUROC scores achieved by DivEye on five commercial LLMs across various domains. Results are
shown for both the Normal and Paraphrased datasets.

Domain Normal Dataset Paraphrased Dataset

Claude-3 Opus  Claude-3 Sonnet  Gemini 1.0-pro  GPT-3.5 Turbo GPT-4 Turbo | Claude-3 Opus Claude-3 Sonnet  Gemini 1.0-pro  GPT-3.5 Turbo  GPT-4 Turbo
Arxiv 0.9942 0.9770 0.9795 0.9658 0.9793 0.9778 0.9552 0.9616 0.9689 0.9558
Code 0.7528 0.8557 0.7824 0.9577 0.9044 0.8456 0.9053 0.7521 0.9279 0.9302
Creative 0.9888 0.9773 0.9835 0.9951 0.9608 0.9930 0.9900 0.9957 0.9917 0.9949
Essay 0.9950 0.9988 0.9972 1.0000 0.9823 0.9975 0.9877 0.9814 0.9895 0.9559
Yelp 0.8855 0.8813 0.9220 0.8384 0.8942 0.9543 0.9780 0.9683 0.8524 0.9571

D.6 Feature Importance of DivEye

Figure[l1|presents the relative importance of each of the nine diversity-based features incorporated in DivEye,
which are derived from surprisal statistics as detailed in Equation equation [§] The feature importances,
ranging from approximately 8.1% to 13.0%, indicate that all features contribute meaningfully to model
decisions, with temporal features such as, Ap, entropy of second derivatives Haz, and autocorrelation paz
exhibiting the highest influence. This balanced contribution underscores the complementary nature of these
statistical descriptors in enhancing DivEye’s detection capability when combined with existing baseline
detectors.
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Figure 11: Relative feature importances for the nine diversity-based features used in DivEye. The features,
as listed in Equation equation [6] represent distinct surprisal-based statistics. Higher percentages indicate
greater influence in model decisions when combined with existing detectors.
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D.6.1 Statistical Relevance of DivEye

To evaluate the individual contribution of each component in our diversity vector D (Equation @, we
perform a leave-one-out ablation study. Each feature is removed individually from the 9-dimensional vector,
the classifier is retrained, and the resulting performance is measured by the drop in AUC on Testbed 4 of the
MAGE benchmark. To also assess statistical significance, we conduct a paired bootstrap test, resampling
the test set to compute p-values under the null hypothesis that both models perform equally well. Table [§]
summarizes both the AUC drop and the p-value for each feature.

Table 8: Leave-one-out feature ablation and statistical significance for DivEye. Each feature’s removal leads
to a measurable drop in AUC and is statistically significant (p < 0.05).

Feature Category | AUC Drop p-value

Haz 2nd-Order -0.0263 0.001
Y1 Distribution -0.0239 0.004
PA2 2nd-Order -0.0152 0.012
o2 Distribution -0.0115 0.016
Ac? 1st-Order -0.0103 0.017
Y2 Distribution -0.0091 0.019
Ap 1st-Order -0.0056 0.027
s Distribution -0.0013 0.032
oAz 2nd-Order -0.0008 0.034

Several key insights emerge from this analysis:

e Second-order features are the most impactful. Removing second-order entropy Haz results
in the largest decline in AUC, followed by the second-order autocorrelation paz, highlighting the
importance of modeling higher-order dependencies in token-level surprisal dynamics.

« Distributional features are significant. Skewness (7;) and variance (¢2) contribute meaning-

fully, indicating that asymmetry and dispersion in surprisal values enhance DivEye’s discriminative
performance.

o First-order features contribute consistently. The mean and variance of first-order differences
(Ap, Ao?) produce measurable gains, reflecting local variation in surprisal between adjacent tokens.

Even features with small absolute AUC drops, such as ps and oaz2, are statistically significant (p < 0.05).
This demonstrates that each feature contributes non-redundant information, supporting our core hypothesis
that diversity in token-level surprisal; capturing both distributional asymmetries and temporal patterns is
essential for detecting machine-generated text.

D.7 Performance against same model

To investigate whether DivEye’s detection ability relies on a distributional mismatch between the generator
and the surprisal model, we conducted a controlled experiment using the same model for both purposes.
Specifically, we computed diversity-based features and trained the DivEye classifier using three different
LLMs: Falcon-7B, Llama-3.1-8B, and GPT-2-XL.

We further evaluated generalization by performing an out-of-distribution test using generations from 500
prompts drawn from the OASST (Kopf et al., 2023) and Self-Instruct (Wang et al.l |2023) datasets. Table |§|
reports the resulting Al detection accuracies.

Despite using the same model for both generation and surprisal estimation, DivEye maintains high clas-
sification accuracy across all settings. This demonstrates that DivEye’s effectiveness stems from intrinsic
statistical patterns in the generated text rather than artifacts arising from a model mismatch.
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Table 9: DivEye performance when using the same model for both generation and surprisal computation.

Model AT Accuracy (%)
Falcon-7B 98.2
Llama-3.1-8B 96.1
GPT-2-XL 98.8

D.8 Performance against Longformer

Table 10: AUROC comparison of DivEye, DivEye (w/ BiScope), and Longformer across MAGE test settings.

Setting | Longformer DivEye DivEye (w/ BiScope)
Fixed-domain, Model-specific 0.990 0.994 1.000
Arbitrary-domains, Model-specific 0.990 0.972 0.991
Fixed-domain, Arbitrary-models 0.990 0.993 0.998
Arbitrary-domains, Arbitrary-models 0.990 0.880 0.934
OOD: Unseen Models 0.950 0.859 0.952
OOD: Unseen Domains 0.930 0.975 0.989
OOD: Unseen Domains & Models 0.940 0.924 0.986
Paraphrasing Attacks 0.750 0.870 0.923

Longformer, being a fine-tuned detector, was not included in Table [I] since its setup differs fundamentally.
Nonetheless, for completeness, we provide a detailed AUROC-based comparison of DivEye against Long-
former across the 8 challenging MAGE testbeds.

As shown in Table DivEye consistently matches or outperforms Longformer in most settings. Even
under OOD scenarios and paraphrasing attacks, DivEye demonstrates strong generalization, often exceed-
ing Longformer’s performance. DivEye (w/ BiScope) further improves AUROC across nearly all testbeds,
highlighting the benefits of incorporating diverse zero-shot features.

D.9 Performance across edge-cases

D.9.1 Performance across non-native-written texts

To evaluate potential bias against non-native speakers, a known vulnerability in many perplexity-based
detectors, we conducted a targeted evaluation using the COREFL dataset (Lozano et al. [2020). This
dataset consists of 1426 essays written by native German and Spanish speakers, explicitly categorized by
their English proficiency levels (ranging from Al to C2).

We trained (or configured) DivEye, Binoculars and FastDetectGPT using a balanced set comprising 75% of
the COREFL human texts and an equivalent number of Al-generated samples drawn from MAGE Testbed
4. We evaluate performance on the held-out 25% to measure detection accuracy across proficiency brackets.

Table 11: Detection Accuracy on Non-Native English Writing.

Framework Average Accuracy
Binoculars 68.34%
FastDetectGPT 71.711%
DivEye (Ours) 82.07%

As shown in Table DivEye significantly outperforms existing baselines in identifying non-native human
text, achieving a robust 82.1% average accuracy compared to 68.34% for Binoculars and 71.7% for FastDe-
tectGPT.
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Figure 12: Granular depiction of various frameworks performance on various non-native texts.

Crucially, as illustrated in Figure our granular analysis reveals that performance of all frameworks
correlates with linguistic complexity: Al texts (the most beginner class) are the most difficult to detect,
while accuracy steadily improves as proficiency rises. As for DivEye, this suggests that detection becomes
easier as the text exhibits the richer rhythmic signatures of advanced writing.

D.9.2 Performance across legal & professional documents

A common criticism in Al text detectors is their potential fragility when applied to highly formal human
writing, such as legal contracts or technical specifications. In these domains, human writers often strive for
low entropy and rigid structure, traits typically associated with machine generation. To address this concern,
we evaluated DivEye on the LEDGAR dataset (Tuggener et al.,[2020)), a corpus of legal provisions extracted
from US SEC filings.

Table 12: Detection Accuracy on LEDGAR dataset.

Framework Accuracy

Binoculars 91.67%
FastDetectGPT 94.8%
DivEye (Ours)  99.49%

We adopted a robust evaluation protocol using a 75-25 train-test split to ensure generalization. As shown in
Table[I2] despite the constrained and repetitive nature of contract language, DivEye successfully outperforms
other frameworks on this task. These findings provide empirical evidence that DivEye’s core hypothesis holds
even in challenging edge cases.

D.9.3 \Visualizing texts under observation

Analyzing the probability distributions across domains reveals a distinct hierarchy of detectability. We have
already seen a distribution in Figure [3] for DivEye’s effectiveness on MAGE Testbed 4.

Contrary to the concern that formal writing might resemble algorithmic generation, we find that in Figure
professional legal text (LEDGAR) is the most easily distinguishable from A, with its probability distribution
shifted furthest towards the human extreme.

This suggests that while professional writing is structured, it contains sharp, domain-specific peaks in in-
formation density that are representative of human writing. Furthermore, Standard (MAGE Testbed 8)
and Non-Native (COREFL) texts exhibit remarkably similar distributions, effectively overlapping in the
high-probability region. We hope to investigate this further in our future works.

D.9.4 Text sensitivity analysis of DivEye
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Figure 13: Predicted distributions of predicted class probabilities for diverse human written texts. We utilize
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Figure 14: DivEye’s performance on different text lengths (characterized by tokens) on MAGE Testbed 4.

To determine the minimum linguistic context required for reliable detection, we evaluated the performance
of DivEye across varying text lengths. We truncated test samples to specific token counts ranging from
N =10 to N = 256 and measured the AUROC at each interval. As illustrated in Figure performance
follows a predictable scaling law relative to information availability.

Detection is constrained on extremely short fragments, yielding an AUROC of 0.62 at 10 tokens; this is
expected, however, the system demonstrates rapid convergence: performance improves steadily as the context
window expands, reaching a robust AUROC of 0.88 by 256 tokens. This confirms that while DivEye benefits
from longer contexts, it effectively captures the structural signature of human writing within standard
paragraph lengths.

We discuss short length texts as a limitation in Appendix [J]
E Additional Adversarial Attacks on DivEye

We evaluate DivEye under a range of adversarial settings, including character-level perturbations, word-
and phrase-level edits, paraphrasing, prompt obfuscations, and distribution shifts (temperature changes and
degenerate sampling), to comprehensively assess its robustness.
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Table 13: Performance of DivEye and open-source baselines on all listed adversarial attacks on the RAID
benchmark.

Settings Methods FPRQTPR=5%
Desklib A 93.0%
Settings Methods FPRQTPR=5% e5-small-lora 93.5%
Number Attack DivEye (Ours) 92.1%
[RAID] Adversarial Attacks Binoculars 76.4%
Desklib Al 94.9% RADAR 65.7%
e5-small-lora 93.9% GLTR 57-3%
Whitespace Attack Dl.vEye (Ours) 79.8% Desklib AI 94.9%
Binoculars 68.7% eb-small-lora 93.9%
RADAR 61.1? Insert Paragraph DivEye (Ours) 92.2%
GLTR 43.1% grap Binoculars 70.7%
Desklib AI 87.2% RADAR 68.2%
e5-small-lora 93.9% GLTR 58.3%
Upper-Lower Attack [];vEyel(Ours) ?gggo Desklib AI 99.7%
RX]%CXP?YS 65. 1(; eb-small-lora 11.1%
A DivEye (Ours) 61.6%
GLTR 45.3% Homoglyph Attack Binoculars 36.1%
Desklib Al 80.6% RADAR 44.8%
eb-small-lora 85.6% GLTR 20.3%
Synonym Attack DivEye (Ours) 67.1% Desklib Al 90.5%
Binoculars 42.1% B
RADAR 62.7% eb-small-lora 92.0%
. . DivEye (Ours) 88.0%
GLTR 28.7% ¥
0 Article Deletion Binoculars 73.3%
Desklib AT 83.7% RADAR 63.0%
e5-small(—g)ra : 85.5;7/0 GLTR 48.9%
DivEye (Ours 74.4%
Paraphrase Attack BinoZulars N/A Desklib AI 94.3%
RADAR 62.4% eb-small-lora 93.4%
GLTR 43.0% Alt. Spelling Attack DivEye (Ours) 92.01%
A - ’ Binoculars 77.6%
Deﬁkl{}il 11 ‘ 93-9;’ RADAR 65.5%
e§—smd -lora 92.5% GLTR, 58.2%
Perplexity Misspellin, DivEye (Ours) 90.6%
p v P € Binoculars 77.2% Desklib A 87.5%
RADAR 64.3% e5-small-lora 93.9%
GLTR 57.0% . DivEye (Ours) 92.0%
Zero Width Space Binoculars 98.4%
RADAR 78.4%
GLTR 97.9%

E.1 Adversarial Attack Analysis of DivEye

We evaluate DivEye against a wide range of adversarial attacks using the RAID benchmark, reporting average
classification accuracies across all attack categories listed in Table [[3] DivEye achieves performance on par
with the top-performing fine-tuned models reported by the benchmark. Notably, it consistently surpasses
all zero-shot detectors by a significant margin across every attack type, demonstrating strong robustness
against both diverse adversarial attacks.

E.2 Detection against other diverse online paraphrasers

To evaluate the robustness of DivEye against paraphrasing attacks intended to "humanize" Al-generated
text, we curate a set of 21 arXiv abstracts generated by Claude-3.5-Sonnet and paraphrase each using three
widely used commercial tools: ZeroGPTﬂ GPTiniﬂ7 and QuillBotﬂ This results in 63 paraphrased texts (21
per tool), each aiming to evade Al detectors through stylistic and lexical variation. We provide this smaller
dataset in the supplementary materials and in our anonymous repository.

%https://www.zerogpt.com/
Shttps://app.gptinf.com/
4https://quillbot.com/paraphrasing-tool
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Table 14: Detection performance of DivEye against paraphrased outputs generated by three commercial
tools. Each model was tested on 21 samples per paraphraser.

Paraphraser ‘ MAGE Testbed 4 Model Claude-3.5-Sonnet Model
Claude-3.5-Sonnet (original) 20 / 21 21 /21
GPTinf 18 / 21 19 /21
ZeroGPT 20 / 21 17 /21
QuillBot 20 / 21 17 /21

We assess detection performance using two XGBoost classifiers trained exclusively on DivEye features: one
trained on MAGE’s Testbed 4 (Arbitrary Models & Arbitrary Domains), and another trained on 280 Claude-
3.5-Sonnet generated arXiv abstracts (from BiScope (Guo et al. 2024)). The results, presented in Table
[[4] highlight DivEye’s ability to maintain detection accuracy even in the presence of strong paraphrasing
transformations.

E.3 Dependence of DivEye on Generation Temperature

We investigate the influence of generation temperature on DivEye’s detection performance to evaluate its
robustness against variations in text predictability. Specifically, we conduct two experiments on the MAGE
benchmark: intra-model temperature variation and cross-model variable-temperature detection.

E.3.1 Intra-Model Temperature Variation

Using GPT-2 as the zero-shot feature generator, we evaluate DivEye across a wide range of sampling tem-
peratures (default 7= 1.0). AUROC results for selected MAGE testbeds are presented in Table

Table 15: DivEye AUROC across different temperatures for GPT-2 generated texts.

Testbeds / Temperatures ‘T:O.l T=03 T=05 T=07 T=10 T=12 T=14 T=16

Arbitrary Domains & Arbitrary Models | 0.8784  0.8760  0.8776  0.8886 0.8825 0.8767  0.8842 0.8698
Unseen Models (GPT-3.5-Turbo, OOD) | 0.8473  0.8432  0.8595  0.8619  0.8617  0.8583  0.8488  0.8567

Results indicate that DivEye’s AUROC remains consistently high across all temperatures. Even at extreme
sampling regimes, performance does not degrade, suggesting DivEye captures stable distributional signals
across different entropy levels within the same generator.

E.3.2 Cross-Model, Variable-Temperature Detection

We further test DivEye on Llama-3.1-8B, generating 50 samples per temperature (ranging 7 = 0.1 to 1.6)
using OASST prompts. This simulates an adversarial generator varying sampling temperature to evade
detection. Table [T6] summarizes AI detection accuracy.

Table 16: DivEye Al detection accuracy for Llama-3.1-8B across different temperatures.

Temperature | Al Accuracy (%)

T=0.1 94.0
T=03 96.0
T=05 100.0
T=07 96.0
T=1.0 96.0
T=12 98.0
T=14 94.0
T=16 96.0
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These experiments demonstrate that DivEye maintains strong performance across both intra-model and
cross-model temperature variations, consistently achieving high AUROC and detection accuracy. Even at
high temperatures (T' = 1.6), where generations are more diverse, DivEye remains robust, highlighting its
resilience against temperature-based evasion strategies in real-world deployment.

E.4 Robustness of DivEye to low-quality LMs and Prompt-based attacks

We further evaluate DivEye’s robustness against two challenging conditions raised by the reviewer: degen-
erate or less predictable generators, and prompt-level adversarial obfuscations.

E.4.1 Performance on Less Predictable Generators

While DivEye’s primary focus is detecting outputs from realistic, high-quality LLMs, we also assess its behav-
ior on weaker or degenerate text sources to explore the method’s boundaries. The RAID benchmark already
includes a variety of degenerate and obfuscation-style perturbations - such as synonym replacement, para-

phrasing, number swaps, homoglyph substitutions, and zero-width spaces - which DivEye handles effectively
(see Table [13] for results).

To complement these benchmark results, we evaluate two baseline degenerate generators producing 500
samples each:

1. Random Token Generator: uniformly samples tokens from GPT-2’s vocabulary to generate in-
coherent sequences without semantic structure.

2. Keyword-Stuffing Generator: repeats high-frequency topical keywords in ungrammatical, repet-
itive patterns.

Using GPT-2 and Testbed 4 of the MAGE benchmark, DivEye achieves near-perfect Al detection: 99.99% on
the random token set and 99.95% on the keyword-stuffed set. These results indicate that DivEye confidently
flags incoherent or low-quality text as non-human-written, suggesting that it is sensitive to general non-
human-likeness rather than relying solely on repetition or frequency patterns.

E.4.2 Robustness to Prompt-Based Adversarial Attacks

We also assess DivEye under adversarial prompt-based obfuscation, designed to disrupt GPT-2’s predictability
patterns. Specifically, we generated 250 texts from GPT-40 and Llama-3.1-8B using the following system
prompt to encourage unusual and unpredictable writing styles:

"You are a highly creative and unconventional writer. Your goal is to respond with orig-
inal, imaginative, and surprising ideas that avoid clichés, common phrases, or predictable
completions. Do not repeat yourself or follow standard templates. Instead, embrace novelty,
abstract connections, and lateral thinking. Unusual metaphors, unexpected analogies, and
rare vocabulary are encouraged.”

These generations were sampled from different models and prompts, constituting a fully out-of-distribution
evaluation. Table [I7] shows DivEye’s detection performance compared to Binoculars.

Table 17: AT detection accuracy under prompt-based adversarial attacks.

Model | DivEye Accuracy (%) Binoculars Accuracy (%)
Llama-3.1-8B 90.8 72.4
GPT-40 92.4 78.0

Despite these obfuscation strategies, DivEye maintains high accuracy, substantially outperforming Binocu-
lars. This demonstrates that DivEye’s diversity-based signals remain robust under both low-quality genera-
tors and adversarial prompting, highlighting its resilience in real-world deployment scenarios.
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Overall, these experiments confirm that DivEye effectively detects both degenerate text and highly unpre-
dictable LLM outputs, providing strong evidence of its general robustness.

E.5 Dependence of DivEye on Top-p Generations

To ensure DivEye’s robustness extends beyond temperature scaling, we evaluated its stability under varying
nucleus sampling (top-p) thresholds. We conducted an evaluation using Llama-3.1-8B, generating 100 text
samples per threshold across a broad spectrum of values p in{0.1,0.3,0.5,0.8,0.95}. The detection results
are summarized in Table I8

Table 18: Detection Accuracy of DivEye on Llama-3.1-8B across varying Top-p thresholds.

Top-p Threshold Al

p=0.1 96%
p=03 94%
p=05 97%
p=08 93%
p=0.95 95%
Average 95%

As evidenced by the results, DivEye demonstrates remarkable consistency across the entire range of p values,
with an average accuracy of 95% and negligible variance. This stability can be attributed to the nature of
the sampling mechanism: while top-p removes low-probability tokens and may affect the absolute mean
perplexity, it fails to emulate the unpredictability characteristic of human writing.

F Additional Discussions

F.1 Robustness of Binoculars under OOD Conditions

While Binoculars achieves high performance in its original paper, with AUROC values consistently above
0.99 (Tables 3 and 4), its robustness under out-of-distribution (OOD) conditions is substantially weaker. For
example, [Tufts et al| (2025) (Table 13) shows a noticeable drop in AUROC when Binoculars is applied to
datasets with distributions different from its training set, despite remaining competitive. Similarly, in the
Voight-Kampfl Generative AI Authorship Verification Challenge 2024 (Ayele et all [2024), Binoculars un-
derperformed significantly under highly OOD conditions, failing to replicate its originally reported accuracy
and AUROC.

These findings are consistent with our observed AvgAcc of 79%, reflecting Binoculars’ sensitivity to domain
shift. Importantly, our evaluation deliberately includes diverse scenarios to rigorously test generalization
beyond training conditions. This approach better reflects real-world deployment, where robustness to OOD
tasks is critical. Our results do not contradict prior work; rather, they reinforce the understanding of
Binoculars’ limitations under distribution shifts.

F.2 Practical constraints on adversarial attacks against DivEye

The possibility of targeted attacks that attempt to evade DivEye by steering autoregressive models to
generate tokens falling in low-probability regions under GPT-2’s distribution seems like a plausible idea to
evade detection. While such attacks are theoretically conceivable, implementing them in practice is extremely
challenging.

Autoregressive models do not natively support fine-grained constraints that enforce divergence from another
model’s token-level distribution without compromising fluency or coherence. Even for large models such
as GPT-4o, generating text that is simultaneously plausible and systematically unpredictable to a specific
detector like DivEye is highly nontrivial.
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Figure 15: Inclusion of additional features into DivEye results in diminishing returns in AUROC. This
experiment was run on MAGE Testbed 4.

Furthermore, DivEye is designed to generalize across diverse model backbones. Our best-performing variant,
for example, uses Llama-3.1-8B as the surprisal scorer, which has a larger vocabulary and greater expressive
capability than GPT-2. This substantially increases the difficulty for an adversary to generate text that
appears unpredictable to the detector while remaining coherent and human-like.

Taken together, these considerations suggest that although targeted, detector-specific attacks are theoreti-
cally possible, they are rare and practically hard to execute in realistic generation pipelines.

F.3 Diminishing returns in expanding DivEye

DivEye was deliberately designed with a concise set of nine features to balance computational efficiency
with interpretability. While the architecture is flexible and allows researchers to integrate additional signals,
our empirical analysis suggests that the current feature set captures the vast majority of the discriminative
signal. To validate this design choice, we conducted a scaling law experiment evaluating the marginal utility
of incorporating higher-order surprisal dynamics.

We extended the original feature vector by computing third-order (A?%) and fourth-order (A%) derivatives
of the surprisal sequence, extracting the mean, variance, and entropy for each. We also include missing
features, including the mean of the second-order and entropy of the first-order of the surprisal sequence.
This resulted in an expanded candidate set of 17 features. We then trained a series of XGBoost classifiers,
iteratively adding one feature at a time in hierarchical order and measuring the resulting AUROC on MAGE
Testbed 4.

As illustrated in Figure the detection performance improves sharply with the inclusion of the first-order
and second-order DivEye features, effectively plateauing at the ninth feature (second-order autocorrelation).
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Figure 16: Impact of post-training objectives on detectability; DivEye consistently maintains or slightly
enhances detectability compared to the unaligned Base model.

The addition of third- and fourth-order features yields negligible gains, confirming a law of diminishing
returns.

F.4 Robustness across post-training objectives
Modern LLMs undergo extensive post-training alignment to enhance instruction following and safety. A

critical question is whether these alignment steps alter the statistical surprisal signature of the generated
text, potentially degrading detection performance compared to the pre-trained base model.

To investigate this, we conducted a controlled experiment using the 0LMo-3-7B (Olmo et al., [2025) model
family, which provides open access to checkpoints at every training stage. We curated a dataset (of 600 texts
from diverse domains, different temperatures and top-p) comprising eight distinct model variants, including
the unaligned Base model, Instruct-tuned versions, Reasoning models, and RLVR baselines. We adopted
a unified training strategy: a single DivEye detector was trained on an aggregate containing 75% of the
data from all variants (balanced with human text), and subsequently evaluated on the held-out 25% of each
specific variant.

As detailed in Figure [I6] DivEye demonstrates remarkable stability across all training objectives. While one
might hypothesize that alignment (which constrains the output space) would significantly shift the surprisal
distribution, our results show that the core detectability remains high.

Contrary to the intuition that aligned models might better mimic human stylistic nuances, we observe that
alignment consistently enhances detectability. The pre-trained Base model yields the lowest (yet still robust)
accuracy of 97.33%, whereas models fine-tuned with DPO and Thinking capabilities achieve perfect detection
rates.

This trend suggests that post-training interventions constrain the model’s output distribution to a highly
structured subspace. This constraint likely dampens the natural entropic variance present in the pre-training
data, making it easier for DivEye to distinguish post-trained models from genuine human writing.

G Failure of other motivational methods: LookForward

A natural hypothesis we considered was that LLMSs, being autoregressive in nature, lack global sentence-level
planning due to their left-to-right generation paradigm. Unlike humans who often write with a sense of the
sentence’s future, autoregressive models generate one token at a time conditioned only on the preceding
context. Based on this, we hypothesized that detection features relying on this "lack of foresight" could
effectively identify machine-generated text.

This suggests that the model never observes x~; when predicting x;, whereas human writing may implicitly
reflect awareness of future tokens. Our idea was to define a LookForward discrepancy by comparing model
likelihoods under forward-only conditioning vs. bidirectional context.

36



Under review as submission to TMLR

However, our empirical evaluations demonstrate that this feature is ineffective, achieving 0.50 AUROC on
diverse testbeds. As LLMs undergo extensive training and optimization, they appear to develop strong
internal planning capabilities, even in an autoregressive setting. Despite the absence of access to future
tokens during generation, LLLMs approximate global coherence and structure remarkably well. This aligns
with recent literature suggesting that transformers internalize hierarchical and global sentence structure
across layers, even when trained autoregressively.

While this method is theoretically appealing, its failure in practice highlights the difficulty of quantifying
planning behavior in black-box LLMs. We hope this limitation can be better understood in the future
through more fine-grained interpretability analyses of autoregressive models, which may reveal how planning
and coherence emerge despite the lack of explicit future context.

H Testbed Details

We evaluate DivEye on a comprehensive testbed spanning three major Al-text detection benchmarks, MAGE
(Li et al) [2024), HC3 & RAID (Dugan et al., 2024), covering a diverse range of domains,
language models, and adversarial attacks. These benchmarks allow us to assess the generalizability and
robustness of our method across realistic deployment scenarios. This section provides a comprehensive
overview of the testbeds used in our evaluation, including all domains, language models, and adversarial
attacks featured in the MAGE and RAID benchmarks, along with relevant configuration details.

Details about MAGE Benchmark. The MAGE benchmark comprises eight diverse
testbeds designed for evaluating machine-generated text detection. Testbeds 1 through 4 include standard
train, validation, and test splits, while Testbeds 5 through 8 serve as out-of-distribution (OOD) datasets,
evaluated using models trained on Testbed 4. Notably, Testbed 4, Arbitrary Domains & Arbitrary Models,
is the most comprehensive, enabling evaluation across the full range of domains and language models listed
in the MAGE paper. Detailed information regarding dataset splits and sample counts is available in the
original benchmark documentation.

MAGE covers a wide array of domains, including CMV (Tan et al [2016)), Yelp (Zhang et all [2015), XSum
(Narayan et al [2018), TLDR, ELI5 (Fan et al), 2019), WP (Fan et al., 2018)), ROC (Mostafazadeh et al.|
12016)), HellaSwag (Zellers et al. [2019), SQuAD (Rajpurkar et al., |2016)), and SciXGen (Chen et al., |2021a)).
The OOD domains include CNN/DailyMail (See et al., 2017), DialogSum (Chen et al.,|2021b), PubMedQA

(Jin et al. 2019), and IMDb (Maas et al., 2011]).
MAGE also incorporates text generated from over 27 different LLMs (Brown et al., 2020; Chung et al., 2022;

let al., 2023 |Sanh et al.| 2022} |[Touvron et al.,[2023a} |Zeng et al., 2023} |Zhang et al.l [2022)), enabling rigorous
and varied evaluations. For further implementation specifics, readers are encouraged to consult the MAGE

paper.

Details about RAID Benchmark.  The RAID benchmark (Dugan et al., |2024) comprises over 6.2
million samples, offering extensive coverage across domains, language models, sample sizes, and adversarial
attacks. It provides a clear separation into training, validation, and testing splits to support rigorous
evaluation. The benchmark spans a wide range of domains, including scientific abstracts (Paul & Rakshit],
2021)), book summaries (Bamman & Smith| 2013), BBC News articles (Greene & Cunningham) 2006), poems
2020), recipes (Bien et al., 2020), Reddit posts (Vélske et al. 2017), movie reviews (Maas et al.
2011), Wikipedia entries (Aaditya Bhat, 2023), Python code, Czech news (Bohécek et al.l [2022)), and German
news articles (Schabus et al.l [2017]).

RAID employs text generated from 11 diverse LLMs (Radford et al,2019; MosaicML} [2023}|Jiang et al.l|2023}
|Coherel |2024; |Ouyang et al., 2022} 'Touvron et al., [2023b} |et al.,2024b)), ensuring broad model representation.
Additionally, it includes over 11 adversarial attack strategies (Liang et all, [2023bjal [Wolff & Wollff] 2022
Bhat & Parthasarathyl 2020} [Krishna et all, 2023} [Pu et all [2023; [Gagiano et al. 2021} [Guerrero et al.
2022)), designed to test the robustness of detectors under challenging settings. Comprehensive descriptions
and detailed results of these attacks are provided in Appendix [E.I] with all results reported as of April 2025.
For further implementation specifics, readers are encouraged to consult the RAID paper.
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Details about HC3 Benchmark. The HC3 benchmark (Guo et al.l [2023)) offers a large-scale, mul-
tilingual dataset designed to evaluate the effectiveness of detectors in distinguishing human-written text
from Al-generated responses. It encompasses both English and Chinese content, covering a wide variety
of domains and question types. This bilingual setup facilitates cross-linguistic performance analysis and
underscores the difficulties of achieving generalization across different languages and cultural contexts. In
our experiments, we adopt an 80-20 train-test split. For comprehensive dataset numbers, we refer readers
to the original HC3 paper.

I Hyperparameter Settings

Table outlines the hyperparameter configurations used for our experiments. We utilize the XGBoost
classifier with standard but tuned settings to handle class imbalance and optimize detection performance.
For our proposed method DivEye, we set the number of bins for entropy computation to 20 and truncate
input sequences at a maximum length of 1024 tokens. All experiments were run on a single NVIDIA DGX
A100 (40 GB), and reported results reflect the median of three runs.

Table 19: Hyperparameters used for the XGBoost Classifier and DivEye.

XGBoost Hyperparameter Value

random_state 42
scale_pos_weight (len(Yirain) — 2 Yirain)/ 2 Yirain
max_depth 12

n_estimators 200
colsample_bytree 0.8

subsample 0.7
min_child_weight )

gamma 1.0

DivEye Parameter Value

Entropy bins 20

Tokenizer Max Length 1024 4 Truncation

J Limitations, Broad Impacts, Reproducibility & Ethical Considerations

Future Work & Limitations. While DivEye demonstrates strong generalization across domains and
models in zero-shot settings, several limitations suggest promising directions for future work. Our approach
relies on features derived from LLM token-level behavior, which may vary across model sizes, architectures,
and tokenization schemes. Although our current performance is robust, it is unclear whether we are ap-
proaching an optimal limit for Al-text detection. Moreover, our diversity metrics are less effective on very
short texts, where statistical patterns are inherently limited. We hope to address these challenges in fu-
ture work by exploring more adaptive teacher selection strategies and improving robustness in diverse text
lengths.

Broad Impacts. This work introduces DivEye, a model-agnostic, and scalable framework for detecting
Al-generated text that remains robust across models, domains, and decoding strategies. By leveraging purely
intrinsic statistical features, without requiring fine-tuning or access to the internals of large language models,
DivEye is broadly applicable and easy to deploy in real-world settings. We envision this framework as a
practical tool to support responsible Al usage, aiding in the detection of synthetic text across domains such as
education, journalism, and online content moderation. However, we emphasize that detection results should
be interpreted with care and recommend using DivEye as one component within a broader, multi-layered
content verification pipeline.
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We deliberately restrict DivEye to nine features, each of which is theoretically motivated and captures
a distinct aspect of surprisal diversity. While additional features could be engineered, our preliminary
experiments indicated diminishing returns beyond this set. This preserves interpretability, efficiency, and
robustness, while still providing strong empirical performance. We also discuss certain concerns about our
results and the practicality of adversarial attacks in Appendix [F]

Furthermore, our finding that a lightweight model (GPT-2) can effectively serve as an observer for state-of-
the-art generators has significant implications for the democratization and sustainability of Al forensics. By
demonstrating that detection does not require computational parity with the generator, DivEye establishes
a strong lower bound for efficiency. However, for production environments where maximizing detection
sensitivity is paramount, we recommend leveraging more capable LMs as the feature extractor.

Reproducibility. We release all code and evaluation scripts to ensure full reproducibility. Detailed train-
ing, testing and hyperparameter configurations are included in Appendices [H and [C]

Ethical Considerations. As with all Al-text detectors, DivEye is not infallible and may produce incorrect
classifications or false positives. We emphasize that detection outputs should be treated as probabilistic sig-
nals rather than definitive evidence. When used in high-stakes settings, such as academic integrity or content
moderation, additional human review and validation are essential. We encourage responsible deployment of
DivEye to support large-scale analysis, but caution against its use in critical decision-making.

K lllustrative cases of DivEye with probabilities

We provide a few representative examples for readers in Table showcasing the probability scores assigned
by DivEye to different text sources.
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Source Text Probabilityay (DivEye)
GPT-4-Turbo For centuries, the pursuit of immortality was the ul- 0.97035

timate quest, a beacon drawing the brilliant and the
mad alike. I, Dr. Elara Mendoza, fell somewhere
in between, teetering on the precipice of genius and
insanity. And after countless sleepless nights, fueled
by an obsession that bordered on madness, I finally
did it. I unlocked the secret to immortality. In my
laboratory bathed in the cold, metallic gleam of ar-
tificial light, the hum of machinery breathed life into
my creation, a serum, translucent and iridescent, a
potion promising eternity. As the final drop fell into
the vial, a silence descended, thick with anticipation.
But in this moment of triumph, a chill swept through
the room, frosting over the warmth of victory...
Claude-3-Opus | Dressing for Success: Budgeting for Interview At- 0.96279
tire and Work Uniforms as a Medical Office Assis-
tant - As a medical office assistant, presenting a
professional image is crucial for success in both the
job interview process and daily work life. Dressing
appropriately demonstrates respect for the health-
care setting, instills confidence in patients, and show-
cases a commitment to the role. However, building
a wardrobe suitable for the medical office can be a
financial challenge, especially for those just starting
in the field. By developing a strategic budget plan...
Human-Written | Loved this tour! I grabbed a groupon and the price 0.09172
was great. It was the perfect way to explore New
Orleans for someone who’d never been there before
and didn’t know a lot about the history of the city.
Our tour guide had tons of interesting tidbits about
the city, and I really enjoyed the experience. Highly
recommended tour. I actually thought we were just
going to tour through the cemetery, but she took us
around the French Quarter for the first hour, and
the cemetery for the second half of the tour. You’ll
meet up in front of a grocery store (seems strange at
first, but it’s not terribly hard to find, and it’ll give
you a chance to get some water), and you’ll stop
at a visitor center part way through the tour for a
bathroom break if needed. This tour was one of my
favorite parts of my trip!

Table 20: Representative examples of texts from various sources with their predicted probability of being
Al-generated according to DivEye.
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