
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHAT’S WRONG WITH NON-AUTOREGRESSIVE
GRAPH NEURAL NETWORKS IN NEURAL
COMBINATORIAL OPTIMIZATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural combinatorial optimization (NCO) leverages machine learning models to
tackle complex combinatorial problems by learning heuristics or direct solution
construction. Graph Neural Networks (GNNs) are particularly effective for NCO
due to their ability to capture the relational structure inherent in many such prob-
lems. In this work, we examine the supervised non-autoregressive (NAR) solution
construction framework, revealing a misalignment between training objective and
solution quality. Specifically, through experiments on six GNN architectures across
three problems—Traveling Salesperson Problem (TSP), Maximum Independent
Set (MIS), and Minimum Vertex Cover (MVC)—we show that lower training
loss does not correlate with lower optimality gap. To address this, we propose a
supervised autoregressive (AR) framework that leverages the conditional dependen-
cies between variables by training to complete partial solutions. Empirical results
show that the proposed AR framework does not exhibit the same misalignment
and consistently improves performance. We further compare the proposed AR
framework against existing supervised GNN-based methods and achieve superior
performance, especially in terms of generalizing to larger problem instances.

1 INTRODUCTION

Combinatorial optimization problems are fundamental to a wide range of industries, including
vehicle routing (Tassone & Choudhury, 2020), machine scheduling (Brucker, 2007), and resource
allocation (Xiao et al., 2012). As these problems scale, they become increasingly difficult to solve
optimally, presenting significant challenges for exact methods. Despite decades of research, traditional
approaches often fall short of addressing the large-scale demands posed by real-world applications,
especially given the complexity driven by recent globalization and technological advancements
(Bertsimas & Dunn, 2019).

The rise of modern deep learning techniques has opened new avenues for tackling these problems,
leading to the emergence of Neural Combinatorial Optimization (NCO) (Khalil et al., 2022; Gasse
et al., 2019; Joshi et al., 2019; Li et al., 2018; Khalil et al., 2017; Sun & Yang, 2024; Luo et al.,
2024; Qiu et al., 2022). One dominant NCO approach is the application of Graph Neural Networks
(GNNs) to construct primal solutions. GNNs, which are specialized deep learning architectures
for graph-structured data, have gained prominence in NCO due to their inherent suitability for
combinatorial optimization as many such problems (e.g. vehicle routing problems) are naturally
represented as graphs. Furthermore, many combinatorial optimization problems can be modeled as
constraint-variable graphs (Gasse et al., 2019; Khalil et al., 2022), further emphasizing the alignment
between GNNs and the NCO domain.

GNN-based approaches for constructing primal solutions in combinatorial optimization can be broadly
categorized based on their underlying learning problem: deep reinforcement learning (Khalil et al.,
2017; Qiu et al., 2022; Ahn et al., 2020; Kool et al., 2019; Xing & Tu, 2020; Peng et al., 2020; Zhou
et al., 2023), unsupervised learning (Min et al., 2024; Min & Gomes, 2024; Drori et al., 2020; Karalias
& Loukas, 2020; Toenshoff et al., 2021; Amizadeh et al., 2019; Wang et al., 2022), and supervised
learning (Joshi et al., 2019; Kool et al., 2022; Fu et al., 2021; Sun & Yang, 2024; Li et al., 2024;
Huang et al., 2023; Li et al., 2018). This paper primarily focuses on GNN-based supervised learning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

methods. These methods are dominated by non-autoregressive (NAR) algorithms where a GNN
model, that is trained using optimal solutions as ground-truth labels, assigns independent probabilities
to each variable, treating the task as a node or edge classification task. These probabilities, known
as a probability map or a heat map, indicate the likelihood of each node or edge being part of the
optimal solution. A search algorithm, such as greedy search (Joshi et al., 2019; Sun & Yang, 2024),
beam search (Joshi et al., 2019), or Monte-Carlo tree search (MCTS) (Sun & Yang, 2024; Fu et al.,
2021), is then applied based on the GNN-generated probability map to construct a valid solution.

While recent supervised approaches have shown state-of-the-art empirical results (Sun & Yang, 2024;
Fu et al., 2021), key limitations have been identified in some of these methods, particularly regarding
the practicality of the generated probability maps (Li et al., 2018; Xia et al., 2024) and their ability
to scale to larger problem instances (Fu et al., 2021; Joshi et al., 2022). To better understand these
limitations, we conduct an extensive experimental evaluation to analze the connection between the
quality of the generated probability maps and the quality of the solutions they produced. Our analysis
revealed a notable misalignment: improvements in the quality of probability maps do not correlate
with higher quality of constructed solutions. We hypothesize that the non-autoregressive nature of
these approaches is the source of the misalignment and propose to use autoregressive models to
resolve the misalignment. Extensive experiments provide empirical support to our hypothesis and
demonstrate how the use of autoregressive models mitigate the observed misalignment and improve
the performance of these models.

Our contributions are summarized as follows:

1. We examine the supervised NAR solution construction framework, that encompass sev-
eral notable approaches, and identify a clear misalignment between the accuracy of the
probability maps (i.e., the training objective) and the quality of the constructed solutions.
Specifically, we run experiments for six different GNN architectures across three different
graph-based combinatorial optimization problems— Traveling Salesperson Problem (TSP),
Maximum Independent Set (MIS), and Minimum Vertex Cover (MVC)— and show that
improvements in training loss do not correlate with improvements in optimality gap.

2. We introduce a general framework for supervised AR solution construction leveraging
conditional generation by training to complete randomly sampled partial solutions. Our
results show that this framework, tested on the same three combinatorial optimization
problems and six GNN architectures, does not exhibit the previously observed misalignment
and consistently leads to higher quality primal solutions.

3. We compare the proposed AR framework against existing supervised GNN-based methods
on TSP instances of various sizes. Our experimental results show that our AR framework
achieves superior performance, especially in terms of generalizing to larger instances.

2 BACKGROUND

In this section, we give some background on the general framework of GNN-based supervised
methodologies. Formally, given an instance g of combinatorial optimization problem G with binary
variables Dg, we denote Xg ⊆ 2Dg as the set of feasible solutions of g and cG : Xg → R as the
objective function. To goal is to find the optimal solution defined as:

x̂g = arg min
xg∈Xg

cG(xg) (1)

Instead of searching through the large discrete solution spaceXg , existing methods define a continuous
solution space Ωg ⊆ [0, 1]|Dg| and a modelM with parameters θ:

Mθ : G → Ωg (2)

is tasked with predicting a |Dg|-dimensional vector ω ∈ Ωg, representing a probability map where
each entry ωi estimates the probability of variable i being true in optimal solution x̂g. Then, a
search algorithm SG : Ωg → Xg constructs a feasible solution xg by searching through the predicted
probability map ω. Therefore, the objective of the model is defined as:

L(θ) = Eg∼G [cG(SG(Mθ(g)))] (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

However, since the objective functions cG of combinatorial optimization problems and the search
algorithms SG are generally non-differentiable (Qiu et al., 2022), this objective cannot be directly
optimized. Instead, existing methods adopt some surrogate loss function lsurrogate to approximate
cG(S(·)). Then, the optimization objective becomes:

L′(θ) = Eg∼G [lsurrogate(Mθ(g))] (4)

Most commonly, a supervised classification loss (e.g. cross-entropy loss) is employed to treat this
as a classification task (Joshi et al., 2019; Sun & Yang, 2024; Luo et al., 2024; Vinyals et al., 2015).
That is, we can construct a training set by finding the optimal solution x̂g for problem instance g and
using x̂g as the ground-truth labels for the variables (1 for true in x̂g and 0 otherwise). Then, we
can trainM as a binary classification problem. A GNN model is a common choice forM as many
combinatorial optimization problems are naturally defined on graphs (Joshi et al., 2019; Sun & Yang,
2024; Fu et al., 2021; Kool et al., 2022). For example, the TSP and many related vehicle-routing
problems can be defined on a graph where nodes represent locations, edges represent routes, and
edge weights represent costs. Following this setup, the surrogate objective in Eq. 4 becomes a binary
node/edge-level classification task.

This general framework is non-autoregressive (NAR) in nature. That is, the probability outputs of
each variable are generated independent of each other (Sun & Yang, 2024). On the other hand, in
autoregressive (AR) approaches, the model would generate predictions conditioned on its previous
predictions. In this context, models would generate probabilities iteratively, where each output is
conditioned on previous outputs (Luo et al., 2024). However, to the best of our knowledge, there is
no existing supervised GNN-based AR method.

2.1 RELATED WORK

NAR Methods. Following the general NAR framework, notable works include Joshi et al. (2019)
who approach the TSP as a binary edge classification task, using the optimal TSP tour as labels (in this
work, we term this approach EFFICIENTTSP for brevity). The model’s backbone is a Residual Gated
Graph Convolutional Network (GatedGCN) (Bresson & Laurent, 2017), trained using cross-entropy
loss. To construct a valid TSP tour based on the generated probability map, EFFICIENTTSP employs
a greedy search algorithm, which can also be generalized to a beam search. Another notable work is
Li et al. (2018) who target the MIS problem and, using optimal solutions as binary node labels, train
a GNN model to generate multiple probability maps per instance. A tree search method is deployed
to search through these probability maps to construct a solution.

Subsequent works have expanded on this general framework by incorporating novel architectures
or complex search algorithms. For instance, Fu et al. (2021) train a GNN model to generate
probability maps for subgraphs of a TSP instance, which are then merged into a comprehensive
probability map used by a Monte Carlo Tree Search (MCTS) algorithm to construct a valid tour.
Additionally, Kool et al. (2022) introduced Deep Policy Dynamic Programming (DPDP) which uses
dynamic programming as the search algorithm to construct valid solutions for TSP and related routing
problems. Recently, Sun & Yang (2024) proposed DIFUSCO, a method that integrates diffusion-based
GNN models within the existing framework, achieving state-of-the-art results on TSP, with further
post-processing techniques presented by Li et al. (2024) and Huang et al. (2023).

Recent research has highlighted limitations in the existing NAR methods. Notably, Joshi et al.
(2022) found that these methods exhibit poor generalization capabilities. Additionally, concerns
have been raised regarding the practicality of these generated probability maps when decoded by
complex post-hoc search algorithms. In particular, Xia et al. (2024) demonstrated that a simple
softmax-based heuristic could produce probability maps yielding solutions of comparable quality to
those produced by trained GNNs when decoded with MCTS. Similarly, Böther et al. (2022) showed
that the guided tree search method in (Li et al., 2018) can construct near-optimal solutions even from
random probability maps.

However, these studies are limited to tree search methods and do not investigate the link between
the quality of the probability maps and the quality of the resulting solutions. To our knowledge, our
study is the first to identify the misalignment between probability map quality and solution quality in
supervised NAR approaches.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

AR Methods. Despite its absence within the supervised GNN domain, we note that AR methods
have been proposed in NCO through other learning paradigms, such as deep reinforcement learning
(Kool et al., 2019; Qiu et al., 2022), and in other architectures like pointer networks (Vinyals et al.,
2015) and transformers (Bresson & Laurent, 2021; Luo et al., 2024). We also note that Li et al.
(2018)’s MIS-specific graph reduction technique behaves similarly in concept to an AR approach.
Though, it is specific to the MIS problem and is not compatible with other types of problems. We
further discuss this in Appendix C.

3 THE MISALIGNMENT IN THE GENERAL SUPERVISED NAR FRAMEWORK

In this section, we conduct experimental analysis of the NAR framework to understand the observed
limitations. Specifically, we implement and evaluate the existing NAR framework by continu-
ously tracking and comparing the quality of the generated probability maps with the quality of the
constructed solutions after each training epoch. This is performed across three NP-complete combina-
torial optimization problems (Hartmanis, 1982): TSP, MIS, and MVC. While all three problems are
well studied in NCO literature, TSP has been a focal point in NCO research (Sun & Yang, 2024; Joshi
et al., 2019; Fu et al., 2021), while MIS (Li et al., 2018; Sun & Yang, 2024) and MVC (Khalil et al.,
2022) complement it by representing node-based decision variables, as opposed to the edge-based
decision variables in TSP.

TSP involves finding the minimum-cost cycle that visits each node exactly once, MIS involves finding
the largest set of non-adjacent nodes in a graph, and MVC involves finding the smallest set of nodes
such that at least one endpoint of each edge is included. Formal definitions of these problems are
included in Appendix A.

The implemented method follows the workflow outlined in Section 2. We define a training instance
as the input graph with labels for the decision variables extracted from the optimal solution (1 if
included in the optimal solution, 0 otherwise). A GNN model is trained to predict these labels using
cross-entropy as the surrogate loss. This approach mirrors the probability map generation process
employed in all aforementioned NAR methods (Joshi et al., 2019; Kool et al., 2022; Fu et al., 2021;
Sun & Yang, 2024).

3.1 EXPERIMENTAL SETUP

GNN Architectures. Our experiments include six representative GNN architectures: Graph Atten-
tion Network (GAT) (Veličković et al., 2018; Brody et al., 2022), Residual Gated Graph Convolutional
Network (GatedGCN) (Bresson & Laurent, 2017), Graph Convolutional Network (GCN) (Kipf &
Welling, 2017), GraphSage (Hamilton et al., 2017), MoNet (Monti et al., 2017), Graph Isomorphism
Network (GIN) (Xu et al., 2018). Given DIFUSCO’s state-of-the-art performance on TSP, we also
included its diffusion-based GNN model, which uses GatedGCN as its backbone, in our evaluation1.
For a detailed description and review of these architectures, we refer readers to the GNN benchmark
paper by Dwivedi et al. (2023).

Solution Construction. Due to the concerns raised by Li et al. (2018) and Xia et al. (2024)
regarding the practicality of probability maps under complex search algorithms, we employ greedy
search in order to evaluate the impact of the probability maps in isolation. The greedy search
algorithm involves repeatedly adding the variable with the highest probability to the solution set
without violating problem-specific constraints (i.e. no visiting nodes twice for TSP, no adjacent nodes
for MIS, and none for MVC) until some problem-specific termination condition (i.e., a hamiltionion
cycle for TSP, no more independent nodes for MIS, and all edges are covered for MVC). Furthermore,
for TSP, we also enforce that the edges are added sequentially, maintaining a connected path at all
times, following the convention of EFFICIENTTSP and DIFUSCO (Joshi et al., 2019; Sun & Yang,
2024). Details on the exact decoding process for each problem are provided in Appendix E.

1Due to technical difficulties running the publicly available DIFUSCO implementation, we only report the
results for DIFUSCO on TSP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Metrics. We use optimality gap as the primary metric for solution quality, defined as:

Optimality Gap =
|zpred − zopt|

zpred
× 100% (5)

where zpred and zopt represent the objective values of the constructed solution and the optimal solution,
respectively. The quality of the generated probability maps is evaluated using the cross-entropy
loss metric. In this set of experiments, we focus on the misalignment in training of models and
therefore only evaluate these metrics for instances in the training set. Evaluation based on a held-out
validation or test set could conflate the misalignment between training loss and optimality gap with
misalignment between the training and testing distributions. However, in Section 5 we demonstrate
the impact of this misalignment on the performance of NAR approaches on a held-out test set.

Dataset. For each problem, the training set consists of 5,000 random synthetically generated
problem instances, each with 100 nodes. The ground-truth labels are generated using Gurobi (Gurobi
Optimization, LLC, 2023). Details on the problem generation methods are provided in Appendix D.

Configurations. For each model, we use a default configuration of 4 message-passing layers with
128 hidden dimensions. A prediction head consisting of 2 fully connected layers is applied to the
hidden state of each decision variable. We use the Adam optimizer (Kingma & Ba, 2014) with a
decaying learning rate initialized at 0.001. These configurations follow the general conventions found
in a previous work by Joshi et al. (2022). The exact hyperparameters for each architecture can be
found in Appendix F. For the diffusion model, we also use 4 message-passing layers with 128 hidden
dimensions, but otherwise follow the implementation of DIFUSCO2 (Sun & Yang, 2024).

Hardware All experiments were conducted on an NVIDIA GeForce RTX 4080 Ti.

3.2 EXPERIMENTAL RESULTS

Figure 1 shows both the training loss and the optimality gap across training epochs for the various
GNN architectures. In general, we observe that the training losses (dotted lines) consistently decrease
throughout the training process, indicating improvement in the quality of the probability maps.
However, the optimality gaps (solid lines) do not follow the same trend, often oscillating instead.
Notably, in many cases, the optimality gaps do not improve beyond the first epoch.

Figure 1: Results of the general NAR framework evaluated on TSP, MVC, and MIS across six
different GNN architectures, comparing training loss (dotted lines) and optimality gap (solid lines)
throughout the training phase. Lower is better for both metrics.

These results indicate that, under the NAR framework, a decrease in training loss does not correlate
with a decrease in optimality gap. This misalignment between the quality of probability maps and the
quality of constructed solutions is observed consistently across all problem types and all architectures.

2https://github.com/Edward-Sun/DIFUSCO

5

https://github.com/Edward-Sun/DIFUSCO

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

This points to a fundamental issue within the general supervised NAR framework where the surrogate
loss function (Eq. 4) does not accurately represent the desired optimization objective (Eq. 3).

We also performed this evaluation on the EFFICIENTTSP and DIFUSCO models following their original
configurations, fully replicating the experimental setup described in their respective manuscripts
(Joshi et al., 2019; Sun & Yang, 2024). We also included a version of the EFFICIENTTSP model
trained on 1,000,000 problem instances (instead of 10,000) per epoch for completeness. As shown
in Figure 2, the results are consistent with those presented in Figure 1, showing lack of correlation
between optimality gap and loss throughout the training phase.

Figure 2: Results of EFFICIENTTSP (Joshi et al., 2019) and DIFUSCO (Sun & Yang, 2024), following
their original configurations, comparing training loss (dotted lines) and optimality gap (solid lines)
throughout the training phase. For EFFICIENTTSP, the value in brackets indicates the number of
problem instances used for training. Lower is better for both metrics.

We hypothesize that the misalignment between the quality of the probability maps and the constructed
solutions may be due to the non-autoregressive nature of the model, where conditional dependencies
are not captured. This results in the selection of nodes or edges that do not account for or adapt to the
choices made earlier in the construction process, potentially leading to suboptimal solutions.

4 AUTOREGRESSIVE FRAMEWORK FOR GNN-BASED NCO

In this section, we present a supervised GNN-based AR solution construction framework. The
motivation for the proposed approach stems from the misalignment identified in Section 3 between
the desired optimization objective defined in Eq. 3 and the surrogate loss function defined in Eq. 4.
The proposed method addresses this issue by taking an AR approach and changing the optimization
objective of the model accordingly. Specifically, we propose a novel optimization objective from an
AR perspective that aims to construct a valid solution by iteratively generating conditional probability
maps after each variable selection.

Formally, given a binary combinatorial optimization problem instance g ∈ G with variable set Dg,
feasible solution set Xg ⊆ 2Dg , and objective function cG : Xg → R; we aim to find optimal solution
set x̂g ∈ Xg as defined in Eq. 1. However, due to its size, it is infeasible to directly search through the
discrete solution space Xg . As such, the proposed method defines a GNN modelM with parameters
θ:

Mθ : (g, x̃g) 7→ ω ∈ Ωg (6)

where Ωg ⊆ [0, 1]|Dg| represent probability maps over Dg and x̃g ∈ X̃g ⊆ 2Dg represents a partial
solution of g. Unlike in the NAR framework (Eq. 2), here the generation of probability maps is
conditioned on some partial solution x̃g ∈ X̃g . To construct a feasible solution, we initialize a partial
solution x̃g = ∅. Then, a search algorithm SG : Ωg×X̃g → X̃g updates a given partial solution x̃g by
selecting one variable to be true based on a probablity map ω. This process iterates by generating a
new probability map ω after every update to x̃g until some problem-specific termination criteria. This
process is autoregressive as each model output ω =Mθ(g, x̃g) is conditioned on previous model
outputs represented by x̃g . Following this method, the objective of the model is to predict probability
maps that will construct partial solutions with the lowest expected objective value, which is defined
as:

L(θ) = Eg∼G
[
Exg∼Xg|SG(Mθ(g,x̃g))⊆xg

[cG(xg)]
]

(7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Again, as the objective functions cG of combinatorial optimizations and search algorithms SG are
generally non-differentiable (Qiu et al., 2022), we approximate Exg∼Xg|SG(Mθ(g,x̃g))⊆xg

[cG(xg)]
using a classification loss function, lclassification, as a surrogate:

L′(θ) = Eg∼G [lclassification(Mθ(g, x̃g), x̂g)] (8)

Specifically, we use optimal solution x̂g ∈ X̂g as the ground-truth label and train the model to com-
plete x̂g from partial solutions x̃g ⊂ x̂g. That is, to approximate Exg∼Xg|SG(Mθ(g,x̃g))⊆xg

[cG(xg)],
we use the following supervised classification loss:

lclassification(θ | g, x̃g) = Ex̂g∼X̂g
[lCE(Mθ(g, x̃g), x̂g)] (9)

where lCE is cross-entropy loss. This approach aims to achieve alignment between the surrogate
loss function (Eq. 8) with the desired optimization objective (Eq. 7) by significantly simplifying
the prediction task. Intuitively, instead of generating a single probability map that would dictate
the selection of the entire solution set (as in the NAR framework), the proposed approach is to
generate a probability map that is used to select only the next variable to be added to the solution
set. This process can then be repeated to construct a valid solution in an autoregressive manner. Not
only does the proposed method significantly simplify the desired model objective, it also enables
the model to perform conditional generation. That is, the generation of each probability map is
conditioned on the current partial solution. Unlike existing NAR methods, the conditional generation
in our method allows the model to adjust for any suboptimal choices made earlier in the solution
construction process. It also better captures the multimodal nature of combinatorial optimization
problems, avoiding the pitfall of getting caught between predicting multiple equally optimal solutions.

4.1 TRAINING VIA PARTIAL SOLUTION SAMPLING

To train the model to make predictions conditioned on a partial solution, our method treats the task
as a node or edge-level classification task, trained using cross-entropy loss. We construct partial
solutions from the ground-truth (i.e., optimal solution) of each training instance and encode them as
part of the model input and ask the model to complete each partial solution. In this way, the model is
trained to predict the next variable to be included conditioned on a partial solution.

Formally, given problem instance g ∈ G and the optimal solution set x̂g, we can construct a partial
solution x̃g ⊂ x̂g and task the model with predicting the remainder x̃′

g = x̂g\x̃g . To explicitly encode
the condition on a partial solution x̃g , each variable in the graph is given a binary feature indicating
its inclusion in x̃g (1 for included, 0 otherwise). Correspondingly, a binary label is assigned to each
variable to indicate whether it should be selected next, with those in x̃′

g labeled as 1 and others as 0.
This setup provides explicit information about the current partial solution and the correct subsequent
inclusions, enabling the model to make conditional predictions. We can apply this process many
times per problem instance allowing us to significantly increase the diversity and volume of the
training set, resulting in a more robust framework, especially in cases where labeled data is scarce.

Ideally, for each labeled problem instance g in the training set and each of its optimal solutions
x̂g ∈ X̂g, we construct training data from all possible subsets of x̂g which would result in training
data in the magnitude of O(2|x̂g|) for each optimal solution. For tractability, we instead opt for
sampling k partial solutions (and their corresponding labels) from one optimal solution for each
problem instance, by first sampling the length of the partial solution uniformly at random and then
randomly sampling a subset of the optimal solution of the chosen length. The pseudocode for the
proposed framework is provided in Appendix H.

4.2 EXPERIMENTAL SETUP

In the same fashion as in Section 3, we conducted experiments on MIS, MVC, and TSP across six
different GNN architectures, tracking both training loss and optimality gap throughout the training
phase. For each training instance, we sampled k = 50 partial solutions of uniformly distributed sizes.
We use the same configurations and hardware as outlined in Section 3. The exact hyperparameters
are included in Appendix F.

Solution Construction. To construct valid solutions after training, we employed greedy search,
as was done previously for the NAR framework. We followed the same greedy process, where

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the highest-scored variable is iteratively added, subject to problem-specific constraints. The key
difference is that we now generate a new probability map after each iteration. Additionally, for TSP,
we no longer enforce that the partial solution be a connected path, ensuring better alignment between
training and deployment. During training, the model predicts over all edges, not just those incident to
the current partial tour. Therefore, during deployment, we do not require the tour to be constructed
sequentially. The decoding process for each problem is described in detail in Appendix E.

4.3 EXPERIMENTAL RESULTS

The results of our evaluation, shown in Figure 3, compare training loss and optimality gap for
the proposed framework. Across all three problems and all GNN architectures, the optimality
gap consistently mirrors the corresponding training loss. In most cases, both metrics exhibit a
decreasing trend throughout the training epochs. In some cases both metrics are stagnant, though still
consistent with each other. Unlike the NAR framework, the proposed AR framework does not exhibit
any evident misalignment between probability map quality and solution quality, indicating a more
effective alignment between the model’s desired objective and the surrogate objective.

Figure 3: Results of the proposed AR framework evaluated on TSP, MVC, and MIS across six
different GNN architectures, comparing training loss (dotted lines) and optimality gap (solid lines)
throughout the training phase. Lower is better for both metrics.

As shown in Figure 4, the proposed AR framework achieved better performance across all problems
and architectures compared to the NAR framework. In fact, for MIS and MVC, the AR models
were able to achieve near optimal solutions within 1% of the optimal objective value. More detailed
experiments against existing baselines are conducted in Section 5. Finally, we note that, as expected,
the AR method requires multiple inference steps and therefore leads to increase in the total decoding
time. For MIS and MVC, on average, the AR models took around two times as long to decode. For
TSP, on average, the AR models took around five times as long. Analysis of the differences in runtime
is provided in Appendix G.

5 COMPARATIVE ANALYSIS

In this section, we conduct experiments comparing the performance of the proposed AR framework
against existing supervised GNN-based methods on TSP instances of various sizes. TSP was chosen
as the benchmark due to its extensive study within the NCO domain (Joshi et al., 2019; Kool et al.,
2022; 2019; Kwon et al., 2020; Sun & Yang, 2024; Khalil et al., 2017; Fu et al., 2021; Min et al.,
2024; Luo et al., 2024; Bresson & Laurent, 2021; Deudon et al., 2018).

In our experiments, we first evaluated the models on a test set consisting of random TSP instances
that have the same number of nodes as the those in the training set. We also evaluated the models’
ability to generalize to larger instances, that is, random TSP instances that have more nodes than
those in the training set. We choose to evaluate the models’ ability to generalize to larger instances
due to the inherent and unique challenges of combinatorial optimization problems that make them

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Results comparing the optimality gap (%) achieved by the NAR models and the AR models.
Lower is better.

especially challenging at scale. Therefore, it is crucial that NCO methods generalize well to larger
instances (Joshi et al., 2022; Fu et al., 2021).

Baselines. As the scope of this work is focused on supervised GNN-based methods, we choose
EFFICIENTTSP (Joshi et al., 2019) and DIFUSCO (Sun & Yang, 2024) as the baselines for this
experiment. All methods are implemented with greedy search as described in previous sections.
Other GNN-based supervised methods, such as those by Fu et al. (2021), Kool et al. (2022), and
Li et al. (2024), are excluded as they focus on developing complex search algorithms and post-
processing which can obfuscate the quality of the models (Xia et al., 2024; Böther et al., 2022). For
the hyperparameters of the baselines, please refer to their original manuscripts (Joshi et al., 2019;
Sun & Yang, 2024).

Datasets. For training, we used 10,000 instances of TSP503 for our model. For the baselines,
1,502,000 instances of TSP50 are used to train DIFUSCO and 10,000 instances of TSP50 are used to
train EFFICIENTTSP, as per their original manuscripts. We also included a version of the DIFUSCO
model trained with 10,000 instances for fair comparison. For validation, we used 1,000 instances of
TSP50. For testing, we used 1,000 instances of TSP50, 1,000 instances of TSP100, 200 instances of
TSP200, and 50 instances of TSP500. All TSP datasets are generated closely following the convention
set by existing works (Joshi et al., 2019; Fu et al., 2021; Min et al., 2024; Sun & Yang, 2024; Luo
et al., 2024). For details regarding the problem generation process, please refer to Appendix D.

Configurations. We used the GatedGCN architecture (Bresson & Laurent, 2017) with 8 layers
and 256 hidden dimensions. We sampled k = 200 partial solutions for each TSP instance in the
training set. We used a batch size of 64 and the Adam optimizer (Kingma & Ba, 2014) with a
decaying learning rate initialized to 0.001 and weight decay set to 0.00005. We also included a
diffusion version of the proposed AR framework, also using the GatedGCN architecture. For this
model, we follow the general conventions of DIFUSCO, using discrete diffusion with cosine schedule.
We used a batch size of 256 and the Adam optimizer (Kingma & Ba, 2014) with decaying learning
rate initialized to 0.0002 and weight decay set to 0.00005. For both models, we also applied layer
normalization, residual connections, and dropout (0.2). For the exact hyperparameters, please refer to
Appendix F.

3TSP– indicates TSP instances containing – nodes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.1 EXPERIMENTAL RESULTS

The main results are presented in Table 1. The two baselines demonstrated strong performance on
TSP instances of the same size used in training (TSP50), especially DIFUSCO. This is expected, as
DIFUSCO has been shown as a state-of-the-art NCO method (Sun & Yang, 2024). In comparison,
our AR framework slightly outperforms both EFFICIENTTSP and DIFUSCO on the TSP50 test set,
achieving this with fewer model parameters and less training data. Furthermore, the NAR models
show substantial performance degradation as they attempt to generalize beyond the training instance
size. In fact, their optimality gaps drop from 2.91% and 0.79% on TSP50 to 30.38% and 13.14%
on TSP100 for EFFICIENTTSP and DIFUSCO respectively. Our model, on the other hand, achieved
superior performance across all test sets with larger problem instances (TSP100, TSP200, TSP500),
displaying a stronger ability to generalize.

Table 1: Results against existing GNN-based supervised methods. All models are trained and
validated on TSP50 instances.

ALGORITHM
PROBLEM

INSTANCES
PARAMETERS

GAP % ↓
TSP50 TSP100 TSP200 TSP500

EFFICIENTTSP NAR 10,000 33MIL 2.91 30.38 37.58 51.21

DIFUSCO NAR
1,502,000 5.3MIL

0.79 13.14 18.89 32.95
10,000 11.92 21.62 36.84 54.28

OURS AR 10,000 3.5MIL 0.65 3.9 10.75 17.95
OURS (DIFFUSION) AR 10,000 4MIL 12.86 14.89 15.91 18.16

Notably, when DIFUSCO is limited to 10,000 training instances, similar to our models, it experiences a
marked decline in performance across all problem sizes. On the TSP50 dataset, DIFUSCO’s optimality
gap drops from a near-optimal 0.79% to 11.92%. These results suggest that DIFUSCO may require
very large training sets in order to perform well. Our framework, by contrast, achieves slightly
better optimality gap than DIFUSCO on same-size test instances with significantly less training data.
Finally, even when limited to 10,000 training instances, the diffusion version of our proposed AR
framework displayed comparable results with DIFUSCO on TSP50 and superior performance on
TSP100, TSP200, and TSP500. In fact, on TSP200 and TSP500, its performance even surpasses
that of DIFUSCO when trained on 1,502,000 training instances. This supports the hypothesis that the
superior performance of our proposed framework can be attributed to its autoregressive nature. For
comparisons with other NCO methods that are non-supervised or non-GNN-based, as well as results
of the proposed model trained using more instances, please refer to Appendix J.

6 CONCLUSION

In this paper, we examined the general supervised NAR solution construction framework across
three well-known combinatorial optimization problems and six GNN architectures. We identified
a misalignment between the desired optimization objective (optimality gap) and the surrogate opti-
mization objective (training loss). To address this, we proposed a general supervised AR framework
that leverages conditional generation. Our training process involves sampling partial solutions from
optimal solutions and training the model to complete them. Empirical results show that our proposed
framework does not exhibit the previously observed misalignment and leads to improved performance.
Notably, when compared against existing GNN-based supervised methods on TSP datasets of various
sizes, our AR framework displays superior performance, especially in terms of generalizing to larger
instances.

6.1 LIMITATIONS AND FUTURE WORK

One promising extension of our work is the development of more sophisticated encoding mechanisms
for the current partial solutions, possibly tailored to specific combinatorial optimization problems.
The iterative nature of the AR methods in general, while beneficial for solution quality, incurs
computational costs. Future research could focus on exploring AR approaches that balance solution
quality with computational efficiency. Lastly, our approach only uses one optimal solution per
problem instance for training while combinatorial optimizations can have several different optimal

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

solutions. Future research could try to further capture the multi-modal nature of combinatorial
optimization problems by incorporating all optimal solutions of any given problem instance.

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International conference on machine learning, pp. 134–144. PMLR, 2020.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Dimitris Bertsimas and Jack Dunn. Machine learning under a modern optimization lens. Dynamic
Ideas LLC Charlestown, MA, 2019.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. In International
Conference on Learning Representations, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman problem.
arXiv preprint arXiv:2103.03012, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Peter Brucker. Classification of scheduling problems. Scheduling Algorithms, pp. 1–10, 2007.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research: 15th International Conference, CPAIOR 2018,
Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pp. 170–181. Springer, 2018.

Iddo Drori, Anant Kharkar, William R Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev,
Brenda Dietrich, David P Williamson, and Madeleine Udell. Learning to solve combinatorial
optimization problems on real-world graphs in linear time. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), pp. 19–24. IEEE, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. arXiv preprint
arXiv:2308.14104, 2023.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Juris Hartmanis. Computers and intractability: A guide to the theory of np-completeness (michael r.
garey and david s. johnson). SIAM Review, 24(1):90–91, 1982.

Junwei Huang, Zhiqing Sun, and Yiming Yang. Accelerating diffusion-based combinatorial optimiza-
tion solvers by progressive distillation. arXiv preprint arXiv:2308.06644, 2023.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 27(1):70–98, 2022.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guiding
combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 10219–10227, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Eugene L Lawler. The traveling salesman problem: a guided tour of combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics, 1985.

Harry R Lewis. Computers and intractability. a guide to the theory of np-completeness. The Journal
of Symbolic Logic, 48(2):498–500, 1983.

12

https://www.gurobi.com
https://www.gurobi.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36, 2024.

Laurin Luttmann and Lin Xie. Neural combinatorial optimization on heterogeneous graphs: An
application to the picker routing problem in mixed-shelves warehouses. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 34, pp. 351–359, 2024.

Yimeng Min and Carla P Gomes. On size and hardness generalization in unsupervised learning for
the travelling salesman problem. arXiv preprint arXiv:2403.20212, 2024.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36, 2024.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic
attention model for vehicle routing problems. In Artificial Intelligence Algorithms and Applications:
11th International Symposium, ISICA 2019, Guangzhou, China, November 16–17, 2019, Revised
Selected Papers 11, pp. 636–650. Springer, 2020.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531–25546,
2022.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization. Advances in Neural Information Processing
Systems, 36:63907–63930, 2023.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Jiwoo Son, Minsu Kim, Sanghyeok Choi, Hyeonah Kim, and Jinkyoo Park. Equity-transformer:
Solving np-hard min-max routing problems as sequential generation with equity context. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20265–20273, 2024.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
Advances in Neural Information Processing Systems, 36, 2024.

Joseph Tassone and Salimur Choudhury. A comprehensive survey on the ambulance routing and
location problems. arXiv preprint arXiv:2001.05288, 2020.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers in artificial intelligence, 3:580607, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444–31458, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Bernard M Waxman. Routing of multipoint connections. IEEE journal on selected areas in
communications, 6(9):1617–1622, 1988.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
Forty-first International Conference on Machine Learning, 2024.

Zhen Xiao, Weijia Song, and Qi Chen. Dynamic resource allocation using virtual machines for cloud
computing environment. IEEE transactions on parallel and distributed systems, 24(6):1107–1117,
2012.

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach to
traveling salesman problem. Ieee Access, 8:108418–108428, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in neural information
processing systems, 33:1621–1632, 2020.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

A FORMAL PROBLEM DEFINITIONS

In this section, we formally define the three combinatorial optimization problems studied in this
paper: Traveling Salesperson Problem (TSP), Maximum Independent Set (MIS), and Minimum
Vertex Cover (MVC). These three problems are well-known NP-complete combinatorial optimization
problems (Karp, 2010). They are common canonical examples of computational intractability and
many real-world applications reduce to these formulations.

A.1 TRAVELING SALESPERSON PROBLEM

The Traveling Salesperson Problem involves finding the shortest possible route that visits each city
exactly once and returns to the starting point. Formally, let G = (V,E) be a complete, weighted
graph, where V is the set of nodes representing cities, and E is the set of edges representing the paths
between them. Each edge (u, v) ∈ E is associated with a non-negative weight w(u, v), representing
the distance between nodes u and v. The objective is to find a Hamiltonian cycle C ⊆ E that
minimizes the total travel cost, expressed as:

min
∑

(u,v)∈C

w(u, v) (10)

subject to visiting each vertex v ∈ V exactly once (Karp, 2010; Lawler, 1985). The TSP has numerous
applications in logistics, manufacturing, and planning, making it a pivotal problem in both theoretical
and practical optimization research.

A.2 MAXIMUM INDEPENDENT SET

The Maximum Independent Set problem involves finding the largest set of mutually non-adjacent
nodes in a graph. Formally, given an undirected graph G = (V,E), an independent set I ⊆ V is a set
of nodes such that no two nodes in I are connected by an edge in E. The objective is to maximize
the size of such an independent set (Karp, 2010; Lewis, 1983):

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

max |I| (11)

subject to:

∀u, v ∈ I, (u, v) /∈ E. (12)

The MIS problem has applications in network theory, social network analysis, and computational
biology, where identifying the largest group of mutually independent entities is often of interest.

A.3 MINIMUM VERTEX COVER

The Minimum Vertex Cover problem involves identifying the smallest subset of nodes that collectively
cover all edges of a given graph. Formally, let G = (V,E) be an undirected graph. A vertex cover
S ⊆ V is defined as a subset of nodes such that each edge (u, v) ∈ E is incident to at least one vertex
in S. The objective is to find a vertex cover of minimum cardinality (Karp, 2010; Lewis, 1983):

min |S| (13)

subject to:

∀(u, v) ∈ E, u ∈ S or v ∈ S. (14)

The MVC problem is of critical importance in network security, resource allocation, and bioinformat-
ics, where covering critical connections with minimal resources is often required.

B EXTENDED RELATED WORK

In Section 1, we categorized existing NCO methods into supervised learning, unsupervised learning,
and reinforcement learning, and discussed the supervised learning framework in detail. In this section,
we provide a brief overview of the unsupervised learning and reinforcement learning methods,
categorized into methods for routing problems (i.e., TSP and related vehicle routing problems (VRP))
and methods on other graph-based combinatorial optimization problems.

B.1 UNSUPERVISED LEARNING

Recent works within unsupervised learning for NCO predominantly employ NAR methods. The
goal is to develop models that can learn combinatorial optimization solutions without labeled data,
utilizing techniques like probabilistic modeling and objective relaxation.

Methods for Routing Problems. Min et al. (2024); Min & Gomes (2024) propose unsupervised
methods for the TSP, introducing approaches that generate edge probability maps and leverage the
Gumbel-Sinkhorn operator for permutation representation.

Methods for Other Graph-Based Problems. Toenshoff et al. (2021) introduce a generic GNN
architecture for maximum constraint satisfaction problems, training unsupervised on small instances
to effectively solve larger ones. Karalias & Loukas (2020) employ a probabilistic method for CO,
creating a framework that finds integral solutions via neural network parametrization over sets.
Amizadeh et al. (2019) propose a neural framework for solving the Circuit-SAT problem through an
unsupervised differentiable approach. Wang et al. (2022) present a relaxation-based approach for
CO with neural networks, particularly effective for applications without explicitly defined objectives.
Schuetz et al. (2022) use a physics-inspired GNN model to solve CO problems framed as quadratic
unconstrained binary optimizations, achieving scalability and strong performance.

B.2 DEEP REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) methods construct solutions iteratively through learning-based
policies, optimizing for long-term rewards. While DRL methods achieved strong performance on

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

a range of graph-based combinatorial optimization problems, they require a significant amount of
computational resources and takes a long time to converge.

Methods for Routing Problems. Kool et al. (2019) use attention mechanisms and REINFORCE
training to solve routing problems like TSP and VRP, achieving near-optimal results. Xing & Tu
(2020) combine GNNs with MCTS to tackle TSP, outperforming recent learning-based methods.
Peng et al. (2020) introduce a dynamic attention model with an encoder-decoder architecture. Zhou
et al. (2023) propose a meta-learning framework for VRP generalization across varying sizes and
distributions, while Gao et al. (2023) design an ensemble policy with a local transferable policy to
boost generalization across different distributions and scales.

For large-scale routing problems, Son et al. (2024) develop Equity-Transformer, using Transformer
architecture to solve min-max routing problems efficiently across large instances. Luttmann & Xie
(2024) propose a neural method tailored for picker routing in mixed-shelves warehouses, developing
a novel encoder and hierarchical decoding scheme for CO on heterogeneous graphs. Bresson &
Laurent (2021) adapt Transformer networks to solve TSP using reinforcement learning and beam
search, improving upon learned heuristics with minimal optimality gaps.

Methods for Other Graph-Based Problems. Outside of routing, several DRL works focus on
different combinatorial tasks. Drori et al. (2020) propose a GNN-based reinforcement learning
framework to solve general CO problems in linear time, covering diverse graph types. Ahn et al.
(2020) introduce a DRL scheme for MIS, dynamically adjusting solution stages to improve scalability
on large graphs. Kwon et al. (2021) present MatNet for matrix-form CO problems, showing efficacy
for asymmetric TSP and flexible Flow Shop Scheduling. Zhang et al. (2020) apply deep reinforcement
learning to Job Shop Scheduling, using GNNs for robust policy network representation and achieving
strong performance on unseen large instances. Qiu et al. (2022) address the scalability of CO problems
with DIMES, leveraging a compact continuous space and meta-learning for efficient training. Finally,
Sanokowski et al. (2023) introduce variational annealing for CO, using subgraph tokenization to
enhance performance on complex problem instances.

Unsupervised learning methods in NCO focus on learning solution structures without labels, often
using probabilistic models and objective relaxations. DRL approaches, on the other hand, optimize
policies iteratively for solution construction, showing particular strength in diverse problems but
requiring huge computational resources.

C RELATION TO GUIDED TREE SEARCH

Guided Tree Search (Li et al., 2018) is a supervised method for constructing solutions to the MIS
problem. It employs a tree search algorithm that leverages probability maps generated by a Graph
Convolutional Network (GCN) (Kipf & Welling, 2017). The training process is the same to that of
the NAR framework we examine in Section 3, with a a slight difference: the GCN produces multiple
probability maps for each graph instance in a single forward pass. Specifically, each node is assigned
scores m times (with m = m in their configuration), representing its likelihood of inclusion in 32
different potential solutions. This approach acknowledges the presence of multiple optimal solutions
for each MIS instance, allowing the model to generate a diverse set of focused probability maps.

The GCN is trained using a hindsight cross-entropy loss:

Lhindsight = min
i=1,...,m

LCE (ytrue, fi) (15)

whereLCE is the standard cross-entropy loss, ytrue are the true labels, and f1, ..., fm are the m different
probability maps produced by the GCN. The training aims to minimize the lowest cross-entropy loss
among all generated maps. A tree search algorithm is then employed to construct a feasible solution
from these maps, switching between different maps as needed.

During the traversal of a single probability map, the method iteratively includes the node with the
highest probability into the solution and marks all its neighbors as excluded. After this step, all
marked nodes, both included and excluded, are removed from the graph. The GCN then generates
a new probability map for the remaining subgraph. This process repeats until all nodes have been
marked.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In Section 2, we classify this method as non-autoregressive. However, it differs from other NAR
methods because it conceptually resembles conditional generation in autoregressive methods. To
condition the probabilities on the existing partial solution, this method does not explicitly train the
GCN to generate conditioned outputs. Instead, it reduces the original graph after each selection by
removing the selected node and its neighbors, and feeds this reduced subgraph back into the GCN to
produce a new probability map. This is a unique property of the MIS problem, where the state of the
current partial solution can be implicitly represented by the modified input graph.

Formally, given a graph G = (V,E) and an independent set of nodes K ⊆ V , let K ′ = K ∪⋃
v∈K N(v), where N(v) denotes the set of neighbors of node v. Let G′ = G[V \K ′] be the induced

subgraph obtained by removing K ′ from G. If L is a maximum independent set on G′, then K ∪ L
constitutes the largest independent set on G that includes K.

In other words, finding the largest independent set on G conditioned on the partial solution K is
equivalent to finding the maximum independent set on the reduced subgraph G′. In G′, all nodes in
K and their neighbors, along with all edges incident to them, have been removed. This reduction
effectively encodes the condition into the graph structure.

This property suggests that while the model does not explicitly perform conditional generation, it
achieves a similar outcome by manipulating the input graph to reflect the current partial solution.
Moreover, this approach of implicit conditional generation through input manipulation does not
readily extend to other combinatorial optimization problems. As such, we classify this method as non-
autoregressive because the GCN model itself is not trained to generate predictions autoregressively.

D DATASET GENERATION

To generate the MVC and MIS instances used in this study, we generate Erdős–Rényi (ER) graphs
(Erdos et al., 1960) using the NetworkX library (Hagberg et al., 2008). Each n node ER graph is
generated with edges established between node pairs with probability p = 0.05± 0.02.

For TSP, we generate Waxman graphs (Waxman, 1988) using NetworkX Hagberg et al. (2008) with
the parameter β = 1 and domain coordinates ranging from (0, 0) to (1, 1). In this setup, each node is
assigned a coordinate within the unit square, resulting in a complete graph where every pair of nodes
is connected. Edge costs are calculated based on the Euclidean distance between node coordinates.
To make the TSP graphs more computationally tractable, we sparsify them by connecting each node
only to its k = 20 nearest neighbors. This graph generation process, including sparsification, follows
the conventions established in prior TSP studies (Joshi et al., 2019; Sun & Yang, 2024; Fu et al.,
2021).

To generate the ground-truth labels, we obtain an optimal solution for each problem instance using
Gurobi (Gurobi Optimization, LLC, 2023).

E DECODING ALGORITHMS

In this section, we detail the greedy search algorithms for each of the three problems (TSP, MIS,
MVC) within both the existing NAR frameworks and the proposed AR framework.

E.1 TRAVELING SALESPERSON PROBLEM

In the NAR framework, given a probability map over all edges, we start by randomly selecting a node
as the current position. We then iteratively construct the tour by greedily choosing the incident edge
with the highest probability from the current node. After selecting an edge, we update the current
node to the adjacent node connected by that edge. This process repeats, with already visited nodes
being masked to prevent revisiting, until a valid TSP tour is completed. This is the greedy decoding
method used in EFFICIENTTSP (Joshi et al., 2019) and is similar to the variant in DIFUSCO (Sun &
Yang, 2024), where edge probabilities are adjusted by dividing them by their corresponding edge
costs.

In our proposed AR framework, we remove the constraint of sequential tour construction. Starting
with an empty solution set and a probability distribution over all edges, we greedily add the edge with

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the highest probability to the solution set, provided it does not violate any TSP constraints and is not
already included. After each addition, we use the trained GNN model to generate a new probability
distribution based on the updated solution set. This iterative process continues until a valid TSP tour
is formed. We found that the non-sequential variant of the search algorithm yields slightly better
performance.

E.2 MAXIMUM INDEPENDENT SET

In the NAR framework, we begin with a probability map over all nodes. We iteratively select the node
with the highest probability that is neither already selected nor adjacent to any previously selected
nodes. This process repeats until every node is either selected or adjacent to a selected node.

In the AR framework, we follow the same process but generate a new probability map after each
node selection.

E.3 MINIMUM VERTEX COVER

In the NAR framework, we start with a probability map over all nodes and iteratively select the
highest-probability node that has not yet been chosen. This continues until all edges are covered—that
is, every edge has at least one endpoint in the solution set.

In the AR framework, we follow the same process but generate a new probability map after each
node selection.

F MODEL CONFIGURATIONS

In this section, we detail the configurations and hyperparameters of the models used in our experi-
ments. All models were implemented using the Deep Graph Library (DGL) (Wang et al., 2019). For
definitions and additional information on specific hyperparameters, please refer to the DGL docu-
mentation. All diffusion models in this paper follow the configurations used in the implementation of
DIFUSCO (Sun & Yang, 2024).

F.1 NON-AUTOREGRESSIVE MODELS

This subsection outlines the configurations for the NAR models discussed in Section 3.

The following hyperparameters are consistent across all NAR models:

• Batch size: 64

• Number of layers: 4

• Hidden dimension: 128

• Batch normalization: Enabled

• Residual connections: Enabled

Specific settings for each model architecture are as follows:

• GAT: Number of heads = 2

• GatedGCN: N/A

• GCN: N/A

• GIN: Apply function layers = 2; Learn ϵ = True; Aggregation type = Max

• MoNet: Aggregation type = Max; Pseudo-dimension = 2; Number of kernels = 1

• GraphSage: Aggregation type = Pool

We use the Adam optimizer (Kingma & Ba, 2014) with the following parameters:

• Initial learning rate: 0.001

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Learning rate reduction factor: 0.5
• Patience: 3 epochs
• Weight decay: 0.00005
• Number of epochs: 20

F.2 PROPOSED AUTOREGRESSIVE MODELS

This subsection provides the configurations for the AR models presented in Section 4 and Section 5.

The following hyperparameters are shared across all AR models in Section 4:

• Batch size: 64
• Number of layers: 4
• Hidden dimension: 128
• Batch normalization: Enabled
• Residual connections: Enabled
• Number of partial solutions sampled: 50

Specific configurations for each AR model architecture in Section 4 are:

• GAT: Number of heads = 2
• GatedGCN: N/A
• GCN: N/A
• GIN: Apply function layers = 2; Learn ϵ = True; Aggregation type = Max
• MoNet: Aggregation type = Max; Pseudo-dimension = 2; Number of kernels = 1
• GraphSage: Aggregation type = Pool

The optimizer settings are identical to those used in the NAR models:

• Optimizer: Adam (Kingma & Ba, 2014)
• Initial learning rate: 0.001
• Learning rate reduction factor: 0.5
• Patience: 3 epochs
• Weight decay: 0.00005
• Number of epochs: 20

For the proposed AR model applied to the TSP discussed in Section 5, we use the following
configuration:

• Architecture: GatedGCN
• Number of layers: 8
• Hidden dimension: 256
• Layer normalization: Enabled
• Residual connections: Enabled
• Dropout: 0.2
• Number of partial solutions sampled: 200

The optimizer settings for this model are:

• Optimizer: Adam (Kingma & Ba, 2014)
• Initial learning rate: 0.001

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Learning rate reduction factor: 0.5
• Patience: 3 epochs
• Weight decay: 0.00005
• Number of epochs: 50

G RUNTIME ANALYSIS

In this section, we analyze the runtime performance of the proposed AR framework compared to
the NAR framework. As expected, the AR framework requires more time to construct solutions due
to the additional inference steps involved. Table 2 presents the experimental results on the average
runtime per problem instance for all models used in the paper.

Firstly, for the models in Sections 3 and 4, the results indicate that the AR models experiences an
average runtime increase of around 388% for TSP, 81% for MIS, and 69% for the MVC compared to
the NAR models. The higher increase for TSP is attributed to the difference in decoding as we did
not construct the TSP tour sequentially in the AR models whereas they were constructed sequentially
in the NAR models. Detailed descriptions of the search algorithms can be found in Appendix E. This
approach required checking more edges in each iteration, in addition to performing more inference
steps.

Table 2: Average runtime (in seconds) per problem instance. The NAR row refers to the models
studied in Section 3 and the AR row refers to the models studied in Section 4. The last three rows
refer to the models studied in Section 5. All experiments performed on the same hardware.

MODELS PROBLEM SIZE
RUNTIME S ↓

TSP MIS MVC

NAR SECTION 3 TSP100 8.8 0.31 0.16
AR SECTION 4 42.9 0.56 0.27

DIFUSCO
SECTION 5 TSP50

0.86 - -
EFFICIENTTSP 0.36 - -
OURS 5.1 - -

For the models in Section 5, the proposed AR model showed an average runtime increase of around
one order of magntidue when compared against EFFICIENTTSP and DIFUSCO. However, these
comparisons are not too precise as there can be significant runtime differences depending on the exact
implementation details of the models and the search algorithms.

It is worth noting that the AR framework can be adjusted to add multiple nodes or edges per iteration,
although this modification was not implemented in this paper. Such an adjustment would introduce a
trade-off between solution quality and runtime efficiency, which could be explored in future work.

H PSEUDOCODE FOR TRAINING PROCESS OF PROPOSED AR FRAMEWORK

Algorithm 1 is the pseudocode for the training process of the proposed framework.

I DISCUSSION ON BASELINES

In this section, we discuss the baselines used in Section 5, specifically DIFUSCO (Sun & Yang, 2024)
and EFFICIENTTSP (Joshi et al., 2019). We explain the slight discrepancies in the performance of DI-
FUSCO compared to its original paper and justify the use of reported performance for EFFICIENTTSP
rather than reimplementing it ourselves.

DIFUSCO We found an error in the implementation of DIFUSCO in the authors’ public repository4,
where the solution improvement technique 2-OPT was applied, even when disabled in the configura-

4https://github.com/Edward-Sun/DIFUSCO

20

https://github.com/Edward-Sun/DIFUSCO

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 Training Process for Proposed AR Framework

Require: Training instances {gi, x̂i}Ni=1, where gi = (Vi, Ei) is a graph and x̂i is the set of variables
true in optimal solution

Ensure: Trained GNN ModelM
1: Initialize empty training set T ← ∅
2: for each training instance (gi, x̂i) do
3: Sample a partial solution x̃i ⊂ x̂i with size uniformly sampled from {1, ..., |x̂i|}
4: Define the remainder of the solution x̃′

i = x̂i \ x̃i

5: for each decision variable v ∈ gi do
6: if v ∈ x̃i then
7: Set binary feature fgi(v)← 1 ▷ Indicates inclusion in x̃i

8: else
9: Set binary feature fgi(v)← 0

10: end if
11: if v ∈ x̃′

i then
12: Assign label lgi(v)← 1 ▷ Indicates v should be selected next
13: else
14: Assign label lgi(v)← 0
15: end if
16: end for
17: Update training set T ← T ∪ (gi, {fgi(v)}v∈Gi

, {lgi(v)}v∈Gi
)

18: Repeat the above process k times to sample k partial solutions
19: end for
20: Train modelM on training set T by minimizing the cross-entropy loss
21: return Trained GNN ModelM

tion. After fixing this, their results on TSP50 as reported in Section 5 are slightly worse than those
reported in their original manuscript, despite using the same checkpoint.

EFFICIENTTSP The original repository for EFFICIENTTSP is no longer functional, so we could
not access the provided checkpoints. Instead, we used an alternative implementation from a public
repository5 maintained by the same authors. Despite following the configuration described in the
original manuscript, we were unable to reproduce the reported results on TSP50. Therefore, we relied
on the results reported from their original manuscript for the TSP50 results.

J COMPARISON WITH NON-GNN NEURAL COMBINATORIAL OPTIMIZATION
METHODS

We compare our proposed method with other NCO solution construction approaches that are not
based on GNNs using TSP50 instances as the primary benchmark. Consistent with our methodology
in Section 5, we include only studies that employ greedy decoding strategies. As these approaches
do not utilize GNNs, they fall outside the scope of the paper and therefore are not included in our
analysis. We report these results in the appendix for completeness.

The proposed model used in this evaluation was trained following the same procedure outlined in
Section 5, but with 200,000 problem instances instead of 10,000. Please note that the baseline results
are sourced from their original publications and have not been obtained on identical test datasets.
Some methods are excluded from this comparison because they do not report results on TSP50
instances. The results are presented in Table 3.

Our proposed framework outperforms all included baselines except for the DRL transformer-based
method introduced by Bresson & Laurent (2021). However, we achieve performance comparable to
the transformer network. These findings demonstrate that our method is competitive with leading
NCO solution construction methods for the TSP in general.

5https://github.com/chaitjo/learning-tsp

21

https://github.com/chaitjo/learning-tsp

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 3: Results against existing NCO methods that utilize greedy search. All models are trained on
TSP50 instances. All baseline results are sourced from their original manuscripts.

ALGORITHM TSP50 GAP % ↓

OURS SL 0.35

IMAGE DIFFUSION SL (GRAIKOS ET AL., 2022) 1.28
POINTER NETWORK SL (VINYALS ET AL., 2015) 11.4
TRANSFORMER NETWORK DRL (BRESSON & LAURENT, 2021) 0.31
AM DRL (KOOL ET AL., 2019) 1.76
NCORL DRL (BELLO ET AL., 2016) 4.54
POMO DRL (KWON ET AL., 2020) 0.64
EAN DRL (DEUDON ET AL., 2018) 2.23
S2VDQN DRL (KHALIL ET AL., 2017) 5.81

22

	Introduction
	Background
	Related Work

	The Misalignment in the General Supervised NAR Framework
	Experimental Setup
	Experimental Results

	Autoregressive framework for GNN-based NCO
	Training via Partial Solution Sampling
	Experimental Setup
	Experimental Results

	Comparative Analysis
	Experimental Results

	Conclusion
	Limitations and Future Work

	Formal Problem Definitions
	Traveling Salesperson Problem
	Maximum Independent Set
	Minimum Vertex Cover

	Extended Related Work
	Unsupervised Learning
	Deep Reinforcement Learning

	Relation to Guided Tree Search
	Dataset Generation
	Decoding Algorithms
	Traveling Salesperson Problem
	Maximum Independent Set
	Minimum Vertex Cover

	Model Configurations
	Non-Autoregressive Models
	Proposed Autoregressive Models

	Runtime Analysis
	Pseudocode for Training Process of Proposed AR Framework
	Discussion on Baselines
	Comparison with Non-GNN Neural Combinatorial Optimization Methods

