Multimodal Modeling of CRISPR-Cas12 Activity Using Foundation Models and
Chromatin Accessibility Data

Abstract

Predicting guide RNA (gRNA) activity is crit-
ical for effective CRISPR-Cas12 genome edit-
ing but remains challenging due to limited
data, variation across protospacer adjacent mo-
tifs (PAMs—short sequence requirements for Cas
binding), and reliance on large-scale training. We
investigate whether pre-trained biological foun-
dation model—originally trained on transcrip-
tomic data—can improve gRNA activity estima-
tion even without domain-specific pre-training.
Using embeddings from existing RNA foundation
model as input to lightweight regressor, we show
substantial gains over traditional baselines. We
also integrate chromatin accessibility data to cap-
ture regulatory context, improving performance
further. Our results highlight the effectiveness
of pre-trained foundation models and chromatin
accessibility data for gRNA activity prediction.

1. Introduction

CRISPR-based genome editing enables programmable DNA
modification, with Cas12 (Cpfl) offering advantages over
the widely used Cas9 due to its distinct protospacer adja-
cent motif (PAMs—short sequence requirements for Cas
binding) requirements and cleavage patterns (Zetsche et al.,
2015; Kleinstiver et al., 2016). A core challenge in CRISPR
applications is predicting the activity of guide RNAs (gR-
NAs), short sequences that direct the Cas protein to specific
genomic loci. Effective gRNA selection is critical for both
editing efficiency and safety (Doench et al., 2016).

Existing models use handcrafted features or one-hot en-
coded sequences to predict gRNA activity, achieving mod-
est performance (Hsu et al., 2013; Xu et al., 2015). More
recent deep learning approaches, including CNNSs trained on
large-scale screens, have improved prediction accuracy and
incorporated additional features such as chromatin accessi-
bility to account for regulatory context (Kim et al., 2018a).
However, these models are typically sensitive to specific
experimental settings, such as the variant of the genome-
editing enzyme (Cas protein) used and the local sequence
motifs required for binding (PAM sequence). As a result,

they often fail to generalize across different enzyme vari-
ants or sequence constraints, limiting their applicability to
broader genome engineering tasks.

In contrast, pre-trained biological Foundation Models (FMs)
have shown strong generalization across a variety of ge-
nomic, transcriptomic, and proteomic tasks (Brandes et al.,
2022; Chen et al., 2022; Frazer et al., 2021; Gao et al.,
2022; Elnaggar et al., 2021). These models produce rich,
contextualized embeddings that capture structural and reg-
ulatory signals beyond local sequence patterns. However,
their utility for CRISPR gRNA prediction—particularly for
Cas12—remains unexplored. Unlike DNA, RNA, and pro-
tein domains where pre-training such models is feasible due
to abundant data, the gRNA space lacks sufficient data to
support large-scale pre-training. This raises a critical ques-
tion: Can we instead adapt existing DNA or RNA FMs to
improve gRNA activity prediction, even though gRNAs are
short ( 30-50 nucleotides) and may lie outside the distribu-
tion existing off-the-shelf FMs were trained on? From a
biological standpoint, this is a plausible strategy—gRNA
sequences are functionally embedded in broader genomic
and transcriptomic contexts, and their activity depends on
features such as sequence composition, secondary struc-
ture, and chromatin accessibility that are captured in part by
nucleotide-based FMs.

In this work, we evaluate two different FMs: RNA-
FM (Chen et al., 2022), trained on transcriptomes, and
DNABERT-2 (Zhou et al., 2024), trained on genomic DNA.
Using their embeddings as fixed input to lightweight CNN
regressor, we evaluate their effectiveness for downstream
gRNA on-target efficiency prediction. We incorporate chro-
matin accessibility profiles from ATAC-seq assay as an ad-
ditional input modality, capturing the openness of genomic
regions and their broader regulatory context. This epige-
netic signal complements sequence information and can
enhance prediction accuracy, even when using strong pre-
trained embeddings. To sum up, we make the following
contributions.

* We demonstrate that embeddings from a transcriptomic
foundation model significantly outperform existing
baselines in predicting CRISPR-Cas12 gRNAs, show-
casing their ability to generalize to out-of-distribution



sequences.

* We introduce a new dataset derived from public source
curation, aligning ATAC-seq chromatin accessibility
data to gRNA target loci. This structured epigenomic
signal not only enhances predictions when integrated
with sequence embeddings but also provides valuable
resources for the community to advance research in
this area.

Together, our results establish the first framework for
CRISPR gRNA modeling that leverages pre-trained se-
quence representations and biologically grounded regulatory
features.

2. Related Works
2.1. gRNA activity prediction

Early models for predicting gRNA activity relied on rule-
based scoring or engineered sequence features derived from
small datasets (Hsu et al., 2013; Xu et al., 2015; Moreno-
Mateos et al., 2015), but offered limited generalization.
DeepCpfl (Kim et al., 2018a) introduced a CNN-based
framework trained on one-hot encoded Cas12a sequences,
integrating chromatin accessibility to improve prediction ac-
curacy. Since then, deep learning models have been applied
to Cas9 and Cas12 systems, but often remain PAM-specific
and trained end-to-end on narrow datasets. Recently, gRNA-
FM (Zhou et al., 2023) proposed a foundation model tai-
lored for Cas9 guide design, but it does not address Cas12
or activity prediction. Our work fills this gap by leveraging
general-purpose biological FMs for Cas12 gRNA activity
prediction, independent of PAM motifs and with integrated
epigenomic context.

2.2. Foundation models for DNA and RNA

Foundation models (FMs) trained on large-scale biologi-
cal sequence data have shown strong generalization across
a variety of genomic and transcriptomic tasks. FMs such
as DNABERT (Ji et al., 2021), DNABERT-2 (Zhou et al.,
2024), Evo (Nguyen et al., 2024), Evo-2 (Brixi et al., 2025),
Nucleotide Transformer (Dalla-Torre et al., 2025) are pre-
trained on genomic DNA, and have been applied to promoter
identification, variant effect prediction, and regulatory ele-
ment classification. Similarly, RNA-FM (Chen et al., 2022),
Rinalmo (Peni¢ et al., 2024), SpliceBERT (Chen et al.,
2023), UTR-BERT (Yang et al., 2024) and other transcrip-
tomic FMs, capture regulatory and structural features rele-
vant to RNA function and folding. These models generate
rich, contextualized embeddings without task-specific super-
vision. In this work, we adopt RNA-FM and DNABERT-2
as strong, domain-representative FM backbones and evalu-
ate their embeddings for Cas12 gRNA activity prediction.

3. Methods

3.1. Pretrained Sequence Embeddings

We model gRNA activity using pre-trained biological FMs
to generate contextualized sequence representations. Specif-
ically, we leverage two transformer-based models: RNA-
FM (Chen et al., 2022), trained on transcriptomic sequences,
and the DNABERT-2 (Zhou et al., 2024), trained on large
genomic DNA corpora owing to their reported SOTA perfor-
mance in recent studies (Chen et al., 2022; Yazdani-Jahromi
et al., 2024; Prakash et al., 2024; Zhou et al., 2024).

For each gRNA, we extracted not only the core 20-nt target
binding sequence but also extended sequence contexts of
lengths 34, and 50 nucleotides centered around the cleavage
site. This enabled us to systematically investigate how vary-
ing amounts of surrounding sequence context influences
predictive modeling of gRNA activity. These are passed
through the frozen FM backbones to obtain fixed-length em-
beddings, which are used as inputs to a light-weight down-
stream prediction head. This setup, commonly referred as
probing (Prakash et al., 2024; Lin et al., 2023) enables the
use of rich, pre-trained embeddings while avoiding the need
for retraining the base models.

To ensure fair comparison with prior work, we adopt the
convolutional regression architecture from (Kim et al.,
2018b)—a state-of-the-art model for Cas12 gRNA activ-
ity prediction—as our downstream head, training it on top
of pretrained FM embeddings to predict Cas12 activity. This
isolates the effect of the FM backbone, as all other compo-
nents are kept identical to (Kim et al., 2018b). The architec-
ture consists of convolutional and pooling layers followed
by fully connected layers, terminating in a single scalar
output (hyperparameters and training details reported in Ap-
pendix sections A.3 and A.4). This design using FM with
CNN prediction head captures local dependencies while
remaining efficient for low-data regimes. We refer to this
setup—comprising the frozen foundation model backbone
paired with the CNN regression head—as Cas-FM (RNA-
FM) or Cas-FM (DNABERT-2), depending on the backbone
employed.

3.2. Chromatin Accessibility as an Epigenomic Modality

To incorporate regulatory context, we integrate chromatin
accessibility (CA) information derived from ATAC-seq data
(GEO accession: GSM2902624) for the gRNA sequences
considered (details of corresponding gRNA data is provided
in Sec. 4). Raw reads were aligned to the hg38 reference
genome using Bowtie2 (Langmead & Salzberg, 2012),
and peaks were called using MACS2 (Zhang et al., 2008).
We then intersected the resulting peak coordinates with
gRNA target loci using BEDTools (Quinlan & Hall, 2010)
to assign binary accessibility labels—gRNAs overlapping a
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Figure 1. Multimodal framework for predicting CRISPR-Cas12 gRNA activity. gRNA sequences (Modality A) are encoded using
pretrained biological foundation models (FMg,), and the resulting embeddings are processed by a CNN to learn sequence representations.
Chromatin accessibility signals (Modality B), derived from binarized ATAC-seq peaks, are projected via an MLP into the same latent
space as the sequence features. The two modalities are integrated through an element-wise multiplication layer, followed by a regression

head to predict gRNA activity.

peak with normalized signal > 0.001 were labeled accessi-
ble; others were marked inaccessible.

These binary CA labels were projected into a dense em-
bedding using a multilayer perceptron (MLP), forming the
epigenomic input stream. This projected signal was inte-
grated with the sequence-derived feature map from the pre-
trained FM (backbone) + CNN (downstream head) pipeline
via element-wise multiplication in a dedicated integration
layer. Keeping the downstream architecture fixed across
unimodal (sequence-only) and multimodal (sequence + CA)
settings allows us to isolate the contribution of chromatin
accessibility to gRNA activity prediction (see Fig. 1). The
exact architecture details are described in Appendix A.3.

4. Experiments and results

Evaluation Dataset. We evaluate our approach using the
CRISPR-Cas12a (Cpfl) dataset introduced by Kim et al.
(2018a), which contains approximately 15,000 guide RNA
(gRNA) sequences paired with experimentally measured
cleavage efficiencies. These activity scores reflect the
capacity of each guide to induce gene disruption in human
cells, making them a biologically grounded target for
regression. The dataset spans a range of sequence contexts,
including variation in PAM sequences, flanking sequences,
and spacer regions, enabling robust model evaluation across
heterogeneous genomic backgrounds. More details are
provided in Appendix A.1.

Baselines. To rigorously benchmark our approach, we
compare against a range of baselines commonly used

in CRISPR gRNA activity prediction. These include
CINDEL (Kim et al., 2017), a logistic regression model
originally developed for indel frequency prediction; a
boosted regression tree model (Boosted RT) implemented
via XGBoost, using k-mer and positional features (Chen
& Guestrin, 2016); and three regularized linear regression
models—Lasso (L1)(Tibshirani, 1996), Ridge (L2)(Hoerl
& Kennard, 1970), and ElasticNet (L1L2) (Zou & Hastie,
2005)—each trained on curated sets of biologically in-
formed features such as nucleotide composition, GC content,
and dinucleotide frequencies. These baselines typically use
handcrafted sequence features or 1-hot representation of
gRNA (see Table 1). Additionally we compared against
the state-of-the-art deep learning model DeepCpfl (Kim
et al., 2018b) which has the same CNN architecture as our
downstream head and also uses chromatin accessibility as
additional modality. We use the same train and test splits as
introduced in (Kim et al., 2018a). The numbers for baselines
are directly taken from (Kim et al., 2018a).

Pretrained RNA-FM embeddings improve gRNA ac-
tivity prediction. Table 1 summarizes the model perfor-
mance. Cas-FM (RNA-FM) substantially outperforms all
baselines while Cas-FM (DNABERT-2) significantly lags
behind. Cas-FM (RNA-FM) works best likely due to the
pre-training of RNA-FM backbone on transcriptomic se-
quences, which closely mirror the biological modality of
guide RNAs. These results underscore the advantage of
leveraging domain-aligned FMs: pretrained embeddings
from RNA-FM capture complex, biologically meaningful
dependencies beyond handcrafted features or 1-hot encod-
ings.

Predicted gRNA activity



Method Correlation | CA | Features Used *° | [odel

CINDEL 0.61 No | Hand-crafted features = s

Lasso 0.64 No | One-hot encoding 06

L2 0.63 No | One-hot encoding <

L1L2 0.64 No | One-hot encoding 504

Boosted RT 0.66 No | One-hot + positional features 3

DeepCpfl 0.71 Yes | One-hot + chromatin accessibility o

Cas-FM (DNABERT-2) 0.49 No | Pretrained sequence embedding

Cas-FM (RNA-FM) 0.76 No | Pretrained RNA embedding

Cas-FM-CA (RNA-FM) 0.78 Yes | RNAFM embedding + CA : 20bp 34bp 50 bp

Sequence Length

Table 1. Comparison of gRNA activity prediction methods. Cas-FM (RNA-

FM) achieves the highest performance without using chromatic accessibility
(CA) modality, while Cas-FM-CA (RNA-FM) further improves performance

by incorporating chromatin accessibility as additional modality.

Impact of gRNA sequence length/context on activity pre-
diction. We evaluate Cas-FM (RNA-FM) and Cas-FM
(DNABERT-2) with three context window sizes centered
on the target site: 20 nucleotides (minimal core guide), 34
nucleotides (including flanking and PAM-adjacent bases),
and 50 nucleotides (extended upstream and downstream
context). Results in Fig 2 show that a 34-nt context consis-
tently leads to the best performance. Cas-FM with either
backbone underperforms with shorter 20-nt input, suggest-
ing insufficient contextual information due to the lack of
important flanking information that may influence folding,
targeting, or interaction with Cas12, while the 50-nt context
slightly degrades performance—Ilikely due to the inclusion
of less informative or noisy upstream/downstream sequence.
These findings highlight the importance of context-aware
input design and suggest a moderate-length context win-
dow—such as 34 nt—strike a balance between capturing
local sequence features relevant to cleavage efficiency (e.g.,
nucleotide preferences near the PAM site) and avoiding
overfitting or dilution from unrelated sequence regions.

Impact of chromatin accessibility on gRNA activity pre-
diction Table 1 also assesses the contribution of epigenomic
context for gRNA activity prediction. We evaluated whether
incorporating chromatin accessibility (CA) improves the ac-
curacy of gRNA activity prediction. Driven by the superior
performance of Cas-FM with RNA-FM backbone, we limit
our experiment with Cas-FM (RNA-FM) alone. Our results
show that incorporating chromatin accessibility (denoted as
Cas-FM-CA (RNA-FM)) improves predictive performance
over using grRNA sequence embeddings alone (Cas-FM
(RNA-FM)). This highlights the biological relevance of
chromatin state in determining gRNA efficacy. Even when
the sequence features are represented by powerful FM em-
beddings, the addition of CA features captures orthogonal
information related to the physical availability of the ge-
nomic target site for Cas12-mediated cleavage. In practical
terms, guides targeting open chromatin regions are more
likely to be effective, and our model is better able to reflect

Figure 2. Performance of Cas-FM
variants across varying gRNA
sequence lengths, measured by
Spearman rank correlation.

that when explicitly given this contextual information.

These findings underscore the value of integrating multi-
modal biological data, combining large-scale pretrained
sequence representations with relevant experimental mea-
surements, to more accurately model the determinants of
CRISPR guide activity.

5. Discussion

Our study demonstrates that the pre-trained transcriptomic
foundational model RNA-FM significantly enhances the
prediction of CRISPR-Cas12 gRNA activity compared to
existing methods, even in out-of-distribution settings with
short gRNA sequences that the foundation model was not
pre-trained on. This is likely attributable to the fact that,
from a biological perspective, gRNA sequences are func-
tionally embedded within broader transcriptomic contexts.
Their activity relies on factors such as sequence composi-
tion, secondary structure, and chromatin accessibility, which
are partially captured by RNA-FM.

While prior work has noted the importance of incorporating
extended sequence context around the gRNA (Kim et al.,
2018b), our findings reinforce this insight in the context
of foundation model-based learning. We confirm that a
34-nucleotide context strikes the best balance between infor-
mativeness and generalization, outperforming both shorter
and longer input windows across different model variants.

Finally, we introduce a curated dataset of demonstrate of
chromatin accessibility features and show that integrating
these in a multi-modal setting with gRNA sequences further
enhances predictive accuracy. This suggests that epigenomic
context introduces complementary information not captured
by sequence alone, such as physical accessibility of the tar-
get site. Taken together, our work points toward a powerful
direction for CRISPR modeling: leveraging domain-aware
FMs while incorporating biologically grounded, orthogonal
signals to better predict genome editing outcomes.
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A. Appendix
A.1. gRNA Activity Dataset

The gRNA activity dataset used in this study originates from the HT1 high-throughput screening experiment described
in the DeepCpf1l paper (Kim et al., 2018b). In this experiment, synthetic gRNA-target constructs were integrated into
the genome of HEK293T cells using lentiviral delivery. Each construct encoded a 20-nt guide RNA sequence, a unique
barcode, and a matching target site, allowing systematic evaluation of Cpfl cleavage activity. The activity of each gRNA
was quantified as the indel frequency measured via deep sequencing, corrected by background subtraction. For each guide,
the dataset includes multiple representations of the target context: the core 20-nt gRNA sequence, an extended 34-bp target
sequence (including PAM and flanking regions), and a 50-bp sequence window capturing broader genomic context around
the cleavage site. This design supports modeling across multiple levels of sequence context.

Following the original data preparation strategy, we partitioned the dataset into two subsets: HT1-1 (n = 15000), which was
used for model training, validation, and HT1-2 (n = 1290) for testing.

A.2. ATAC-seq data curation

A. Distribution of ATAC-seq signal B. HT1 data set (training) C. HT1-2 data set (test)

8 g

8

Frequency (log scale)

2 2
2 2w
© S
N © ©
10 < <
zZ 20 Z 20
[ e
=] o
10° 0 0
000 001 002 003 004 005 006 007 008
Normalized Slgna\ Above Threshold Below Threshold Above Threshold Below Threshold
High ATAC-seq signal Low ATAC-seq signal High ATAC-seq signal  Low ATAC-seq signal

Figure 3. Association of continuous ATAC-seq signal with gRNA activity. A) Genome wide distribution of ATAC-seq signal in HEK293T
cell line. B-C) ATAC-seq signal intensity is correlated with gRNA activity both in training and test data

To annotate gRNA target sites with chromatin accessibility (CA) status, we processed publicly available
ATAC-seq data for the HEK293T cell line obtained from the GEO database (accession: GSM2902624).
We specifically used the FASTQ filess HEK293 ATAC medium_depth bio2 techl 1.fastg.gz and
HEK293_ATAC.medium_depth bio2_techl_ 2.fastqg.gz.

The raw data were preprocessed through a standard ATAC-seq pipeline. First, alignment of the reads to the human reference
genome (hg38) was performed using Bowtie2 (Langmead & Salzberg, 2012) with default parameters. Following
alignment, peak calling was performed using MACS2 (Zhang et al., 2008) to identify regions of open chromatin, reported as
narrow peaks. Next, we performed normalization and thresholding of the MACS2 signal intensities, applying a conservative
cut-off of $0.001$ . Genomic regions with a normalized signal above this threshold were considered accessible, while those
below were treated as inaccessible.

To annotate each gRNA with a chromatin accessibility (CA) label, we first aligned the gRNA sequences to the human
reference genome (hg38) using BLAT (?), a fast alignment tool suitable for short nucleotide queries. For each gRNA, we
extracted the best-matching locus and recorded the corresponding genomic coordinates (chromosome, start, end, and strand).
These coordinates were then converted into standard BED format to facilitate downstream processing. We intersected the
gRNA BED file with ATAC-seq peak regions using bedtools intersect (Quinlan & Hall, 2010), and assigned
an accessibility label of 1 (accessible) if a gRNA overlapped with a peak exceeding the signal threshold of 0.001, or 0
(inaccessible) otherwise. This resulted in a binary CA label for each gRNA, which

The raw data were preprocessed through a standard ATAC-seq pipeline. First, alignment of the reads to the human reference
genome (hg38) was performed using Bowt ie2 with default parameters. Following alignment, peak calling was performed
using MACS2 to identify regions of open chromatin, reported as narrow peaks. Next, we performed normalization and
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thresholding of the MACS2 signal intensities, applying a conservative cut-off of 0.001 . Genomic regions with a normalized
signal above this threshold were considered accessible, while those below were treated as inaccessible. This resulted in a
binary CA label for each gRNA, which was used as input feature in the downstream modeling and analysis.

We partitioned the genome into highly accessible and low-accessibility regions based on chromatin accessibility scores,
using a threshold of 0.001 on the normalized ATAC-seq signal. This threshold was applied consistently across both training
and test datasets to classify each gRNA target site as accessible or inaccessible.

To assess how accessibility influences gRNA efficacy, we compared the distribution of experimentally measured gRNA
activity scores across the two accessibility categories. As shown in Figure 3, gRNAs targeting accessible regions exhibited
significantly higher activity than those in inaccessible regions. This observation suggests a positive correlation between
chromatin openness and Cpfl cleavage efficiency, consistent with the biological intuition that accessible chromatin is more
permissive to endonuclease activity.

A.3. Model architecture

Algorithm 1 Cas-FM (RNA-FM) architecture.

| Input modality
thNA EIDEAAIIIG  «n e e et ettt e e e e e e e e {RNA-FM T12 (640-dim)}

Chromatin accessibility label ..oiiiiiiiiiiiiieeieenennennennnns {Binary label (1-dim)}

| CNN layer
(07o) 55115 TN {kernel=5, filters=80, activation=RelLU}
e 5= o Yo P {pool size=2}
Flatten
DI OPOUL  « ittt et teee et e e et e e et et e e e et e e et aeee e e eneeaenetaenaennen {rate=0.3}
DENSE LAYET  tuttntuentt e et eeeenaeneeaenaeneeaenaeaenns {units=80, activation=ReLU}
1o Yo X6 N A {rate=0.3}
DENSE LAYET  ttutnentnenenreeeatataeaeneneneneaneaeanaeacaenennn {units=40, activation=ReLU}
DI OPOUL  « et ettt e ettt e e ettt e e et e e ettt e e et et et et e {rate=0.3}
DENSE LAYET  tuttntuenttee et eeta e eaeeaenaeaeeaenaeaenns {units=40, activation=ReLU}

| Chromatin encoder

L DENSE 1aYET ttiiriiti it {units=40, activation=ReLU}

| Integration layer
Element-wise multiplication .....ccceeeee.o... {between gRNA sequence and chromatin
accessibility}

| Output head
DI OPOUL  « e tueteene et ee e et e ane e et e et e eneaeneeneaeeneeaenaeaenaennen {rate=0.3}
DENSE LAYET  ttntntneneneneneeeeatataeneneneneeeeeeesaenenenens {units=1, activation=linear}

A.4. Model training hyperparameter

We trained the model for 100 epochs using the Adam optimizer with a learning rate of 5 x 10~ and a batch size of 32.
Model selection was based on validation loss, with early stopping applied after 10 epochs of no improvement. Mean Squared
Error (MSE) was used as the training objective for the regression task, and Spearman rank correlation was computed on the
test set for evaluation. Learning rate scheduling was performed using ReduceLROnPlateau with a patience of 5 epochs and
a decay factor of 0.1.



