
Weighted ROC Curve in Cost Space:
Extending AUC to Cost-Sensitive Learning

Huiyang Shao1,2 Qianqian Xu1∗ Zhiyong Yang2

Peisong Wen1,2 Peifeng Gao2 Qingming Huang2,1,3∗
1 Key Lab. of Intelligent Information Processing, Institute of Computing Tech., CAS
2 School of Computer Science and Tech., University of Chinese Academy of Sciences

3 BDKM, University of Chinese Academy of Sciences
shaohuiyang21@mails.ucas.ac.cn xuqianqian@ict.ac.cn

wenpeisong20z@ict.ac.cn gaopeifeng21@mails.ucas.ac.cn
yangzhiyong21@ucas.ac.cn qmhuang@ucas.ac.cn

Abstract

In this paper, we aim to tackle flexible cost requirements for long-tail datasets,
where we need to construct a (1) cost-sensitive and (2) class-distribution robust
learning framework. The misclassification cost and the area under the ROC curve
(AUC) are popular metrics for (1) and (2), respectively. However, limited by
their formulations, models trained with AUC are not well-suited for cost-sensitive
decision problems, and models trained with fixed costs are sensitive to the class
distribution shift. To address this issue, we present a new setting where costs are
treated like a dataset to deal with arbitrarily unknown cost distributions. Moreover,
we propose a novel weighted version of AUC where the cost distribution can be
integrated into its calculation through decision thresholds. To formulate this setting,
we propose a novel bilevel paradigm to bridge weighted AUC (WAUC) and cost.
The inner-level problem approximates the optimal threshold from sampling costs,
and the outer-level problem minimizes the WAUC loss over the optimal threshold
distribution. To optimize this bilevel paradigm, we employ a stochastic optimization
algorithm (SACCL) which enjoys the same convergence rate (O(ϵ−4)) with the
SGD. Finally, experiment results show that our algorithm performs better than
existing cost-sensitive learning methods and two-stage AUC decisions approach.

1 Introduction

Receiver Operating Characteristics (ROC) is a popular tool to describe the trade-off between the
True Positive Rate (TPR) and False Positive Rate (FPR) of a scoring function. AUC is defined by
the area under the ROC curve [17, 18]. This metric naturally measures the average classification
performance under different thresholds and is widely used (e.g., disease prediction [19], and anomaly
detection [29]). Compared with accuracy, AUC is insensitive to the threshold and cost [7], making it
be a popular metric for long-tail learning [32] and achieve remarkable success [24, 44, 26].

Similar to AUC optimization, cost-sensitive learning is a common data mining method [10, 2, 4].
The main goal is to incorporate the misclassification costs in the model, which is more compatible
with realistic scenarios (e.g., the cost of misdiagnosing a disease as healthy is greater than the
counterexample). Over the past two decades, researchers have pointed out that the ROC curve can be
transferred to cost space by utilizing a threshold choice method, this is equivalent to computing the
area under the convex hull of the ROC curve [21]. In this way, AUC can be seen as the performance
of the model with a uniform cost distribution [16]. However, AUC considers all situations, which
can not focus more on hard samples, Partial AUC (PAUC) is proposed as an extension of AUC with
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Table 1: Comparison with existing classification settings. Cost distribution represents the cost
condition of each setting.

Different setting Formulation Attr.1 Attr.2 Cost distribution

Cost learning Ex[c · π · p(1|x) + (1− c) · (1− π) · p(0|x)] × ×
Cost Distribution

AUC/PAUC Eτ [TPR(τ)FPR′(τ)] τ ∼ U(a, b)
√

×
Cost Distribution

WAUC E
τ
[TPR(τ)FPR′(τ)W (τ)] W (τ) ∼ beta(a, b) √

×
Cost Distribution

Our method E
τ∼τ∗

[TPR(τ)FPR′(τ)] τ∗ ∈ argminτ LCOST
√ √ Cost Distribution

Non-parameteric distributionSampled cost distribution

truncated uniform cost distribution [31]. Recently, some studies extend PAUC using parameterized
cost distributions and propose WAUC to fit real-world applications [16, 30].

Whether we use AUC or cost learning, our main purpose is to train models with these attributes:
Attr.1: The trained model can be robust to class distribution shift in the test without class prior.
Attr.2: The trained model can be robust to cost distribution in the test without cost prior.

However, to the best of our knowledge, there are few methods can train a model to have both of
these attributes. According to Tab. 1, both AUC-related methods and cost-sensitive learning require a
strong prior knowledge of the cost distribution; (1) The cost learning mainly considers a specified cost
c and class imbalanced radio π. Models trained under this method are sensitive to class distribution,
which does not apply to the scenario where test data distribution with offset. (2) AUC (PAUC)
assumes that the cost distribution belongs to (truncated) uniform cost distribution U(a, b). Models
trained with them will have poor performance when the true cost distribution is not uniform [16].
(3) WAUC considers optimizing models based on more complex forms of cost distribution, such
as beta(a, b). However, we can not obtain the cost prior in real problem scenarios, e.g., financial
market prediction [14]. Considering the weakness comes from the existing settings, we will explore
the following question in this paper:

Can we bridge AUC and complicated cost distribution to training robust model on desired
cost-sensitive and arbitrary class imbalanced decision scenarios?

To answer this question, we propose a view that, in some real applications [14], the cost, like the
instance data, is not available prior but can be obtained by sampling. Therefore, we choose to
sample desired cost to approximate the true cost distribution. Different from previous settings, ours is
closer to real world, the main process can be divided into three parts:

Step.1 Cost Sampling: Firstly, we sample some desired costs to construct the empirical cost set.
Step.2 Data Sampling: Next, we sample some instance data to construct the empirical dataset.
Step.3 Build Formulation: Finally, we construct the appropriate formulation to maximize the per-

formance in different desired costs and ensure model is robust to distribution shift.

It is natural for us to ask the question: Can we use the existing methods to realize this process? It’s
clear the answer is no. For AUC-related methods, they can not perform Step.1, and for cost-sensitive
learning, they fail to achieve robust distribution shift and multiple costs in Step.3 (as shown in Fig. 1
(orange line). Hence, we propose a novel bilevel formulation combining the advantages of WAUC
and cost learning. The inner-level process calculates the optimal threshold from sampling costs, and
the outer-level process minimizes the WAUC loss over the optimal threshold distribution. The method
can help the model improve robustness to class distribution in cost-sensitive decision problems. The
main process is shown in Fig. 1 (green line). We summarize our contributions below:

• We propose a setting that focuses on the robustness of the model to the class distribution
and cost distribution simultaneously. This setting treats cost as data that can be sampled, not
as prior information, which is closer to the real-world cost-sensitive scenario.

2



(a) Population cost distribution (b) Discrete cost distribution (c) Threshold distribution

Sample empirical cost Solve the optimal threshold

E
xi

st
in

g 
se

tt
in

g
O

ur
s

FPR

FPR weight 

Train model

(d) Train metrics

TPR

w

Cost

Train model

(e) Test model

c = 0.4

c = 0.6

c = 0.8

prior cost

(Nonparametric distribution)
positive
negative

decision
plane

Set prior cost

Figure 1: The comparison of our proposed setting with the previous setting. The orange line represents
the previous cost-sensitive learning approach, and the green line represents our method.

• We present a bilevel paradigm where the inner cost function is an inner constraint of
outer WAUC optimization. For sake of optimization, we reformulate this paradigm into a
nonconvex-strongly convex bilevel form. Moreover, we employ a stochastic optimization
algorithm for WAUC (SACCL), which can solve this problem efficiently.

• We conduct extensive experiments on multiple imbalanced cost-sensitive classification tasks.
The experimental results speak to the effectiveness of our proposed methods.

2 Observation and Motivation

In Tab. 1, we compare the existing methods with ours from different views. However, the table
comparison does not have a very visual presentation. In this section, we will analyze the disadvantages
of existing settings and explain our motivation. We train the model with all methods on a Cifar-10-
Long-Tail training set under the different imbalanced ratios and cost distribution. We visualize the
feature representation (the last layer’s output of the trained model) in test data by t-SNE. The blue
point represents negative samples predicted by the optimal threshold, and the orange point represents
positive samples. The smaller the overlap between them, the better the performance. From Fig. 2,
we can make the following remarks: (1) According to Fig. 2 (a), AUC is robust to changes in the
imbalance ratio but completely not applicable with the cost distribution. (2) According to Fig. 2 (b),
cost learning can process different cost distributions, but is sensitive to imbalance ratios.

(a.1) π = 0.5, c ~ U

(a.3) π = 0.5, c ~ N

(a.2) π = 0.2, c ~ U

(a.4) π = 0.2, c ~ N

(b.1) π = 0.5, c ~ U

(b.3) π = 0.5, c ~ N

(b.2) π = 0.2, c ~ U

(b.4) π = 0.2, c ~ N

(c.1) π = 0.5, c ~ U (c.2) π = 0.2, c ~ U

(c.3) π = 0.5, c ~ N (c.4) π = 0.2, c ~ N

(a) Tsne result of  repensentation (AUC) (b) Tsne result of  repensentation (COST) (c) Tsne result of  repensentation (WAUC)(Ours)

Figure 2: The feature representations comparison among different methods. (a) AUC optimization.
(b) Cost learning. (c) Ours result. We solve the optimal threshold with the L̂COST (defined in Sec.
3). π denotes the probability of positive class, c denotes the cost ratio of misclassification (U denotes
Uniform, N denotes Normal). For example, π = 0.5, c ∼ N means model tested on dataset which
has imbalanced ratio π and cost set sampled from N .

Hence, our motivation is to propose a new approach to solve the problems in AUC and Cost-
sensitive learning. As shown in Fig. 2 (c), our proposed method can have better learning results in
various complex cost distributions and imbalance ratios. That means our method can overcome the
shortcomings of traditional AUC and cost-learning, which perfectly fits the proposed setting.

3 Preliminaries

Notations. In this section, we give definitions and preliminaries about AUC. We denote (x, y) be an
instance, where x is drawn from feature space X ⊆ Rd (d is feature number) and y is drawn from
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label space Y = {0, 1}. Let DP (DN resp.) be positive (negative resp.) instance distribution. Let
x+ ∼ DP (x− ∼ DN resp.) be positive (negative resp.) instance. We denote S+ = {(x+

i , yi)}
n+

i=1

(S− = {(x−
j , yj)}

n−
j=1 resp.) as a set of training data drawn from DP (DN resp.), where n+ (n−

resp.) denotes the instance number of S+ (S− resp.). Let I(·) be the indicator function, which returns
1 when the condition is true and 0 otherwise. In this paper, we focus on the deep neural network
scoring function s(w,x) : X 7→ [0, 1], where parameterized by w on an input x.

AUC & WAUC. For specified threshold τ , the TPR of a classifier derived from s(w,x) measures
the likelihood that it accurately predicts a positive instance when getting a random positive instance
from DP . Formally, we have:

(Pop.) TPRs(τ) = Px+∼DP [s
(
w,x+

)
> τ ] (Emp.) T̂PRs(τ) =

1

n+

n+∑
i=1

Is(w,x+
i )>τ . (1)

In a similar spirit, the classifier’s FPR on threshold τ refers to the probability that it predicts positive
when it gets a negative instance from DN .

(Pop.) FPRs(τ) = Px−∼DN [s
(
w,x−) > τ ] (Emp.) F̂PRs(τ) =

1

n−

n−∑
j=1

Is(w,x−
j )>τ . (2)

AUC measures a scoring function’s trade-off between TPR and FPR under uniform thresholds. Denote
τ drawn from the distribution Dτ , WAUC utilizes the threshold distribution explicitly based on AUC.
FPR′

s denotes the probability density function of s(w,x−).

AUC =

∫ −∞

∞
TPRs(τ)FPR

′
s(τ)dτ (3a)

WAUC =

∫ −∞

∞
TPRs(τ)FPR

′
s(τ)p(τ)dτ, (3b)

Cost function [2]. In some real application scenarios, we need to consider the misclassification
cost. We denote c(·) as misclassification cost for class (·), cost c drawn from Dc. Since we could not
obtain the cost distribution Dc, we sample empirical set Sc = {cl}nc

l=1, nc denotes the sample number
of cost c. Given a scoring function s and parameter w, the cost function LCOST is (the empirical
version of cost function, L̂COST contains the empirical forms of TPR and FPR):

LCOST (w, c, τ
∗(c)) = c · π · (1− TPRs(τ

∗(c))) + (1− c) · (1− π) · FPRs(τ
∗(c)), (4)

where π = n+/(n+ + n−), c = c+/(c+ + c−) and τ∗(c) is optimal threshold for score function s
under specified c [21], the sample number nτ = nc.

4 Problem Formulation

In this section, we introduce how to link the ROC curve to the cost space. First, we reformulate Eq.(3)
into expectation:

AUC = E
τ∼U

[
TPRs(τ) · FPR′

s(τ)
]

(5a)

WAUC = E
τ∼Dτ

[
TPRs(τ) · FPR′

s(τ)
]
. (5b)

If threshold τ is drawn from the uniform distribution U , WAUC will degrade to the standard AUC
formulation. However, AUC only describes the global mean performance under all possible costs.
If we want to extend AUC to cost-sensitive problems, maybe lifting the restriction on the uniform
distribution of τ is a good solution. Hence, we release the Dτ ’s restriction to make it belongs to
complicated distribution (e.g., normal distribution, exponential distribution). Then we can extend
AUC to WAUC. However, using WAUC raises another question: how do we get Dτ? We find that
τ∗(c) is one of parameters of LCOST (w, c, τ

∗(c)). A natural idea is to use LCOST to solve for the
optimal τ∗(c) and to combine the τ∗(c) solved for at different c to obtain Dτ .

τ∗(c) = argmin
τ

LCOST (w, τ , c) = c · π · (1− TPRs(τ)) + (1− c) · (1− π) · FPRs(τ), (6)
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If we couple Eq.(5b) and Eq.(6) together so that WAUC can enjoy the optimal threshold distribution
in LCOST , then we can break the barrier between the ROC curve and the cost space. With the help
of the threshold as a bridge, we can extend the AUC metric to achieve the WAUC cost-sensitive
learning. Then we give the problem formulation (intuitively, from the result of 2 (c), (OP0) satisfies
both Attr.1 and Attr.2 simultaneously):

(OP0) (outer.) WAUC = E
τ∼τ∗

[
TPRs(τ) · FPR′

s(τ)
]

(inner.) τ ∗ = {τ∗(c) = argmin
τ

LCOST (w, τ, c)|c ∼ Dc}
(7)

Nevertheless, there are still three main challenges in WAUC cost-sensitive learning:

(1) Given the scoring function s and negative dataset S−, how to estimate FPR′
s(τ) in WAUC?

(2) The inner problem is nonconvex, which is hard to give a theoretical convergence guarantee.

(3) How to design a formulation that can bridge WAUC and LCOST so that WAUC can be
optimized over the cost distribution of the desired problem scenario?

We will address the challenge (1) in Sec. 5.1, challenge (2) in Sec. 5.2 and challenge (3) in Sec. 5.3.

5 Methodology

5.1 The Estimation of False Positive Rate

For challenge (1), we choose the kernel density estimation (KDE) to estimate FPR′
s(τ) and denote it

as K(x) (please see definition in Sec. C.1). Then we can address the density estimation problem.
However, Eq.(5b) still exists non-differentiable and non-smooth term I(·), which is hard to optimize.
Hence, we propose the following smooth and differentiable WAUC estimator to approximate Eq.(5b).

Definition 5.1. Denote K(x) be statistics kernel with bandwidth m and Sw
− = {s(w,x−

j )}
n−
j=1.

With Lemma 5.2, we have the approximate estimator and loss function for WAUC:

ŴAUC =

∫ −∞

∞
TPRs(τ)K(Sw

− , τ)p(τ)dτ, L̂WAUC(w, τ ) =
1

nτ

nτ∑
l=1

ĥ(w, τl) (8)

where τ = {τl}nτ

l=1 and the point loss ĥ is defined by

ĥ(w, τ) = 1− 1

n+n−

n+∑
i=1

n−∑
j=1

σ(s(w,x+
i )− τl) ·K((s(w,x−

j )− τl)/m)/m. (9)

σ(x) = 1/(1 + exp(−βx)), β is smooth parameter and we have σ(x)
β→∞−→ Ix.

Lemma 5.2. Given a scoring function s, if τ is known, when the number of instances is large enough,
ŴAUC almost surely converges to WAUC.

lim
n−→∞

|ŴAUC−WAUC| a.s.−→ 0. (10)

With KDE consistency [41], when the negative sample size is large enough, Lemma 5.2 provides
theoretical approximation guarantees for our proposed WAUC estimator in Prop. 5.1.

5.2 The Estimation of Threshold Weighting

For challenge (2), a natural idea is to use L̂COST to solve for the optimal threshold set τ̂∗ when given
the cost set Sc and the scoring function s. Then we can use the optimal threshold set τ̂∗ to calculate
ŴAUC. Firstly, we define the solution for τ̂ ∗ be

τ̂ ∗ =
{
τ̂∗(c)|τ̂∗(c) ∈ argmin

τ
L̂COST (w, c), c ∈ Sc

}
. (11)

5



However, it’s noticed that the argminτ L̂COST in Eq.(11) is non-convex. As we analyzed before, τ ∗

is the inner constraint of ŴAUC. To the best of our knowledge, there are few studies on optimizing
two coupled non-convex problems simultaneously with theoretical convergence guarantees. Most
studies on coupled optimization assume that the inner problems have good properties, such as strong
convexity. Hence, we propose the approximated convex formulation of the inner problem for τ̂ ∗.

Theorem 5.3. When we set κ,M are large positive numbers and M ′2 < M2 6κ2e3κ

(eκ+1)6 , then we have

the approximated convex formulation for L̂COST

min
τ,P∈Rn+ ,N∈Rn−

L̂eq(w, τ, c) := c · π · (1− 1

n+

n+∑
i=1

Pi) + (1− c) · (1− π) · ( 1

n−

n−∑
j=1

Nj)

+
1

n+

n+∑
i=1

M ′ψ(s(w,x+
i )− τ)− Pi(s(w,x

+
i )− τ)) +Mψ(Pi − 1) +Mψ(τ − 1)

+
1

n−

n−∑
j=1

M ′ψ(s(w,x−
j )− τ)−Nj(s(w,x

−
j )− τ)) +Mψ(Nj − 1) 0 ≤ τ, Pi, Nj

(12)

where ψ(x) = log(1 + exp(κx))/κ. L̂eq in Eq.(12) is µg-strongly convex w.r.t. τ . Eq.(12) has same
solution as minτ L̂COST when the parameters satisfy the conditions of the penalty.

Thm. 5.3 provides an optimization method with good properties. Eq. (12) adopts the penalty
function to convert inequality constraints into a part of the objective function. When these inequality
constraints are not satisfied, the objective function will increase to infinity. Otherwise, we will get
Pi = I[s(w, x+i ) > τ ] and Nj = I[s(w, x−j ) > τ ], then we will get the same formulation as L̂COST .
When the parameters meet the requirements, Eq.(12) has the same solution as L̂COST . We give the
proof of Thm. 5.3 and the definition µ in Sec. C.4. Moreover, we give the analysis of approximation
error between L̂COST and Thm. 5.3 in Sec. B.7.

5.3 Bilevel Optimization for WAUC learning

After answering questions in challenge (1) and (2), we have solved most of the problems in WAUC
cost-sensitive learning. However, there remains a challenge (3) in optimization: How do we design
learning paradigms to solve the coupled optimization problem of WAUC and LCOST ? In recent
years, bilevel optimization has achieved remarkable success. This approach can combine two related
optimization problems to form a coupled optimization formulation. Hence, with Prop. 5.1 and
Thm.5.3, we propose a bilevel paradigm to formulate this coupled optimization problem.

(OP1) (outer.) min
w

F̂ (w) := f̂(w, τ ∗) := L̂WAUC(w, τ̂
∗)

(inner.) τ̂ ∗ = argmin
τ ,Pa,Na

ĝ(w, τ ) :=
1

nτ

nτ∑
l=1

L̂eq(w, τl, cl),
(13)

where Pa ∈ Rnτ×n+ and Na ∈ Rnτ×n− . (OP1) describes a bilevel optimization formulation for
WAUC cost-sensitive learning, where the inner-level provides a threshold optimization process, and
the outer-level minimizes the WAUC loss over the optimal threshold distribution. Moreover, this
formulation is consistent with the mainstream bilevel optimization problem (outer-level is smooth
and non-convex, inner-level is convex and smooth), which enjoys a faster convergence rate.

6 Optimization Algorithm

In this section, we focus on optimizing (OP1) in an end-to-end manner. Hence, we propose a
stochastic algorithm for WAUC cost-sensitive learning shown in Alg. 1, which is referred to SAACL.

6.1 Main Idea of SAACL

We provide some intuitive explanations of our algorithm. At each iteration k, SACCL alternates
between the inner-level gradient update on τ and the outer-level gradient update on w. During
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Algorithm 1 Stochastic Algorithm for WAUC Cost-sensitive Learning

Input: training data S+ and S−, iteration numbers K and T , batch size B.
Initialize: parameters w0 ∈ Rn, τ0 ∈ Rnτ , stepsizes αk, βk.
for k = 0 to K do

set τk,0 = τk.
for t = 0 to T do

drawn Bt = {(xb, yb)}Bb=1 from S+ and S− uniformly.
∀cl ∈ Sc, τ lk,t+1 = τ lk,t − βk∇τ ĝ(wk, cl;Bt).

end for
set τk+1 = τk,T
drawn Bk = {(xb, yb)}Bb=1 from S+ and S− uniformly.
wk+1 = wk − αk[∇wf̂(wk, τk+1;Bk)−∇2

wτ ĝ(wk, τk+1;Bk)·[
N

Lg,1

∏N ′

n=1

(
I − 1

Lg,1
∇2

ττ ĝ(w, τk+1;Bk)
−1
)]

∇τ f̂(wk, τk+1;Bk)

end for

iteration k, we update τk,t with standard SGD T steps to ensure that τk+1 is as optimal as possible.
After updating inner-level variables, we perform outer-level optimization with τk+1 as the parameter
to update wk. Notice that T will not take a large value to ensure the validity of the coupling update
of τ and w. Let αk and βk be stepsizes of w and τ that have the same decrease rate as SGD. We
denote n be the number of elements in deep neural network parameters w.

6.2 Convergence Analysis of SAACL

In this subsection, we present the convergence analysis for SAACL. We give some Lipschitz continuity
assumptions that are common in bilevel optimization problems [11, 28].
Assumption 6.1. (Lipschitz continuity) Assume that f , ∇f , and ∇g are respectively Lf,0,Lf,1,
Lg,1-Lipschitz continuous.
Assumption 6.2. (Bounded stochastic derivatives) The variance of stochastic derivatives
∇f(w, τ ;B) and ∇g(w, τ ;B) are bounded by σ2

f,1, σ2
g,1, respectively.

Based on Assumption 6.1 and Assumption 6.2, following [5], Thm. 6.3 indicates that we can optimize
(OP1) with the same convergence rate as the traditional SGD algorithm.
Theorem 6.3. Suppose Assumption 6.1 and 6.2 hold. We define

ᾱ1 =
1

2LF + 4LfLy + 2LfLyx/(Lyη)
, ᾱ2 =

16TµLg,1

(µ+ Lg,1)2(8LfLy + 2ηLyxC̃2
f ᾱ1)

, (14)

where η = LF /Ly , LF , Lf , Ly and C̃2
f come from Lem. 2 and Lem. 4 in [5]. We select the following

stepsize as

αk = min

{
ᾱ1, ᾱ2,

1√
K

}
βk =

8LfLy + 2ηLyxC̃
2
f ᾱ1

4Tµ
αk (15)

For any T ≥ 1, the iteration sequence {wk}Kk=1 and {τk}Kk=1 generated by Algorithm 1 satisfy

1

K

K−1∑
k=0

E
[
∥∇F (wk)∥2

]
≤ γ

(
3Mκeκ/(eκ + 1)2 + Lg,1

24Mκeκ/(eκ + 1)2Lg,1

)2
1

T
√
K

+O

(
1√
K

)
. (16)

where γ = 2ασ2
g,1

Lf

Ly

(
1 + 5LfLyᾱ1 +

ηLyxC̃
2
f

4 ᾱ2
1

)
(8LfLy + 2ηLyxC̃

2
f ᾱ1)

2

Remark 6.4. When κ and M are large enough positive integers, according to Eq. (16), Alg. 1 is still
guaranteed to find a ϵ-stationary point within O(ϵ−4) iterations (ϵ is error tolerance).

7 Experiments

In this section, we conduct a series of experiments for WAUC cost-sensitive learning on common
long-tail benchmark datasets. Due to space limitations, please refer to Sec. B for the details of our
experiments. The source code is available in supplemental materials.

7



7.1 Dataset Details

We use three datasets: Binary CIFAR-10-Long-Tail Dataset [23], Binary CIFAR-100-Long-Tail
Dataset [23], and Jane Street Market Prediction [14]. Binary CIFAR-10-Long-Tail Dataset and
Binary CIFAR-100-Long-Tail Dataset are common datasets in long-tail learning, and we construct
their cost distributions. Jane Street Market Prediction is data from real cost-sensitive learning
application scenarios. For all datasets, we divide them into the training set, validation set, and test
set with a proportion 0.7:0.15:0.15. All image data is normalized to ensure a more stable training
process.

Table 2: Performance comparisons on benchmark datasets with different metrics. The first and second
best results are highlighted with bold text and underline, respectively.

dataset type methods
Subset1 Subset2 Subset3 ÂUC ↑

ŴAUC ↑ L̂COST ↓ ŴAUC ↑ L̂COST ↓ ŴAUC ↑ L̂COST ↓ Subset1 Subset2 Subset3

CIFAR-10-LT
Competitors

BCE 0.525 0.027 0.533 0.015 0.318 0.029 0.822 0.960 0.870
ExAUC 0.516 0.029 0.518 0.013 0.366 0.028 0.845 0.963 0.858
SqAUC 0.407 0.028 0.548 0.012 0.327 0.031 0.811 0.933 0.867
NWAUC 0.565 0.030 0.574 0.017 0.396 0.027 0.786 0.885 0.827

PAUC-exp 0.549 0.029 0.508 0.015 0.354 0.028 0.650 0.801 0.736
PAUC-poly 0.526 0.028 0.470 0.015 0.354 0.029 0.661 0.812 0.742

PAUCI 0.516 0.027 0.520 0.015 0.382 0.028 0.704 0.847 0.734
CS-hinge 0.566 0.026 0.633 0.010 0.377 0.022 0.675 0.782 0.762
AdaCOS 0.576 0.025 0.559 0.014 0.391 0.023 0.758 0.873 0.742

ECL 0.589 0.026 0.561 0.014 0.388 0.020 0.694 0.918 0.762

Our method
WAUC-Gau 0.679 0.024 0.660 0.012 0.467 0.015 0.787 0.934 0.843
WAUC-Log 0.653 0.023 0.674 0.011 0.468 0.014 0.820 0.958 0.869

CIFAR-100-LT
Competitors

BCE 0.556 0.022 0.463 0.012 0.512 0.019 0.912 0.957 0.806
ExAUC 0.522 0.019 0.502 0.011 0.506 0.017 0.933 0.967 0.833
SqAUC 0.483 0.024 0.367 0.015 0.474 0.018 0.889 0.955 0.855
NWAUC 0.654 0.025 0.511 0.016 0.631 0.019 0.867 0.925 0.807

PAUC-exp 0.464 0.020 0.282 0.014 0.469 0.016 0.826 0.811 0.787
PAUC-poly 0.461 0.022 0.262 0.017 0.473 0.017 0.828 0.887 0.791

PAUCI 0.549 0.018 0.439 0.016 0.514 0.018 0.812 0.843 0.822
CS-hinge 0.523 0.017 0.457 0.010 0.515 0.014 0.734 0.910 0.716
AdaCOS 0.590 0.018 0.474 0.011 0.587 0.016 0.769 0.919 0.727

ECL 0.583 0.017 0.497 0.009 0.595 0.015 0.863 0.939 0.794

Our method
WAUC-Gau 0.745 0.015 0.589 0.005 0.728 0.013 0.842 0.928 0.745
WAUC-Log 0.719 0.012 0.560 0.003 0.745 0.010 0.906 0.960 0.875

Table 3: Performance comparisons on benchmark datasets in real world cost-sensitive problem. Profit
means represents the money earned by the model over the entire trading period.

Methods BCE ExAUC SqAUC NWAUC PAUC-exp PAUC-poly PAUCI CS-hinge AdaCOS ECL WAUC-Gau WAUC-Log

ˆWAUC ↑ 0.5427 0.594 ± .003 0.508 ± .005 0.562 ± .002 0.576 ± .004 0.481 ± .005 0.529 ± .006 0.592 ± .002 0.6527 ± .005 0.625 ± .004 0.698 ± .002 0.675 ± .001
L̂COST ↓ 0.254 ± .004 0.269 ± .005 0.246 ± .003 0.251 ± .002 0.270 ± .004 0.246 ± .004 0.243 ± .001 0.237 ± .006 0.229 ± .004 0.226 ± .007 0.209 ± .003 0.213 ± .002

ˆAUC ↑ 0.528 ± .005 0.539 ± .004 0.526 ± .005 0.520 ± .004 0.529 ± .002 0.519 ± .005 0.510 ± .003 0.522 ± .005 0.5246 ± .002 0.530 ± .003 0.526 ± .002 0.5235 ± .003
Profit ↑ 4955 ± 20.14 5468 ± 17.90 5183 ± 30.91 5395 ± 22.48 5418 ± 14.06 4862 ± 28.04 4963 ± 15.09 5583 ± 30.05 5839 ± 34.92 5764 ± 25.09 6526 ± 15.98 6308 ± 16.09

7.2 Overall Performance

In Tab. 2 and Tab. 3, we collect all the methods’ performance on test sets of three types of datasets.
For cost distribution of c, we sample some data from a normal distribution N (0.5, 1) to construct
a dataset Sc (we clip all data to [0, 1]). We also conduct numerous experiments for other types of
distribution of c, and please see Appendix B for the details. From the results, we make the following
observations:

(1) For ŴAUC and L̂COST metric, Our proposed algorithm achieves superior performance in most
benchmark datasets compared to other methods. This demonstrates that our proposed WAUC cost-
sensitive learning can extend the ROC curve into the cost space. Models trained with our proposed
bilevel optimization formulation can enjoy high WAUC and cost-related metrics.

(2) AUC and cost-related metrics are inconsistent. From the high-performing heatmap of Tab. 2, it
can be noticed that L̂COST and ÂUC have two completely different highlight regions. This indicates
that the assumption of uniform distribution of AUC does not match the realistic scenario.

(3) We also find that AUC-related and traditional classification algorithms do not perform well in
cost-sensitive problems. This means that if we first train the model with the classification algorithm,
subsequently using the cost function to solve for the optimal threshold for decision does not work
well. Meanwhile, the algorithm that can learn from scratch has better scalability. Two-stage decision
method Therefore, designing one-stage algorithms for WAUC cost-sensitive learning is necessary.
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7.3 Sensitivity Analysis

In this subsection, we show the sensitivity of β, T , and bandwidth on test data.

Effect of β. In Fig. 3 (a) and (d), we observe that for both WAUC and cost metrics, when β closes
to 7, the model will have the largest performance improvement and the lowest variance. This can
be explained in two ways: (1) When the β is too small, the error between the σ(x) and the 0-1 loss
function is large, resulting in a large approximation error between the ŴAUC and the WAUC. (2)
When the β is too large, the gradient also tends to be 0. Therefore, choosing a beta value that trades
off the approximation error and the gradient is essential.
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Figure 3: Sensitivity analysis on test data where WAUC and cost for WAUC-Gau with respect to β,
T , and bandwidth. The other two variables are fixed for each box in the plots, and the scattered points
along the box show the variation.

Effect of T . As we mentioned in the Section 6.1, choosing a smaller T can effectively improve the
performance of the model. However, as shown in Fig. 3(e), a larger T value can reduce the variance.
Hence, as set in our experiments, T = 3 is a good choice to ensure the average performance and
variance of the model.

Effect of m. From Fig. 3(c), we find that the kernel’s bandwidth strongly influences the model’s
performance. The model’s bandwidth and performance are almost proportional; the closer the
bandwidth is to [0.4, 0.5], the better the effect; otherwise, the effect is worse. This indicates that
our proposed method is sensitive to the bandwidth parameter, which also compounds the bandwidth
characteristics in the KDE method.

8 Conclusion

This paper focuses on extending the traditional AUC metric to associate with misclassification costs.
Restricted by the assumption of cost distribution, existing settings could not describe the model’s
performance in the complicated cost-sensitive scenario. To address this problem, we propose a
novel setting that treats the cost as sampled data. We employ the WAUC metric and propose a novel
estimator to approximate it. With the help of threshold weighting, we establish the correspondence
between WAUC and the cost function. To describe this connection, we present a bilevel optimization
formulation to couple them, where the inner-level problem provides a threshold optimization process,
and the outer-level minimizes the WAUC loss based on the inner thresholds. This paradigm ensures
that the WAUC can always be optimized at the optimal threshold value based on the complicated
cost distribution in reality. Moreover, we propose a stochastic algorithm to optimize this formulation.
We prove that our algorithm enjoys the same convergence rate as standard SGD. Finally, numerous
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experiments have shown that our method can extend AUC to cost-sensitive scenarios with significant
performance.
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