
ChebLieNet: Invariant Spectral Graph NNs Turned
Equivariant by Riemannian Geometry on Lie Groups

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce ChebLieNet, a group-equivariant method on (anisotropic) manifolds.1

Surfing on the success of graph- and group-based neural networks, we take advan-2

tage of the recent developments in the geometric deep learning field to derive a3

new approach to exploit any anisotropies in data. Via discrete approximations of4

Lie groups, we develop a graph neural network made of anisotropic convolutional5

layers (Chebyshev convolutions), spatial pooling and unpooling layers, and global6

pooling layers. Group equivariance is achieved via equivariant and invariant opera-7

tors on graphs with anisotropic left-invariant Riemannian distance-based affinities8

encoded on the edges. Thanks to its simple form, the Riemannian metric can model9

any anisotropies, both in the spatial and orientation domains. This control on10

anisotropies of the Riemannian metrics allows to balance equivariance (anisotropic11

metric) against invariance (isotropic metric) of the graph convolution layers. Hence12

we open the doors to a better understanding of anisotropic properties. Furthermore,13

we empirically prove the existence of (data-dependent) sweet spots for anisotropic14

parameters on CIFAR10. This crucial result is evidence of the benefice we could15

get by exploiting anisotropic properties in data. We also evaluate the scalability of16

this approach on STL10 (image data) and ClimateNet (spherical data), showing its17

remarkable adaptability to diverse tasks.18

1 Introduction19

Deep learning is a class of machine learning algorithms inspired by the human brain’s network of20

neurons [Goodfellow et al., 2016]. These algorithms use a hierarchical structure of neural layers to21

extract higher-level features from the raw input progressively. In the past few years, the growing22

computational power of modern GPU-based computers and the availability of large training datasets23

in the field of machine learning have made it possible to successfully train neural networks with24

many layers and degrees of freedom. Consequently, deep learning has revolutionized many machine25

learning tasks in recent years, ranging from image and video processing to speech recognition and26

natural language understanding.27

Many neuroscientific research results served as focal points in the development of deep learning28

algorithms. When Hubel and Wiesel [1962] studied the visual cortex in the brain, they made three29

important discoveries. First, they observed a one-to-one correspondence between spatial locations30

in the retina and neurons in the brain that fired as a response to line-like visual stimuli. Second,31

the activity of the neurons changed depending on the orientation of the line, uncovering a neat32

organization based on local orientations. Last, the neurons sometimes fired only when the line was33

moving in a particular direction. Later, Bosking et al. [1997] showed that neurons that are aligned fire34

together, indicating the presence of a type of long-range interactions. All these results motivated the35

development of a mathematical framework for modeling visual perception based on sub-Riemannian36
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geometry on the space of positions and orientations, which is typically modeled with the Lie group37

SE(2) [Petitot, 2003, Citti and Sarti, 2006, Duits et al., 2014]. Apart from the neurophysiological38

inspiration, group equivariance has also been proven to be an excellent inductive bias [Cohen and39

Welling, 2016] not only in computer vision (as the translation equivariance property of CNNs as40

shown) but also in physics [Finzi et al., 2020] and molecular data analysis [Fuchs et al., 2021, Jumper41

et al., 2020]. In this work, we propose to build group equivariant graph neural networks via the same42

principle that underlie the sub-Riemannian, neurogeometrical modeling of the visual cortex.43

Our work connects the observations by Hubel and Wiesel [1962] and Bosking et al. [1997] on two44

levels. First, the organization of visual data based on their location and orientation [Hubel and Wiesel,45

1962] is modeled by Lie group convolutions [Bekkers, 2019], in which feature maps encode response46

for every position and every orientation. Second, long-range interactions between aligned neurons47

[Bosking et al., 1997] are modeled by building graphs with affinity matrices based on (approximate)48

sub-Riemannian distances on the Lie groups, inspired by sub-Riemannian image analysis methods49

such as [Franken and Duits, 2009, Bekkers et al., 2015, Favali et al., 2016, Mashtakov et al., 2017,50

Boscain et al., 2018, Duits et al., 2018, Baspinar et al., 2021].51

Defferrard et al. [2020] showed how to construct powerful graph NNs that are faithful to the manifolds52

on which they are defined. Nevertheless, the layers themselves are based on rotationally invariant53

(Laplacian) convolutions. In order to exploit directional cues in the data, group convolutions are54

desirable [Cohen et al., 2018, Kondor and Trivedi, 2018, Cohen and Welling, 2016, Bekkers, 2019].55

However, since Laplacian operators are intrinsically isotropic, there is no point applying them to the56

lifted feature maps on the group unless we construct anisotropic metrics on the groups. Therefore,57

we adopt the Lie group viewpoint by Sanguinetti et al. [2015] to define anisotropic Riemannian58

metrics based on left-invariant vector fields on the group. Once an anisotropic Riemannian graph is59

constructed, any spectral method can directly be applied to this graph. The resulting graph neural60

networks will then, by construction, be equivariant and capable of utilizing directional cues in data.61

Before going further into the details, we summarize our main contributions:62

• We introduce ChebLieNet, an equivariant graph Laplacian-based neural network based on63

Lie groups equipped with an anisotropic Riemannian metric.64

• The Riemannian geometry is automatically derived from a standard base space (e.g. R2 or65

the sphere), which makes our approach flexible and effective in building group equivariant66

graph neural networks for a variety of data structures (e.g. 2D and spherical data).67

• We demonstrate the equivariance property of ChebLieNet, both in theory and in practice.68

This property guarantees that the neural network’s predictions are robust against given69

transformations, which is not necessarily the case with methods based on data augmentation.70

• We show that the use of directional information via anisotropic Riemannian spaces could71

benefit many tasks.72

• We show the flexibility of the method by considering two different problems; we validate on73

classification problems with 2D image data and a segmentation problem on spherical data74

via the construction of a sub-Riemannian geometry on SE(2) and SO(3) respectively.75

2 Related works76

2.1 Group equivariant convolutional neural networks77

Deep convolutional neural networks [LeCun et al., 1995] have proven to be compelling models78

for pattern recognition tasks on images, video, and audio data. Although a robust theory of neural79

network design is currently lacking, a large amount of empirical evidence supports the notion that80

both convolutional weight sharing, depth, and width are essential for good predictive performance.81

Such properties are enabled through the equivariance property of convolutions (convolving a shifted82

image is the same as translating its result).83

Lenc and Vedaldi [2015] showed that the AlexNet CNN Krizhevsky et al. [2012] trained on ImageNet84

learns representations equivariant to flips, scalings, and rotations spontaneously. This supports the85

idea that equivariance is an excellent inductive bias for deep convolutional networks. In the last few86

years, a joint effort has been made to build group equivariant networks. By the introduction of group87
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convolutions in deep learning, Cohen and Welling [2016] generalize the translation equivariance88

property to larger groups of symmetries, including rotations and reflections. Kondor and Trivedi89

[2018] gave a rigorous, theoretical treatment of convolution and equivariance in neural networks90

concerning any compact group’s action. One of the main contributions of that work was to show that,91

given some natural constraints, the convolutional structure is not just a sufficient but also a necessary92

condition for equivariance to a compact group’s action. In a similar spirit, in [Bekkers, 2019] it93

is shown that any bounded linear operator is equivariant to Lie groups if and only if it is a group94

convolution. In our work, we propose to build group equivariant neural networks via left-invariant95

Laplace operators on Lie groups, which indeed can be seen as group convolutions with kernels96

that are the fundamental solutions of the Laplace operator. The result is a Lie group equivariant97

Chebyshev-type neural network [Defferrard et al., 2016] that we will refer to as ChebLieNet.98

2.2 Graph neural networks99

Using the term geometric deep learning, Bronstein et al. [2017, 2021] give an overview of deep100

learning methods in the non-Euclidean domain, including graphs and manifolds. They present differ-101

ent examples of geometric deep learning problems and available solutions, fundamental difficulties,102

applications, and future research directions in this nascent field.103

One of the main challenges when working with graph data it to deal with the inter-dependencies104

between points. Indeed, the derivations of most standard machine learning models firmly base on105

an independence assumption. For this reason, transferring existing methods on a graph appears106

doomed to failure, and it seems necessary to build models acting directly on graphs. Due to its107

success on Euclidean data, the development of a convolution-like operator on graphs has been largely108

studied. Because the notion of space is not naturally defined on a graph, we lack a straightforward109

generalization of the convolutional operator from grid data to graphs [Scarselli et al., 2008, Bruna110

et al., 2013, Henaff et al., 2015, Defferrard et al., 2016, Kipf and Welling, 2016, Masci et al., 2015,111

Boscaini et al., 2016, Monti et al., 2017].112

Spectral approaches have a solid mathematical foundation in graph signal processing. Rather than113

using the traditional spatial definition of the convolution, it proposes to see this operation from a114

spectral perspective. Based on the convolution theorem, it defines the convolution operator from the115

graph spectral domain via the eigendecomposition of the graph Laplacian (see App. A.3).116

Definition 2.1 (Spectral graph convolution) Let G = (V, E ,W ) be a graph with Laplacian ∆̂ and117

let f and g be two functions defined on V . We define the G-convolution ∗G of f and g as:118

f ∗G g = Φ(ĝ � f̂) = Φ(Φ>g �Φ>f), (1)

with eigenvectors Φ obtained through the unique eigendecomposition ∆̂ = ΦΛΦT .119

While this definition alleviates the difficulty of deriving a convolution operator in the spatial domain,120

other difficulties arise. First of all, because the Laplacian of a graph is an intrinsic operator, it121

is domain-dependent, and the spectral-convolution is too. It implies that a model built on this122

framework cannot be easily transferred from a graph to another as expressed in a different "language".123

Nevertheless, this is not a problem for us since we are focusing on fixed manifold graphs. Next, there124

is no guarantee that filters represented in the spectral domain are spatially localized. Henaff et al.125

[2015] successfully bypassed this problem by defining smooth spectral filter coefficients, arguing126

that if spectral filters are smooth, they are spatially localized. Last but not least, the Laplacian’s127

eigendecomposition makes the method expensive in terms of memory and time. Indeed, the forward128

and inverse graph Fourier transforms (via ΦT and Φ) incur expensive multiplications as no FFT-like129

algorithm exists on general graphs. Defferrard et al. [2016] alleviated the cost of explicitly computing130

the graph Laplacian using spatially-localized filters with Chebyshev polynomials.131

Definition 2.2 (Chebyshev convolutional layer) Let G = (V, E ,W ) be a graph with rescaled132

Laplacian1 ∆̃, x ∈ R|V|×di be an input features’ vector and Θj ∈ Rdi×do learnable filters. The133

1Because Chebyshev polynomials are defined in the range [−1, 1], it is necessary to rescale the graph
Laplacian with ∆̃ = 2λ−1

max∆̂− I where λmax is the largest eigenvalue of ∆̂.
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output features’ vector y ∈ R|V|×do is computed as:134

y =

R−1∑
j=0

zjΘj with z0 = x, z1 = ∆̃x and zj = 2∆̃zj−1 − zj−2. ∀j ≥ 2. (2)

Kipf and Welling [2016] simplified this formulation a bit by considering the construction of single-135

parametric filters that are linear with relation to ∆̃. They further approximate λmax ' 2 as they136

expect that neural network parameters will adapt to this change in scale during training.137

3 Method138

Our method can be seen as an extension of the original ChebNet [Defferrard et al., 2016, Perraudin139

et al., 2019]. Instead of directly working on a homogeneous base space, we first extend it to a higher140

dimensional space (Lie group). The goal of this extension is to convert the previously invariant141

spectral convolutional layers into equivariant layers.2142

3.1 Anisotropic manifold graph143

In order to define the anisotropic manifold graphs we have to consider two types of manifolds. The144

base manifoldM and a Lie group G that acts transitively onM. The latter implies thatM is a145

homogeneous space of G, which means that any two points m1,m2 ∈ M can be mapped to each146

other via the action of a group element g ∈ G via m2 = g · m1. E.g., the plane M = R2 is a147

homogeneous space of the special Euclidean motion group G = SE(2) as any two points can be148

mapped to each other through a rotation and a translation. Such groups G, which have M as a149

homogeneous space, can always be split in two parts via the semi-direct product G =MoH , with150

H a sub-group of G that leaves some reference point m0 ∈M invariant, i.e., ∀h∈H : m0 = h ·m0.151

E.g., rotations leave the zero vector inM = R2 invariant, and thus H = SO(2) in the SE(2) case.152

Conversely, any homogenous space can be modeled with a group quotientM = G/H .153

We define an anisotropic manifold graph to be a discretization of a Lie group G of whichM is a154

homogeneous space. It consists of a finite set of vertices corresponding to a random sampling of155

group elements, and a finite set of similarity-based edges that are constructed via a left-invariant156

Riemannian metric on G. In our work we consider two anisotropic manifold graphs: one associated157

with the base manifoldM = R2 which we extend with an additional orientation/rotation dimension158

H = SO(2) to come to the Lie group G = SE(2) = R2 o SO(2), and the other associated with159

the sphereM = S2 which we similarly "lift" to the Lie group G = SO(3) by adding an additional160

rotation dimension. Considering the similarity between the two cases (the sphere locally looks like161

R2) we will refer toM as the "spatial" part, and H as the "orientation" part of the group.162

Uniform sampling of the vertices. The first step to construct an anisotropic manifold graph is to163

sample elements on the group uniformly or as uniformly as possible if the manifold does not permit a164

uniform grid. We split the grid construction in two parts, a grid onM which is sampled with |Vs|165

points and a grid on H that is sampled with |Vo| points, leading to a total of |V| = |Vs||Vo| vertices.166

Left-invariant anisotropic Riemannian distance. Once vertices have been uniformly sampled167

on the group manifold, a similarity measure between vertices is computed. This measure is based168

on a Riemannian distance between points in G. The only thing one needs in our algorithm is the169

implementation of the logarithmic map on the Lie group (see e.g. [Bekkers, 2019]), and a diagonal170

Riemannian metric tensor (see e.g. [Sanguinetti et al., 2015] and [Mashtakov et al., 2017] for the171

SE(2) and SO(3) case respectively). In the following we provide the essential idea and intuition172

behind the construction of the similarity measure and provide a more extensive treatment in App. B.173

In Riemannian geometry on Lie groups it is common to express tangent vectors of curves in a basis174

of left-invariant vector fields as it allows to measure their lengths with a single Riemannian metric175

tensor that is shared over the entire group. This works as follows. Consider curve γ : [0, 1] → G176

with its tangent vectors γ̇(t) =
∑d
i=1 u

i(t)Ai|γ(t) expressed in a basis/moving frame of reference177

2Because spectral graph NNs are able to capture the geometry of the space, which in this work we equip with
anisotropic metrics, any spectral method could be made equivariant using our method.
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{Ai|γ(t)}di=1, in which Ai are left-invariant vector fields. The length of these tangent vectors178

is then measured by a Riemannian metric tensor that we denote with ‖γ̇(t)‖2R := u(t)TRu(t),179

with R a symmetric positive definite matrix defined relative to the basis {Ai|γ(t)}di=1, and with180

u(t) = (u0(t), u1(t), . . . )T . The Ai are left-invariant vector fields and the notation Ai|g means the181

vector in the vector field Ai at location g. The vector fields are constructed by choosing a vector Ai182

in the tangent space at origin (the Lie algebra) which then defines a complete vector field on G via183

the push-forward of left-multiplication. In less technical terms this means that if we pick a direction184

vector at the origin, and we move it to another point in, e.g. G = SE(2), via a roto-translation, this185

vector will move and rotate along. By defining everything in terms of these left-invariant vector fields,186

every tangent space Tg(G) at each g ∈ G can be identified with the tangent space at the origin, and187

a single Riemannian metric tensor R can be shared over the entire space. Moreover, the induced188

Riemannian distance d(g, h) between any two points g, h ∈ G is then by construction left-invariant,189

i.e., ∀g,h,i∈G : d(g · h, g · i) = d(g, i).190

Expressing tangent vectors in such left-invariant vector fields allows us to reason in terms of the191

generators of the group. Consider the G = SE(2) case. As a basis we pick the 3 generators of the192

group: a forward motion represented by a vector A1 pointing in the forward direction within the193

plane, a side-ways motion represented by a perpendicular planar vector A2, and a rotation/change of194

orientation represented by a vector A3 that points vertically in along the H-dimension. We then work195

with diagonal Riemannian metric tensors R = diag(1, ε−2, ξ2), which penalize each type of motion196

(represented by the vector components) differently. When ε→ 0 one arrives at the sub-Riemannian197

geometry which forms the basis for the mathematical modeling of visual perception. It quantifies198

a notion of alignment through the sub-Riemannian distance; the length of a distance-minimizing199

geodesic that connects two local orientations that lie in the extend of each other will be much smaller200

that that of a geodesic connecting two local orientations parallel to each other. An analogy can be201

found with the example of a car in a parking lot where it can move forward/backward (A1) and202

change orientation (A3) [Reeds and Shepp, 1990]. It will be easier to move it to the more aligned203

spot directly ahead then it will to the spot next to the car, as sideways motion (A2) is impossible.204

Parameters ε and ξ will respectively be referred to as spatial and orientation anisotropy parameters.205

With ε = 1 the metric is isotropic and there will be no distinction between different orientations.206

When ε < 1, ξ determines the flexibilty/curvature of the geodesics as it balances spatial motion207

against angular motion. In a sense it defines how easily one connects local orientations that are208

not optimally aligned. In Figure 1 this behavior is visualized by running a diffusion process on the209

anisotropic manifold graph. In the anisotropic case (ε < 1) diffusion is faster along the forward210

direction within a θ-plane. From a graph NN perspective this suggests that information is propagated211

more quickly between vertices that are aligned, nevertheless, Chow’s theorem (see e.g. [Montgomery,212

2006]) guarantees that any point pair in the (sub-)Riemannian manfiold can interact with one another.213

The exact computation of the (sub-)Riemannian distances is challenging and can generally not be done214

in closed form, but can be done numerically via method such as [Bekkers et al., 2015, Sanguinetti215

et al., 2015, Mashtakov et al., 2017]. In order to keep our graph construction algorithm efficient216

though, we will approximate the Riemannian distances via an efficient analytic formula based on217

those in [Bekkers et al., 2018] that only involves the Lie group’s logarithmic map log : G→ Te(G)218

and the Riemannian metric tensor R. We then approximate the distance between points g, h ∈ G by219

d(g, h) = d(e, g−1 · h) ' || log(g−1 · h)||R. (3)

Similarity measure. Encoding a similarity measure in the edges of a graph requires defining a220

weighting scheme. It is common to use a Gaussian kernel and set the weights via221

w(vi, vj) =

{
exp

(
−d

2(vi,vj)
4t

)
if e(vi, vj) ∈ E

0 otherwise
. (4)

The choice for kernel bandwidth t is essentially arbitrary, but good heuristics exist. Perraudin et al.222

[2019] set it to half the average squared distance between connected vertices. Defferrard et al. [2020],223

however, showed that this heuristic has the tendency to overestimate it and preferred to choose it as224

the minimizer of the mean equivariance error. Following this overestimation observation, we fix the225

kernel bandwidth as 20% of the average squared Riemannian distance between connected vertices.226

As such, the weights diversely cover values in the whole range [0, 1]. The most similar vertices are227

connected with close-to-one weighted edges whereas the lowest connections are close to zero.228
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Quality of the approximation. In theory, we would like our approximation to be as precise as229

possible. In practice, a high-resolution approximation leads to computational issues in time and230

memory. Hence, tuning of the graph parameters becomes a trade-off between theoretical consistency231

and practical feasibility. First of all, the graph resolution (or the number of vertices we sample)232

is directly related to the quality of the approximation. While the spatial resolution |V|s is usually233

determined by the data (up to up- and down-samplings), the orientation resolution |V|o is a design234

choice. An important remark is to notice that a large orientation resolution does not necessarily help235

if two different orientations are not distinguishable because of a poor spatial resolution [Weiler et al.,236

2018, Bekkers, 2019]. Secondly, the connectivity of the graph is also a crucial parameter. A fully237

connected graph is theoretically the best approximation. Nevertheless, for computational reasons, we238

use K-NN graphs3 to sparsify the graph Laplacians.239

(a) Base space M with an
isotropic Riemannian metric

(b) Lie group extensionG with an
isotropic Riemannian metric

(c) Lie group extension G with an
anisotropic Riemannian metric

Figure 1: Isotropic diffusion applied to an impulse signal on Riemannian manifolds onM = R2 and
G = SE(2).

Theoretical group equivariance of the graph Laplacian. Due to the success of machine learning240

algorithms based on graph Laplacian, the theoretical convergence of the graph Laplacian to its241

continuous analogue has been largely studied [Hein et al., 2005, Singer, 2006]. Belkin and Niyogi242

[2006] noticed that in many graph-based algorithms, a central role is played by the graph Laplacian’s243

eigenvectors. Thus, they focused on proving convergence in eigenmaps as it is sufficient in this case.244

They proved that if the graph’s vertices are sampled uniformly from an unknown submanifoldM∈245

Rd, then the eigenvectors of a suitably constructed graph Laplacian converges to the eigenfunctions246

of the Laplace-Beltrami operator onM. Consequently, as the latter operator is left-invariant, as we247

show in theorem A.1, the graph Laplacian is asymptotically 4 group equivariant.248

Empirical group equivariance of the graph Laplacian. We empirically confirm the group equiv-249

ariance property of the graph Laplacian applied to our anisotropic manifold graphs. By checking250

P>∆̃P = ∆̃ where P is a permutation matrix, we can verify that the graph Laplacian is invariant251

under a given permutation of vertices corresponding to a group transformation (e.g. a rotation of252

the graph). Moreover, we can also compare the eigenmaps of a graph Laplacian and its continuous253

counterpart if it is well-known. For a further discussion about this, see App. C.254

3.2 ChebLieNet255

Chebyshev convolutional layer. As introduced in Defferrard et al. [2016], a Chebyshev convolu-256

tional layer is a spectral layer based on a continuous kernel parametrization with graph Laplacians.257

This parameterization makes such layers highly suitable for our method, as they intrinsically cap-258

ture the Riemannian geometry of the graphs on G. Moreover, the Chebyshev convolutions on259

the anisotropic manifold graphs are equivariant by construction because the graph Laplacians are260

equivariant operators (see Figure 2).261

3Note that in our implementation, a K-NN graphs does not mean that each vertex has K neighbors but at
most K neighbors. Indeed, if the graph domain has boundaries, using exactly K neighbors for each vertex could
lead to asymmetries that may introduce biases and harm the permutation invariances in the graph.

4The asymptotic case corresponds to |V| → ∞ and a Gaussian weight kernel with kernel bandwidth t→ 0.
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Figure 2: Rotation equiv-
ariance of a randomly ini-
tialized SE(2) Chebyshev
convolutional layer. From
left to right shows differ-
ent rotations of an input
(top row) and the activa-
tions for different slices of
θ ∈ [0, π] in the graph (bot-
tom 6 rows). A rotation of
an input image followed by
Chebyshev convolution is
equivalent to first convolu-
tion followed by a planar ro-
tation in each θ slice and a
roll in the θ-axis.

Spatial pooling and unpooling layers. Graph pooling is a central component in a myriad of262

graph neural network architectures. Producing coarsened graphs from a finer graph have two main263

advantages: first, it reduces the computational cost, and second, it could improve performance by264

reducing the overfitting effect and adding a multiscale perspective. As an inheritance from traditional265

CNNs, most approaches formulate graph pooling as a cluster assignment problem, extending local266

patches’ idea in regular grids to graphs [Dhillon et al., 2007, Ying et al., 2018, Khasahmadi et al.,267

2020, Mesquita et al., 2020]. We propose similar operations on the base space (spatial domain) and268

involving two steps (see Figure 3). First, each sample is assigned to a cluster that will correspond to269

the output sample; this is the down- (resp. up-) sampling phase. With a well designed method, this270

change of data-resolution can be made equivariant to any group transformation.5 Then, each cluster is271

reduced (resp. expanded) according to a given scheme (e.g. maximum, average or random); this is the272

reduction (resp. expansion) phase. When the reduction and expansion steps are permutation-invariant273

operations, such layers are automatically invariant under any transformation in the group.274

(a) R2RandPool (b) S2MaxPool

(c) R2RandUnpool (d) S2AvgUnpool

Figure 3: Spatial pooling and unpooling layers on the 2D grid and the sphere.

Global pooling (projection) layer and point-wise operations. When the neural network does275

not need to be equivariant but invariant (e.g. classification task), it is common to rely on a global276

pooling layer (or simply projection layer). This layer reduces the d-dimensional signal on the graph’s277

vertices to a d-dimensional vector of features derived from information on the whole graph. As a278

permutation-invariant operation, such a layer does not break the equivariance property of the neural279

network. Finally, point-wise operations do not affect the equivariance of a neural network.280

5Altough down- and up-samplings are naturally defined on the Euclidean grid, this task is more complicated
on the sphere. However, using an icosahedron decomposition of the sphere, we make it more natural as down-
and up-sampling consists of decreasing or increasing the subdivision level.
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4 Experiments281

In this section, we show the benefits of working on the anisotropic manifold graphs compared to the282

base manifold graphs. We believe that further improvements could be achieved through tuning and283

hyper-parameter optimization of the models [Yu and Zhu, 2020], using high-capacity networks, or via284

a more advanced training process, but this is not the goal of our work. We here intent to illustrate the285

adaptability of our approach to different tasks such as classification and segmentation in 2D images or286

spherical data. In the first couple of experiments, we motive the use of anisotropic spaces. By varying287

the anisotropies, we show the existence of sweet spots, both for the spatial anisotropy parameter ε288

and the orientation anisotropy parameter ξ. In the second couple of experiments, we show that even289

if we add a new orientation dimension, our method remains scalable using a proper implementation.290

Our implementation is fully PyTorch [Paszke et al., 2019] and available at https://anonymous.url.291

We perform all the experiments on a single GeForce GTX 1080 Ti gpu and track them with the292

Weights & Biases library [Biewald, 2020]. The details of the experiments are given in the App. D.293

4.1 Why using tunable anisotropic kernels?294

As introduced in Section 3.1, the anisotropies are tunable via the parameters ε and ξ of the Riemannian295

metric, respectively responsible for the spatial and orientation anisotropies. As the ξ parameter should296

depend on the spatial and orientation resolutions, we use the following parameterisation: ξ2 = α |Vo||Vs| .297

Setting α = 1 yields a 40/60 ratio of neighbors within versus outside the orientation plane. We298

ran different experiments with a Wide Residual architecture [Zagoruyko and Komodakis, 2016] on299

CIFAR10 [Krizhevsky et al., 2009], varying the spatial and orientation anisotropic parameters.300
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Figure 4: Empirical proof of existence of sweet spots for data-dependent anisotropic parameters.

Orientation anisotropy. The orientation anisotropy ξ controls how strongly orientation layers are301

connected. At the limit ξ →∞, orientation layers are decoupled. It is like test-time augmentation302

with rotations: running a CNN working with one anisotropic Laplacian (e.g., only vertically aligned303

filters) and testing the network for different input rotations before averaging the output. The other304

extreme ξ → 0 keeps all layers equally close to each other, and features are essentially identified with305

just a spatial coordinate. This would then correspond to a WideResNet with isotropic Chebyshev306

convolutions. For reasonable values of ξ, interactions between orientation layers take place. Figure307

4a is evidence of the existence of a sweet spot for this parameter in the range of reasonable values. At308

the moment, we expect with no certainty that this parameter could be set a priori of the data, only309

considering the data resolution. As a rule of thumb, we set ξ such that each vertex has approximately310

40% of its neighbors in the same orientation layer and 60% on others.311

Spatial anisotropy. The spatial anisotropy ε regulates the anisotropy of the space on the spatial312

domain. For ε = 1, the Riemannian metric is spatially isotropic; all directions are treated equally313

and the resulting model would effectively be a WideResNet with isotropic Chebyshev convolutions.314

At the limit ε→ 0, the main direction has a minimal cost, and the resulting space is highly spatially315

anisotropic. In figure 4a we observe that using anisotropic spaces instead of isotropic ones is relevant,316

as we almost get an 8% test-accuracy improvement. Unlike the orientation anisotropic parameter,317

in our opinion, this parameter is task/data-dependent; different datasets could benefit in different318

degrees from the utilization of directional information through different spatial anisotropy settings.319
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4.2 How scalable is the method?320

Scalability is often an important limitation of graph- and group-based neural networks. By adding321

an orientation dimension, we do not run from this rule as we necessarily increase the number of322

vertices of the anisotropic manifold graphs. To permit experiments on larger images, it becomes323

crucial to pre-compute anisotropic manifold graphs and their Laplacians. Dedicated librairies like324

PyKeops [Charlier et al., 2020] enable this without memory issues. Nevertheless, the graph operations325

(convolutions, pooling or unpooling) still scale with the size of the graph. Fortunately, PyTorch326

provides sparse operations that increase efficiency in terms of time and memory compared to dense327

operations in cases of sufficiently sparse graph Laplacians (typically a sparsity S(∆̃) ≥ 98.5%).328

We evaluate our models on an image classification task on STL10 [Coates et al., 2011] and an image329

segmentation task on ClimateNet [Kashinath et al., 2021]. We show the adaptability of our method by330

using a Wide Residual architecture [Zagoruyko and Komodakis, 2016] on STL10 and a U-Net-like331

network [Ronneberger et al., 2015] on ClimateNet. We also demonstrate the potential of our approach332

and the benefits of using anisotropic spaces. Indeed, while on ClimateNet the use of anisotropies is333

neither beneficial nor detrimental, the difference in performance on STL10 is significant.334

Table 1: Mean of test performance and training duration on ClimateNet and STL10. Errorbars are 1
standard deviation computed over 5 trials.

ClimateNet STL10
ε Test F1 Duration Test accuracy Duration

1 (invariant) 85.62 ± 0.09% ∼ 2 d 68.98± 0.56% ∼ 9 h
0.1 (equivariant) 85.25± 0.19% ∼ 7 d 74.02 ± 1.10% ∼ 16 h

5 Conclusion335

Scope. With our method, geometric graph NNs are made equivariant to Lie groups. Via the groups336

SE(2) and SE(3), we can construct roto-translation equivariant networks for 2D image data and 3D337

volumetric data. Based on the group SO(3), our method can deal with meteorological or cosmological338

data while preserving rotation equivariance. We believe that our flexible approach is ideal for further339

explorations on the relevance of group equivariance in tasks not considered in this work.340

Limitations. The main weakness of our method is its relatively high memory requirement. Al-341

though all experiments ran on a single gpu, by adding an orientation axis, we significantly enlarge the342

feature maps. As a result, anisotropic graph manifolds are memory-heavier than isotropic ones and343

prone to a slowdown during the forward- and backward-pass. Nevertheless, with the emergence of ge-344

ometric deep learning, we expect improvement in the hardware and implementation of graph-oriented345

operations. Another challenge is the increased number of hyper-parameters for which we only have346

derived rules of thumb. The graph connectivity and resolutions require a tradeoff between efficiency347

and quality of the manifold approximation. The anisotropic parameters require an analysis of the348

dataset and some intuition about the amount of anisotropy to set. With systematic hyper-parameter349

optimization, we can find an optimal combination, but requires more computational resources.350

Potential and future research. Thanks to its easy-to-tune anisotropic properties, our model can be351

used to better understand anisotropic properties in data. In particular, one could explore the effect of352

using anisotropic spaces instead of isotropic ones on many tasks and conclude when such anisotropic353

information is relevant. In this vein, it could also be interesting to derive anisotropic pooling and354

unpooling layers based on anisotropic spaces instead of isotropic ones as it is usually done. More355

generally, our method is simple enough to be extended to shapes/surfaces with a Riemannian manifold356

structure [Cohen et al., 2019]. In this work, we focused on 2D images and spherical data on, but the357

method is readily extendable to higher dimensional Lie groups such as the SE(3) group to obtain358

3D roto-translation equivariant ChebLieNets. Moreover, our method for constructing anisotropic359

geometries could directly improve other successful Euclidean distance-based graph NNs such as360

[Satorras et al., 2021] by making them fully equivariant. Last but not least, despite graph-based361

algorithms being computationally sub-optimal compared to CNNs, their flexibility is a real asset. We362

see high potential in the exploration of graph sparsification to reduce computational complexity.363
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