
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON IMPROVING NEUROSYMBOLIC LEARNING BY EX-
PLOITING THE REPRESENTATION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of learning neural classifiers in a neurosymbolic setting where
the hidden gold labels of input instances must satisfy a logical formula. Learning in
this setting proceeds by first computing (a subset of) the possible combinations of
labels that satisfy the formula and then computing a loss using those combinations
and the classifiers’ scores. However, the space of label combinations can grow
exponentially, making learning difficult. We propose the first technique that prunes
this space by exploiting the intuition that instances with similar latent represen-
tations are likely to share the same label. While this intuition has been widely
used in weakly supervised learning, its application in our setting is challenging due
to label dependencies imposed by logical constraints. We formulate the pruning
process as an integer linear program that discards inconsistent label combinations
while respecting logical structure. Our approach is orthogonal to existing training
algorithms and can be seamlessly integrated with them. Experiments on three
state-of-the-art neurosymbolic engines, Scallop, Dolphin, and ISED, demonstrate
up to 74% accuracy gains across diverse tasks, highlighting the effectiveness of
leveraging the representation space in neurosymbolic learning.

1 INTRODUCTION

Motivation. Neurosymbolic learning (NSL), i.e., the integration of symbolic with neural mechanisms
for inference and learning, has been proposed as the remedy for some of the most vulnerable aspects
of deep networks Feldstein et al. (2024). Recent works have shown that NSL holds immense promise,
offering, in addition, the means to train neural networks using weak labels Feldstein et al. (2023);
Wang et al. (2023). We study the problem of learning neural classifiers in frameworks where a
symbolic component “sits” on top of one or more neural classifiers and learning is weakly supervised
Manhaeve et al. (2021). An example of our setting, referred to as NESY, is presented below.
Example 1.1 (NESY example). Consider a classical example of NESY: learning an MNIST classifier
f using training samples of the form ({x1, x2}, ϕ), where x1 and x2 are MNIST digits and ϕ is a
logical sentence that the gold labels of x1 and x2, l1 and l2, should satisfy Manhaeve et al. (2021).
Unlike supervised learning, l1 and l2 are unknown to the learner. The logical sentence ϕ restricts
the space of labels that can be assigned to x1 and x2. For example, consider the training sample
({x1, x2}, ϕ1 := l1 + l2 = 8). According to this sample, any combination of l1 and l2 whose sum is
8 is valid and all other combinations are invalid, e.g., l1 = 2 and l2 = 6 is valid, but l1 = 3 and
l2 = 6 is invalid. In total, there are 9 different combinations of l1 and l2 that satisfy ϕ1. The gold
labels of x1 and x2 are 1 and 7, respectively. However, they are unknown during learning.

NESY is one of the most popular frameworks in the NSL literature, with DeepProbLog Manhaeve
et al. (2021), NeuroLog Tsamoura et al. (2021), SCALLOP Huang et al. (2021a), DOLPHIN Naik et al.
(2025), and ISED Solko-Breslin et al. (2024) being only a few of the frameworks that rely on it. In
addition, as discussed in Wang et al. (2023), NESY encompasses partial label learning (PLL) Cour
et al. (2011); Cabannes et al. (2020), where each input instance is associated with a set of mutually
exclusive candidate labels, and learning classifiers subject to constraints on their outputs, Steinhardt
& Liang (2015); Zhang et al. (2020). and has wide range of applications, including fine-tuning
large language models Li et al. (2024), aligning video to text Huang et al. (2024a), visual question
answering Huang et al. (2021a), and learning knowledge graph embeddings Maene & Tsamoura
(2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Limitations. Learning in NESY proceeds by first computing (a subset of) the possible combinations
of labels that lead to the given learning target, subject to the symbolic component, and then computing
a loss using those combinations and the classifiers’ scores. However, learning becomes more
challenging as the space of possible label combinations increases in size Marconato et al. (2023);
Tsamoura et al. (2025) . This is because supervision becomes weaker. The question arises: Are there
circumstances where we can safely discard specific label combinations?

Contributions. We are the first to propose a plug-and-play technique to reduce the space of candidate
label combinations by exploiting the inconsistency between the representation space and the space of
candidate label combinations in general-purpose neurosymbolic frameworks. Our intuition is that
if the latent representations of two instances are very close, then they belong to the same class, and
hence share the same gold labels. When applied to NESY, this intuition can substantially reduce
candidate label combinations during training:

Example 1.2. [Contd Example 1.1] Consider a second training sample ({x′
1, x

′
2}, ϕ2 := l′1+l′2 = 2),

where l′1 and l′2 correspond to the gold labels of x′
1 and x′

2. According to this training sample, the
valid combinations of labels for (x′

1, x
′
2) are (0, 2), (1, 1), and (2, 0). If the latent representations

of x1 and x′
1 are very close, then l1 must range in {0, 1, 2}. Hence, the number of candidate label

combinations associated with the first training sample reduces from 9 to 3.

Unlike NESY, the PLL literature has extensively investigated techniques that exploit the representation
space to discard erroneous candidate labels during training Wu et al. (2022); Xia et al. (2023); Wang
et al. (2022); Xu et al. (2021). In fact, the intuition in the above example has been successfully
adopted in weakly supervised learning He et al. (2024). However, its straightforward adoption in
NESY is problematic, as it can result in training samples associated with zero supervision, i.e.,
without candidate combinations of labels. To address this issue, we organize the training samples and
their associated candidate label combinations into a graph, called the proximity graph. The edges in
the graph reflect the proximity of instances in the representation space. Then, by generalizing the
intuition in our example, we introduce the problem of discarding the maximum number of candidate
label combinations subject to the edges in the graph under the constraint that each training sample is
associated with at least one candidate label combination. We then propose a solution to this problem
by casting it into an integer linear program (ILP) Srikumar & Roth (2023).

Our approach offers two unique benefits. First, it is complementary to NESY training algorithms: Our
technique first discards candidate label combinations; then training proceeds with the remaining label
combinations. Second, it can be employed in a training-free manner, i.e., we can discard candidate
label combinations using a pre-trained encoder, such as a large vision and language model Li et al.
(2023a), or ResNet He et al. (2015), before training. Alternatively, it may be applied during training,
i.e., by using the encoder trained so far to extract features for the corresponding training instances,
then training with the label combinations that have not been discarded, and repeating the process.

We evaluate the benefits of our technique, called CLIPPER, applying it in combination with three state-
of-the-art neurosymbolic engines, SCALLOP, DOLPHIN, and ISED, on a variety of benchmarks that
range from digit classification – the classic SUM-M , MAX-M , and HWF-M benchmarks Manhaeve
et al. (2021) – to visual question answering and video-to-text alignment. CLIPPER consistently
improves the accuracy across all engines and benchmarks. In our most challenging benchmark,
MUGEN, the baseline accuracy improves from 33.8% to 83.7%. The integration of CLIPPER with
the above engines was rather straightforward: we employed CLIPPER to filter out pre-images during
the pre-image computation phase and then used the remaining pre-images to train the classifier. Our
main contributions are:

• We formalize the problem of discarding label combinations for a set of NESY training
samples based on the proximity of the latent representations of their instances.

• We propose an ILP algorithm that guarantees that each training sample retains at least one
candidate label combination while maximizing the number of discarded label combinations.

• We evaluate our technique with different neurosymbolic engines on a variety of benchmarks
and demonstrate improvements in classification accuracy of up to 74%.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Supervised learning. For an integer n ≥ 1, let [n] := {1, . . . , n}. Let also X be the instance space
and Y = [c] be the output space. We use x, y to denote elements in X and Y. We consider scoring
functions of the form f : X 7→ ∆c, where ∆c is the space of probability distributions over Y, e.g., f
outputs the softmax probabilities (or scores) of a neural classifier. We use f j(x) to denote the score
of f(x) for class j ∈ Y. A scoring function f induces a classifier [f ] : X 7→ Y, whose prediction on x
is given by argmaxj∈[c] f

j(x). Supervised learning aims to learn f using samples of the form (x, y).

Neurosymbolic learning. We assume familiarity with basic notions of logic, such as the notions of
variables, constants, predicates, facts, rules, and sentences. We use small for constants and predicates,
and capitals for variables. We point readers that wish to learn this background to Li et al. (2023c).
To ease the presentation, we assume a single classifier f : X → Y. Notice, though, that our results
straightforwardly extend to settings with multiple classifiers. Let K be a background logical theory.
As mentioned in Section 1, K “sits” on top of f , i.e., it reasons over the predictions of f . Of
course, this is possible by translating neural predictions into facts, e.g., returning to Example 1.1,
DeepProbLog, SCALLOP, and DOLPHIN, create one fact of the form digit(d, x1) for each possible
digit d and associate this fact with the softmax score of class d for x1 (and similarly for x2). Then,
reasoning over those facts using K produces the overall outputs. Different frameworks may employ
different reasoning semantics at testing time which is orthogonal to this work.

Unlike supervised learning, in NESY, each training sample is of the form (x, ϕ), where x is a set of
elements from X and ϕ is a logical sentence (or a single target fact in the simplest scenario). The
gold labels of the input instances are unknown to the learner. Instead, we only know that the gold
labels of the elements in x satisfy the logical sentence ϕ subject to K. In Example 1.1, K is empty.
However, in one of the benchmarks that we consider in our experiments, namely VQAR Huang et al.
(2021a), K is commonsense knowledge from CRIC Gao et al. (2019).

The above may seem prohibitive for learning. However, ϕ and K allow us to “guess” what the gold
labels of the elements in x might be so that ϕ is logically satisfied subject to K. This is essentially the
process of abduction Tsamoura et al. (2021). To align with the terminology in Wang et al. (2023), for
a training sample (x, ϕ), we use the term pre-image1 to denote a combination of labels of the elements
in x, such that ϕ is logically satisfied subject to K. The gold pre-image is the one mapping each
instance to its gold label. By construction, each NESY training sample includes the gold pre-image.
More details on abduction are in Tsamoura et al. (2021). Abduction allows us to “get rid of” ϕ and
K and represent each training sample via x and its corresponding pre-images, i.e., as (x, {σi}ωi=1),
where each pre-image σi is a mapping from x into Y. We use D = {(xℓ, {σℓ,i}ωℓ

i=1)}nℓ=1 to denote a
set of n NESY training samples.

Example 2.1. [Contd Example 1.2] Candidate pre-images for the first sample are: σ1,1 = {x1 7→
0, x2 7→ 8}, σ1,2 = {x1 7→ 1, x2 7→ 7}, and σ1,3 = {x1 7→ 8, x2 7→ 0}. Two candidate pre-images
of the second sample are: σ2,1 = {x′

1 7→ 0, x′
2 7→ 2} and σ2,2 = {x′

1 7→ 1, x′
2 7→ 1}.

Our notation of pre-images is equivalent to the notation of training samples in Wang et al. (2023). The
only thing left to discuss is what is the learning objective in NESY. Each NESY framework adopts
its own learning objective. For example, in DeepProbLog and SCALLOP, the aim is to minimize
semantic loss Xu et al. (2018) or its approximations Huang et al. (2021a). The authors in Wang et al.
(2023) formalize learning via minimizing zero-one partial loss, that is the probability ϕ not being
logically satisfied subject to K. Our work is orthogonal to the actual loss used for training. The
notation used throughout our work is summarized in Table 6 in the appendix.

3 DISCARDING PRE-IMAGES BASED ON LATENT REPRESENTATIONS

We aim to reduce the number of candidate pre-images of the NESY training samples by exploiting
inconsistencies with the representation space. The question naturally arises: Can a reduction in
the number of pre-images per training sample lead to classifiers with higher accuracy? The NSL
community has verified this claim both experimentally Tsamoura et al. (2021); Huang et al. (2021a)
and theoretically Marconato et al. (2023); Tsamoura et al. (2025). For example, Marconato et al.

1Pre-images correspond to proofs in Tsamoura et al. (2021); Huang et al. (2021a); Manhaeve et al. (2021).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(2023) showed that the number of deterministic classifiers that minimize semantic loss Xu et al.
(2018) is directly proportional to the number of abductive proofs per training sample (i.e., pre-images
in our terminology), while Tsamoura et al. (2025) showed that the probability a classifier misclassifies
instances of the given class is a direct function of the number of pre-images.

Central to our technique are two notions: proximity graphs and consistency. Proximity graphs are
graphs whose edges reflect the proximity of latent instance representations. As we will see later,
proximity between instances imposes restrictions on the pre-images. Consistency reflects whether
a given pre-image abides by those restrictions. This section is organized as follows. Section 3.1
introduces our key notions and our new problem formulation. Section 3.2 presents our technique and
provides optimality guarantees. Section 3.3 discusses variations of our formulation from Section 3.2.

3.1 NOTIONS AND PROBLEM STATEMENT

We start by introducing the notion of a proximity graph. Let h be an encoder from X to Rm.

Definition 3.1 (Proximity graphs). A proximity graph Gh
D for D subject to h is a directed graph that

includes one node (ℓ, x), for each ℓ ∈ [n] and x ∈ xℓ, and, optionally, a directed edge from node
(ℓ, x) to node (ℓ′, x′) if h(x′) is close to h(x), for x, x′ ∈ X.

The edges of the graph Gh
D define proximity in the representation space. Notice that Definition 3.1

does not depend on either the encoder h that will give us the latent representations, e.g., the encoder
can be a pre-trained large vision and language model such as BLIP-2 Li et al. (2023a), or on the
measure used to decide the distance in the representation space. We deliberately kept the vague term
“close” in Definition 3.1 to support any distance measure a user may prefer. For example, an option is
to define a distance threshold θ and add edges only between instances whose latent representations
are less than θ apart. A second option is to add a directed edge (ℓ, x) → (ℓ′, x′) only if h(x′) is in
the top-k neighborhood of h(x), for x, x′ ∈ X – the use of directed edges gives us greater flexibility
to adopt such definitions. Of course, the “better” the encoder h is, the more effective our algorithm
will be in pruning the non-gold pre-images.

The graph Gh
D tells us when two instances of different samples are very close in the representation

space. When two instances are very close in the representation space, they should be of the same
class, sharing the same gold labels. Due to the dependencies among different labels in the pre-images,
some candidate pre-images may satisfy the restriction that the corresponding instances should share
the same gold labels. Others may not. The notion of consistency formalizes the above intuition.

Definition 3.2 (Consistency). For a proximity graph Gh
D, a pre-image σℓ,i in D is consistent with

an edge (ℓ, x) → (ℓ′, x′) in Gh
D if there exists a pre-image σℓ′,i′ in D, such that σℓ,i(x) = σℓ′,i′(x

′)
holds; otherwise, we say that σℓ,i is inconsistent with (ℓ, x) → (ℓ′, x′). The pre-image σℓ,i is globally
consistent in Gh

D if there does not exist an edge (ℓ, x) → (ℓ′, x′) in Gh
D with which σℓ,i is inconsistent.

We present an example of Definition 3.2.

Example 3.3 (Contd Example 2.1). Assume the proximity graph for the two training samples in
our running example includes edge e1 := (1, x1) → (2, x′

1). Since there does not exist a pre-image
associated with the second training sample mapping x′

1 to 8, the pre-image σ1,3 = {x1 7→ 8, x2 7→ 0}
is inconsistent with e1. In contrast, the pre-image σ1,1 = {x1 7→ 0, x2 7→ 8} is consistent with e1,
due to the existence of the pre-image σ2,1 = {x′

1 7→ 0, x′
2 7→ 2}. Generalizing this example, all the

pre-images in the first training sample that map x1 to a digit greater than 2 are inconsistent with e1.
The remaining pre-images are consistent with e1. Now, consider the edge e′1 := (2, x′

1) → (1, x1).
In the absence of other edges, all pre-images of the second training sample are globally consistent.

Inconsistencies between pre-images and edges indicate violations of the restriction that the corre-
sponding instances belong to the same class as we have seen in our running example. Hence, the
corresponding pre-images need to be discarded. Definition 3.4 summarizes the process of discarding
pre-images from a set of NESY samples based on such inconsistencies.

Definition 3.4 (Pruning). The pruning Π(Gh
D) of D subject to Gh

D is the set of NESY samples that
results after removing from each training sample in D each pre-image that is inconsistent with an
edge in Gh

D. The pruning is sound if at least one pre-image is preserved for each sample.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 CLIPPER

Inputs: Encoder h; NESY dataset D = {(xℓ, {σℓ,i}ωℓ
i=1)}nℓ=1.

Outputs: Pruned NESY dataset D′.
D′ := ∅
for each mini-batch b of D do

find the proximity graph Gh
b for b maximizing (1).

for each ℓ ∈ [n] do
Ωℓ := ∅
for each i ∈ [ωℓ] do

add σℓ,i to Ωℓ if I ′ℓ,i = 0 in the optimal solution to (1).

add (xℓ,Ωℓ) to D′

return D′

Different proximity graphs have different edges. Hence, they may result in different prunings. A gold
proximity graph for D, denoted by G∗

D, is a graph that includes a directed edge from (ℓ, x) to (ℓ′, x′)
if x and x′ belong to the same class, where ℓ, ℓ′ ∈ [n], x ∈ xℓ, and x′ ∈ x′

ℓ. We have:
Proposition 3.5. For each ℓ ∈ [n], the ℓ-th training sample in Π(G∗

D) includes the gold pre-image.

Due to Proposition 3.5, one might think that a strategy for discarding pre-images from D would be
the following: (1) Construct a proximity graph Gh

D including as many edges as possible2; and (2)
Remove each pre-image that is inconsistent with an edge in Gh

D. Does the above approach result in a
sound pruning? No, as we demonstrate in the example below:
Example 3.6 (Contd Example 3.3). Consider also a third training sample ({x′′

1 , x
′′
2}, ϕ3 := l′′1 +l′′2 =

16) and the edge e2 := (1, x1) → (3, x′′
1). In the pruning of the proximity graph that includes both

e1 (see Example 3.3) and e2, the first training sample will be associated with zero pre-images. This is
because x1 cannot range simultaneously in the domains {0, 1, 2} and {7, 8, 9}.

Cases such as those described in Example 3.6 are met when the encoder maps instances of difference
classes very close in the representation space. In other words, while adding as many edges as possible
to G∗

D does not affect the soundness of Π(G∗
D), this property does not hold in the general case.

To summarize the discussion so far, discarding pre-images from a set of NESY training samples
reduces to finding a proximity graph whose edges reflect proximity in the representation space,
according to Definition 3.1. However, we need to be careful on how we choose this proximity graph:
too few edges may result in discarding very few pre-images; too many edges may result to prunings
that are not sound, see Definition 3.4. The above gives rise to the following optimization problem.
Problem 3.7. For an encoder h, find the proximity graph Gh

D that leads to the pruning of D that
(1) is sound, (2) includes all globally consistent pre-images, and (3) has the lowest total number of
pre-images across all training samples.

According to Problem 3.7, the desired proximity graph should maximize the number of discarded
pre-images. Soundness ensures that we still have at least one pre-image in each training sample and,
hence, we can use those samples for training. This assumption comes from the fact that, by definition,
each NESY training sample includes the gold pre-image. Finally, we require the pruning of D to
include all globally consistent pre-images as we have no evidence to discard these pre-images. In the
next section, we cast Problem 3.7 as an ILP.

3.2 A LINEAR PROGRAMMING FORMULATION

To formalize Problem 3.7 as an ILP, we need to define the binary variables. First, we add a
binary variable Eℓ,ℓ′,x,x′ for each ℓ, ℓ′ ∈ [n], x ∈ xℓ, and x′ ∈ x′

ℓ, if h(x′) is close to h(x) – h and
“closeness” is an implementation choice as discussed in Section 3.1. The variable Eℓ,ℓ′,x,x′ is one if
the resulting proximity graph includes the corresponding edge and zero otherwise. Second, we add
a binary variable Iℓ,i that corresponds to σℓ,i, that is the i-th pre-image of the ℓ-th training sample,

2Under the assumption that the corresponding instances x, x′ are in fact close under h and the distance
measures in use, where x, x′ ∈ X.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for ℓ ∈ [n] and i ∈ [ωℓ]. The variable Iℓ,i is one if σℓ,i is in the pruning of D subject to the resulting
proximity graph; otherwise it is zero. Finally, we add a binary variable I ′ℓ,i for each ℓ ∈ [n] and
i ∈ [ωℓ] that is the complement of Iℓ,i, i.e., it is one when Iℓ,i is zero and vice versa. We are now
ready to discuss the constraints of the linear program.

The first constraint is Iℓ,i + I ′ℓ,i = 1 and states that the two variables are mutually exclusive. The

second constraint is ∑[ωℓ]
i=1 Iℓ,i ≥ 1, for each ℓ ∈ [n], and states that each training sample must include

at least one pre-image. The third constraint is Iℓ,i = 1, for each ℓ ∈ [n] and i ∈ [ωℓ], if σℓ,i is globally
consistent in any proximity graph that can be computed for the given training samples D subject
to h and the distance measures selected, see Definition 3.2. This constraint ensures that those pre-
images will not be discarded in the pruning. The fourth constraint is 1− Eℓ,ℓ′,x,x′ + 1− Iℓ,i = 1 and
expresses that σℓ,i is inconsistent with the edge (ℓ, x) → (ℓ′, x′), see Definition 3.2. The remaining
constraints define the domain. The objective is to maximize the number of discarded pre-images.

objective max ∑
ℓ∈[n],i∈[ωℓ]

I ′ℓ,i,

s.t.

Iℓ,i + I ′ℓ,i = 1, ∀ℓ ∈ [n],∀i ∈ [ωℓ]
[ωℓ]

∑
i=1

Iℓ,i ≥ 1, ∀ℓ ∈ [n]

Iℓ,i = 1, ∀ℓ ∈ [n],∀i ∈ [ωℓ], s.t.
σℓ,i is always globally consistent.

1− Eℓ,ℓ′,x,x′ + 1− Iℓ,i = 1, ∀ℓ ∈ [n],∀ℓ′ ∈ [n],∀x ∈ xℓ,∀x′ ∈ xℓ′ , s.t.
σℓ,i is inconsistent with (ℓ, x) → (ℓ′, x′).

Eℓ,ℓ′,x,x′ ∈ {0, 1}, ∀ℓ ∈ [n],∀ℓ′ ∈ [n],∀x ∈ xℓ,∀x′ ∈ xℓ′ , s.t.
h(x′) is close to h(x).

Iℓ,i ∈ {0, 1}, ∀ℓ ∈ [n],∀i ∈ [ωℓ]
I ′ℓ,i ∈ {0, 1}, ∀ℓ ∈ [n],∀i ∈ [ωℓ]

(1)

We formalize correctness below.

Proposition 3.8. [Optimality] The solution to (1) is the optimal solution of Problem 3.7.

Algorithm 1 summarizes our technique for pruning pre-images from a set NESY training samples.
The algorithm works on mini-batches, i.e., it solves (1) for each mini-batch of D.

3.3 DISCUSSION

Our formulation in (1) does not consider the strength of the similarity (e.g., the inverse distance) of
two instances. We can change the optimization objective to include the similarity of two instances as
the weight of an edge. The second point concerns the optimality of the gold proximity graphs for D.
Proposition 3.5 states that for each training sample, Π(G∗

D) includes the gold pre-image. However, it
does not provide an optimality guarantee of the form: There does not exist any other proximity graph
G′
D for D subject to any encoder h, such that the ℓ-th training sample in Π(G′

D) includes the gold
pre-image and has fewer pre-images than in Π(G∗

D), for some ℓ ∈ [n]. This optimality guarantee is
not possible unless we make certain assumptions about D and the edges in Π(G∗

D).

The above reveals the third point: Ideally, we should consider all training samples in D when solving
(1). If this is not possible due to scalability restrictions when D is very large, we should consider a
sufficiently large batch size to avoid phenomena in which certain instances have very few or even no
other instance of the same class and, hence, there are not enough edges that could potentially filter
out pre-images. In our empirical analysis, we saw that reasonably large batch sizes were sufficient
to prevent these phenomena. Fourth, as stated in Section 1, our approach can run in a training-free
manner or by simultaneously updating the encoder h during training. In all cases, we can apply
CLIPPER either on whole D or on mini-batches, as in Algorithm 1.

The last point concerns the guarantees on preserving the gold pre-images: Proposition 3.5 offers such
guarantees; but the formulation of Problem 3.7 does not focus on this aspect. From Proposition 3.5, it
follows that offering guarantees on preserving the gold pre-images straightforwardly relates to the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Classification accuracy for SUM-M .

Algorithms n=100, MNIST n=500, MNIST n=5K, CIFAR-10 n=10K, CIFAR-10
M = 3 M = 4 M = 3 M = 4 M = 3 M = 4 M = 3 M = 4

SCALLOP 36.17 ± 13.28 32.26 ± 11.48 95.10 ± 0.28 95.94 ± 0.00 64.29 ± 2.93 48.62 ± 15.74 85.73 ± 0.26 82.30 ± 3.47
+ C(GOLD) 49.36 ± 8.96 41.89 ± 12.11 95.56 ± 0.28 96.38 ± 0.20 68.94 ± 1.90 48.23 ± 4.47 86.85 ± 1.41 82.85 ± 3.71
+ C(ENC) 45.25 ± 12.35 36.93 ± 11.75 95.95 ± 0.37 96.22 ± 0.20 66.43 ± 0.67 70.01 ± 0.70 86.25 84.60 ± 0.42

DOLPHIN 35.31 ± 13.99 32.44 ± 6.31 95.16 ± 0.22 95.44 ± 0.34 66.96 ± 2.85 49.06 ± 9.75 83.86 ± 1.14 78.94 ± 2.96
+ C(GOLD) 50.54 ± 8.66 30.93 ± 1.13 95.14 ± 0.50 95.84 ± 0.28 71.16 ± 0.60 38.17 ± 15.59 85.33 ± 0.28 80.63 ± 1.16
+ C(ENC) 46.64 ± 6.89 30.14 ± 0.65 94.96 ± 0.30 95.98 ± 0.38 66.02 ± 1.24 67.47 ± 0.64 81.50 ± 0.30 84.08 ± 0.61

ISED 7.98 ± 2.82 9.77 ± 3.12 70.55 ± 8.39 37.01 ± 6.08 16.85 ± 4.10 10.08 ± 3.17 45.71 ± 6.76 18.6 ± 4.31
+ C(GOLD) 10.28 ± 3.20 10.51 ± 3.24 70.6 ± 8.40 60.38 ± 7.77 33.38 ± 5.78 17.06 ± 4.13 52.06 ± 7.21 29.7 ± 5.44
+ C(ENC) 11.7 ± 3.42 9.22 ± 3.03 70.1 ± 8.37 70.01 ± 8.36 17.43 ± 4.17 14.26 ± 3.78 37.06 ± 6.08 25.91 ± 5.09

ABLSIM 16.51 11.71 Running Running Running Running Running Running

ABLKIT 16.1 Running Running Running Running Running Running Running

Table 2: Classification accuracy for MAX-M .

Algorithms M=3, n = 100 M=4, n = 100

SCALLOP 58.19 ± 3.47 53.92 ± 3.28
+ C(GOLD) 48.19 ± 2.86 38.93 ± 3.13
+ C(ENC) 43.82 ± 5.25 35.78 ± 5.21

DOLPHIN 61.86 ± 2.54 59.70 ± 6.43
+ C(GOLD) 65.87 ± 4.72 65.30 ± 4.19
+ C(ENC) 63.57 ± 3.41 61.93 ± 1.94

ISED 9.78 ± 3.13 9.87 ± 3.14
+ C(GOLD) 8.9 ± 2.98 8.76 ± 2.96
+ C(ENC) 12.63 ± 3.55 9.55 ± 3.09

ABLSIM 42.48 Running

Table 3: Classification accuracy for HWF-7.

Algorithms n=500 n=1k

SCALLOP 55.67 ± 7.93 62.36 ± 41.83
+ C(GOLD) 95.01 ± 0.07 97.57 ± 0.06
+ C(ENC) 92.46 ± 0.06 95.95 ± 0.36

DOLPHIN 11.81 ± 1.94 15.35 ± 1.11
+ C(GOLD) 77.52 ± 5.08 85.39 ± 11.97
+ C(ENC) 66.33 ± 17.45 89.84 ± 4.30

ISED 19.33 ± 4.83 24.44 ± 8.39
+ C(GOLD) 28.10 ± 4.21 29.42 ± 4.86
+ C(ENC) 21.86 ± 2.63 29.52 ± 2.77

“quality” of the edges, that is whether the connected instances are, in fact, of the same class. A way to
address this issue would be to associate with each edge (ℓ, x) → (ℓ′, x′) the probability instances x
and x′ are of the same class. However, this modification is not straightforward due to the correlations
between the instances in each training sample. We leave this aspect as a direction for future research.

4 EXPERIMENTS

Benchmarks. We consider a wide range of benchmarks. The first two, SUM-M and MAX-M ,
are two classic benchmarks in the literature Manhaeve et al. (2021). SUM-M has been used in our
running example, while MAX-M considers the maximum instead of the sum of the gold labels. In
the above scenarios, the number of pre-images may be particularly large, making the supervision
rather weak, e.g., in the MAX-4 scenario, there are 4× 93 candidate combinations of labels when the
weak label is 9. To assess the effectiveness of our technique under more complex representations,
we also consider a variant of those benchmarks, where we associate each digit in {0, . . . , 9} with a
CIFAR-10 class. The next benchmark is HWF-M Li et al. (2020). Each training sample consists
of (1) a sequence (x1, . . . , xK) of digits in {0, . . . , 9} and mathematical operators in {+,−, ∗},
corresponding to a mathematical expression of length M and (2) the result of the corresponding
mathematical expression. The goal is to train a classifier to recognize digits and operators.

Our third benchmark is VQAR Huang et al. (2021a). VQAR extends GQA Hudson & Manning
(2019) with queries that require multi-hop reasoning using knowledge from CRIC Gao et al. (2019).
The benchmark includes the classifiers name and rel that return the type of an object within a given
bounding box and the relationship between the objects within a pair of bounding boxes. The objective
is to train the above classifiers using samples of the form (o, ϕ), where o are bounding boxes and ϕ is
a sentence the bounding boxes abide by. The benchmark includes 500 object types and 229 different
relations. We restrict to the top-k most frequent object types and relations for k = {50, 100}.

Table 4: name (N)/relation (R) classification accuracies for
VQAR. i3 and i5 denote the types of sentences in D.

Algorithms top-50 N, top-50 R top-100 N, top-50 R top-100 N, top-50 R
n = 1000 n = 1000 n = 5000

SCALLOP 46.58/19.93 35.6/12.62 37.98/13.94
+ C(ENC) 48.08/22.41 36.17/12.55 39.70/14.32

Our last benchmark is MUGEN
Hayes et al. (2022). MUGEN is
based on CoinRun Cobbe et al.
(2019). Each training sample con-
sists of a sequence of N video frames
and a sequence of K actions that de-
scribe what the character does. The

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30
Epoch

10

20

30

40

50

Ac
cu

ra
cie

s (
%

)

Scallop

Scallop
Scallop + C(ENC)

0 5 10 15 20 25
Epoch

20

25

30

35

40

45

Ac
cu

ra
cie

s (
%

)

Dolphin

Dolphin
Dolphin + C(ENC)

0 5 10 15 20
Epoch

5

10

15

20

25

Ac
cu

ra
cie

s (
%

)

ISED

ISED
ISED + C(ENC)

MNIST SUM-3 Accuracies

(a) Classification accuracy per epoch for SUM-3 with n=100 and MNIST digits.

0 10 20 30
Epoch

25.0

25.5

26.0

26.5

27.0

Ac
cu

ra
cie

s (
%

)

Scallop - TVR
Scallop
Scallop + C(ENC)

0 10 20 30
Epoch

18

20

22

24

26

28

30

32

Ac
cu

ra
cie

s (
%

)

Scallop - VTR
Scallop
Scallop + C(ENC)

0 10 20 30
Epoch

30

40

50

60

70

80

Ac
cu

ra
cie

s (
%

)

Dolphin - TVR
Dolphin
Dolphin + C(ENC)

0 10 20 30
Epoch

30

40

50

60

70

80

Ac
cu

ra
cie

s (
%

)

Dolphin - VTR
Dolphin
Dolphin + C(ENC)

MUGEN Accuracies

(b) Classification accuracy per epoch for MUGEN with n=250.

Figure 1: Classification accuracies per epoch with and without CLIPPER.

objective is to train a classifier to recognize the action in each frame. In general, K <= N , i.e.,
the same action may be taking place in more than one video frame. However, we do not exactly
know which action takes place in each frame. We use two tasks to assess the performance of the
classifier: video-to-text retrieval (VTR) and text-to-video retrieval (TVR). In VTR, given a video
and M sequences of actions, the classifier must choose the sequence of actions most aligned with
the video. In TVR, given a sequence of actions and M videos, the classifier must choose the video
most aligned with the action sequence. In each task, we measure accuracy by counting the number of
times the classifier chose the ground-truth sequence of actions and videos.

Baselines, Engines, Variants, & Measures. We consider the state-of-the-art engines SCAL-
LOP Huang et al. (2021a), DOLPHIN Naik et al. (2025), and ISED Solko-Breslin et al. (2024).
Unlike SCALLOP and DOLPHIN, ISED implements sampling-based NESY learning. We apply
CLIPPER, abbreviated as C, using (1) the gold proximity graph for the input training samples and (2)
the proximity graph subject to pre-trained encoders. The first setting allows us to assess the potential
of our technique independently of the encoder in use. We denote the first setting by C(GOLD) and
the second one by C(ENC). In the appendix, we provide details about the encoder used in each
benchmark. In MUGEN, we did not have access to the gold labels; we approximated C(GOLD) using
a pretrained encoder. We assess the performance of CLIPPER using the classification accuracy of the
underlying classifiers. In SUM-M , MAX-M , and HWF-7, the results are obtained over three runs.
In VQAR and MUGEN, each experiment was run once, following Li et al. (2023c). In the first four
benchmarks, we run Algorithm 1 in a training-free fashion. In MUGEN, we interleave pruning with
the training of the underlying encoder: while in the previous scenarios we had already had access to
pre-trained models, this was not the case in MUGEN. We additionally compare with ABLSIM Huang
et al. (2021b), a technique that uses similarity-based consistency optimization to prune preimages in
Abductive Learning Dai et al. (2019), and ABLKIT Huang et al. (2024b), an efficient Python toolkit
for Abductive Learning.

The results of our analysis are shown in Tables 1-5 and Figure 1.
Table 5: Classification accuracy for MUGEN.

Algorithms VTR TVR
n=250 n=500 n=250 n=500

SCALLOP 25.2 26.39 27.5 31.10
+ C(GOLD) 25.7 76 28.4 76.7
+ C(ENC) 27.1 74.9 32.00 77.7

DOLPHIN 33.8 33.9 34.8 34.7
+ C(GOLD) 76.1 84 80.0 86
+ C(ENC) 83.7 86.6 85.0 86.9

The tables show the final classification accura-
cies after convergence, while the figure shows
changes in classification accuracy over training
epochs. Additional information is in the ap-
pendix.

We see that CLIPPER can significantly increase
the accuracy of the baseline model. For exam-
ple, in SUM-M , Table 1, the mean classifica-
tion accuracy of the baseline SCALLOP model
increases from 36.17% to 45.25% when M = 3,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

n = 100, and MNIST digits are used. For the baseline DOLPHIN and ISED models, it increases
from 35.31% to 46.46% and from 8.56% to 8.75%. For HWF-7 in Table 3, the mean accuracy of
the baseline SCALLOP model increases from 62.36% to 95.95% when n=1k; for the same scenario,
the accuracy for the baseline DOLPHIN model increases from 15.35% to 89.84%. For MUGEN in
Table 5, VTR increases for the baseline SCALLOP model from 26.39% to 74.9% when n = 500; for
DOLPHIN, this increase is from 33.9% to 86.6%. Notice that the baseline accuracy for SCALLOP
and the improvements due to CLIPPER that are reported in Table 4 are less than the results in Huang
et al. (2021a). This is because of two reasons: (1) Huang et al. (2021a) does not report classification
accuracy, but accuracy on the overall output and (2) in Huang et al. (2021a), the samples in D are
easier than those in our analysis. In fact, in our analysis, the training samples are associated with
more than 100 pre-images on average.

Out of the 47 scenarios in our empirical results, CLIPPER decreases the accuracy in six scenarios
only, and in most cases the decrease is minor. One of these cases are met in ISED. We attribute these
minor decreases to the fact that ISED chooses pre-images in a non-deterministic way. Due to this
randomness, the gold labels may be discarded during training even if CLIPPER maintains them. Two
such cases are met in SCALLOP, under the MAX-M scenario. We attribute this decrease in training
instabilities to the way SCALLOP implements the aggregate semiring Li et al. (2023c).

Another observation is that pruning under non-gold proximity graphs leads to results that are on par
with those obtained by pruning under the gold proximity graphs. For example, in SUM-3, for n = 100,
SCALLOP+C(GOLD) improves the mean accuracy by 13% over the baseline; SCALLOP+C(ENC)
improves the accuracy by 9%, see Table 1. In ISED, C(ENC) leads to higher improvements than
C(GOLD) in most scenarios. As noted above, this is due to the non-deterministic sampling of the
pre-images after pruning. For MUGEN, the accuracy of the baseline DOLPHIN model increases from
33.9% to 84% for n = 500 under pruning guided by the gold proximity graph. Instead, when a
non-gold proximity graph is employed, the accuracy for the same scenario increases from 33.9% to
86.6%. This is because, in MUGEN, we approximated C(GOLD) using a pretrained encoder, i.e., the
labels that we use to compute the gold proximity graph are noisy.

The results in Table 5 manifest the robustness of CLIPPER, showing that it performs quite well when
there is no access to a pre-trained encoder. Figure 1(b) suggests another interesting phenomenon
about CLIPPER: as epochs increase, CLIPPER keeps improving the classification accuracy, as opposed
to the baseline. In SCALLOP+C(ENC) and DOLPHIN+C(ENC), we can see drastic increases in TVR
and VTR after epochs 30 and 25.

5 RELATED WORK

NESY Engines. Research on NESY mainly focused on developing efficient NESY losses Xu et al.
(2018); Donadello et al. (2017) and sampling-based training techniques Li et al. (2023b); Solko-
Breslin et al. (2024); Dai et al. (2019), leaving unexplored the connection between those losses and
their ability to disambiguate the gold labels.

NESY Learning. Our work was motivated by recent research showing that learning becomes more
challenging as the space of possible label combinations increases in size Marconato et al. (2023);
Tsamoura et al. (2025). Marconato et al. (2023) proposed different strategies to anticipate the lack of
gold labels during training. However, most of these strategies made additional assumptions during
training. The only strategy in Marconato et al. (2023) that exploited the representation space was the
one employing an autoencoder-based loss during training (Section 5.3). Unlike ours, this strategy
requires modifying the classifier’s architecture. More importantly, it does not operate in a training-free
manner as CLIPPER. Finally, the work in Marconato et al. (2024) that concurrently trains multiple
classifiers to improve label disambiguation during training. The latter research is orthogonal to ours.

Partial Label Learning. NESY extends partial label learning (PLL) Cour et al. (2011). In PLL,
each training sample is of the form (x, Y ), where Y is a set of mutually exclusive candidate labels
for x that includes the gold one. Most relevant to ours is the work of He et al. He et al. (2024) in
standard PLL. However, their formulation (1) cannot be extended to support NESY and (2) neither
discards the maximum number of pre-images across all training samples, as Proposition 3.8 does –
their proposed technique greedily eliminates the candidate labels from Y that do not occur frequently
in the top-k neighbors of x in the representation space. Theorem 1 in He et al. (2024) computes
the probability of discarding the gold labels as a function of the total number of discarded labels.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

However, their analysis cannot be straightforwardly extended to analyze our technique due to the
correlations among instances in each training sample – which are not supported by their technique.

6 CONCLUSIONS

We introduced a technique to reduce the space of candidate label combinations in NESY by exploiting
the proximity of instances in the representation space that is supported by a new problem formulation
and an optimal solution. An option would be to use pretrained LLMs to infer the gold labels directly
Stein et al. (2025). Beyond being cost- and resource-demanding, this approach can be seen as a
special case of our approach that retains only one pre-image: the one that best aligns with the LLM’s
predictions. Our formulation is a non-trivial extension to this setting, where we do not keep a single
pre-image but multiple ones that abide by the background theory. Future research includes extending
the theoretical analysis in He et al. (2024) to our setting.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In CVPR,
pp. 39–48, 2016.

Vivien Cabannes, Alessandro Rudi, and Francis Bach. Structured prediction with partial labelling
through the infimum loss. In ICML, pp. 1230–1239, 2020.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In ICML, pp. 1282–1289, 2019.

Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. Journal of Machine
Learning Research, 12:1501–1536, 2011. ISSN 1532-4435.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging Machine Learning and Logical
Reasoning by Abductive Learning. In NeurIPS, pp. 2815–2826, 2019.

Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for semantic
image interpretation. CoRR, abs/1705.08968, 2017.

Jonathan Feldstein, Modestas Jurcius, and Efthymia Tsamoura. Parallel neurosymbolic integration
with concordia. In ICML, pp. 9870–9885, 2023.

Jonathan Feldstein, Paulius Dilkas, Vaishak Belle, and Efthymia Tsamoura. Mapping the neuro-
symbolic ai landscape by architectures: A handbook on augmenting deep learning through symbolic
reasoning. CoRR, abs/2410.22077, 2024. URL https://arxiv.org/abs/2410.22077.

Difei Gao, Ruiping Wang, Shiguang Shan, and Xilin Chen. From two graphs to N questions: A VQA
dataset for compositional reasoning on vision and commonsense. CoRR, abs/1908.02962, 2019.

Thomas Hayes, Songyang Zhang, Xi Yin, Guan Pang, Sasha Sheng, Harry Yang, Songwei Ge, Qiyuan
Hu, and Devi Parikh. Mugen: A playground for video-audio-text multimodal understanding and
generation. In ECCV, pp. 431–449, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Shuo He, Chaojie Wang, Guowu Yang, and Lei Feng. Candidate label set pruning: A data-centric
perspective for deep partial-label learning. In ICLR, 2024.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop:
From probabilistic deductive databases to scalable differentiable reasoning. In NeurIPS, pp.
25134–25145, 2021a.

Jiani Huang, Ziyang Li, Mayur Naik, and Ser-Nam Lim. Laser: A neuro-symbolic framework for
learning spatial-temporal scene graphs with weak supervision, 2024a. URL https://arxiv.
org/abs/2304.07647.

10

https://arxiv.org/abs/2410.22077
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2304.07647
https://arxiv.org/abs/2304.07647


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen Muggleton, and Yuan Jiang. Fast abductive
learning by similarity-based consistency optimization. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021b.
Curran Associates Inc. ISBN 9781713845393.

Yu-Xuan Huang, Wen-Chao Hu, En-Hao Gao, and Yuan Jiang. Ablkit: a python toolkit for abductive
learning. Frontiers of Computer Science, 18(6):186354, 2024b.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In CVPR, pp. 6693–6702, 2019.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2021.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023a.

Qing Li, Siyuan Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.
Closed loop neural-symbolic learning via integrating neural perception, grammar parsing, and
symbolic reasoning. In ICML, 2020.

Zenan Li, Yuan Yao, Taolue Chen, Jingwei Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. Softened
symbol grounding for neurosymbolic systems. In ICLR, 2023b.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages, 7(PLDI), 2023c.

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev
Alur, and Mayur Naik. Relational programming with foundational models. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(9):10635–10644, 2024.

Jaron Maene and Efthymia Tsamoura. Embeddings as probabilistic equivalence in logic programs.
In NeurIPS, 2025.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298:103504, 2021.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-symbolic
concepts are created equal: Analysis and mitigation of reasoning shortcuts. In NeurIPS, 2023.

Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini,
and Stefano Teso. bears make neuro-symbolic models aware of their reasoning shortcuts. In UAI,
2024.

Aaditya Naik, Jason Liu, Claire Wang, Amish Sethi, Saikat Dutta, Mayur Naik, and Eric Wong.
Dolphin: A programmable framework for scalable neurosymbolic learning. In ICML, 2025.

Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, and Eric
Wong. Data-efficient learning with neural programs. In NeurIPS, 2024.

Vivek Srikumar and Dan Roth. The integer linear programming inference cookbook.
ArXiv, abs/2307.00171, 2023. URL https://api.semanticscholar.org/CorpusID:
259316294.

Adam Stein, Aaditya Naik, Neelay Velingker, Mayur Naik, and Eric Wong. The road to generalizable
neuro-symbolic learning should be paved with foundation models. CoRR, abs/2505.24874, 2025.
URL https://arxiv.org/abs/2505.24874.

Jacob Steinhardt and Percy S Liang. Learning with relaxed supervision. In NeurIPS, volume 28,
2015.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. In EMNLP, pp. 5099–5110, 2019.

11

https://api.semanticscholar.org/CorpusID:259316294
https://api.semanticscholar.org/CorpusID:259316294
https://arxiv.org/abs/2505.24874


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A
compositional perspective. In AAAI, pp. 5051–5060, 2021.

Efthymia Tsamoura, Kaifu Wang, and Dan Roth. Imbalances in neurosymbolic learning: Characteri-
zation and mitigating strategies. In NeurIPS, 2025.

Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. PiCO:
Contrastive label disambiguation for partial label learning. In ICLR, 2022. URL https://
openreview.net/forum?id=EhYjZy6e1gJ.

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak
supervision. In NeurIPS, 2023.

Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency regularization for
deep partial label learning. In ICML, volume 162, pp. 24212–24225, 2022.

S. Xia, J. Lv, N. Xu, G. Niu, and X. Geng. Towards effective visual representations for partial-label
learning. In CVPR, pp. 15589–15598, 2023.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
for deep learning with symbolic knowledge. In ICML, pp. 5502–5511, 2018.

Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent partial label learning.
In NeurIPS, volume 34, pp. 27119–27130, 2021.

Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into answer set
programming. In IJCAI, pp. 1755–1762, 2020.

Yivan Zhang, Nontawat Charoenphakdee, Zheng Wu, and Masashi Sugiyama. Learning from
aggregate observations. In NeurIPS, 2020.

A NOTATION

Table 6: The notation in the preliminaries and the proposed algorithm.

Supervised learning notation
[n] := {1, . . . , n} Set notation
X, Y Input instance space and label space
x, y Elements from X and Y
∆c Space of probability distributions over Y
f : X 7→ ∆c Scoring function
f j(x) Score of f upon x for class j ∈ Y

NSL notation
D Set of NESY training samples
n Number of samples in D
ℓ, ℓ′ Indices over [n]
xℓ The vector of instances in the l-th NESY sample in D
σℓ,i The i-th pre-image of the ℓ-th NESY sample in D
ωℓ Number of pre-images in the ℓ-th NESY sample in D

Notation in Section 3
h Encoder from X to Rm

Gh
D Proximity graph for D subject to h

Eℓ,ℓ′,x,x′ Binary variable becoming 1 if (ℓ, x) → (ℓ′, x′) is in Gh
D

Iℓ,i, I ′ℓ,i Binary variables corresponding to pre-image σℓ,i in D

12

https://openreview.net/forum?id=EhYjZy6e1gJ
https://openreview.net/forum?id=EhYjZy6e1gJ


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Epoch

18

20

22

24

26
Pr

un
in

g 
Pe

rc
en

ta
ge

 (%
)

Scallop

0 5 10 15 20 25
Epoch

20

22

24

26

28

Pr
un

in
g 

Pe
rc

en
ta

ge
 (%

)

Dolphin

0 5 10 15 20
Epoch

16

18

20

22

24

26

Pr
un

in
g 

Pe
rc

en
ta

ge
 (%

)

ISED
MNIST Sum-3 percentage of pruned pre-images

Figure 2: Percentage of pre-images pruned by CLIPPER across training epochs for MNIST SUM-3
with n = 100.

B DETAILS ON SECTION 3

Proposition 3.5. For each ℓ ∈ [n], the ℓ-th training sample in Π(G∗
D) includes the gold pre-image.

Proof. The proof proceeds by means of contradiction. Suppose that in the ℓ-th training sample, the
gold pre-image sigma∗ℓ is not retained in Π(G∗

D). According to Definition 3.4, the above implies
that sigma∗ℓ is inconsistent in G∗

D. According to Definition 3.4, the latter consequently means
that G∗

D includes an edge (ℓ, x) → (ℓ′, x′) σ∗
ℓ is inconsistent with, i.e., there does not exist any

pre-image σℓ′,i′ , such that σ∗
ℓ (x) = σℓ′,i′(x

′) holds. Let c be the gold label of x. Since G∗
D is a gold

proximity graph for D, it follows that x and x′ belong to the same class c. Furthermore, since σ∗
ℓ is

inconsistent with (ℓ, x) → (ℓ′, x′), this means that no pre-image in the ℓ′ -th training sample maps x′

to c. However, by definition, each NESY training sample includes the gold pre-image, i.e., the image
that maps each instance to each ground truth class. The above leads to a contradiction, completing
the proof of Proposition 3.5.

Proposition 3.8. [Optimality] The solution to (1) is the optimal solution of Problem 3.7.

Proof. The proof proceeds by construction. Recall that the variable I ′ℓ,i corresponds to the i-th
pre-image of the ℓ-th training sample σℓ,i, for ℓ ∈ [n] and i ∈ [ωℓ] and becomes one if σℓ,i is not
in the pruning of D subject to the resulting proximity graph, see Section 3.2. Due to the above,
the optimization objective max ∑

ℓ∈[n],i∈[ωℓ]

I ′ℓ,i in (1) aligns with the objective (3) in Problem 3.7.

Now, let us move to objective (2) from Problem 3.7, that is the pruning of D subject to the resulting
proximity includes all globally consistent pre-images. This objective is satisfied due to the third
constraint in (1).

Finally, let us move to objective (1) from Problem 3.7, that is the pruning of D subject to the
resulting proximity is sound, that is, each at least one pre-image is preserved for each sample, see
Definition 3.4. From Section 3.2, we know that the variable Eℓ,ℓ′,x,x′ , for each ℓ, ℓ′ ∈ [n], x ∈ xℓ,
and x′ ∈ x′

ℓ, (a) denotes that h(x′) is close to h(x) and (b) becomes one if the resulting proximity
graph includes the corresponding edge and zero otherwise. The fourth constraint in (1), that is,
1 − Eℓ,ℓ′,x,x′ + 1 − Iℓ,i = 1, enforces that each pre-image σℓ,i that is inconsistent with the edge
(ℓ, x) → (ℓ′, x′) (and this edge is included in the resulting proximity graph) will not be included in
the pruning of D subject to the resulting graph. Notice that whenever the variable Eℓ,ℓ′,x,x′ becomes
one, the variable Iℓ,i becomes zero. The above, along with the facts that (i) each training sample
in the resulting pruning of D is associated with at least one pre-image – enforced by the constraint
[ωℓ]

∑
i=1

Iℓ,i ≥ 1, for each ℓ ∈ [n] in (1) – and (ii) each pre-image is either included in the resulting

pruning or not – enforced by the constraint Iℓ,i + I ′ℓ,i = 1, for each ℓ ∈ [n] and each i ∈ [ωℓ] in
(1) – ensure that the LP in (1) satisfies objective (1) from Problem 3.7, completing the proof of
Proposition 3.8.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C FURTHER DETAILS ON THE EXPERIMENTS

Benchmarks. In SUM-M and MAX-M training samples are created by drawing M MNIST digits
or CIFAR-10 images in an i.i.d. fashion and associating with them the sum or maximum of their
corresponding gold labels. Regarding VQAR Huang et al. (2021a), the original benchmark includes
a large number of queries that reduce NESY training to supervised one. To make training more
challenging, we consider training samples associated with a large number of pre-images, averaging on
more than 100 per training sample. To control the difficulty of training, we consider training samples
whose logical formulae are of the form name(superclass, o1) ∧ rel(r, o1, O2), where superclass
is the most generic class object o1 can belong to according to the CRIC ontology, e.g., a toy is an
object, and a is the attribute object O2 is associated with. The above formulae are slightly different
than the ones described in Section 2, as they include free variables: o1 is a given object, while O2 is a
free one that can be found to any object within a given image. Our analysis applies without loss of
generality to those settings due to the flexibility abduction gives us.

Engines. Like DeepProbLog, SCALLOP relies on training using semantic loss Xu et al. (2018).
However, it offers a scalable implementation of it. Research showed that SCALLOP outperforms
DeepProbLog, ABL Dai et al. (2019), NeurASP Yang et al. (2020) and the engine proposed in Li et al.
(2023b) across a variety of tasks Wang et al. (2023); Li et al. (2023c). In addition, SCALLOP has state-
of-the-art performance on MUGEN and VQAR, outperforming SDSC Hayes et al. (2022) in MUGEN,
and NMNs Andreas et al. (2016) and LXMERT Tan & Bansal (2019) in VQAR. DOLPHIN offers
NESY training using losses based on fuzzy logic and has reported higher accuracy than SCALLOP on
a variety of benchmarks.

Encoders. We use a pretrained ResNet-18 convolutional neural network pretrained on ImageNet-1k
for SUM-M , MAX-M , CIFAR-10, and HWF. We show the amount of proofs pruned by CLIPPER
with the ResNet-18 encoder in Figure 2. In VQAR, the object bounding boxes and features are
obtained by passing the images through pre-trained fixed-weight Mask RCNN and ResNet models.
For MUGEN, as discussed in the experiments section, we do not use an external encoder, but rather
use the model to encode the representations while it is being trained. To approximate the gold labels,
we trained the same model on the full MUGEN dataset until convergence to produce an oracle model
MO, which we used to approximate the gold labels.

Computational environment. All experiments, except MUGEN, were performed on machines with
two 20-core Intel Xeon Gold 6248 CPUs, four NVIDIA GeForce RTX 2080 Ti (11 GB) GPUs, and
768 GB RAM. MUGEN, as it required a larger GPU, was trained on an NVIDIA A100 40GB GPU.

Additional implementation details. Across all experiments, we deal with directed proximity
graphs and assume that there exists a directed edge (ℓ, x) → (ℓ′, x′) only if h(x′) is in the top-k
neighborhood of h(x), for x, x′ ∈ X, for k = 1. We use a batch size of 64 for SUM-M and MAX-M ,
with a learning rate of 1e− 3. For HWF, we used a batch size of 4 with a learning rate of 1e− 4. For
VQAR, we used a batch size of 512 with a learning rate of 1e− 4. For MUGEN, we used a batch
size of 3 for Dolphin and 4 for Scallop, with a learning rate of 1e− 4. Across all experiments, we
used AdamW as the optimizer. To compute proximity in the latent space, we used the FAISS open
source library Johnson et al. (2021).

Software packages. Our source code was implemented in Python 3.10. We used the following python
libraries: scallopy3, highspy4, or-tools5, PySDD6, PyTorch and PyTorch vision.

Deep networks. For MAX-M and SUM-M , we used the MNIST CNN used in (Huang et al., 2021a).
For HWF-7, we used the CNN used in (Li et al., 2023c). For VQAR and MUGEN, we used the same
deep networks with (Huang et al., 2021a).

Figure 2 shows the percentage of pre-images that are pruned at each epoch for MNIST SUM-3 with
n = 100. We can see that CLIPPER is quite effective in discarding pre-images, discarding more than
25% on average across all engines.

3https://github.com/scallop-lang/scallop (MIT license).
4https://pypi.org/project/highspy/ (MIT license).
5https://developers.google.com/optimization/ (Apache-2.0 license).
6https://pypi.org/project/PySDD/ (Apache-2.0 license).

14

https://github.com/scallop-lang/scallop
https://pypi.org/project/highspy/
https://developers.google.com/optimization/
https://pypi.org/project/PySDD/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Ablations for MNIST Sum-3, n = 100 for different encoders and batch sizes. In the rows
“+ C(RESNET18)” and “+ C(RESNET50)”, the encoder is pretrained and frozen. In the row “+
C(MNISTNET)”, the encoder is MNISTNet, the underlying CNN being trained, and is randomly
initialized and trainable.

Batch
Size Algorithms Classification

Accuracy
% Retained
Preimages

% Preimages with
Ground Truth

Time to Prune
(s)

Time to Solve ILP
(s)

64

Dolphin 31.6 NA NA NA NA
+ C(RESNET18) 47.09 77.99 91.56 0.49 0.03
+ C(RESNET50) 41.89 75.7 88.38 0.51 0.03
+ C(MNISTNET) 41.51 78.12 94.81 0.53 0.03

128

Dolphin 32.86 NA NA NA NA
+ C(RESNET18) 49.24 80.17 92 1.88 0.06
+ C(RESNET50) 42.56 74.21 90 1.5 0.07
+ C(MNISTNET) 36.84 77.85 96.21 1.39 0.07

Table 8: Ablations for MNIST Sum-4, n = 100 for different encoders. In the rows “+ C(RESNET18)”
and “+ C(RESNET50)”, the encoder is pretrained and frozen. In the row “+ C(MNISTNET)”, the
encoder is MNISTNet, the underlying CNN being trained, and is randomly initialized and trainable.

Batch
Size Algorithms Classification

Accuracy
% Retained
Preimages

% Preimages with
Ground Truth

Time to Prune
(s)

Time to Solve ILP
(s)

64

Dolphin 31.43 NA NA NA NA
+ C(RESNET18) 31.28 87.5 96.19 3.39 0.39
+ C(RESNET50) 28.69 86.46 92.9 3.42 0.42
+ C(MNISTNET) 35.19 85.88 98.58 3.34 0.39

D ABLATIONS

We run ablations on the complexity of encoders used for extracting latent representations used to
prune preimages. We also measure the amount of preimages pruned in each case, the amount of
preimages where the ground truth was retained, and the time taken for pruning. We report the results
of ablations on MNIST Sum-3 and Sum-4 with 100 training samples in Tables 7 and 8.

D.1 PERFORMANCE ON FULL DATASETS.

We are running our experiments on the full dataset versions of each benchmark. Table ?? shows the
results of MNIST Sum-3 on the full dataset. We also run our MUGEN experiment on the full dataset
with 5000 training samples. We show preliminary accuracy curves in Figure 3.

Figure 3: Training curves for Dolphin with and without the encoder for MUGEN with 5K training
samples.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Results of CLIPPER for the full versions over our benchmarks.

Algorithms MNIST Sum-3
DOLPHIN 99.11
+ C(RESNET18) 99.13

ABLSIM 98.9
ABLKIT 98.2

16


	Introduction
	Preliminaries
	Discarding Pre-Images Based on Latent Representations
	Notions and Problem Statement
	A Linear Programming Formulation
	Discussion

	Experiments
	Related Work
	Conclusions
	Notation
	Details on Section 3
	Further details on the experiments
	Ablations
	Performance on full datasets.


