

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON IMPROVING NEUROSYMBOLIC LEARNING BY EX- PLOITING THE REPRESENTATION SPACE

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the problem of learning neural classifiers in a neurosymbolic setting where the hidden gold labels of input instances must satisfy a logical formula. Learning in this setting proceeds by first computing (a subset of) the possible combinations of labels that satisfy the formula and then computing a loss using those combinations and the classifiers' scores. However, the space of label combinations can grow exponentially, making learning difficult. We propose the first technique that prunes this space by exploiting the intuition that instances with similar latent representations are likely to share the same label. While this intuition has been widely used in weakly supervised learning, its application in our setting is challenging due to label dependencies imposed by logical constraints. We formulate the pruning process as an integer linear program that discards inconsistent label combinations while respecting logical structure. Our approach is orthogonal to existing training algorithms and can be seamlessly integrated with them. Experiments on three state-of-the-art neurosymbolic engines, Scallop, Dolphin, and ISED, demonstrate up to 74% accuracy gains across diverse tasks, highlighting the effectiveness of leveraging the representation space in neurosymbolic learning.

1 INTRODUCTION

Motivation. *Neurosymbolic learning* (NSL), i.e., the integration of symbolic with neural mechanisms for inference and learning, has been proposed as the remedy for some of the most vulnerable aspects of deep networks Feldstein et al. (2024). Recent works have shown that NSL holds immense promise, offering, in addition, the means to train neural networks using weak labels Feldstein et al. (2023); Wang et al. (2023). We study the problem of learning neural classifiers in frameworks where a symbolic component “sits” on top of one or more neural classifiers and learning is weakly supervised Manhaeve et al. (2021). An example of our setting, referred to as NESY, is presented below.

Example 1.1 (NESY example). *Consider a classical example of NESY: learning an MNIST classifier f using training samples of the form $(\{x_1, x_2\}, \phi)$, where x_1 and x_2 are MNIST digits and ϕ is a logical sentence that the gold labels of x_1 and x_2 , l_1 and l_2 , should satisfy Manhaeve et al. (2021). Unlike supervised learning, l_1 and l_2 are unknown to the learner. The logical sentence ϕ restricts the space of labels that can be assigned to x_1 and x_2 . For example, consider the training sample $(\{x_1, x_2\}, \phi_1 := l_1 + l_2 = 8)$. According to this sample, any combination of l_1 and l_2 whose sum is 8 is valid and all other combinations are invalid, e.g., $l_1 = 2$ and $l_2 = 6$ is valid, but $l_1 = 3$ and $l_2 = 6$ is invalid. In total, there are 9 different combinations of l_1 and l_2 that satisfy ϕ_1 . The gold labels of x_1 and x_2 are 1 and 7, respectively. However, they are unknown during learning.*

NESY is one of the most popular frameworks in the NSL literature, with DeepProbLog Manhaeve et al. (2021), NeuroLog Tsamoura et al. (2021), SCALLOP Huang et al. (2021a), DOLPHIN Naik et al. (2025), and ISED Solko-Breslin et al. (2024) being only a few of the frameworks that rely on it. In addition, as discussed in Wang et al. (2023), NESY encompasses *partial label learning* (PLL) Cour et al. (2011); Cabannes et al. (2020), where each input instance is associated with a set of mutually exclusive candidate labels, and learning classifiers subject to constraints on their outputs, Steinhardt & Liang (2015); Zhang et al. (2020). and has wide range of applications, including fine-tuning large language models Li et al. (2024), aligning video to text Huang et al. (2024a), visual question answering Huang et al. (2021a), and learning knowledge graph embeddings Maene & Tsamoura (2025).

054 **Limitations.** Learning in NESY proceeds by first computing (a subset of) the possible combinations
 055 of labels that lead to the given learning target, subject to the symbolic component, and then computing
 056 a loss using those combinations and the classifiers' scores. However, learning becomes more
 057 challenging as the space of possible label combinations increases in size [Marconato et al. \(2023\)](#);
 058 [Tsamoura et al. \(2025\)](#). This is because supervision becomes weaker. The question arises: *Are there*
 059 *circumstances where we can safely discard specific label combinations?*

060 **Contributions.** We are the first to propose a [plug-and-play](#) technique to reduce the space of candidate
 061 label combinations by *exploiting the inconsistency between the representation space and the space of*
 062 *candidate label combinations in general-purpose neurosymbolic frameworks*. Our intuition is that
 063 if the latent representations of two instances are very close, then they belong to the same class, and
 064 hence share the same gold labels. When applied to NESY, this intuition can substantially reduce
 065 candidate label combinations during training:

066
 067
 068 **Example 1.2.** [Contd Example 1.1] Consider a second training sample $(\{x'_1, x'_2\}, \phi_2 := l'_1 + l'_2 = 2)$,
 069 where l'_1 and l'_2 correspond to the gold labels of x'_1 and x'_2 . According to this training sample, the
 070 valid combinations of labels for (x'_1, x'_2) are $(0, 2)$, $(1, 1)$, and $(2, 0)$. If the latent representations
 071 of x_1 and x'_1 are very close, then l_1 must range in $\{0, 1, 2\}$. Hence, the number of candidate label
 072 combinations associated with the first training sample reduces from 9 to 3.

073
 074
 075 Unlike NESY, the PLL literature has extensively investigated techniques that exploit the representation
 076 space to discard erroneous candidate labels during training [Wu et al. \(2022\)](#); [Xia et al. \(2023\)](#); [Wang](#)
 077 [et al. \(2022\)](#); [Xu et al. \(2021\)](#). In fact, the intuition in the above example has been successfully
 078 adopted in weakly supervised learning [He et al. \(2024\)](#). However, its straightforward adoption in
 079 NESY is problematic, as it can result in training samples associated with zero supervision, i.e.,
 080 without candidate combinations of labels. To address this issue, we organize the training samples and
 081 their associated candidate label combinations into a graph, called the *proximity graph*. The edges in
 082 the graph reflect the proximity of instances in the representation space. Then, by generalizing the
 083 intuition in our example, we introduce the problem of discarding the maximum number of candidate
 084 label combinations subject to the edges in the graph under the constraint that each training sample is
 085 associated with at least one candidate label combination. We then propose a solution to this problem
 086 by casting it into an *integer linear program* (ILP) [Srikumar & Roth \(2023\)](#).

087 Our approach offers two unique benefits. First, it is complementary to NESY training algorithms: Our
 088 technique first discards candidate label combinations; then training proceeds with the remaining label
 089 combinations. Second, it can be employed in a training-free manner, i.e., we can discard candidate
 090 label combinations using a pre-trained encoder, such as a large vision and language model [Li et al.](#)
 091 [\(2023a\)](#), or ResNet [He et al. \(2015\)](#), before training. Alternatively, it may be applied during training,
 092 i.e., by using the encoder trained so far to extract features for the corresponding training instances,
 093 then training with the label combinations that have not been discarded, and repeating the process.

094 We evaluate the benefits of our technique, called CLIPPER, applying it in combination with three state-
 095 of-the-art neurosymbolic engines, SCALLOP, DOLPHIN, and ISED, on a variety of benchmarks that
 096 range from digit classification – the classic SUM- M , MAX- M , and HWF- M benchmarks [Manhaeve](#)
 097 [et al. \(2021\)](#) – to visual question answering and video-to-text alignment. CLIPPER consistently
 098 improves the accuracy across all engines and benchmarks. In our most challenging benchmark,
 099 MUGEN, the baseline accuracy improves from 33.8% to 83.7%. The integration of CLIPPER with
 100 the above engines was rather straightforward: we employed CLIPPER to filter out pre-images during
 101 the pre-image computation phase and then used the remaining pre-images to train the classifier. Our
 102 main contributions are:

- 103 • We formalize the problem of discarding label combinations for a set of NESY training
 104 samples based on the proximity of the latent representations of their instances.
- 105 • We propose an ILP algorithm that guarantees that each training sample retains at least one
 106 candidate label combination while maximizing the number of discarded label combinations.
- 107 • We evaluate our technique with different neurosymbolic engines on a variety of benchmarks
 108 and demonstrate improvements in classification accuracy of up to 74%.

108
109

2 PRELIMINARIES

110
111
112
113
114
115

Supervised learning. For an integer $n \geq 1$, let $[n] := \{1, \dots, n\}$. Let also \mathcal{X} be the instance space and $\mathcal{Y} = [c]$ be the output space. We use x, y to denote elements in \mathcal{X} and \mathcal{Y} . We consider *scoring functions* of the form $f : \mathcal{X} \mapsto \Delta_c$, where Δ_c is the space of probability distributions over \mathcal{Y} , e.g., f outputs the softmax probabilities (or *scores*) of a neural classifier. We use $f^j(x)$ to denote the score of $f(x)$ for class $j \in \mathcal{Y}$. A scoring function f induces a *classifier* $[f] : \mathcal{X} \mapsto \mathcal{Y}$, whose *prediction* on x is given by $\text{argmax}_{j \in [c]} f^j(x)$. Supervised learning aims to learn f using samples of the form (x, y) .

116
117
118
119
120
121
122
123
124
125
126

Neurosymbolic learning. We assume familiarity with basic notions of logic, such as the notions of variables, constants, predicates, facts, rules, and sentences. We use small for constants and predicates, and capitals for variables. We point readers that wish to learn this background to [Li et al. \(2023c\)](#). To ease the presentation, we assume a single classifier $f : \mathcal{X} \rightarrow \mathcal{Y}$. Notice, though, that our results straightforwardly extend to settings with multiple classifiers. Let \mathcal{K} be a background logical theory. As mentioned in Section 1, \mathcal{K} “sits” on top of f , i.e., it reasons over the predictions of f . Of course, this is possible by translating neural predictions into facts, e.g., returning to Example 1.1, DeepProbLog, SCALLOP, and DOLPHIN, create one fact of the form $\text{digit}(d, x_1)$ for each possible digit d and associate this fact with the softmax score of class d for x_1 (and similarly for x_2). Then, reasoning over those facts using \mathcal{K} produces the overall outputs. Different frameworks may employ different reasoning semantics at testing time which is orthogonal to this work.

127
128
129
130
131
132

Unlike supervised learning, in NESY, each training sample is of the form (\mathbf{x}, ϕ) , where \mathbf{x} is a set of elements from \mathcal{X} and ϕ is a logical sentence (or a single target fact in the simplest scenario). The gold labels of the input instances are unknown to the learner. Instead, we only know that the gold labels of the elements in \mathbf{x} satisfy the logical sentence ϕ subject to \mathcal{K} . In Example 1.1, \mathcal{K} is empty. However, in one of the benchmarks that we consider in our experiments, namely VQAR [Huang et al. \(2021a\)](#), \mathcal{K} is commonsense knowledge from CRIC [Gao et al. \(2019\)](#).

133
134
135
136
137
138
139
140
141
142

The above may seem prohibitive for learning. However, ϕ and \mathcal{K} allow us to “guess” what the gold labels of the elements in \mathbf{x} might be so that ϕ is logically satisfied subject to \mathcal{K} . This is essentially the process of *abduction* [Tsamoura et al. \(2021\)](#). To align with the terminology in [Wang et al. \(2023\)](#), for a training sample (\mathbf{x}, ϕ) , we use the term *pre-image*¹ to denote a combination of labels of the elements in \mathbf{x} , such that ϕ is logically satisfied subject to \mathcal{K} . The gold pre-image is the one mapping each instance to its gold label. By construction, each NESY training sample includes the gold pre-image. More details on abduction are in [Tsamoura et al. \(2021\)](#). Abduction allows us to “get rid of” ϕ and \mathcal{K} and represent each training sample via \mathbf{x} and its corresponding pre-images, i.e., as $(\mathbf{x}, \{\sigma_i\}_{i=1}^\omega)$, where each pre-image σ_i is a mapping from \mathbf{x} into \mathcal{Y} . We use $\mathcal{D} = \{(\mathbf{x}_\ell, \{\sigma_{\ell,i}\}_{i=1}^\omega)\}_{\ell=1}^n$ to denote a set of n NESY training samples.

143
144
145

Example 2.1. [Contd Example 1.2] Candidate pre-images for the first sample are: $\sigma_{1,1} = \{x_1 \mapsto 0, x_2 \mapsto 8\}$, $\sigma_{1,2} = \{x_1 \mapsto 1, x_2 \mapsto 7\}$, and $\sigma_{1,3} = \{x_1 \mapsto 8, x_2 \mapsto 0\}$. Two candidate pre-images of the second sample are: $\sigma_{2,1} = \{x'_1 \mapsto 0, x'_2 \mapsto 2\}$ and $\sigma_{2,2} = \{x'_1 \mapsto 1, x'_2 \mapsto 1\}$.

146
147
148
149
150
151
152
153

Our notation of pre-images is equivalent to the notation of training samples in [Wang et al. \(2023\)](#). The only thing left to discuss is what is the learning objective in NESY. Each NESY framework adopts its own learning objective. For example, in DeepProbLog and SCALLOP, the aim is to minimize semantic loss [Xu et al. \(2018\)](#) or its approximations [Huang et al. \(2021a\)](#). The authors in [Wang et al. \(2023\)](#) formalize learning via minimizing *zero-one partial loss*, that is the probability ϕ not being logically satisfied subject to \mathcal{K} . Our work is orthogonal to the actual loss used for training. The notation used throughout our work is summarized in Table 6 in the appendix.

154
155

3 DISCARDING PRE-IMAGES BASED ON LATENT REPRESENTATIONS

156
157
158
159
160
161

We aim to reduce the number of candidate pre-images of the NESY training samples by exploiting inconsistencies with the representation space. The question naturally arises: *Can a reduction in the number of pre-images per training sample lead to classifiers with higher accuracy?* The NSL community has verified this claim both experimentally [Tsamoura et al. \(2021\)](#); [Huang et al. \(2021a\)](#) and theoretically [Marconato et al. \(2023\)](#); [Tsamoura et al. \(2025\)](#). For example, [Marconato et al.](#)

¹Pre-images correspond to *proofs* in [Tsamoura et al. \(2021\)](#); [Huang et al. \(2021a\)](#); [Manhaeve et al. \(2021\)](#).

(2023) showed that the number of deterministic classifiers that minimize semantic loss Xu et al. (2018) is directly proportional to the number of abductive proofs per training sample (i.e., pre-images in our terminology), while Tsamoura et al. (2025) showed that the probability a classifier misclassifies instances of the given class is a direct function of the number of pre-images.

Central to our technique are two notions: *proximity graphs* and *consistency*. Proximity graphs are graphs whose edges reflect the proximity of latent instance representations. As we will see later, proximity between instances imposes restrictions on the pre-images. Consistency reflects whether a given pre-image abides by those restrictions. This section is organized as follows. Section 3.1 introduces our key notions and our new problem formulation. Section 3.2 presents our technique and provides optimality guarantees. Section 3.3 discusses variations of our formulation from Section 3.2.

3.1 NOTIONS AND PROBLEM STATEMENT

We start by introducing the notion of a proximity graph. Let h be an encoder from \mathcal{X} to \mathbb{R}^m .

Definition 3.1 (Proximity graphs). *A proximity graph $\mathcal{G}_{\mathcal{D}}^h$ for \mathcal{D} subject to h is a directed graph that includes one node (ℓ, x) , for each $\ell \in [n]$ and $x \in \mathbf{x}_{\ell}$, and, optionally, a directed edge from node (ℓ, x) to node (ℓ', x') if $h(x')$ is close to $h(x)$, for $x, x' \in \mathcal{X}$.*

The edges of the graph $\mathcal{G}_{\mathcal{D}}^h$ define proximity in the representation space. Notice that Definition 3.1 does not depend on either the encoder h that will give us the latent representations, e.g., the encoder can be a pre-trained large vision and language model such as BLIP-2 Li et al. (2023a), or on the measure used to decide the distance in the representation space. We deliberately kept the vague term “close” in Definition 3.1 to support any distance measure a user may prefer. For example, an option is to define a distance threshold θ and add edges only between instances whose latent representations are less than θ apart. A second option is to add a directed edge $(\ell, x) \rightarrow (\ell', x')$ only if $h(x')$ is in the top- k neighborhood of $h(x)$, for $x, x' \in \mathcal{X}$ – the use of directed edges gives us greater flexibility to adopt such definitions. Of course, the “better” the encoder h is, the more effective our algorithm will be in pruning the non-gold pre-images.

The graph $\mathcal{G}_{\mathcal{D}}^h$ tells us when two instances of different samples are very close in the representation space. When two instances are very close in the representation space, they should be of the same class, sharing the same gold labels. Due to the dependencies among different labels in the pre-images, some candidate pre-images may satisfy the restriction that the corresponding instances should share the same gold labels. Others may not. The notion of *consistency* formalizes the above intuition.

Definition 3.2 (Consistency). *For a proximity graph $\mathcal{G}_{\mathcal{D}}^h$, a pre-image $\sigma_{\ell,i}$ in \mathcal{D} is consistent with an edge $(\ell, x) \rightarrow (\ell', x')$ in $\mathcal{G}_{\mathcal{D}}^h$ if there exists a pre-image $\sigma_{\ell',i'}$ in \mathcal{D} , such that $\sigma_{\ell,i}(x) = \sigma_{\ell',i'}(x')$ holds; otherwise, we say that $\sigma_{\ell,i}$ is inconsistent with $(\ell, x) \rightarrow (\ell', x')$. The pre-image $\sigma_{\ell,i}$ is globally consistent in $\mathcal{G}_{\mathcal{D}}^h$ if there does not exist an edge $(\ell, x) \rightarrow (\ell', x')$ in $\mathcal{G}_{\mathcal{D}}^h$ with which $\sigma_{\ell,i}$ is inconsistent.*

We present an example of Definition 3.2.

Example 3.3 (Contd Example 2.1). *Assume the proximity graph for the two training samples in our running example includes edge $e_1 := (1, x_1) \rightarrow (2, x'_1)$. Since there does not exist a pre-image associated with the second training sample mapping x'_1 to 8, the pre-image $\sigma_{1,3} = \{x_1 \mapsto 8, x_2 \mapsto 0\}$ is inconsistent with e_1 . In contrast, the pre-image $\sigma_{1,1} = \{x_1 \mapsto 0, x_2 \mapsto 8\}$ is consistent with e_1 , due to the existence of the pre-image $\sigma_{2,1} = \{x'_1 \mapsto 0, x'_2 \mapsto 2\}$. Generalizing this example, all the pre-images in the first training sample that map x_1 to a digit greater than 2 are inconsistent with e_1 . The remaining pre-images are consistent with e_1 . Now, consider the edge $e'_1 := (2, x'_1) \rightarrow (1, x_1)$. In the absence of other edges, all pre-images of the second training sample are globally consistent.*

Inconsistencies between pre-images and edges indicate violations of the restriction that the corresponding instances belong to the same class as we have seen in our running example. Hence, the corresponding pre-images need to be discarded. Definition 3.4 summarizes the process of discarding pre-images from a set of NESY samples based on such inconsistencies.

Definition 3.4 (Pruning). *The pruning $\Pi(\mathcal{G}_{\mathcal{D}}^h)$ of \mathcal{D} subject to $\mathcal{G}_{\mathcal{D}}^h$ is the set of NESY samples that results after removing from each training sample in \mathcal{D} each pre-image that is inconsistent with an edge in $\mathcal{G}_{\mathcal{D}}^h$. The pruning is sound if at least one pre-image is preserved for each sample.*

216 **Algorithm 1** CLIPPER

217
218 **Inputs:** Encoder h ; NESY dataset $\mathcal{D} = \{(\mathbf{x}_\ell, \{\sigma_{\ell,i}\}_{i=1}^{\omega_\ell})\}_{\ell=1}^n$.
219 **Outputs:** Pruned NESY dataset \mathcal{D}' .
220 $\mathcal{D}' := \emptyset$
221 **for each** mini-batch \mathbf{b} of \mathcal{D} **do**
222 **find** the proximity graph $\mathcal{G}_{\mathbf{b}}^h$ for \mathbf{b} maximizing (1).
223 **for each** $\ell \in [n]$ **do**
224 $\Omega_\ell := \emptyset$
225 **for each** $i \in [\omega_\ell]$ **do**
226 **add** $\sigma_{\ell,i}$ to Ω_ℓ if $I'_{\ell,i} = 0$ in the optimal solution to (1).
227 **add** $(\mathbf{x}_\ell, \Omega_\ell)$ to \mathcal{D}'
228 **return** \mathcal{D}'

230 Different proximity graphs have different edges. Hence, they may result in different prunings. A *gold*
231 *proximity graph* for \mathcal{D} , denoted by $\mathcal{G}_{\mathcal{D}}^*$, is a graph that includes a directed edge from (ℓ, x) to (ℓ', x')
232 if x and x' belong to the same class, where $\ell, \ell' \in [n]$, $x \in \mathbf{x}_\ell$, and $x' \in \mathbf{x}'_\ell$. We have:

233 **Proposition 3.5.** *For each $\ell \in [n]$, the ℓ -th training sample in $\Pi(\mathcal{G}_{\mathcal{D}}^*)$ includes the gold pre-image.*

235 Due to Proposition 3.5, one might think that a strategy for discarding pre-images from \mathcal{D} would be
236 the following: (1) Construct a proximity graph $\mathcal{G}_{\mathcal{D}}^h$ including as many edges as possible²; and (2)
237 Remove each pre-image that is inconsistent with an edge in $\mathcal{G}_{\mathcal{D}}^h$. *Does the above approach result in a*
238 *sound pruning?* No, as we demonstrate in the example below:

239 **Example 3.6** (Contd Example 3.3). *Consider also a third training sample $(\{x''_1, x''_2\}, \phi_3 := l''_1 + l''_2 =$
240 $16)$ and the edge $e_2 := (1, x_1) \rightarrow (3, x''_1)$. In the pruning of the proximity graph that includes both*
241 *e_1 (see Example 3.3) and e_2 , the first training sample will be associated with zero pre-images. This is*
242 *because x_1 cannot range simultaneously in the domains $\{0, 1, 2\}$ and $\{7, 8, 9\}$.*

243 Cases such as those described in Example 3.6 are met when the encoder maps instances of difference
244 classes very close in the representation space. In other words, while adding as many edges as possible
245 to $\mathcal{G}_{\mathcal{D}}^*$ does not affect the soundness of $\Pi(\mathcal{G}_{\mathcal{D}}^*)$, this property does not hold in the general case.

247 To summarize the discussion so far, discarding pre-images from a set of NESY training samples
248 reduces to finding a proximity graph whose edges reflect proximity in the representation space,
249 according to Definition 3.1. However, we need to be careful on how we choose this proximity graph:
250 too few edges may result in discarding very few pre-images; too many edges may result to prunings
251 that are not sound, see Definition 3.4. The above gives rise to the following optimization problem.

252 **Problem 3.7.** *For an encoder h , find the proximity graph $\mathcal{G}_{\mathcal{D}}^h$ that leads to the pruning of \mathcal{D} that*
253 *(1) is sound, (2) includes all globally consistent pre-images, and (3) has the lowest total number of*
254 *pre-images across all training samples.*

255 According to Problem 3.7, the desired proximity graph should maximize the number of discarded
256 pre-images. Soundness ensures that we still have at least one pre-image in each training sample and,
257 hence, we can use those samples for training. This assumption comes from the fact that, by definition,
258 each NESY training sample includes the gold pre-image. Finally, we require the pruning of \mathcal{D} to
259 include all globally consistent pre-images as we have no evidence to discard these pre-images. In the
260 next section, we cast Problem 3.7 as an ILP.

261 3.2 A LINEAR PROGRAMMING FORMULATION

263 To formalize Problem 3.7 as an ILP, we need to define the binary variables. First, we add a
264 binary variable $E_{\ell, \ell', x, x'}$ for each $\ell, \ell' \in [n]$, $x \in \mathbf{x}_\ell$, and $x' \in \mathbf{x}'_\ell$, if $h(x')$ is close to $h(x) - h$ and
265 “closeness” is an implementation choice as discussed in Section 3.1. The variable $E_{\ell, \ell', x, x'}$ is one if
266 the resulting proximity graph includes the corresponding edge and zero otherwise. Second, we add
267 a binary variable $I_{\ell, i}$ that corresponds to $\sigma_{\ell, i}$, that is the i -th pre-image of the ℓ -th training sample,

268
269 ²Under the assumption that the corresponding instances x, x' are in fact close under h and the distance
measures in use, where $x, x' \in \mathcal{X}$.

270 for $\ell \in [n]$ and $i \in [\omega_\ell]$. The variable $I_{\ell,i}$ is one if $\sigma_{\ell,i}$ is in the pruning of \mathcal{D} subject to the resulting
 271 proximity graph; otherwise it is zero. Finally, we add a binary variable $I'_{\ell,i}$ for each $\ell \in [n]$ and
 272 $i \in [\omega_\ell]$ that is the complement of $I_{\ell,i}$, i.e., it is one when $I_{\ell,i}$ is zero and vice versa. We are now
 273 ready to discuss the constraints of the linear program.
 274

275 The first constraint is $I_{\ell,i} + I'_{\ell,i} = 1$ and states that the two variables are mutually exclusive. The
 276 second constraint is $\sum_{i=1}^{[\omega_\ell]} I_{\ell,i} \geq 1$, for each $\ell \in [n]$, and states that each training sample must include
 277 at least one pre-image. The third constraint is $I_{\ell,i} = 1$, for each $\ell \in [n]$ and $i \in [\omega_\ell]$, if $\sigma_{\ell,i}$ is globally
 278 consistent in any proximity graph that can be computed for the given training samples \mathcal{D} subject
 279 to h and the distance measures selected, see Definition 3.2. This constraint ensures that those pre-
 280 images will not be discarded in the pruning. The fourth constraint is $1 - E_{\ell,\ell',x,x'} + 1 - I_{\ell,i} = 1$ and
 281 expresses that $\sigma_{\ell,i}$ is inconsistent with the edge $(\ell, x) \rightarrow (\ell', x')$, see Definition 3.2. The remaining
 282 constraints define the domain. The objective is to maximize the number of discarded pre-images.
 283

$$\begin{aligned}
 \text{objective} \quad & \max \sum_{\ell \in [n], i \in [\omega_\ell]} I'_{\ell,i}, \\
 \text{s.t.} \quad & I_{\ell,i} + I'_{\ell,i} = 1, \quad \forall \ell \in [n], \forall i \in [\omega_\ell] \\
 & \sum_{i=1}^{[\omega_\ell]} I_{\ell,i} \geq 1, \quad \forall \ell \in [n] \\
 & I_{\ell,i} = 1, \quad \forall \ell \in [n], \forall i \in [\omega_\ell], \text{s.t.} \\
 & \quad \sigma_{\ell,i} \text{ is always globally consistent.} \\
 & 1 - E_{\ell,\ell',x,x'} + 1 - I_{\ell,i} = 1, \quad \forall \ell \in [n], \forall \ell' \in [n], \forall x \in \mathbf{x}_\ell, \forall x' \in \mathbf{x}_{\ell'}, \text{s.t.} \\
 & \quad \sigma_{\ell,i} \text{ is inconsistent with } (\ell, x) \rightarrow (\ell', x'). \\
 & E_{\ell,\ell',x,x'} \in \{0, 1\}, \quad \forall \ell \in [n], \forall \ell' \in [n], \forall x \in \mathbf{x}_\ell, \forall x' \in \mathbf{x}_{\ell'}, \text{s.t.} \\
 & \quad h(x') \text{ is close to } h(x). \\
 & I_{\ell,i} \in \{0, 1\}, \quad \forall \ell \in [n], \forall i \in [\omega_\ell] \\
 & I'_{\ell,i} \in \{0, 1\}, \quad \forall \ell \in [n], \forall i \in [\omega_\ell]
 \end{aligned} \tag{1}$$

298 We formalize correctness below.
 299

300 **Proposition 3.8.** [Optimality] The solution to (1) is the optimal solution of Problem 3.7.

301 Algorithm 1 summarizes our technique for pruning pre-images from a set NESY training samples.
 302 The algorithm works on mini-batches, i.e., it solves (1) for each mini-batch of \mathcal{D} .
 303

3.3 DISCUSSION

306 Our formulation in (1) does not consider the strength of the similarity (e.g., the inverse distance) of
 307 two instances. We can change the optimization objective to include the similarity of two instances as
 308 the weight of an edge. The second point concerns the optimality of the gold proximity graphs for \mathcal{D} .
 309 Proposition 3.5 states that for each training sample, $\Pi(\mathcal{G}_\mathcal{D}^*)$ includes the gold pre-image. However, it
 310 does not provide an optimality guarantee of the form: There does not exist any other proximity graph
 311 $\mathcal{G}'_\mathcal{D}$ for \mathcal{D} subject to any encoder h , such that the ℓ -th training sample in $\Pi(\mathcal{G}'_\mathcal{D})$ includes the gold
 312 pre-image and has fewer pre-images than in $\Pi(\mathcal{G}_\mathcal{D}^*)$, for some $\ell \in [n]$. This optimality guarantee is
 313 not possible unless we make certain assumptions about \mathcal{D} and the edges in $\Pi(\mathcal{G}_\mathcal{D}^*)$.
 314

315 The above reveals the third point: Ideally, we should consider all training samples in \mathcal{D} when solving
 316 (1). If this is not possible due to scalability restrictions when \mathcal{D} is very large, we should consider a
 317 sufficiently large batch size to avoid phenomena in which certain instances have very few or even no
 318 other instance of the same class and, hence, there are not enough edges that could potentially filter
 319 out pre-images. In our empirical analysis, we saw that reasonably large batch sizes were sufficient
 320 to prevent these phenomena. Fourth, as stated in Section 1, our approach can run in a training-free
 321 manner or by simultaneously updating the encoder h during training. In all cases, we can apply
 322 CLIPPER either on whole \mathcal{D} or on mini-batches, as in Algorithm 1.

323 The last point concerns the guarantees on preserving the gold pre-images: Proposition 3.5 offers such
 324 guarantees; but the formulation of Problem 3.7 does not focus on this aspect. From Proposition 3.5, it
 325 follows that offering guarantees on preserving the gold pre-images straightforwardly relates to the

324
325Table 1: Classification accuracy for SUM- M .

Algorithms	n=100, MNIST		n=500, MNIST		n=5K, CIFAR-10		n=10K, CIFAR-10	
	M = 3	M = 4	M = 3	M = 4	M = 3	M = 4	M = 3	M = 4
SCALLOP	36.17 \pm 13.28	32.26 \pm 11.48	95.10 \pm 0.28	95.94 \pm 0.00	64.29 \pm 2.93	48.62 \pm 15.74	85.73 \pm 0.26	82.30 \pm 3.47
+ C(GOLD)	49.36 \pm 8.96	41.89 \pm 12.11	95.56 \pm 0.28	96.38 \pm 0.20	68.94 \pm 1.90	48.23 \pm 4.47	86.85 \pm 1.41	82.85 \pm 3.71
+ C(ENC)	45.25 \pm 12.35	36.93 \pm 11.75	95.95 \pm 0.37	96.22 \pm 0.20	66.43 \pm 0.67	70.01 \pm 0.70	86.25	84.60 \pm 0.42
DOLPHIN	35.31 \pm 13.99	32.44 \pm 6.31	95.16 \pm 0.22	95.44 \pm 0.34	66.96 \pm 2.85	49.06 \pm 9.75	83.86 \pm 1.14	78.94 \pm 2.96
+ C(GOLD)	50.54 \pm 8.66	30.93 \pm 1.13	95.14 \pm 0.50	95.84 \pm 0.28	71.16 \pm 0.60	38.17 \pm 15.59	85.33 \pm 0.28	80.63 \pm 1.16
+ C(ENC)	46.64 \pm 6.89	30.14 \pm 0.65	94.96 \pm 0.30	95.98 \pm 0.38	66.02 \pm 1.24	67.47 \pm 0.64	81.50 \pm 0.30	84.08 \pm 0.61
ISED	7.98 \pm 2.82	9.77 \pm 3.12	70.55 \pm 8.39	37.01 \pm 6.08	16.85 \pm 4.10	10.08 \pm 3.17	45.71 \pm 6.76	18.6 \pm 4.31
+ C(GOLD)	10.28 \pm 3.20	10.51 \pm 3.24	70.6 \pm 8.40	60.38 \pm 7.77	33.38 \pm 5.78	17.06 \pm 4.13	52.06 \pm 7.21	29.7 \pm 5.44
+ C(ENC)	11.7 \pm 3.42	9.22 \pm 3.03	70.1 \pm 8.37	70.01 \pm 8.36	17.43 \pm 4.17	14.26 \pm 3.78	37.06 \pm 6.08	25.91 \pm 5.09
ABLSIM	16.51	11.71	Running	Running	Running	Running	Running	Running
ABLKit	16.1	Running	Running	Running	Running	Running	Running	Running

Table 2: Classification accuracy for MAX- M .

Algorithms	M=3, n = 100	M=4, n = 100
SCALLOP	58.19 \pm 3.47	53.92 \pm 3.28
+ C(GOLD)	48.19 \pm 2.86	38.93 \pm 3.13
+ C(ENC)	43.82 \pm 5.25	35.78 \pm 5.21
DOLPHIN	61.86 \pm 2.54	59.70 \pm 6.43
+ C(GOLD)	65.87 \pm 4.72	65.30 \pm 4.19
+ C(ENC)	63.57 \pm 3.41	61.93 \pm 1.94
ISED	9.78 \pm 3.13	9.87 \pm 3.14
+ C(GOLD)	8.9 \pm 2.98	8.76 \pm 2.96
+ C(ENC)	12.63 \pm 3.55	9.55 \pm 3.09
ABLSIM	42.48	Running

Table 3: Classification accuracy for HWF-7.

Algorithms	n=500	n=1k
SCALLOP	55.67 \pm 7.93	62.36 \pm 41.83
+ C(GOLD)	95.01 \pm 0.07	97.57 \pm 0.06
+ C(ENC)	92.46 \pm 0.06	95.95 \pm 0.36
DOLPHIN	11.81 \pm 1.94	15.35 \pm 1.11
+ C(GOLD)	77.52 \pm 5.08	85.39 \pm 11.97
+ C(ENC)	66.33 \pm 17.45	89.84 \pm 4.30
ISED	19.33 \pm 4.83	24.44 \pm 8.39
+ C(GOLD)	28.10 \pm 4.21	29.42 \pm 4.86
+ C(ENC)	21.86 \pm 2.63	29.52 \pm 2.77

“quality” of the edges, that is whether the connected instances are, in fact, of the same class. A way to address this issue would be to associate with each edge $(\ell, x) \rightarrow (\ell', x')$ the probability instances x and x' are of the same class. However, this modification is not straightforward due to the correlations between the instances in each training sample. We leave this aspect as a direction for future research.

4 EXPERIMENTS

Benchmarks. We consider a wide range of benchmarks. The first two, **SUM- M** and **MAX- M** , are two classic benchmarks in the literature [Manhaeve et al. \(2021\)](#). **SUM- M** has been used in our running example, while **MAX- M** considers the maximum instead of the sum of the gold labels. In the above scenarios, the number of pre-images may be particularly large, making the supervision rather weak, e.g., in the **MAX-4** scenario, there are 4×9^3 candidate combinations of labels when the weak label is 9. To assess the effectiveness of our technique under more complex representations, we also consider a variant of those benchmarks, where we associate each digit in $\{0, \dots, 9\}$ with a **CIFAR-10** class. The next benchmark is **HWF- M** [Li et al. \(2020\)](#). Each training sample consists of (1) a sequence (x_1, \dots, x_K) of digits in $\{0, \dots, 9\}$ and mathematical operators in $\{+, -, *\}$, corresponding to a mathematical expression of length M and (2) the result of the corresponding mathematical expression. The goal is to train a classifier to recognize digits and operators.

Our third benchmark is **VQAR** [Huang et al. \(2021a\)](#). VQAR extends GQA [Hudson & Manning \(2019\)](#) with queries that require multi-hop reasoning using knowledge from CRIC [Gao et al. \(2019\)](#). The benchmark includes the classifiers *name* and *rel* that return the type of an object within a given bounding box and the relationship between the objects within a pair of bounding boxes. The objective is to train the above classifiers using samples of the form (\mathbf{o}, ϕ) , where \mathbf{o} are bounding boxes and ϕ is a sentence the bounding boxes abide by. The benchmark includes 500 object types and 229 different relations. We restrict to the top- k most frequent object types and relations for $k = \{50, 100\}$.

Our last benchmark is **MUGEN** [Hayes et al. \(2022\)](#). **MUGEN** is based on **CoinRun** [Cobbe et al. \(2019\)](#). Each training sample consists of a sequence of N video frames and a sequence of K actions that describe what the character does. The

Table 4: name (N)/relation (R) classification accuracies for VQAR. i3 and i5 denote the types of sentences in \mathcal{D} .

Algorithms	top-50 N, top-50 R $n = 1000$	top-100 N, top-50 R $n = 1000$	top-100 N, top-50 R $n = 5000$
SCALLOP	46.58/19.93	35.6/12.62	37.98/13.94
+ C(ENC)	48.08/22.41	36.17/12.55	39.70/14.32

395 Figure 1: Classification accuracies per epoch with and without CLIPPER.

398 objective is to train a classifier to recognize the action in each frame. In general, $K \leq N$, i.e.,
399 the same action may be taking place in more than one video frame. However, we do not exactly
400 know which action takes place in each frame. We use two tasks to assess the performance of the
401 classifier: video-to-text retrieval (VTR) and text-to-video retrieval (TVR). In VTR, given a video
402 and M sequences of actions, the classifier must choose the sequence of actions most aligned with
403 the video. In TVR, given a sequence of actions and M videos, the classifier must choose the video
404 most aligned with the action sequence. In each task, we measure accuracy by counting the number of
405 times the classifier chose the ground-truth sequence of actions and videos.

406 **Baselines, Engines, Variants, & Measures.** We consider the state-of-the-art engines SCAL-
407 LOP Huang et al. (2021a), DOLPHIN Naik et al. (2025), and ISED Solko-Breslin et al. (2024).
408 Unlike SCALLOP and DOLPHIN, ISED implements sampling-based NESY learning. We apply
409 CLIPPER, abbreviated as C, using (1) the gold proximity graph for the input training samples and (2)
410 the proximity graph subject to pre-trained encoders. The first setting allows us to assess the potential
411 of our technique independently of the encoder in use. We denote the first setting by C(GOLD) and
412 the second one by C(ENC). In the appendix, we provide details about the encoder used in each
413 benchmark. In MUGEN, we did not have access to the gold labels; we approximated C(GOLD) using
414 a pretrained encoder. We assess the performance of CLIPPER using the classification accuracy of the
415 underlying classifiers. In SUM- M , MAX- M , and HWF-7, the results are obtained over three runs.
416 In VQAR and MUGEN, each experiment was run once, following Li et al. (2023c). In the first four
417 benchmarks, we run Algorithm 1 in a training-free fashion. In MUGEN, we interleave pruning with
418 the training of the underlying encoder: while in the previous scenarios we had already had access to
419 pre-trained models, this was not the case in MUGEN. We additionally compare with ABLSIM Huang
420 et al. (2021b), a technique that uses similarity-based consistency optimization to prune preimages in
421 Abductive Learning Dai et al. (2019), and ABLKIT Huang et al. (2024b), an efficient Python toolkit
422 for Abductive Learning.

423 The results of our analysis are shown in Tables 1-5 and Figure 1.
424 The tables show the final classification accuracies after convergence, while the figure shows
425 changes in classification accuracy over training epochs. Additional information is in the ap-
426 pendix.
427

428 We see that CLIPPER can significantly increase
429 the accuracy of the baseline model. For exam-
430 ple, in SUM- M , Table 1, the mean classifica-
431 tion accuracy of the baseline SCALLOP model
432 increases from 36.17% to 45.25% when $M = 3$,

422 Table 5: Classification accuracy for MUGEN.

Algorithms	VTR		TVR	
	$n=250$	$n=500$	$n=250$	$n=500$
SCALLOP	25.2	26.39	27.5	31.10
+ C(GOLD)	25.7	76	28.4	76.7
+ C(ENC)	27.1	74.9	32.00	77.7
DOLPHIN	33.8	33.9	34.8	34.7
+ C(GOLD)	76.1	84	80.0	86
+ C(ENC)	83.7	86.6	85.0	86.9

432 $n = 100$, and MNIST digits are used. For the baseline DOLPHIN and ISED models, it increases
 433 from 35.31% to 46.46% and from 8.56% to 8.75%. For HWF-7 in Table 3, the mean accuracy of
 434 the baseline SCALLOP model increases from 62.36% to 95.95% when $n=1k$; for the same scenario,
 435 the accuracy for the baseline DOLPHIN model increases from 15.35% to 89.84%. For MUGEN in
 436 Table 5, VTR increases for the baseline SCALLOP model from 26.39% to 74.9% when $n = 500$; for
 437 DOLPHIN, this increase is from 33.9% to 86.6%. Notice that the baseline accuracy for SCALLOP
 438 and the improvements due to CLIPPER that are reported in Table 4 are less than the results in Huang
 439 et al. (2021a). This is because of two reasons: (1) Huang et al. (2021a) does not report classification
 440 accuracy, but accuracy on the overall output and (2) in Huang et al. (2021a), the samples in \mathcal{D} are
 441 easier than those in our analysis. In fact, in our analysis, the training samples are associated with
 442 more than 100 pre-images on average.

443 Out of the 47 scenarios in our empirical results, CLIPPER decreases the accuracy in six scenarios
 444 only, and in most cases the decrease is minor. One of these cases are met in ISED. We attribute these
 445 minor decreases to the fact that ISED chooses pre-images in a non-deterministic way. Due to this
 446 randomness, the gold labels may be discarded during training even if CLIPPER maintains them. Two
 447 such cases are met in SCALLOP, under the MAX- M scenario. We attribute this decrease in training
 448 instabilities to the way SCALLOP implements the aggregate semiring Li et al. (2023c).

449 Another observation is that pruning under non-gold proximity graphs leads to results that are on par
 450 with those obtained by pruning under the gold proximity graphs. For example, in SUM-3, for $n = 100$,
 451 SCALLOP+C(GOLD) improves the mean accuracy by 13% over the baseline; SCALLOP+C(ENC)
 452 improves the accuracy by 9%, see Table 1. In ISED, C(ENC) leads to higher improvements than
 453 C(GOLD) in most scenarios. As noted above, this is due to the non-deterministic sampling of the
 454 pre-images after pruning. For MUGEN, the accuracy of the baseline DOLPHIN model increases from
 455 33.9% to 84% for $n = 500$ under pruning guided by the gold proximity graph. Instead, when a
 456 non-gold proximity graph is employed, the accuracy for the same scenario increases from 33.9% to
 457 86.6%. This is because, in MUGEN, we approximated C(GOLD) using a pretrained encoder, i.e., the
 458 labels that we use to compute the gold proximity graph are noisy.

459 The results in Table 5 manifest the robustness of CLIPPER, showing that it performs quite well when
 460 there is no access to a pre-trained encoder. Figure 1(b) suggests another interesting phenomenon
 461 about CLIPPER: as epochs increase, CLIPPER keeps improving the classification accuracy, as opposed
 462 to the baseline. In SCALLOP+C(ENC) and DOLPHIN+C(ENC), we can see drastic increases in TVR
 463 and VTR after epochs 30 and 25.

5 RELATED WORK

464 **NESy Engines.** Research on NESy mainly focused on developing efficient NESy losses Xu et al.
 465 (2018); Donadello et al. (2017) and sampling-based training techniques Li et al. (2023b); Solko-
 466 Breslin et al. (2024); Dai et al. (2019), leaving unexplored the connection between those losses and
 467 their ability to disambiguate the gold labels.

468 **NESy Learning.** Our work was motivated by recent research showing that learning becomes more
 469 challenging as the space of possible label combinations increases in size Marconato et al. (2023);
 470 Tsamoura et al. (2025). Marconato et al. (2023) proposed different strategies to anticipate the lack of
 471 gold labels during training. However, most of these strategies made additional assumptions during
 472 training. The only strategy in Marconato et al. (2023) that exploited the representation space was the
 473 one employing an autoencoder-based loss during training (Section 5.3). Unlike ours, this strategy
 474 requires modifying the classifier’s architecture. More importantly, it does not operate in a training-free
 475 manner as CLIPPER. Finally, the work in Marconato et al. (2024) that concurrently trains multiple
 476 classifiers to improve label disambiguation during training. The latter research is orthogonal to ours.

477 **Partial Label Learning.** NESy extends *partial label learning* (PLL) Cour et al. (2011). In PLL,
 478 each training sample is of the form (x, Y) , where Y is a set of mutually exclusive candidate labels
 479 for x that includes the gold one. Most relevant to ours is the work of He et al. He et al. (2024) in
 480 standard PLL. However, their formulation (1) cannot be extended to support NESy and (2) neither
 481 discards the maximum number of pre-images across all training samples, as Proposition 3.8 does –
 482 their proposed technique greedily eliminates the candidate labels from Y that do not occur frequently
 483 in the top- k neighbors of x in the representation space. Theorem 1 in He et al. (2024) computes
 484 the probability of discarding the gold labels as a function of the total number of discarded labels.

486 However, their analysis cannot be straightforwardly extended to analyze our technique due to the
 487 correlations among instances in each training sample – which are not supported by their technique.
 488

489 6 CONCLUSIONS

490 We introduced a technique to reduce the space of candidate label combinations in NESY by exploiting
 491 the proximity of instances in the representation space that is supported by a new problem formulation
 492 and an optimal solution. An option would be to use pretrained LLMs to infer the gold labels directly
 493 [Stein et al. \(2025\)](#). Beyond being cost- and resource-demanding, this approach can be seen as a
 494 special case of our approach that retains only one pre-image: the one that best aligns with the LLM’s
 495 predictions. Our formulation is a non-trivial extension to this setting, where we do not keep a single
 496 pre-image but multiple ones that abide by the background theory. Future research includes extending
 497 the theoretical analysis in [He et al. \(2024\)](#) to our setting.
 498

499 REFERENCES

500 Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In *CVPR*,
 501 pp. 39–48, 2016.

502 Vivien Cabannes, Alessandro Rudi, and Francis Bach. Structured prediction with partial labelling
 503 through the infimum loss. In *ICML*, pp. 1230–1239, 2020.

504 Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
 505 in reinforcement learning. In *ICML*, pp. 1282–1289, 2019.

506 Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. *Journal of Machine
 507 Learning Research*, 12:1501–1536, 2011. ISSN 1532-4435.

508 Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging Machine Learning and Logical
 509 Reasoning by Abductive Learning. In *NeurIPS*, pp. 2815–2826, 2019.

510 Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for semantic
 511 image interpretation. *CoRR*, abs/1705.08968, 2017.

512 Jonathan Feldstein, Modestas Jürjus, and Efthymia Tsamoura. Parallel neurosymbolic integration
 513 with concordia. In *ICML*, pp. 9870–9885, 2023.

514 Jonathan Feldstein, Paulius Dilkas, Vaishak Belle, and Efthymia Tsamoura. Mapping the neuro-
 515 symbolic ai landscape by architectures: A handbook on augmenting deep learning through symbolic
 516 reasoning. *CoRR*, abs/2410.22077, 2024. URL <https://arxiv.org/abs/2410.22077>.

517 Difei Gao, Ruiping Wang, Shiguang Shan, and Xilin Chen. From two graphs to N questions: A VQA
 518 dataset for compositional reasoning on vision and commonsense. *CoRR*, abs/1908.02962, 2019.

519 Thomas Hayes, Songyang Zhang, Xi Yin, Guan Pang, Sasha Sheng, Harry Yang, Songwei Ge, Qiyuan
 520 Hu, and Devi Parikh. Mugen: A playground for video-audio-text multimodal understanding and
 521 generation. In *ECCV*, pp. 431–449, 2022.

522 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 523 recognition. *CoRR*, abs/1512.03385, 2015. URL <http://arxiv.org/abs/1512.03385>.

524 Shuo He, Chaojie Wang, Guowu Yang, and Lei Feng. Candidate label set pruning: A data-centric
 525 perspective for deep partial-label learning. In *ICLR*, 2024.

526 Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop:
 527 From probabilistic deductive databases to scalable differentiable reasoning. In *NeurIPS*, pp.
 528 25134–25145, 2021a.

529 Jiani Huang, Ziyang Li, Mayur Naik, and Ser-Nam Lim. Laser: A neuro-symbolic framework for
 530 learning spatial-temporal scene graphs with weak supervision, 2024a. URL <https://arxiv.org/abs/2304.07647>.

540 Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen Muggleton, and Yuan Jiang. Fast abductive
 541 learning by similarity-based consistency optimization. In *Proceedings of the 35th International*
 542 *Conference on Neural Information Processing Systems*, NIPS '21, Red Hook, NY, USA, 2021b.
 543 Curran Associates Inc. ISBN 9781713845393.

544 Yu-Xuan Huang, Wen-Chao Hu, En-Hao Gao, and Yuan Jiang. Ablkit: a python toolkit for abductive
 545 learning. *Frontiers of Computer Science*, 18(6):186354, 2024b.

546 Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
 547 and compositional question answering. In *CVPR*, pp. 6693–6702, 2019.

548 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE*
 549 *Transactions on Big Data*, 7(3):535–547, 2021.

550 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image
 551 pre-training with frozen image encoders and large language models. In *ICML*, 2023a.

552 Qing Li, Siyuan Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.
 553 Closed loop neural-symbolic learning via integrating neural perception, grammar parsing, and
 554 symbolic reasoning. In *ICML*, 2020.

555 Zenan Li, Yuan Yao, Taolue Chen, Jingwei Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. Softened
 556 symbol grounding for neurosymbolic systems. In *ICLR*, 2023b.

557 Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
 558 *Proceedings of the ACM on Programming Languages*, 7(PLDI), 2023c.

559 Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev
 560 Alur, and Mayur Naik. Relational programming with foundational models. *Proceedings of the*
 561 *AAAI Conference on Artificial Intelligence*, 38(9):10635–10644, 2024.

562 Jaron Maene and Efthymia Tsamoura. Embeddings as probabilistic equivalence in logic programs.
 563 In *NeurIPS*, 2025.

564 Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
 565 Neural probabilistic logic programming in deepproblog. *Artificial Intelligence*, 298:103504, 2021.

566 Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-symbolic
 567 concepts are created equal: Analysis and mitigation of reasoning shortcuts. In *NeurIPS*, 2023.

568 Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini,
 569 and Stefano Teso. bears make neuro-symbolic models aware of their reasoning shortcuts. In *UAI*,
 570 2024.

571 Aaditya Naik, Jason Liu, Claire Wang, Amish Sethi, Saikat Dutta, Mayur Naik, and Eric Wong.
 572 Dolphin: A programmable framework for scalable neurosymbolic learning. In *ICML*, 2025.

573 Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, and Eric
 574 Wong. Data-efficient learning with neural programs. In *NeurIPS*, 2024.

575 Vivek Srikumar and Dan Roth. The integer linear programming inference cookbook.
 576 *ArXiv*, abs/2307.00171, 2023. URL <https://api.semanticscholar.org/CorpusID:259316294>.

577 Adam Stein, Aaditya Naik, Neelay Velingker, Mayur Naik, and Eric Wong. The road to generalizable
 578 neuro-symbolic learning should be paved with foundation models. *CoRR*, abs/2505.24874, 2025.
 579 URL <https://arxiv.org/abs/2505.24874>.

580 Jacob Steinhardt and Percy S Liang. Learning with relaxed supervision. In *NeurIPS*, volume 28,
 581 2015.

582 Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
 583 formers. In *EMNLP*, pp. 5099–5110, 2019.

594 Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A
 595 compositional perspective. In *AAAI*, pp. 5051–5060, 2021.
 596

597 Efthymia Tsamoura, Kaifu Wang, and Dan Roth. Imbalances in neurosymbolic learning: Characteri-
 598 zation and mitigating strategies. In *NeurIPS*, 2025.
 599

600 Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. PiCO:
 601 Contrastive label disambiguation for partial label learning. In *ICLR*, 2022. URL <https://openreview.net/forum?id=EhYjZy6elgJ>.
 602

603 Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak
 604 supervision. In *NeurIPS*, 2023.
 605

606 Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency regularization for
 607 deep partial label learning. In *ICML*, volume 162, pp. 24212–24225, 2022.
 608

609 S. Xia, J. Lv, N. Xu, G. Niu, and X. Geng. Towards effective visual representations for partial-label
 610 learning. In *CVPR*, pp. 15589–15598, 2023.
 611

612 Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
 613 for deep learning with symbolic knowledge. In *ICML*, pp. 5502–5511, 2018.
 614

615 Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent partial label learning.
 616 In *NeurIPS*, volume 34, pp. 27119–27130, 2021.
 617

618 Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into answer set
 619 programming. In *IJCAI*, pp. 1755–1762, 2020.
 620

621 Yivan Zhang, Nontawat Charoenphakdee, Zheng Wu, and Masashi Sugiyama. Learning from
 622 aggregate observations. In *NeurIPS*, 2020.
 623

624

A NOTATION

Table 6: The notation in the preliminaries and the proposed algorithm.

Supervised learning notation	
$[n] := \{1, \dots, n\}$	Set notation
\mathcal{X}, \mathcal{Y}	Input instance space and label space
x, y	Elements from \mathcal{X} and \mathcal{Y}
Δ_c	Space of probability distributions over \mathcal{Y}
$f : \mathcal{X} \mapsto \Delta_c$	Scoring function
$f^j(x)$	Score of f upon x for class $j \in \mathcal{Y}$
NSL notation	
\mathcal{D}	Set of NESY training samples
n	Number of samples in \mathcal{D}
ℓ, ℓ'	Indices over $[n]$
\mathbf{x}_ℓ	The vector of instances in the ℓ -th NESY sample in \mathcal{D}
$\sigma_{\ell,i}$	The i -th pre-image of the ℓ -th NESY sample in \mathcal{D}
ω_ℓ	Number of pre-images in the ℓ -th NESY sample in \mathcal{D}
Notation in Section 3	
h	Encoder from \mathcal{X} to \mathbb{R}^m
$\mathcal{G}_{\mathcal{D}}^h$	Proximity graph for \mathcal{D} subject to h
$E_{\ell, \ell', x, x'}$	Binary variable becoming 1 if $(\ell, x) \rightarrow (\ell', x')$ is in $\mathcal{G}_{\mathcal{D}}^h$
$I_{\ell,i}, I'_{\ell,i}$	Binary variables corresponding to pre-image $\sigma_{\ell,i}$ in \mathcal{D}

Figure 2: Percentage of pre-images pruned by CLIPPER across training epochs for MNIST SUM-3 with $n = 100$.

B DETAILS ON SECTION 3

Proposition 3.5. *For each $\ell \in [n]$, the ℓ -th training sample in $\Pi(\mathcal{G}_\mathcal{D}^*)$ includes the gold pre-image.*

Proof. The proof proceeds by means of contradiction. Suppose that in the ℓ -th training sample, the gold pre-image σ_{ℓ}^* is not retained in $\Pi(\mathcal{G}_\mathcal{D}^*)$. According to Definition 3.4, the above implies that σ_{ℓ}^* is inconsistent in $\mathcal{G}_\mathcal{D}^*$. According to Definition 3.4, the latter consequently means that $\mathcal{G}_\mathcal{D}^*$ includes an edge $(\ell, x) \rightarrow (\ell', x')$ σ_{ℓ}^* is inconsistent with, i.e., there does not exist any pre-image $\sigma_{\ell',i'}$, such that $\sigma_{\ell}^*(x) = \sigma_{\ell',i'}(x')$ holds. Let c be the gold label of x . Since $\mathcal{G}_\mathcal{D}^*$ is a gold proximity graph for \mathcal{D} , it follows that x and x' belong to the same class c . Furthermore, since σ_{ℓ}^* is inconsistent with $(\ell, x) \rightarrow (\ell', x')$, this means that no pre-image in the ℓ' -th training sample maps x' to c . However, by definition, each NESY training sample includes the gold pre-image, i.e., the image that maps each instance to each ground truth class. The above leads to a contradiction, completing the proof of Proposition 3.5. \square

Proposition 3.8. *[Optimality] The solution to (1) is the optimal solution of Problem 3.7.*

Proof. The proof proceeds by construction. Recall that the variable $I'_{\ell,i}$ corresponds to the i -th pre-image of the ℓ -th training sample $\sigma_{\ell,i}$, for $\ell \in [n]$ and $i \in [\omega_\ell]$ and becomes one if $\sigma_{\ell,i}$ is not in the pruning of \mathcal{D} subject to the resulting proximity graph, see Section 3.2. Due to the above, the optimization objective $\max \sum_{\ell \in [n], i \in [\omega_\ell]} I'_{\ell,i}$ in (1) aligns with the objective (3) in Problem 3.7.

Now, let us move to objective (2) from Problem 3.7, that is the pruning of \mathcal{D} subject to the resulting proximity includes all globally consistent pre-images. This objective is satisfied due to the third constraint in (1).

Finally, let us move to objective (1) from Problem 3.7, that is the pruning of \mathcal{D} subject to the resulting proximity is sound, that is, each at least one pre-image is preserved for each sample, see Definition 3.4. From Section 3.2, we know that the variable $E_{\ell,\ell',x,x'}$, for each $\ell, \ell' \in [n]$, $x \in \mathbf{x}_\ell$, and $x' \in \mathbf{x}'_{\ell'}$, (a) denotes that $h(x')$ is close to $h(x)$ and (b) becomes one if the resulting proximity graph includes the corresponding edge and zero otherwise. The fourth constraint in (1), that is, $1 - E_{\ell,\ell',x,x'} + 1 - I_{\ell,i} = 1$, enforces that each pre-image $\sigma_{\ell,i}$ that is inconsistent with the edge $(\ell, x) \rightarrow (\ell', x')$ (and this edge is included in the resulting proximity graph) will not be included in the pruning of \mathcal{D} subject to the resulting graph. Notice that whenever the variable $E_{\ell,\ell',x,x'}$ becomes one, the variable $I_{\ell,i}$ becomes zero. The above, along with the facts that (i) each training sample in the resulting pruning of \mathcal{D} is associated with at least one pre-image – enforced by the constraint $\sum_{i=1}^{[\omega_\ell]} I_{\ell,i} \geq 1$, for each $\ell \in [n]$ in (1) – and (ii) each pre-image is either included in the resulting pruning or not – enforced by the constraint $I_{\ell,i} + I'_{\ell,i} = 1$, for each $\ell \in [n]$ and each $i \in [\omega_\ell]$ in (1) – ensure that the LP in (1) satisfies objective (1) from Problem 3.7, completing the proof of Proposition 3.8. \square

702 **C FURTHER DETAILS ON THE EXPERIMENTS**
 703

704 **Benchmarks.** In **SUM- M** and **MAX- M** training samples are created by drawing M MNIST digits
 705 or CIFAR-10 images in an i.i.d. fashion and associating with them the sum or maximum of their
 706 corresponding gold labels. Regarding **VQAR** Huang et al. (2021a), the original benchmark includes
 707 a large number of queries that reduce NESY training to supervised one. To make training more
 708 challenging, we consider training samples associated with a large number of pre-images, averaging on
 709 more than 100 per training sample. To control the difficulty of training, we consider training samples
 710 whose logical formulae are of the form $name(superclass, o_1) \wedge rel(r, o_1, O_2)$, where *superclass*
 711 is the most generic class object o_1 can belong to according to the CRIC ontology, e.g., a toy is an
 712 object, and a is the attribute object O_2 is associated with. The above formulae are slightly different
 713 than the ones described in Section 2, as they include free variables: o_1 is a given object, while O_2 is a
 714 free one that can be found to any object within a given image. Our analysis applies without loss of
 715 generality to those settings due to the flexibility abduction gives us.

716 **Engines.** Like DeepProbLog, SCALLOP relies on training using semantic loss Xu et al. (2018).
 717 However, it offers a scalable implementation of it. Research showed that SCALLOP outperforms
 718 DeepProbLog, ABL Dai et al. (2019), NeurASP Yang et al. (2020) and the engine proposed in Li et al.
 719 (2023b) across a variety of tasks Wang et al. (2023); Li et al. (2023c). In addition, SCALLOP has state-
 720 of-the-art performance on MUGEN and VQAR, outperforming SDSC Hayes et al. (2022) in MUGEN,
 721 and NMNs Andreas et al. (2016) and LXMERT Tan & Bansal (2019) in VQAR. DOLPHIN offers
 722 NESY training using losses based on fuzzy logic and has reported higher accuracy than SCALLOP on
 723 a variety of benchmarks.

724 **Encoders.** We use a pretrained ResNet-18 convolutional neural network pretrained on ImageNet-1k
 725 for SUM- M , MAX- M , CIFAR-10, and HWF. We show the amount of proofs pruned by CLIPPER
 726 with the ResNet-18 encoder in Figure 2. In VQAR, the object bounding boxes and features are
 727 obtained by passing the images through pre-trained fixed-weight Mask RCNN and ResNet models.
 728 For MUGEN, as discussed in the experiments section, we do not use an external encoder, but rather
 729 use the model to encode the representations while it is being trained. To approximate the gold labels,
 730 we trained the same model on the full MUGEN dataset until convergence to produce an oracle model
 731 M_O , which we used to approximate the gold labels.

732 **Computational environment.** All experiments, except MUGEN, were performed on machines with
 733 two 20-core Intel Xeon Gold 6248 CPUs, four NVIDIA GeForce RTX 2080 Ti (11 GB) GPUs, and
 734 768 GB RAM. MUGEN, as it required a larger GPU, was trained on an NVIDIA A100 40GB GPU.

735 **Additional implementation details.** Across all experiments, we deal with directed proximity
 736 graphs and assume that there exists a directed edge $(\ell, x) \rightarrow (\ell', x')$ only if $h(x')$ is in the top- k
 737 neighborhood of $h(x)$, for $x, x' \in \mathcal{X}$, for $k = 1$. We use a batch size of 64 for SUM- M and MAX- M ,
 738 with a learning rate of $1e - 3$. For HWF, we used a batch size of 4 with a learning rate of $1e - 4$. For
 739 VQAR, we used a batch size of 512 with a learning rate of $1e - 4$. For MUGEN, we used a batch
 740 size of 3 for Dolphin and 4 for Scallop, with a learning rate of $1e - 4$. Across all experiments, we
 741 used AdamW as the optimizer. To compute proximity in the latent space, we used the FAISS open
 742 source library Johnson et al. (2021).

743 **Software packages.** Our source code was implemented in Python 3.10. We used the following python
 744 libraries: scallop³, highspy⁴, or-tools⁵, PySDD⁶, PyTorch and PyTorch vision.

745 **Deep networks.** For MAX- M and SUM- M , we used the MNIST CNN used in (Huang et al., 2021a).
 746 For HWF-7, we used the CNN used in (Li et al., 2023c). For VQAR and MUGEN, we used the same
 747 deep networks with (Huang et al., 2021a).

748 Figure 2 shows the percentage of pre-images that are pruned at each epoch for MNIST SUM-3 with
 749 $n = 100$. We can see that CLIPPER is quite effective in discarding pre-images, discarding more than
 750 25% on average across all engines.

751
 752 ³<https://github.com/scallop-lang/scallop> (MIT license).

753 ⁴<https://pypi.org/project/highspy/> (MIT license).

754 ⁵<https://developers.google.com/optimization/> (Apache-2.0 license).

755 ⁶<https://pypi.org/project/PySDD/> (Apache-2.0 license).

756
 757 Table 7: **Ablations for MNIST Sum-3, $n = 100$** for different encoders and batch sizes. In the rows
 758 “+ C(RESNET18)” and “+ C(RESNET50)”, the encoder is pretrained and frozen. In the row “+
 759 C(MNISTNET)”, the encoder is MNISTNet, the underlying CNN being trained, and is randomly
 760 initialized and trainable.

Batch Size	Algorithms	Classification Accuracy	% Retained Preimages	% Preimages with Ground Truth	Time to Prune (s)	Time to Solve ILP (s)
64	Dolphin	31.6	NA	NA	NA	NA
	+ C(RESNET18)	47.09	77.99	91.56	0.49	0.03
	+ C(RESNET50)	41.89	75.7	88.38	0.51	0.03
	+ C(MNISTNET)	41.51	78.12	94.81	0.53	0.03
128	Dolphin	32.86	NA	NA	NA	NA
	+ C(RESNET18)	49.24	80.17	92	1.88	0.06
	+ C(RESNET50)	42.56	74.21	90	1.5	0.07
	+ C(MNISTNET)	36.84	77.85	96.21	1.39	0.07

761
 762
 763 Table 8: **Ablations for MNIST Sum-4, $n = 100$** for different encoders. In the rows “+ C(RESNET18)”
 764 and “+ C(RESNET50)”, the encoder is pretrained and frozen. In the row “+ C(MNISTNET)”, the
 765 encoder is MNISTNet, the underlying CNN being trained, and is randomly initialized and trainable.

Batch Size	Algorithms	Classification Accuracy	% Retained Preimages	% Preimages with Ground Truth	Time to Prune (s)	Time to Solve ILP (s)
64	Dolphin	31.43	NA	NA	NA	NA
	+ C(RESNET18)	31.28	87.5	96.19	3.39	0.39
	+ C(RESNET50)	28.69	86.46	92.9	3.42	0.42
	+ C(MNISTNET)	35.19	85.88	98.58	3.34	0.39

D ABLATIONS

782 We run ablations on the complexity of encoders used for extracting latent representations used to
 783 prune preimages. We also measure the amount of preimages pruned in each case, the amount of
 784 preimages where the ground truth was retained, and the time taken for pruning. We report the results
 785 of ablations on MNIST Sum-3 and Sum-4 with 100 training samples in Tables 7 and 8.

D.1 PERFORMANCE ON FULL DATASETS.

786 We are running our experiments on the full dataset versions of each benchmark. Table ?? shows the
 787 results of MNIST Sum-3 on the full dataset. We also run our MUGEN experiment on the full dataset
 788 with 5000 training samples. We show preliminary accuracy curves in Figure 3.

808 Figure 3: Training curves for Dolphin with and without the encoder for MUGEN with 5K training
 809 samples.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

Table 9: Results of CLIPPER for the full versions over our benchmarks.

Algorithms	MNIST Sum-3
DOLPHIN	99.11
+ C(RESNET18)	99.13
ABLSIM	98.9
ABLKIT	98.2

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863