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Abstract

In this paper, we investigate the generalization performance of structured prediction
learning and obtain state-of-the-art generalization bounds. Our analysis is based
on factor graph decomposition of structured prediction algorithms, and we present
novel margin guarantees from three different perspectives: Lipschitz continuity,
smoothness, and space capacity condition. In the Lipschitz continuity scenario, we
improve the square-root dependency on the label set cardinality of existing bounds
to a logarithmic dependence. In the smoothness scenario, we provide generalization
bounds that are not only a logarithmic dependency on the label set cardinality but a
faster convergence rate of order 0(%) on the sample size n. In the space capacity
scenario, we obtain bounds that do not depend on the label set cardinality and have
faster convergence rates than O(ﬁ) In each scenario, applications are provided

to suggest that these conditions are easy to be satisfied.

1 Introduction

Structured prediction [[18 (12} [17]] covers a wide range of machine learning fields, such as computer
vision, natural language processing, and computational biology. Several examples of structured
prediction problems include part-of-speech tagging, dependency parsing, named entity recognition
and machine translation in natural language understanding, image segmentation and objection
recognition in computer vision, and protein folding in computational biology. An essential property
of structured prediction is that the output space admits some structure, such as strings, graphs, trees,
or sequences [[18} 12, [13]]. Meanwhile, another property common to the above tasks is that the natural
loss function in each case admits a decomposition along with the output substructures. The complex
output structure and corresponding loss function make structured prediction different from the widely
studied binary or multi-class classification problems.

The design of structured prediction algorithms have been thrived for many years, including conditional
random fields [30], structured support vector machines [61], kernel-regression algorithm [19], search-
based structured prediction [20], maximum-margin markov network [60], image segmentation
[43]], part-of-speech-tagging [27]], and machine translation [68]]. Compared to the prosperity and
development of structured prediction algorithm designing, the theoretical analysis of structured
prediction appears to be not sufficiently well-documented [[13]], especially the studying on sharper
generalization bounds. However, it is known that the theoretical study of structured prediction
algorithms is essential [[18, (12} [13} [1]].

Several theoretical studies of structured prediction consider a specific algorithm and a simple loss
such as Hamming loss [[60} (16} |14]. Recently, increasing work has considered the analysis of general
losses. These works can be roughly cast into four categories: PAC-Bayesian approach, factor graph
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decomposition approach, implicit embedding approach, and stability approach. [22}45][26| 4] provide
PAC-Bayesian guarantees for arbitrary losses through the analysis of randomized algorithms using
count-based hypotheses. [12, [13] 153} 152, 8], [11} |58 [7] use implicit loss embedding to construct
a connection between discrete output of structured prediction and regression, to investigate the
generalization performance of structured prediction. [18}[3}|51] present generalization bounds for
general losses based on factor graph decomposition approach, which is proposed in the seminal
work [18]]. [41] 42, 40] use the stability tool to investigate the generalization bounds and provide
interesting theoretical insights that structure prediction is possible to generalize from a few large
examples, potentially even just one. A special case of structured prediction problem worth mentioning
is multi-class classification [134, 33} 136, 155 50, 165} 148l 149, 144} [31]], whose scoring function can be
seen as a factor graph with both factor node size and substructure size equal to one.

Although the aforementioned works have provided generalization bounds from different perspectives,
there are still some problems urgently to be solved in structured prediction.

(1.) Existing generalization bounds mostly have a slow convergence rate with respect to (w.r.t.) the
sample size n. Specifically, in PAC-Bayesian approach, [45, 26} 4, [22] provide the generalization
bounds of order O(ﬁ) In implicit embedding approach, [12, 13 |52} [11} I58, [7] provide the

convergence rate of order O(#), and [53] of order O(ﬁ) In the factor graph decomposition
approach, [18] [51] present the generalization upper bounds of order O(ﬁ) Also, in stability
approach, [41} 142, 40] show the (’)(\%) order bounds. Therefore, this raises a question: can the
convergence rate of structured prediction achieves faster order O(=)?

1
(2.) In structured prediction, the number of possible labels is potentially infinite [[18]]. Thus it is
important to obtain upper bounds that have a lower order dependency on the cardinality of possible
labels. The factor graph decomposition approach can provide the explicit dependency on the properties
of the factor graph and help us to explicitly show the dependency on the number of possible labels,
which sheds new light on the role played by the graph in generalization [18]. Therefore, our analysis
is based on the factor graph decomposition [18, 3 51]]. However, [3] focuses on the lower bound,
[51] studies the specific surrogate loss, and the upper bounds in [18] show a square-root dependency
on the cardinality of possible labels. If we consider the vast number of possible labels, the results in
[L8] may be divergent and can not explain the good performance of structured prediction algorithms
in practice. Thus, can the upper bound of structured prediction presents a lower order dependency on
the cardinality of possible labels or even no dependency?

(3.) Although some work in multi-class classification [36} 55, 165]], a special structured prediction
problem, have shown the faster convergence rate of order O(%) w.r.t. the sample size n, it is unknown
in more difficult and complex structured prediction problems. Additionally, we naturally want to
know whether the generalization bounds of structured prediction can combine (1) with (2) to show

faster convergence rates simultaneously?

This paper intends to answer the three interesting questions. We consider the general loss and present
novel margin-based theoretical analysis for structured prediction from three perspectives: Lipschitz
continuity, smoothness, and space capacity condition. We first assume the loss function used in
structured prediction is Lipschitz continuous and try to answer question (2). Under this condition,
we improve the generalization bounds of structured prediction from a square-root dependency to
a logarithmic dependency on the label set cardinality, but a slow convergence rate of order O(ﬁ)

w.r.t. the sample size n. Then, we assume the loss is smooth and intend to answer questions (1)
and (3). Under this assumption, we obtain sharper bounds that not only have the faster convergence
rate of order (9(%) on the sample size n but also have the logarithmic dependency on the label
set cardinality. Furthermore, we consider the space capacity-dependent assumptions: logarithmic
covering number and polynomial covering number assumptions, which are commonly used in learning
theory [132, 169, |56]]. This setting attempts to answer questions (1-3). Under this condition, we show
that the bound can present no dependency on the label set cardinality, simultaneously with faster
convergence rates than (’)(ﬁ) In the above three perspectives, we all provide applications to suggest

that these conditions are easy to be satisfied in practice.
This paper is organized as follows. In Section[2] we introduce the notations and definitions relevant to

our discussion. In Section[3] we present the main results, deriving a series of new learning guarantees
for structured prediction. Section 4 concludes this paper.



2 Preliminaries

Notations. Let P be a probability measure defined on a sample space X' x ) with X € R? being the
input space and ) being the output space. A key aspect of structured prediction is that the output
space may be sequences, graphs, images, or lists [[18]. We thus assume that ) can be decomposed
into [ substructures: ) = )y X --- X ), where ); is the set of possible labels that can be assigned
to substructure ¢. Take the simple webpage collective classification task for example [59], each );
is a webpage label and ) is a joint label for an entire website. If we assume each )); € {0, 1}, the
number of possible labels to ) is exponential in the number of substructures [, i.e., | Y| = 2L,

Factor graphs and scoring function. In structured prediction, we aim to learn a scoring function
f =& xY — R. Let F be a family of the scoring function. For each f € F, we define the predictor
f as: foreach z € X, f(z) = arg maxycy f(x,y). Moreover, we assume that the scoring function
f can be decomposed as a sum [61} 160} 30, [18], which is standard in structured prediction and can
be formulated via the notation of factor graph [18]]. A factor graph G is a bipartite graph, and is
represented as a tuple G = (V, H, E), where V' = {1, ...,1} is a set of variables nodes, H is a set
of factor nodes, and F is a set of undirected edges between a variable node and a factor node. Let
N (h) be the set of variable nodes connected to the factor h by an edge and ), be the substructure set
cross-product YV, =[], N (h) V. Based on the above notations, the scoring function f(z,y) can
be decomposed as a sum of functions f [18], with an element x € A" and an element y;, € ), as
arguments:

f(xvy) = Z fh(xayh)~

heH
In this paper, we consider the more generally setting: for each example (x;, y;), the corresponding
factor graph may be different, that is, G(z;,v;) = G; = ([li], Hi, E;). A special case of this setting
is that, for example, when the size [; of each example is allowed to vary and where the number of
possible labels || is potentially infinite. Figure 1 shows different examples of factor graphs.

Learning. In order to measure the success of a prediction, we use a loss function L : Y x YV — R
to measure the dissimilarity of two elements of the output space ). A distinguishing property
of structured prediction is that the natural loss function admits a decomposition along the output

substructures [18], such as the Hamming loss, defined as: L(y,y’) = %22:1 I, %y, for two

outputs y,y" € Y, withy = (y1,...,y) and y = (¥],...,y;), or edit-distance loss in natural
language and speech processing applications, or other losses [[18| [10]. Given a training set S =
{(z1,91), -, (Tn, yn)} of size n being independently drawn from the underlying distribution P, our
goal is to learn a hypothesis f € F with good generalization performance from the sample .S by
optimizing the loss L. The performance is measured by expected risk, defined as

R(f) = E(z,y)wP[L(f(w)v y)]

However, the above mentioned loss function f — L(f(z),y) is typically the 0 — 1 loss of f, which
is hard to handle in machine learning. Therefore, one usually consider surrogate losses [[12} [13 18]

Margin and loss function class. We now introduce the definition of standard margin and the
surrogate loss. The margin of any scoring function f for an example (x, y) is defined as:

pr(x,y) = f(z,y) - g}r}%f(% y').

We consider the scoring function f of the form f(x,y) = (w, ¥(x,y)), where ¥ is a feature mapping
from X x Y to RY such that ¥(z,y) = >, o 5y Ya(z, yn) due to the decomposition of f [18]. And
we define the following scoring function space:

F={zm (w,¥(z,y)) - w e RY, [lwll, <A}, (1)

where ||w||, = (Zfil |w; |p)%. Then, the corresponding surrogate loss function class is defined as:

‘Cp = {Ep(xayvf) = g(pf(:ﬂ,y)) : f € F}?
where £, is the surrogate loss of L. We assume ¢, is bounded by M, which implies that 0 <
L(f(x),y) = L(f(%),Y)p;(x,y)<0 < L(ps(z,y)) < M since L is positive, the cost will only occur
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Figure 1: Example of factor graphs. (a) represents an example of pairwise Markov network decom-
position: f(z,y) = fn,(x,y1,Y2) + frn,(x, Y2, y3); (b) represents an example of factor graph that

having a sequence structure: f(z,y) = fn, (@, y1,y2) + fr, (T, Y2, y3) + frs (2, Y3, ya); () represents
a tree-structured factor graph.

when the margin function value is negative and the surrogate loss ¢ is larger than L. Additionally, we
define the empirical risk of any scoring function f as

R(f(pf)) = % pr (i, 9i, [)

and the expected risk as
R(Ups)) = Eqzy)~p [lo(z,y, )]
Clearly, we have R(f) < R(¢(py)).

3 Main Results

This section provides sharper generalization bounds for structured prediction from three perspectives:
Lipschitz continuity, smoothness, and space capacity. Finally, we obtain sharper bounds of order
(’)(%L) w.r.t. the sample size n and showing a logarithmic dependency, or even no dependence, on the
label set cardinality. In each case, we provide applications to suggest that these conditions are easy to
be satisfied.

3.1 Lipschitz Continuity Dependent Case
Assumption 1 Assume that ¢ is p-Lipschitz continuous, that is

() — €(5)] < alt — s].

Assumption|[I]is a pretty mild assumption. The hinge loss £(ps) = (1 — ps)4 and the margin loss
Upy) =1p,<0+ (1 — prp~)1o<,p, <, satisfy Assumption 1] [33]. Moreover, the loss of truncated
margin functions in [25] satisfies Assumption[I] The additive and the multiplicative margin loss
provided by [18]], which covers many existing structured prediction algorithms, satisfy Assumption|[I]
(see Corollary |1|for details).

Theorem 1 Under Assumption[l] for any 6 > 0, with probability 1 — § over the sample S of size n,
the following holds for all f € F,

R(f) < R((py)) < R({(ps)) + O (“j%" (108 (n?) + log? (sk) ) + 1/ 1%}“) :

where s = max;c[y) |H;

, k = max;ep,) | H;|d;, and where d; = maxye|g,| | Vhl.

Remark 1 [Sketch of Theorem [I}] Since our task is to prove bounds with better rates, that is,
which decrease fast with n — oo, thus for brevity, we defer the explicit results of all theorems to the
Appendix. In Theorem [I] we focus on terms in the numerator. From Theorem I] one can see that
our generalization bound has a linear dependency on the maximum factor size of a given sample
set, that is s = max;¢[,,) [H;|. The terms of order O(log(+)) is small enough and typically can be

ignored. For terms log% (n?) and log% (sk), if we consider the case n? > sk, our result suggests that



in the generalization error, the influence of sample size n is larger than the label set cardinality, which
implies that if the sample size n is large enough, hyper-parameter n will dominate the generalization
performance of structured prediction. While for the label set cardinality, our bound has a logarithmic
dependency, that is log(d;) (Since the factor size s is typically far smaller than label size d; [18]], we

just consider the label set size d; in the term log% (sk)). We now compare our bound with the related
work in the factor graph decomposition [[18}51]]. When the function class F is assigned withp =1 or

p = 2, the generalization bounds in [I8] are R(£*¥(ps)) < R(£%%(p;)) +O(NL pf /8 1/5) and

R (pg)) < RU™ () + O(Maxds 4 J108L0) (gadd and fm!* are defined in Application
1). Thus the generalization bounds in [18] have a linear dependency on s but a square-root dependency
on d;, i.e., v/d;. The term v/d; may be extremely large since it is the largest label set cardinality of
the factor in H;. If we consider the extremely large number of possible labels, the bounds in [[18]
may be divergent. Thus, by comparison, our generalization bound has a significant improvement.
[51] studies the specific surrogate loss £¢¢, and they also provide a logarithmic dependency on the
label set cardinality. Besides, by considering stationary $-mixing stochastic process [47], they also
provide interesting generalization analysis for learning with weakly dependent data. Unfortunately,
their generalization bounds and proof techniques are limited to this specific loss. Compared with
their results, our bound is applicable for any Lipschitz continuity losses. In other words, so long as
the surrogate loss is Lipschitz continuous w.r.t. the margin function, our bound is applicable. This
assumption is pretty mild, as we have discussed below Assumption[I} The proof of Theorem [I]is
provided in Appendix A. Additionally, the Lipschitz continuity constant y is typically small. We
present two applications for examples in the following.

Application 1. [18]] provides two margin loss, the additive and the multiplicative margin losses, that
can be used to guarantee many existing structured prediction algorithms, defined as:

4oy (,9)) = 0 (max L00) = £ 1) = F )]

#y

(1)) = B <1;}i>y<L(y’,y) <1 - % [f(z,y) — f(%?/)])) ;

where ®*(r) = min (max, , L(y,y’), max(0,r)) for any y,y’ € Y. For the additive and the
multiplicative margin losses, we show that they are % and % Lipschitz continuous w.r.t. the margin
function p; respectively in Appendix B, thus we have Corollary|I}

Corollary 1 Fix p > 0. For any § > 0, with probability 1 — § over the sample S of size n, the
following holds for all f € F,

R(f) < R(E“™(pg)) < R (py)) + O (ﬁ’: (1o (n2) + log? (sh)) + W ) :

R(f) < R("™"(py)) < R(™"(py)) + O (A@rﬁln (10g? (n?) + 10g? (s)) + \/@ ) :

where s = max;

icin] [Hildi, and where d; = maxp¢ g, |Vl

Application 2. In many structured prediction applications, such as natural language processing
and computer vision, people may wish to take advantage of very rich features. However, using
a rich family of hypotheses can lead to overfitting. In this application, we further consider to
derive learning guarantees for ensembles of structured prediction rules that explicitly account for the
differing complexities between families, called Voted Risk Minimization (VRM) [[15} [18]]. Assume
that we are given p families I, ..., F, of functions mapping from & x ) to R. Define the ensemble
family G = conv(UY_, F;), that is the family of functions g of the form g = Zthl oy fy, where
a = (aq, ..., ) is in the simplex A and where, for each t € [1,T)], f, is in F}, for some i, € [1,p].
Consider the following loss function:

6594y (.9)) = 8 (max L/ ) + 7 =+ lan) ~ g2

et (o, (2, y)) = B (ryr}% Ly, y) (1 +7 - % l9(z,y) - g($7y/)])> 7



where 7 can be seen as a margin term that acts in conjunction with p. We assume these families
Iy, ..., I, have differing complexities. This setting is the same as [[18], and under this setting we
have Corollary [2 for VRM.

Corollary 2 Fix p > 0. For any § > 0, with probability 1 — § over the sample S of size n, the
Sfollowing holds for all g € G,

Rlg) < RIE9(p,)) + O (31“”

2 (gt (%) + log? () + v/CTrpp 919 )
MslInn
pvn
where C(n, p, p. |, 6) = [ log(1212 )] 1082 1 108210 s — ypane,e 0 |H,

Vhl.

Remark 2 [Sketch of Applications 1 and 2.] Corollary [1| shows that, under the same assump-
tion, our generalization bounds improve results in [I8] from a square-root dependency +/d;
to a logarithmic dependency log(d;). For VRM in Application 2, [18] shows that R(g) <

R(65%(pg)) + O(52 Soimy aRE(Fy,) + /Clnp, p,IV],8)) and R(g) < R (py)) +
(9(% 23;1 ARG (Fy,) ++/C(n,p, p,|V],0)). Thus, the generalization bounds of VRM in [18]

are dominated by term Zle ;R (Fy, ), where RE (Fy,) is factor graph Rademacher complexity
of the function class Fj, (please refer to their paper for definition). The explicit dependency of
their bounds on parameter vector « reveals that learning even with highly complex hypothesis sets
could be possible so long as the complexity term. However, Corollary [2] shows the explicit bounds
rather than the R (F}, ) term and suggests that the generalization bounds of VRM do not depend
on the parameter vector «, which implies that a huge number of complex families are allowed.
Therefore, it is feasible to use rich families in conjunction with highly complex families in structured

Rlg) < R (0,) + 0 (2 (1og () + 1og () + v/l g 915)).

, k= maxie[n] |Hi|d,',

and where d; = maxcq,|

max;en] | Hi|?d;

prediction. Furthermore, in Theorem 2 of [18]], the term R (F, ) is of order , where

di = maxpe|g,| |Vu|, which presents a square-root dependency on the label size, that is v/d;. By
comparison, our bounds are tighter. Therefore, the generalization bounds in Corollary [2| provide
further insights into the learning guarantees of VRM. The complete proof of Corollary[T|and Corollary
[)is provided in Appendix B and C, respectively.

Remark 3 We now consider two examples in practical situations and further demonstrate our results.

(1.) Consider the pairwise Markov networks with a fixed number of substructures [ studied by
(60, [18]), the corresponding factor graph in our paper has [ nodes, |H|; = [, and the maximum size
of V), is d; = c? if each substructure of a pair can be assigned one of c class. ¢ may be extremely
large in some practical applications, for instance, in part-of-speech tagging. We further consider the
Hamming loss L(y,y') = 1 Z;zl I,y as in [60, [18]. If we apply Corollary ITI to the pairwise
Markov network and divide the bound through by / to normalize the loss as in [60, [18], we obtain

generalization bounds of (9(’1:/% ( log% (n?) + log% (lc)) + 4/ W) , which has a logarithmic

order dependency on the output space size.

(2.) Consider the special case of structured prediction: multi-class classification, we have |H|; = 1
and d; = ¢, where c is the number of classes. ¢ may be extremely large since many challenging
applications, such as photo and video annotation and web page categorization, can involve tens
or hundreds of thousands of classes [62]. For instance, practical web page categorization datasets
AmazonTitles-3M and Amazon-3M have 2,812,281 labels, which are much larger than the training
samples (please refer to [3]).

3.2 Smoothness Dependent Case

Assumption 2 Assume that { is 3-smooth, that is
|VE(s) — VL) < Bls —t].

Assumption [2]is a pretty mild condition. Both the square hinge loss £(ps) = (1 — py)2 and the
square margin loss £(pf) = (1p,<0 + (1 = prp~")lo<p,<,)? satisfy Assumption 2| [36].



Theorem 2 Under Assumption Yu > max(1 %),for any § > 0, with probability 1 — § over the

sample S of size n, the following holds for all f € F,

R < Rit(pp) < max { 2 RUE(1). RCGoy)

+0 (ﬁs?lzg% (log(n?) + log(sk)) + log,fé)> } ,

, k = max;ep,) |H;|d;, and where d; = maxje g, | | Vhl.

where s = max;cy,) | H;

Remark 4 [Sketch of Theorem2}] Theorem 2] suggests that the generalization bound of structured

prediction is of order O(%) when the surrogate loss is smooth w.r.t. the margin function (we hide
the logarithmic term). Since the sample size n is typically far larger than s, this bound is clearly

Vmax; e [Hi 12d;
NG

2
max;en] |H;|
mexeeln L7 Ang

sharper than bounds in Theorem (I} Compared with [[18] whose bounds are of order

where d; = maxj,¢|g,| | V|, our generalization bound in Theorem 2|is of order
if we consider the case d; > max;c[y) | H;|?> which is very possible since the label set cardinality
d; can be far larger than the factor size |H;|, our bound is sharper than bounds in [18]] whether in
terms of the sample size n or the order of the numerator. Compared with [51]], our bound has a linear
convergence rate on the sample size n, which is also faster than the slower order O(ﬁ) in [51]].

Overall, Theorem [2] obtains a sharper bound not only with a faster convergence rate on the sample
size n but with the logarithmic dependency on the label set cardinality. We now compare our results
with the stability-based results. [41 42} 40] use the stability tool to investigate the generalization
bounds of structure prediction. Denote the number of examples as n and the size of each instance
as m, under suitable assumptions and hidden logarithmic terms, the latest paper [40] provides the
generalization bounds of O(ﬁ) by the stability and PAC-Bayes combination. Compared with

this bound, our generalization bounds decrease faster on the sample size n. If we consider the case
of n > m, our bounds are tighter and have a faster convergence rate. In addition, our results are
based on the factor graph decomposition approach, which is beneficial for providing the explicit
dependency on the properties of the factor graph and helps us show the dependence on the number
of possible labels explicitly. And our theoretical analysis reveals that structured prediction can be
generalized well even if it has a vast output space and shows that there can be a tighter generalization
bound under what conditions. We further compare our bounds with PAC-Bayesian-based bounds. In
a seminal work, [46] provides PAC-Bayesian margin guarantees for the simplest classification task,
binary classification. The generalization bounds in Corollary 1 and Theorem 3 in [46] are of slow
order O(ﬁ) The authors then use the PAC-Bayesian theorem to provide generalization bounds
for structured prediction tasks involving language models [45]]. [26, 4} [22] further extend [45] to
more complex learning scenarios of structured prediction: [26] extends [45] to the maximum loss
over random structured outputs; [4] extends [45] to Maximum-A-Posteriori perturbation models;
[22] extends [45] by including latent variables. However, regarding the sample size n, generalization
bounds in the related work [45, 26 14, 22] are all stated in slow order O(ﬁ) Their analysis typically

build on the looser form of McAllester’s PAC-Bayesian bound [46] and the global Rademacher
complexity [2]], which leads to the slow order generalization bound. To our best knowledge, how to
use the PAC-Bayesian framework to establish fast rates for structured prediction is still unexplored. It
would be very interesting to derive sharper PAC-Bayesian guarantees for structured prediction since a
salient advantage of PAC-Bayes is that this theory requires little assumptions [24]. The complete
proof of Theorem2]is provided in Appendix D. Besides, the smooth constant 3 is also typically small.
We provide Application 3 for examples in the following.

Application 3. Consider the square hinge loss
2
tanlora) = (1= (£ - max ) ) )
y'#y +

which is = 2 smooth w.r.t. the margin py, thus the generalization bound of /,, for structured
prediction is immediate.

Remark 5 We now compare our results with the implicit embedding-based results [12} 13} 153, 152]
8L 111,158, [7]. They mostly provide the convergence rate of slow order O(ﬁ) w.r.t. the sample



size n. The sharpest bound among the related work is provided by [8], which considers the implicit
embedding framework from [12]], and leverages the fact that learning a discrete output space is
easier than learning a continuous counterpart, deriving refined calibration inequalities. Then, [8] uses
exponential concentration inequalities to turn the refined results into fast rates under the generalized
Massart’s or Tsybakov margin condition. Firstly, regarding the sample size n, Theorem 6 in [8] shows

e

a excess risk bound of O(n~ "2 ), where « > 0 and is a parameter of generalized Tsybakov margin
condition, characterizing the hardness of the discrete problem. Although [8] proposes this interesting
generalization bound, the bound is presented in expectation. By comparison, our result is presented
in high probability, which is beneficial to understand the generalization performance of the learned
model when restricted to samples as compared to the rates in expectation. Secondly, generalization
error bounds studied in [8] require stronger assumptions. For instance, Theorem 6 is proposed under
Bilinear loss decomposition condition, exponential concentration inequality condition, generalized
Tsybakov margin condition, bounded loss, and finite prediction space condition. Compared with [§]],
our bounds are presented without the margin conditions. Recently, there has been some work devoted
to providing fast classification rates without standard margin conditions in binary classification, for
instance, [6]. Moreover, our Lipschitz continuity condition and smoothness condition are assumed
on the margin function. It is easy to construct a surrogate loss which is Lipschitz continuous or
smooth w.r.t. the margin function. Finally, our generalization bounds are built upon the factor graph
decomposition approach, which is beneficial for providing the explicit dependency on the number of
possible labels. In our analysis, we not only improve the dependence on the sample size n, but also
the dependence on the output space size, explaining that structured prediction can still generalize
well in the extremely large output space.

3.3 Capacity Dependent Case

Definition 1 (Covering Number [70}29]]) Let F be class of real-valued fucntions, defined over a
space Z and S := {z1,...,2,} € Z" of cardinality n. For any € > 0, the empirical {..-norm
covering number N (e, F, S) w.r.t S is defined as the minimal number m of a collection of vectors

vl, ..., v™ € R” such that (v is the i-th component of the vector v7)

sup min max |f(z;) — Vf\ <e.
fe]:j:L...,mi:l,‘..,n

In this case, we call {v1,....v™} an (¢, {o,)-cover of F w.r.t. S. Furthermore, the following covering
number is introduced:

N(&, F, || |loo) := supsup Ny (€, F, S).
n S

Before presenting Theorem (3} we use the property V(z,y) = >,y ¥n(z,ys) to decompose
U (z,y) and introduce the following space (different from F defined in ):

Fi o= {Un(@,yn) = (w, p(z,yn)) : w € RY, w|l, < Ap}. @)
Assumptions [3]and ] are assumptions w.r.t. the covering number bounds (space capacity) on Fj,.

Assumption 3 (polynomial covering number) We assume that the function class defined in
satisfies that

log N (&, Fn, || - [loc) € 2 € >0,

= e

where 0 < p < 2 and vy, is a positive constant dependent on p.

Assumption 4 (logarithmic covering number) We assume that the function class defined in
satisfies that

log N (e, Fn, || - o) < Dlog?(L) >0,
€
where p, D and ~y are three positive numbers.

‘We take the linear function class and the kernel function class for instances to demonstrate the two
assumptions. Theorem 4 in [69] and Corollary 9 in [28] give the covering number bound of linear



function class, which satisfies AssumptionE]with p = 2. Lemma 19 in [48]] extends Theorem 4 in
[69] to reproducing kernel Hilbert space, which satisfies Assumption [3| with p = 2. If the linear
function class is specified by the commonly used Gaussian kernel, the covering number bounds in
Theorem 15 of [48] and Theorem 5 of [21]] satisfy AssumptionE]with 0 < p < 1. For more covering
number bounds of linear function classes, please refer to [64]. Application 4 in the following provides
a covering number bound satisfying Assumption [4]if the parameter w is restricted to a euclidean ball.

Remark 6 Classes that fulfill Assumption [3]are known as satisfying the uniform entropy condition
[63]. The popular RKHSs of Gaussian, polynomial and finite rank kernels satisfy the polynomial
covering number assumption [23]]. Many popular function classes satisfy the logarithmic covering
number assumption when the hypothesis class is bounded: Any function space with finite VC-
dimension [63} 54], including linear functions and univariate polynomials of degree k (for which
d=k+1,and p = 1) as special cases; Any RKHS based on a kernel with rank D when p = 1 [9];
Any unit ball B C R? with fixed € € (0, 1) [57].

Theorem 3 With different space capacity assumptions, we have the following different results:

1) Under Assumptlonslandl 3l Vo > max(1, 2M) for any & > 0, with probability 1 — § over the
sample S, we have

. . p log(%
R < B(6(p3)) < max { Rt Rt + 0 (2554 REEDY
ne
forany f € F, where 0 < p < 2, s = maxX;c[,,] | H;|, and vy, is a positive constant dependent on p.

2) Under Assumptlonslandl Yo > max(1, 2M) for any § > 0, with probability 1 — § over the
sample S, we have

R(f) < R(t(ps)) < max {Uﬁlz%(z(pf)), R(tpy)) + 0O ( Dlog (k) | log<5>) } ,

n

for any f € F, where p > 0 and s = maxc(y] |H;|, and where p, D and v are three positive
numbers.

Remark 7 [Sketch of Theorem [3|] Theorem 3|suggests that, when the function space Fj, satisfies
the specific space capacity assumption, the generalization bound of structured prediction can have no
dependency on the cardinality of the label set, just presents the dependency on the factor size: sP or
log?(s). It also implies that the factor node size s can presents a lower order O(s?) (when 0 < p < 1)
or O(log”(s)) than linear dependency O(s) in Theorem or square dependency O(s?) in Theorem
[2l From Theorem 3] one can also see that, under the polynomial covering number assumption, this
bound is sharper than results in Theorem [T| w.r.t. the sample size n when O < p < 2. Under the
logarithmic covering number assumption, the bound presents faster order (9( ) w.r.t. the sample size
n. Overall, Theorem [3] obtains generalization bounds that have no dependency on the cardlnahty
of the label set and have faster convergence rates than O( \F) simultaneously. Theorem 3 in [51]

also provides a generalization bound not dependent on the label space size via algorithmic stability.
However, their bound requires a convex surrogate loss w.r.t. the parameter w and considering the
regularization, so that the regularized empirical risk is strongly convex w.r.t. w, which may be
restrictive for margin-based surrogate losses [18]]. Moreover, this bound is derived in expectation. As
a comparison, our bound is obtained with high probability. The proof of Theorem [3]is provided in
Appendix E. Besides, as showed in Corollary [2] the Lipschitz continuity constant y is typically small.
An example satisfying Assumption[]is given in Application 4.

Application 4. We assume that any ||V, (z, yp,)|| is bounded by B, which is a standard assumption
in structured prediction. For example, [18]] assumes max; j, o, |Un(x,yn)|l2 < ro where r is a
constant. Thus, there holds that | (w1, Up, (2, yn)) — (we, Up(z, yr))| < B|lwr — ws|| for any w1, ws
and sample (z,y) € X x Y, which implies that (w, ¥p,(z,yp)) is B-Lipschitz w.r.t. w. Assume that
for any w € W, W C RY is an unit ball. According to Lemma 1.1.8 in [57]], any unit ball has the
logarithmic covering number bound. Therefore, combined with the Lipschitz assumption, we have

3B
log (e, P+ o) < Nlog (22, ®

which satisfies Assumption[d} Substituting (3) into Theorem 3] the generalization bound of structured
prediction in this setting is immediate.




Remark 8 [Sketch of Application 4.] To compare our bounds with the extensively studied multi-
class classification task where |H;| = 1, d; = ¢, and where ¢ is the number of classes of multi-
class classification task, we consider our bounds in the multi-class classification case, which is
O(M). To the best of our knowledge, this is the first high probability bound not dependent
on the label size ¢ in multi-class classification. In related work of multi-class classification [34]
331,136, 551 150, [65], 48], 49] 144!, [18], 35]], [[18] shows a convergence rate of order O(ﬁ) under 2-
log?(nc)
( v )

norm regularization condition; [34] shows a convergence rate of order O under /,.-norm

Lipschitz continuous condition; [33]] shows a convergence rate of order (9(\/% ) under ¢3-norm

3
Lipschitz continuous condition; [36] shows a convergence rate of order O(W) under />-norm

Lipschitz continuous, smoothness and low noise conditions; [35] shows a convergence rate of order

O(%) under ¢5-norm Lipschitz continuous and decay of singular value conditions; [65] shows a
3

convergence rate of order O(%) under /,-norm Lipschitz continuous and strong convexity

conditions (Due to length limit, we just compare our result with the recent work). However, our

result shows that if the loss is p-Lipschitz continuous w.r.t the margin function and the conditions

in Application 4 are satisfied, the generalization bound of multi-class classification can show a fast
convergence rate of order O(M). Note that in this result, we do not assume strong curvature
conditions: strong convexity or smoothness. If we consider the case N log(y/n) < log®(nc), our

bound is also sharper than the state-of-the-art generalization bound in multi-class classification, under
much milder assumptions.

Excess Risk Bounds. Define f* = argminser R({(py)) and f* = argminser R({(py)), the
excess risk of structured prediction is R(€(p.)) — R({(ps+)), which demonstrates the performance
of the empirical risk minimizer learned on the samples on the population level and is also an
important measure for understanding the generalization performance [12, 138} 139,166,137, 167]. Assume
that R(¢(ps) — L(ps))* < BR({(pg) — €(pys+)) for some B > 0 and every f € F, we have the
following Corollary.

Corollary 3 With different space capacity assumptions, we have the following different results:

1) Under Assumptions|[l|and[3| for any § > 0, with probability 1 — § over the sample S of size n, we
have

R(f) < R(€(ps.)) < R(L(ps-)) + O (’yppfsp N log(é)) '

n p+2 n

forany f € F, where 0 < p < 2, s = maxX;e[y] | H;|, and vy, is a positive constant dependent on p.

2) Under Assumptions|[l|and[| for any § > 0, with probability 1 — § over the sample S of size n, we

have
log? (sy+/n) N log(%)
n n '

R < Rit(py.)) < R(tpy-) +0

, and p, D and ~y are three positive numbers.

forany f € F, where p > 0, s = max;e | H;

Remark 9 [Sketch of Corollary [3}] The excess risk bounds in Corollary [3| have the same order
convergence rates as results in Theorem[3] And the meaning of these results has been discussed in
Remark [7]and Remark [§] We provide the complete proof of Corollary 3]in Appendix F. Considering
the length limit, some discussion of this paper is postponed to the appendix.

4 Conclusion

In this paper, we are towards sharper generalization bounds for structured prediction. The analysis is
based on the factor graph decomposition approach, which can help shed new light on the role played
by the graph in generalization. We present state-of-the-art generalization bounds from different
perspectives. Overall, the bounds presented have answered the three questions posed in Section[I] We
believe our theoretical findings can provide deep insights into the learning guarantees of structured
prediction. Additionally, we are also concerned about whether the convergence rate of structured
prediction can reach faster order than O(1/n)? We will investigate this problem in future work and
design new algorithms based on our theoretical analysis.
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