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ABSTRACT

Transformer network has been proved efficient in modeling long-range dependen-
cies in video learning. However, videos contain rich contextual information in
both spatial and temporal dimensions, e.g., scenes and temporal reasoning. In
traditional transformer networks, stacked transformer blocks work in a sequen-
tial and independent way, which may lead to the inefficient propagation of such
contextual information. To address this problem, we propose a cross-stage trans-
former paradigm, which allows to fuse self-attentions and features from different
blocks. By inserting the proposed cross-stage mechanism in existing spatial and
temporal transformer blocks, we build a separable transformer network for video
learning based on ViT structure, in which self-attentions and features are progres-
sively aggregated from one block to the next. Extensive experiments show that
our approach outperforms existing ViT based video transformer approaches with
the same pre-training dataset on mainstream video action recognition datasets of
Kinetics-400 (Top-1 accuracy 81.8%) and Kinetics-600 (Top-1 accuracy 84.0%).
Due to the effectiveness of cross-stage transformer, our proposed method achieves
comparable performance with other ViT based approaches with much lower com-
putation cost (e.g., 8.6% of ViViT’s FLOPs) in inference process. As an inde-
pendent module, our proposed method can be conveniently added on other video
transformer frameworks.

1 INTRODUCTION

Convolution neural network (CNN) has been successfully applied on computer vision tasks, such
as classification (Krizhevsky et al. (2012); He et al. (2016)), detection (Girshick (2015); Ren et al.
(2015)) and segmentation (He et al. (2017)). However, due to the limited receptive field, CNN lacks
the ability of modeling long-range dependencies, which is an obstacle to capture the spatial and
temporal contexts in video learning. To overcome this weakness, self-attention mechanism is intro-
duced into CNN structure and obtains excellent performance (Wang et al. (2018); Guo et al. (2021)).
Recently, convolution-free transformer structure consisting of self-attention layers (Vaswani et al.
(2017)) is also investigated in vision domain (Dosovitskiy et al. (2020); Carion et al. (2020)).

Transformer achieved extreme success in natural language processing (NLP) (Vaswani et al. (2017);
Devlin et al. (2018); Yang et al. (2019); Dai et al. (2019)). The inherent similar requirement between
video and language learning, i.e., capturing the long-range contextual information, makes people
believe that it can also work for video tasks. The first attempt to apply pure transformer network for
vision is Vision Transformer (ViT) (Dosovitskiy et al. (2020)), which aims at image classification.
The input images are split into several patches, which are then linearly embedded into tokens for the
transformer blocks. A classification head is attached at the top of these transformer blocks for final
prediction. Bertasius et al. (Bertasius et al. (2021)) and Arnab et al. (Arnab et al. (2021)) extend
the scheme to video learning by adding temporal transformer blocks.

Pure transformer network shows comparable performance with CNN based methods, as well as the
potential in vision domain. However, there are still uncertainties by processing video data in the
way analogous to language. On one hand, video patches contain rich spatial and temporal contents,
so that it is difficult to map them into precise semantic tokens like words. Thus, the correlations
established by transformer blocks may lead to ambiguous semantics. This drawback becomes even
worse for videos with complex scenes and actions. On the other hand, the absence of convolutions
in a transformer network will damage local contexts capturing, so that the features built across
transformer blocks may have inefficient information propagation.
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To tackle the aforementioned problems, we try to re-design the transformer blocks. Inspired by the
empirically long-standing principle in CNN based approaches, i.e., features extracted from different
stages can be fused together to improve learning (Lin et al. (2017a); He et al. (2017); Lin et al.
(2017b); Redmon & Farhadi (2018)), we expect the cross-stage fusion can also help improve the
performance of transformer.

Based on above analysis, we propose a novel cross-stage transformer block which consists of cross-
stage self-attention (CSSA) and cross-stage feature aggregation module (FAM). The former aims to
progressively enhance the self-attention maps by adding shortcuts between self-attentions from two
consecutive transformer blocks. The later fuses the features from different stages to achieve better
outputs. We then build up a separable spatial-temporal transformer network, in which spatial cross-
stage transformer and temporal cross-stage transformer are sequentially stacked. Extensive experi-
ments show that, under the same conditions, i.e., base transformer structure and pre-training dataset,
our approach outperforms existing ViT based video transformers on video action recognition tasks.
Due to the effectiveness of cross-stage fusion, our method can achieve comparable performance to
ViViT (Arnab et al. (2021)) with much fewer FLOPs in inference process. As a generic module, the
cross-stage transformer can also be inserted into other transformer based frameworks.

The contributions of this work can be summarized as follows:

1. A novel cross-stage transformer block, consisting of cross-stage self-attention module and
cross-stage feature aggregation module, is proposed. Meanwhile, we also establish a sepa-
rable cross-stage transformer network for video learning.

2. Extensive experiments are conducted to provide sufficient information for better under-
standing our approach, thereby provide an insight into the design of transformer in video
learning.

3. Using the same pre-training dataset as existing transformer methods, our approach outper-
forms other ViT based video transformers and CNN methods on video action recognition
datasets, including Kinetics-400 and Kinetics-600. It can also be added in other frame-
works to promote the performance.

2 RELATED WORK

Video action recognition. Extensive efforts have been put on video action recognition in recent
years. The mainstream approaches usually utilize 2D or 3D based CNN for video feature extraction
(Carreira & Zisserman (2017); Christoph & Pinz (2016); Tran et al. (2015); Ji et al. (2012); Tran et al.
(2018); Simonyan & Zisserman (2014); Wang et al. (2016)). I3D (Carreira & Zisserman (2017)) is
a representative of 3D based methods, which inflates 2D convolution layers into 3D to save the
huge computational cost in pre-training 3D networks. Non-Local Neural Networks (Wang et al.
(2018)) introduces self-attention into CNN, which can capture long-range dependencies and richer
information of input video frames. Guo et al. (2021) proposes a separable self-attention network and
achieve excellent performance on video action recognition. SlowFast (Feichtenhofer et al. (2019))
proposes a two-pathway network, using slow and fast temporal rates of video frames at the same
time, in which features are fused from fast pathway into slow one. X3D (Feichtenhofer (2020))
explores different network settings based on SlowFast, and significantly boosts the performance.
Recently, the research efforts are shifting to transformer based methods.

Image transformer networks. Self-attention network (Vaswani et al. (2017)), also known as trans-
former, has achieved state-of-the-art performance in NLP domain (Vaswani et al. (2017); Devlin
et al. (2018); Yang et al. (2019); Dai et al. (2019)). This success inspires more and more research
efforts on applying transformer to computer vision tasks. ViT (Dosovitskiy et al. (2020)) and DeiT
(Touvron et al. (2020)) successfully show that pure transformer network can achieve state-of-the-art
performance in image classification task. In Carion et al. (2020), a transformer-based network is
proposed for object detection, and obtains comparative performance with Faster-RCNN (Ren et al.
(2015)). SETR (Zheng et al. (2020)) proposes segmentation transformer network, which achieves
desirable performance in semantic segmentation. Wu et al. (2021); Li et al. (2021) incorporated con-
volution design into transformer network by adding locally inductive biases. Swin Transformer (Liu
et al. (2021)) proposes a hierarchical transformer structure to flexibly model feature representation
at various scales. These work showcases the potential of transformer in vision domain.
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Figure 1: The illustration of cross-stage transformer network. (a) The framework of cross-stage
transformer for video learning. (b) Cross-stage transformer structure. STB indicates spatial trans-
former block, and TTB indicates temporal transformer block. Blue arrows represent the direction
of the cross-stage self-attention. The self-attention from each block is fused with that from the next
one. The features from different blocks are aggregated together in cross-stage feature aggregation
module (FAM). Note that we only use 4 × STB and 3 × TTB for simplicity. (c) STB. (d) TTB.
MSSA and MTSA denote multi-head spatial and temporal self-attention respectively.

Video transformer networks. With the achievements of transformer in image domain, there also
appears transformer networks for video. VTN (Neimark et al. (2021)) proposed a generic frame-
work for video recognition, which consists of a 2D spatial backbone for feature extraction, a tempo-
ral attention-based encoder for modeling temporal dependencies of the spatial features, and a MLP
head for classification. Timesformer (Bertasius et al. (2021)) adapted image transformer (Dosovit-
skiy et al. (2020)) architecture to video, and proposed several different self-attention schemes for
transformer network design. STAM (Sharir et al. (2021)) presented a spatial-temporal transformer
network, which processes sampled frames by a spatial transformer and a temporal transformer se-
quentially. ViViT (Arnab et al. (2021)) also proposed a pure-transformer architecture for video
classification, and developed several variants, which can separate transformer’s self-attention along
spatial and temporal dimensions. There are also some works on adding shortcuts between trans-
former blocks in NLP and image domains to evolve the features (Wang et al. (2021); He et al.
(2020)). Our work is inspired by these works but more challenging. Since video learning need to
capture more complex information from spatial and temporal dimensions, simple shortcuts cannot
efficiently work in existing video transformers.

3 PROPOSED METHOD

In Sec. 3.1, we introduce the video learning process of cross-stage transformer network. Then in
Sec. 3.2, we explain the proposed cross-stage self-attention (CSSA) in details. Finally in Sec. 3.3,
the cross-stage feature aggregation module (FAM) is described.

3.1 CROSS-STAGE TRANSFORMER NETWORK

The cross-stage transformer (CSTransformer) network is illustrated in Figure 1. We explain each
component of the workflow as follows.

Input video clips. We employ ViT (Dosovitskiy et al. (2020)) as our baseline by extending trans-
former blocks to temporal dimension. Then we build up video learning network by adding cross-
stage attention and feature fusion. Let X ∈ RB×C×T×H×W be the input video clip. B denotes
batch size. C denotes the number of input channels. T represents the length of the clip. W and H
denote width and height of input frames respectively. We use constantW andH in our experiments.
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Figure 2: The illustration of cross-stage self-attention (CSSA). (a) Cross-stage spatial self-
attention. (b) Cross-stage temporal self-attention. For simplicity, we only show cross-stage self-
attention flow of two consecutive transformer blocks.

Patch embedding. In order to convert input frames into spatial patches, we firstly reshape X as
X ∈ R(B×T )×C×H×W , then split X into P non-overlapped patches. The size of each patch is
M ×M , and P is (H ×W )/M2. A linear layer is employed to change the channels of each patch,
after which the shape of the embedding is V ∈ R(B×T )×C′× H

M×
W
M , where C ′ represents channel

dimension after the linear layer. After that, we will flatten embedding V along spatial dimensions
and transpose the last two dimensions, resulting in the shape of embedding V ∈ R(B×T )×P×C′

.

Classification token. After converting X into patch embedding V , we initialize a classification
token Vcls ∈ R1×1×C′

as 0, and repeat the classification token Vcls among the first dimension of V ,
i.e., Vcls ∈ R(B×T )×1×C′

.

Position encoding. In this step, spatial position embedding is firstly added into classification token
Vcls. This operation is formulated in equation (2), where Ps ∈R1×(1+P )×C′

denotes spatial position
embedding. In equation (1), P cls

s ∈R1×1×C′
and PV

s ∈R1×P×C′
are used to update classification

token Vcls and token V respectively, Concat means concatenation operation.

Ps = Concat[P cls
s , PV

s ] (1)

Vcls = Vcls + P cls
s (2)

Through equation (2), spatial position information can be combined with classification token Vcls.
Since video clips contain temporal correlations, we also introduce temporal position embedding
Pt ∈ RT×1×C′

together with V and Ps. Spatial and temporal position information are fused into
patch embedding V through equation (3). Finally, as shown in equation (4), classification token Vcls
will be appended into patch embedding V to form V0 ∈ R(B×T )×(1+P )×C′

, and V0 will be fed into
cross-stage transformer as input embedding sequence.

V = V + PV
s + Pt (3)

V0 = Concat[Vcls, V ] (4)

Cross-stage structure. Our proposed method consists of several spatial transformer blocks (STBs)
and temporal transformer Blocks (TTBs). STB/TTB consists of of layer normalisation (LN) (Ba
et al. (2016)), multi-head spatial self-attention (MSSA)/multi-head temporal self-attention (MTSA)
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and MLP blocks. MSSA is used to compute self-attention of spatial patches within each frame to
handle the relationship between objects and scenes, which is similar to MSA in ViT (Dosovitskiy
et al. (2020)). While MTSA mainly focuses on computing self-attention of co-located patches along
temporal dimension, so that temporal relationships of frames can be captured. Note that input shapes
for MSSA and MTSA will be reshaped as R(B×T )×(1+P )×C′

and R(B×(1+P ))×T×C′
respectively.

The operations of STB and TTB are formulated in equation (5) and (6), where L represents the
total blocks of cross-stage transformer. Vi is the output of ith transformer block. MSA represents
multi-head self-attention process, which covers MSSA for spatial transformer blocks and MTSA for
temporal transformer blocks. And MLP contains two linear layers with a GELU non-linearity.

V ′i =MSA(LN(Vi−1)) + Vi−1, i = 1, ..., L (5)

Vi =MLP (LN(V ′i )) + V ′i , i = 1, ..., L (6)

Features from different spatial/temporal transformer blocks will then go through FAM for cross-
stage fusion, as described in equation (7), where Y is the aggregated feature. The details of cross-
stage self-attention and feature aggregation will be clarified in Sec. 3.2 and Sec. 3.3.

Y = FAM(Vi), i = 1, ..., L (7)

Figure 3: The illustration of cross-stage feature ag-
gregation module (FAM).

MLPs in STB and TTB. MLPs in ViT
(Dosovitskiy et al. (2020)) usually contain
two fully connected (fc) layers. Let d denotes
the dimension of input feature. The first fc
layer will expand the dimension d into 4 ×
d. Our STB follows this style, while TTB
keeps the original dimension. We find that
this design can achieve better accuracy and
computation trade-off. Experiments of dif-
ferent configurations are summarized in table
1d. In the second fc layer, the dimension is
changed back to d.

MLP head for classification. Finally,
the aggregated feature Y from FAM will go
through a MLP head consisting of a LN layer
and a linear layer for final video class predic-
tion.

3.2 CROSS-STAGE SELF-ATTENTION

The proposed cross-stage self-attention (CSSA) approach is simple yet efficient. The purpose of
this design is to progressively fuse the self-attention from different stages to achieve better attention
maps. As shown in Figure 2, the self-attention map from each STB/TTB will firstly perform an
element-wise multiplication with a corresponding learnable ratio α, which can dynamically adjust
the scale of corresponding self-attention. Then the scaled self-attention will be added to the self-
attention from the next stage. The whole process can be defined as Equation 8:

CrossAi = Softmax(Ai + αi ·Ai−1), i = 1, ..., L (8)

where CrossAi and Ai represent cross-stage self-attention and self-attention of ith transformer
block respectively. When i equals 1, cross-stage self-attention is original self-attention A1. αi is
the learnable ratio of ith transformer block and (·) is element-wise dot product. Note that Ai is the
pairwise similarity derived by the multiplication of query matrix and key matrix. CrossAi is then
used to multiply with value matrix as output. Our experiments demonstrate the effectiveness of this
module in both objective and subjective measurements.
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3.3 CROSS-STAGE FEATURE AGGREGATION

Cross-stage feature aggregation module (FAM) provides a global path for the features from different
stages to better capture contextual information. The details of FAM are shown in Figure 3. We only
use 4 transformer blocks for illustration. Specially, the feature from each transformer block will
multiply a corresponding learnable parameter with an element-wise dot product. This parameter can
scale its input feature globally. The scaled output will then be fed into a norm layer. Here we use
LN layer for normalization. After that, all normalized results will be fused together for the output of
FAM. It’s noteworthy that our proposed cross-stage transformer block can be easily implemented by
introducing only a few additional parameters, which is negligible in complexity. The fusion process
is as follows:

Y =
∑

LN(βi · Vi) + VL, i = 1, ..., L− 1 (9)

where βi is the learnable ratio for ith transformer block and Y is the aggregated feature.

4 EXPERIMENTS

In this section, we clarify relevant experimental settings and evaluate our proposed approach in
several datasets to validate its effectiveness. We introduce the datasets for evaluation in Sec. 4.1.
Then we show the implementation details of our approach in Sec. 4.2. Extensive ablation studies
are conducted for fully understanding the proposed approach in Sec. 4.3. In Sec. 4.4, we visualize
the self-attention maps from our approach and the baseline to better understand the efficiency of
cross-stage transformer. Finally, we compare our approach with other state-of-the-art methods in
Sec. 4.5.

4.1 DATASETS

We evaluate our approach on two large-scale video action recognition datasets, i.e., Kinetics-400
(Kay et al. (2017)) and Kinetics-600 (Carreira et al. (2018)). The details of the datasets are described
below.

Kinetics-400 dataset. The kinetics-400 dataset consists of training, validation and testing splits.
Specifically, it contains 246536 training videos and 19761 validation videos, there are 400 human
action categories, which are extracted from original YouTube videos. However, due to expired of
Youtube links, there are only 234584 videos of training split. Videos in Kinetics are relatively longer
and more complex, which are trimmed to around 10 seconds.

Kinetics-600 dataset. The kinetics-600 dataset follows the same style of Kinetics-400 dataset,
except that it extend 400 categories into 600, and the training split consists of 366,016 videos. We
also use training and validation splits for training model and evaluation.

4.2 IMPLEMENTATION DETAILS

Network structure. For all experiments, we adopt ”Base” architecture of ViT model (Dosovit-
skiy et al. (2020)) with temporal extension as our baseline, which is trained in ImageNet dataset
(Krizhevsky et al. (2012)). For fair comparison, we only include the approaches using the same
pre-training dataset (i.e., ImageNet-21K (Deng et al. (2009))). The structure of transformer layers
in ViT-Base is the same as STB in CSTransformer network. We vary the numbers of STB and TTB,
then evaluate these variants to showcase the impact of layers on our design. Top-1 accuracy of these
variants are reported in table 1a, i.e., CSTransformer-V1, CSTransformer-V2 and CSTransformer-
V3, which will be explained in details in ablation study part.

Data processing. In our experiments, we sample 8, 16 and 32 frames with temporal stride of 32, 16
and 8 respectively as input clips. The sampled input clips will be processed by color normalization,
random scale jittering and uniform crop. The scale jittering range is [256, 320] and the uniform crop
will slice frames into 3 spatial crops (top left, center and bottom right) of size 224 × 224. The patch
size is 16 × 16.
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Model # of STB # of TTB GFLOPs Top-1 Accuracy (%)
CSTransformer-V1 10 10 345.2 76.3
CSTransformer-V2 12 6 339.6 78.7
CSTransformer-V3 12 8 365.6 78.9

(a) Comparison of different model variants
Spatial Temporal Top-1 Accuracy (%)

77.6
3 78.4
3 3 78.7

(b) The contribution of position encoding

8 16 32 Top-1 Accuracy (%)
3 78.7

3 80.1
3 81.2

(c) Different input clip lengths
Model 1 × 2 × 4 × GFLOPs Top-1 Accuracy (%)

CSTransformer-V2 3 339.6 78.7
CSTransformer-V2 3 359.9 78.8
CSTransformer-V2 3 400.7 79.0

(d) Comparison of different MLP configurations in TTB

Table 1: Ablation study for model variants, position encoding, clip lengths and MLP configurations.

Training details. For all experiments, we use 8 × NVIDIA V100 devices. Initial learning rate is
0.005, and total epoch is 18. We use SGD optimizer with weight decay of 10−4 and momentum of
0.9 for training. Learning rate drops 10 times at epoch 5, 14 and 16.

Inference settings. Whereas most existing methods use 10 temporal clips with 3 spatial crops
(top-left, center and bottom-right) for inference, we only use 1 temporal clip (which is sampled in
the middle of video clips) with 3 spatial crops for default setting. The final prediction is averaged
softmax scores of all predictions.

4.3 ABLATION STUDIES

In this section, we conduct various ablation studies on Kinetics-400, which can allow us to better
understand different components’ effects for CSTransformer.

Cross-stage transformer. In table 2b, we report the ablation study of the main components in cross-
stage transformer, i.e., cross-stage self-attention (CSSA) and feature aggregation module (FAM). We
also show the result of baseline, which employs separable spatial and temporal transformer structure
as depicted in Figure 1 (b) without cross-stage operations. From the table, we can see that both
CSSA and FAM help improve the performance. When using them together, i.e., the whole cross-
stage transformer, the performance can be boosted from 77.8% to 78.7%.

Model variants. We stack different number of STB and TTB to form CSTransformer, i.e.,
CSTransformer-V1, CSTransformer-V2 and CSTransformer-V3. The length of the input clips is
8. The detailed comparisons of various settings are shown in table 1a. Since CSTransformer-V2
structure has obtained optimal accuracy and computation trade-off, we employ it in other experi-
ments.

Does positional encoding help? In order to further understand the performance of spatial and
temporal position encoding for CSTransformer. We evaluate CSTransformer-V2 with input clip
length of 8. The results of using position encoding can be seen in table 1b. We can observe that by
adding spatial position embedding, model’s performance has been improved from 77.6% to 78.4%.
And introducing temporal embedding can further boost its performance into 78.7%.

The effect of input clip length. Different clip lengths can impact the performance of proposed
approach. We compare three clip lengths, i.e., 8, 16 and 32. The performance of CSTransformer-
V2 is illustrated in table 1c. A reasonable result can be observed that model’s performance increases
as clip length becomes larger.

MLP in TTB. As mentioned before, in TTB, the first fc layer in MLP doesn’t expand the original
dimension, which is different from original ViT (Dosovitskiy et al. (2020)) design. We compare
the performance of several expansion ratios, including 1 ×, 2 × and 4 × in table 1d, and find that
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1 × 3 4 × 3 10 × 3 Top-1 Accuracy (%)
3 78.7

3 79.3
3 79.5

(a) Influence of different inference settings

Baseline CSSA FAM Top-1 Accuracy (%)
3 77.8
3 3 78.3
3 3 3 78.7

(b) Influence of different components

Table 2: Ablation study for inference settings and different components.

expanding the dimension in cross-stage transformer doesn’t help. Therefore we keep the original
dimension for TTB as in ViT.

How does inference views influence performance? In video learning experiments, one needs
to sample x × y video clips for evaluation, where x and y denotes the number of temporal clips
and spatial crops. We wonder how does this inference sampling strategy influence the model’s
performance. Therefore, we perform multiple inference settings including 1× 3, 4× 3 and 10× 3.
The results of CSTransformer-V2, which is trained with input clip length of 8, is shown in table 2a.

4.4 VISUALIZATION

To intuitively understand the proposed method, we visualize the self-attention map of cross-stage
transformer in this section. Figure 4 shows the visualization for cross-stage transformer and the
baseline in video clips from Kinetics-400. We can observe that the proposed approach can pay
more attention to those areas such as hands and bee box, which are very important to understand the
video contents. And it’s also interesting to see that our approach shows much less attentions in non-
relevant regions such as the background. We conjecture that cross-stage self-attention and feature
aggregation can propagate important semantic information across different transformer blocks. As
a result, those attentions for important areas can be gradually evolved and highlighted.

Figure 4: The visualization of self-attention map from the output token of a video clip, namely
“A person was keeping bees”. The top row is the original video clip. The second row is the result
of the baseline without using cross-stage self-attention and feature. The third row shows the result
of CSTransformer. Brighter area means more attention has been focused on.

4.5 COMPARISON WITH THE STATE-OF-THE-ART

In this section, we compare our method with several state-of-the-art approaches in terms of accuracy
metrics and inference costs with total number of spatial and temporal views. We employ the input
frame length of 32 in our evaluations. For fair comparison, we only report transformer methods’
results using the same pre-training dataset, i.e., ImageNet-21K. Moreover, since our method is
implemented based on ViT structure, we only compare the video transformers based on ViT, i.e.,
VTN (Neimark et al. (2021)), ViViT (Arnab et al. (2021)) and TimeSformer (Bertasius et al. (2021)),
to demonstrate the effectiveness of our method more clearly. There are also other video transformers
(Liu et al. (2021); Fan et al. (2021)) which are much different from original ViT structure and report
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high performances. We will add our approach on these frameworks for comparison in the future.
Note that ViT-L-ViViT with crop size 320 × 320 (the total inference cost is 3992 GFLOPs × 4 × 3
≈ 47.9 TFLOPs) is compared in our experiment.

Kinetics-400 dataset. The comparison results on Kinetics-400 are shown in table 3. In addition
to accuracy metrics, we also report inference views and inference cost in terms of TFLOPs. When
the inference view is 1 × 3, our approach achieves 81.2% top-1 accuracy and 94.8% top-5 accu-
racy. With 4 × 3 views, CSTransformer outperforms existing CNN and ViT based transformer
approaches. Our approach achieves comparable performance with ViT-L-ViViT by only 8.6 % of its
inference cost, since we use less views (1×3 vs. 4×3) and layers (ViT-Base vs. ViT-Large).

Kinetics-600 dataset. We also evaluate our proposed approach on Kinetics-600. The results are
shown in table 4. CSTransformer network achieves superior performance as well. Furthermore,
Our approach consumes much less inference cost than other ViT based transformers (Bertasius et al.
(2021); Arnab et al. (2021)) under the same inference views.

Method Venue Top-1 Top-5 Views TFLOPs

I3D NL (Wang et al. (2018)) CVPR’18 77.7 93.3 10 × 3 10.8
LGD-3D R101 (Qiu et al. (2019)) CVPR’19 79.4 94.4 - -

SlowFast R101-NL (Feichtenhofer et al. (2019)) CVPR’19 79.8 93.9 10 × 3 7.0
STM (Jiang et al. (2019)) ICCV’19 73.7 91.6 - -

TSM-ResNeXt-101 (Lin et al. (2019)) ICCV’19 76.3 - - -
ip-CSN-152 (Tran et al. (2019)) ICCV’19 77.8 92.8 10 × 3 3.2

bLVNet (Fan et al. (2019)) NIPS’19 73.5 91.2 - 0.84
TEA (Li et al. (2020)) CVPR’20 76.1 92.5 10 × 3 -

CorrNet-101 (Wang et al. (2020a)) CVPR’20 79.2 - 10 × 3 6.7
X3D-XXL (Feichtenhofer (2020)) CVPR’20 80.4 94.6 10 × 3 5.8

ViT-B-VTN (Neimark et al. (2021)) Arxiv’21 78.6 93.7 10 × 3 4.2
TimeSformer-L (Bertasius et al. (2021)) ICML’21 80.7 94.7 1 × 3 7.1

ViT-L-ViViT (Arnab et al. (2021)) ICCV’21 81.3 94.7 4 × 3 47.9

Ours - 81.2 94.8 1 × 3 4.1
Ours - 81.8 95.2 4 × 3 16.4

Table 3: Comparison with existing methods on Kinetics-400 dataset.

Method Venue Top-1 Top-5 Views TFLOPs

LGD-3D R101 (Qiu et al. (2019)) CVPR’19 81.5 95.6 - -
SlowFast R101-NL (Feichtenhofer et al. (2019)) CVPR’19 81.8 95.1 10 × 3 7.0

AttentionNAS (Wang et al. (2020b)) ECCV’20 79.8 94.4 - 1.0
X3D-XL (Feichtenhofer (2020)) CVPR’20 81.9 95.5 10 × 3 1.5

TimeSformer-L (Bertasius et al. (2021)) ICML’21 82.2 95.5 1 × 3 7.1
ViT-L-ViViT (Arnab et al. (2021)) ICCV’21 83.0 95.7 4 × 3 47.9

Ours - 83.5 95.8 1 × 3 4.1
Ours - 84.0 96.1 4 × 3 16.4

Table 4: Comparison with existing methods on Kinetics-600 dataset.

5 CONCLUSION

In this paper, we propose a novel cross-stage transformer network for video learning, which can ef-
fectively learn video representations. In specific, we design a CSTransformer block which consists
of cross-stage self-attention module (CSSA) and cross-stage feature aggregation module (FAM).
We then build up a separable CSTransformer network, in which spatial CSTransformer blocks and
temporal CSTransformer blocks are sequentially stacked. Extensive experiments show that our ap-
proach outperforms existing state-of-the-art CNN and ViT based transformer methods on video
action recognition tasks. Due to the effectiveness of CSTransformer block, our method can achieve
comparable performance to ViViT with much fewer inputs and FLOPs in inference process. Since
our proposed CSSA and FCM act as independent modules, they can also be added on other video
transformer frameworks.
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A APPENDIX

A.1 CROSS-STAGE SELF-ATTENTION

In this section, we further clarify the principles of proposed cross-stage self-attention. Mainsteam
multi-head self-attention is proposed in Vaswani et al. (2017), which has been adopted in transformer
network. We can formulate the process as follows.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O, (10)

where headj = Attention(QWQ
j ,KW

K
j , V WV

j )(1 ≤ j ≤ h). h is the number of total heads.
Q, K and V mean query, key and value matrices respectively. WO is the linear projection for
concatenation of multiple heads’ outputs. WQ

j , WK
j , WV

j are the linear projections of key, query
and value matrices for jth head. Then attention function can be written as:

Attention(Q̂, K̂, V̂ ) = Softmax(
Q̂K̂T

√
dk

)V̂ , (11)

in which Q̂, K̂ and V̂ mean converted query, key, value matrices by linear projection. dk denotes
dimension of input Q̂ and K̂ matrices. The attention weight Q̂K̂T

√
dk

is the pairwise similarity be-
tween query and key matrices, which has been forwarded progressively in proposed CSTransformer
structure.

Cross MultiHead(Q,K, V ) = Concat(c head1, ..., c headh)W
O. (12)

In equation (12), c headj = Cross Attention(QWQ
j ,KW

K
j , V WV

j ). Cross-stage self-attention
of ith (1 ≤ i ≤ n) transformer block is formulated in equation (13) and (14). n denotes total
number of transformer blocks.

Cross Attention(Q̂i, K̂i, V̂i) = Softmax(Ai + αi ∗Ai−1)V̂i, (13)

Ai =
Q̂iK̂i

T

√
dk

, (14)

where Q̂i, K̂i, V̂i are linearly projected query, key and value matrices of ith transformer block. ∗
means element-wise dot operation. ai represents a learnable ratio of ith block. We adopt multi-head
cross-stage self-attention, namely Cross MultiHead(Q,K, V ), for self-attention output. Note
that Ai should have the same shape with Ai−1, otherwise, we will use MultiHead(Q,K, V ) as
output. A0 = 0.

A.2 CSTRANSFORMER STRUCTURE

To be more clear, we exlain details of CSTransformer structure. We adopt ”ViT-Base” (Dosovitskiy
et al. (2020)) as our baseline. Detailed settings of ”CSTransformer-V1”, ”CSTransformer-V2” and
”CSTransformer-V3” are shown in table 5. The embedding dimension is 768; The head number is
12; The MLP sizes of STB and TTB are 3072 and 768 respectively.

Model # of STB # of TTB Embedding size MLPSTB MLPTTB Heads

CSTransformer-V1 10 10 768 3072 768 12
CSTransformer-V2 12 6 768 3072 768 12
CSTransformer-V3 12 8 768 3072 768 12

Table 5: Details of CSTransformer model variants.
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Figure 5: Comparison results between Baseline-V2 and CSTransformer-V2. The left represents
top-1 accuracy of different epochs when input clip length is 8. The right denotes top-1 accuracy of
different input clip lengths.

A.3 MORE EXPERIMENTAL ANALYSIS

Here, we provide more experimental analysis and insights. The default dataset is Kinetics-400 (Kay
et al. (2017)).

In order to further analyze the influence caused by proposed cross-stage self-attention and features.
We also show the comparison results between baseline and CSTransformer, which can be seen in
figure 5. ”Baseline-V2” has the same structure of ”CSTransformer-V2”, except that it doesn’t adopt
cross-stage self-attention and features. Note that in left figure, we report top-1 accuracy on validation
dataset in training process, and we only sample one clip for inference in different epochs. In right
figure, we test the models with the view of (1 × 3) after training. As we can see, CSTransformer
structure can consistently achieve higher performance than baseline when training epoch increases.
Furthermore, even with different input clip lengths, CSTransformer structure also performs better
than baseline model.

A.4 MORE VISUALIZATION RESULTS

In this section, we provide more self-attention maps for visualization. Sampled frame clips are all
from Kinetics-400 dataset.

Visualization for comparison. The choosed models are ”Baseline-V2” and ”CSTransformer-
V2”. As shown in Figure 6 and 7. The 1st row represents original frame clips. The 2nd and 3rd
rows mean self-attention maps of ”Baseline-V2” and ”CSTransformer-V2”. Note that brighter areas
mean that more attention has been focused on. We can clearly observe that self-attention maps
from CSTransformer structure can more focus on important objects and motion areas. However,
self-attention maps from baseline may focus on some irrelevant regions.

Self-attention maps of CSTransformer. We show original video clips and their self-attention
maps from proposed CSTransformer-V2 in figure 8, 9, and 10. The 1st and 2nd rows of each figure
are original frame clips and self-attention maps of ”CSTransformer-V2” respectively.
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Figure 6: A video clip, namely ”A woman was arranging flowers”.

Figure 7: A video clip, namely ”A man was abseiling”.

Figure 8: A video clip, namely ”A person was biking through snow”.
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Figure 9: A video clip, namely ”A girl was bending back”.

Figure 10: A video clip, namely ”A woman was answering questions”.
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