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Abstract

Pretraining methods are typically compared by
evaluating the accuracy of linear classifiers, trans-
fer learning performance, or visually inspect-
ing the representation manifold’s (RM) lower-
dimensional projections. We show that the differ-
ences between methods can be understood more
clearly by investigating the RM directly, which
allows for a more detailed comparison. To this
end, we propose a framework and new metric to
measure and compare different RMs. We also
investigate and report on the RM characteristics
for various pretraining methods. These charac-
teristics are measured by applying sequentially
larger local alterations to the input data, using
white noise injections and Projected Gradient De-
scent (PGD) adversarial attacks, and then tracking
each datapoint. We calculate the total distance
moved for each datapoint and the relative change
in distance between successive alterations. We
show that self-supervised methods learn an RM
where alterations lead to large but constant size
changes, indicating a smoother RM than fully
supervised methods. We then combine these mea-
surements into one metric, the Representation
Manifold Quality Metric (RMQM), where larger
values indicate larger and less variable step sizes,
and show that RMQM correlates positively with
performance on downstream tasks.

1. Introduction

Understanding why deep neural networks generalise so well
remains a topic of intense research, despite the practical
successes that have been achieved with such networks. Less
ambitiously than aiming for a complete understanding, we
can search for characteristics that indicate good generali-
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sation. Knowledge of such characteristics can then be in-
corporated into training methods and open more research
avenues. These characteristics can also be used to evaluate
and compare networks.

Arguably the most successful current theories of generalisa-
tion focus on the flatness of the loss surface at the minima
(Hochreiter & Schmidhuber, 1997; Dziugaite & Roy, 2017;
Dherin et al., 2021) (even though the most straightforward
measures of flatness are known to be deficient (Dinh et al.,
2017)). (Petzka et al., 2021) expands on this argument and
shows that these methods correlate strongly with model
performance, and reflect the assumption that the labels are
locally constant in feature space. A thorough survey by
(Jiang et al., 2020) shows that some recent methods are, in
fact, negatively correlated with generalisation.

Figure 1. An illustration to give an intuitive understanding of why
the structural characteristics of a RM should be considered a pre-
dictor of generalisation.

To our knowledge, no theory looks at the structural charac-
teristics of the learned Representation Manifold (RM) as a
predictor for generalisation. We investigate whether struc-
tural characteristics in the RMs correlate with generalisation
to task performance. To illustrate the intuition behind our
investigation, consider Figure 1, which represents two RMs,
A and B.

Assume that each RM is produced by the same architecture,
and trained on the same dataset; both have a flat minima
but are trained with different methods. In the case of A,
where the manifold is smooth, the sample representations
of the Green class are, on average, closer to other Green
class’s points. Likewise, presentations of the Red class will,
on average, be closer to other Red class’s samples. On the



Manifold Characteristics That Predict Downstream Task Performance

other hand, if we consider RM B, there are chasms in the
manifold that lead to some sample representations being
closer to samples of the other class rather than samples of
their own class, as illustrated in the blue patch.

This paper aims to justify our claim that specific RM char-
acteristics lead to generalisation. However, we must first
define appropriate RM characteristics that reflect this intu-
ition and show how to measure them. Previous work related
to our approach and finding can be found in Appendix B

Contribution: In summary, we define a simple and model-
agnostic framework to measure representation manifold
characteristics. Using this framework, we compare the
RMs learned by encoders trained using supervised, self-
supervised and a mixture of both methods. We then present
a new metric that calculates the quality of a manifold for
generalisation, RMQM, and show that this metric correlates
strongly with downstream task performance. These obser-
vations support our intuition that the characteristics of an
RM are a contributing factor to generalisation.

2. Approach

Describing all the details of a high-dimensional represen-
tation manifold (RM) is an impossible task; we can at best
strive to find characteristics that summarise salient proper-
ties of the RM. When measuring these characteristics, one
will therefore have a discrete view of the RM (Barannikov
et al., 2021), made out of the predicted representations from
the input data. We propose measuring individual distance
metrics for each representation of an input sample relative
to representations of data close to it.

By staying in the neighbourhood of each representation,
we can measure the surface surrounding that point using
standard distance metrics, effectively walking on the local
structure and measuring the size of each step relative to the
change in input. By inspecting all these locally measured
structures together, one describes the structure for the entire
RM in terms of its local stability.

The caveat is that one requires representations in close prox-
imity on the RM to do these measurements. However, prac-
tical RMs have many dimensions, implying that data points
tend to be well separated, even if they originate from the
same underlying class (Barany & Fiiredi, 1988; Balestriero
et al., 2021). We thus need to create these proximate repre-
sentations artificially.

We do this by applying sequentially larger local alterations
to the input data and computing the resulting representations.
By increasing the size of the alteration, we step further on
the RM surface and thus measure characteristics further
away but still local for the magnitude of changes that we
employ. Our alteration method comprises of white noise

injections and PGD adversarial attacks. More information
regarding these methods can be found in Appendix A.

To characterise a representation manifolds (RM) based on
small local alterations to the input, we measure two easy
to implement and measure characteristics. Let A; be the
jth iteration of an alteration method, where each successive
iteration employs a stronger alteration. Also, let ¢; ; be the
projected point on the RM produced by f(A;(x;)), where
z; € X.

Average distance moved. The first characteristic we mea-
sure is the total of the normalised Euclidean distances be-
tween the original point, ¢; o, and each altered point, ¢; ;.
The average distance moved for image x; is represented as
L .0 — ®i.jll2, wh h h
7 2_jll#i,0 — ¢i 5|2, where we can then average over eac
point to find the average distance moved for a given RM
and alteration. Finally, the average over images is
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where N is the number of images considered and J is the
number of alterations. D(¢, A) thus indicates how robust
the RM is to alterations A.

Average distance spikes. We also measure the relative
change in distance between successive alterations. These
relative distance changes are measured both with respect
to the original representation and relative to each previous
alteration. We average the magnitudes of these changes as
we are not interested in the direction of the change to gauge
how smooth an RM is. To understand how relative changes
relate to smoothness, recall that we only apply alterations
that keep us close to the given data points. Therefore, we can
only have big spikes if the RM contains significant chasms
or bumps (small alterations in input data should result in
constant distance increases if the RM is smooth).

In order to calculate these relative changes for a single repre-
sentation, refer to Equation (2) which calculates the relative
change according to the original representation, Drc and
Equation (3) which calculates the relative change according
to the distance between the previous alterations Prc. In
both equations, d() is a distance function. In order to get the
overall metrics, we average the values over all data points.

J
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3. Comparing Different Training Methods

We now measure the characteristics defined in Section 2
for five different training methods, applied to two different
encoders and data sets.

The first method we investigate employs encoders trained
with vanilla supervised learning with Cross-Entropy loss,
where we then take the second to last layer output as the rep-
resentations. We also use the SimCLR method introduced
in (Chen et al., 2020). Along with this, we trained encoders
using two different implementations of Triplet-Loss (Wein-
berger et al., 2006; Schroff et al., 2015).

We mine the triplets in a supervised manner for the first im-
plementation using the image labels. We apply the SimCLR
method for the second implementation, replacing NT-XENT
with Triplet loss. We refer to the former method as Triplet-
Supervised going forward and the latter as Triplet-SS. We
do this to see the effect of the indirect supervised signal on
the method. Lastly, to see the effect of directly combing
a contrastive signal with a supervised signal, we combine
Triplet-Loss with Cross-Entropy loss as was also done in
(van der Merwe, 2020). We believe these techniques repre-
sent the major families of training techniques and provide
enough information on how different techniques learn differ-
ent RM structures. We propose that a full-scale investigation
be performed on most training techniques found in current
literature, in a future paper.

We apply these methods to an altered version of the LeNet-5
architecture introduced in (LeCun et al., 1998), trained on
the MNIST data set (LeCun et al., 1998) and a Resnet-
18 (He et al., 2016) trained on the CIFAR-10 data set
(Krizhevsky et al., 2009).

We train our encoders with six different embedding sizes,
ranging from 16 to 512 in powers of two. We also train
with two different optimisers, namely Stochastic Gradient
Descent (SGD) with Nesterov Momentum (Sutskever et al.,
2013) and Adam (Kingma & Ba, 2015).

To ensure that each RM can be compared fairly to each other,
all image alterations are exactly the same for each method
when calculating the manifold characteristics. We report in
the rest of this section using the average results over both
the Adam and SGD trained encoders, as the results were
similar for both.

Measuring Distances Figure 2 shows the average nor-
malised Euclidean distance to the original MNIST digits as
we increase the amount of alteration applied to each digit.
Here, A is the white noise injection alteration. As the embed-
ding dimension increases, the self-supervised methods move
further from the original point than the supervised signal
methods. We also notice that the Cross-Entropy encoder’s
average distance away from the original representation stays

very low, with the Triplet-Entropy and Triplet-Supervised
encoders falling in between. We suspect this is because
they contain both supervised and unsupervised signals in
the training process.
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Figure 2. The normalised Euclidean distance between the original
MNIST digit and the same digit altered by a sequentially stronger
noise vector. We perform this measurement for each embedding
dimension and each digit in the test test to calculate the standard
error shown with the mean results.

When A is the PGD attack, we see the same pattern emerg-
ing for the CIFAR-10 encoders, shown in Figure 5. Here
though, we can see a much more significant difference be-
tween self-supervised methods and methods containing a
supervised signal: the NT-XENT and Triplet-SS measure-
ments grow to have much larger values.

In Table 1 we summarise the D values, which is calculated
using Equation (1), for the MNIST encoders. We average
over embedding dimensions and calculate the standard de-
viation for each method. The common trend among both
alteration methods is that NT-XENT and Triplet-SS alter-
ations always move farther away from the original repre-
sentation than the other methods. We can also see that the
total distance moved decreases from self-supervised to pure
supervised learning methods.

These results indicate that the encoder is more robust to
minor perturbations (as measured by the distance moved
from the original image) if the training method contains a
strong supervised signal.

Measuring Spikes Following the same steps as above,
we now study the relative change in distances measured.
The relative change in distance to the original representa-
tion, plotted against the amount of PGD attack iterations, is
shown in Figure 6.
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Table 1. The average distance each points moves relative to the
original point for both the white noise injection and PGD Attack
alterations for the MNIST encoders. The results are averaged over

both the embedding dimension and the optimiser used.

METHOD NOISE PGD

CROSS-ENTROPY 0.334+0.15 0.2140.08
TRIPLET-ENTROPY 0.73+0.11 0.3340.08
TRIPLET-SUPERVISED 0.77+0.06 0.38+0.10
TRIPLET-SS 0.93+0.13 0.6640.17
NT-XENT 1.01+0.04 0.68+0.10

We see a reversal of the graphs in Section 3: the self-
supervised methods start with high relative changes which
decrease rapidly. Methods containing a supervised signal
have larger spikes and error bands. All this indicates a
less smooth journey in the RM between alterations for the
supervised methods.

The same trend is present for CIFAR-10 models when we
inject white noise, plotted in Figure 7. Here though, the
Triplet-Supervised method is unstable for several values
of the embedding dimension, whereas the NT-XENT and
Triplet-SS again have the smallest spikes.

Table 2 shows the overall average values for each spike
metric for each method. NT-XENT and Triplet-SS have
the smallest spikes for both forms of alteration, whereas
Triplet-Supervised results in very non-smooth RMs.

Self-supervised methods therefore learn structures in which
a step in most directions, at most locations, induces steps
of similar size on the RM. That is, these self-supervised
methods have smoother RMs than the other methods.

Table 2. The average change in the distance each point moves
relative to the original point, compared against the previous alter-
ation’s distance, measured on CIFAR-10 encoders. The results are
averaged over both the embedding dimension and optimiser used.

containing a supervised signal, the opposite is true: moving
in the surface results in smaller displacements, but those
displacement are significantly more variable in size.

In order to determine which of these two groups of character-
istics are more desirable for downstream tasks, we combine
these characteristics into one metric, the Representation
Manifold Quality Metric (RMQM).

With this single metric describing an RM, we can perform
various downstream tasks with our encoders and see how
the performance correlates with the value of the RMQM.
We define the RMQM as

RMQM =In (14 D+ Dpj + Ppt) 4

Here D is the average distance moved measured relative to
the original representation, D p¢ is the relative change in
distance between each subsequent alteration and the origi-
nal representation and Pp¢ is the relative change of the
distances between altered representations, as defined in
Equations (1) to (3).

We apply the natural logarithm to scale the values, and we
add one to ensure we do not have any negative values.

Dataset = MNIST | Optimizer = Adam

Dataset = MNIST | Optimizer = SGD+Momentum

Method
e Triplet-Supervised
= Triplet-Entropy
= Cross-Entropy
m Triplet-SS
W NT-XENT

Dataset = Cifar10 | Optimizer = Adam Dataset = Cifar10 | Optimizer = SGD+Momentum

16 32 64

128 256 512 16 32 64 128 256 512

Representation Dimension

Representation Dimension

METHOD NOISE PGD

CROSS-ENTROPY 0.11£0.03 0.34+0.04
TRIPLET-ENTROPY 0.18+0.04 0.8940.35
TRIPLET-SUPERVISED 0.86+0.85 2.974+1.61
TRIPLET-SS 0.06+0.01 0.0640.04
NT-XENT 0.04+0.01 0.10+0.01

4. Representation Manifold Quality Metric

In Section 3 we showed empirically that an RM learned by
self-supervised methods has a structure that has the follow-
ing property: When moving in any direction on the surface
of RM, it will result in a relatively large displacement, but
these displacements are on average the same size no matter
where or in what direction a step is taken. With methods

Figure 3. RMQM measured for white noise injections.

Thus, RMQM is designed to yield large values for relatively
smooth RMs with relatively large sensitivity to changes in
the input. Below, we only interpret the RMQM score when
A is the white noise injection alteration, since the method
dependence of the PGD alterations complicates our ability
to compare the various methods.

In Figure 3 we show the RMQM score for each of our en-
coders, with A being white noise injections. For the MNIST
encoders trained using SGD and Nesterov momentum, as
the embedding size increases, the RMQM for Cross-Entropy
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overtakes Triplet-SS, indicating that the RM is more similar
in this setup to one produced by NT-XENT trained encoders.
In the other cases, there is an overall trend for the NT-XENT
and Triplet-SS encoders to have the highest RMQM, fol-
lowed by Cross-Entropy and then lastly, Triplet-Entropy and
Triplet-Supervised.

Correlation between RMQM and Downstream Tasks.
In order to find what RM characteristics are desirable, we
measure how RMQM correlates with downstream task per-
formance. If we find a strong positive correlation, an RM
with a smooth structure and large displacements is desir-
able. If there is a strong negative correlation, then an RM
that contains chasms and bumps and small displacements is
desirable.

We define the task performance as the normalised test accu-
racy of a K-Nearest Neighbour (KNN) model, with only one
nearest neighbour (K = 1), trained on the representations
created by the encoder. We believe this is an appropriate
measure of task performance as most use cases today utilise
representations to perform vector search. A KNN model’s
accuracy is a good approximation of this task. The MNIST
encoders will be tested on the OMNIGLOT (Lake et al.,
2015) and the KMNIST (Clanuwat et al., 2018) datasets,
with the CIFAR-10 encoders being tested on the Caltech-
101 (Fei-Fei et al., 2004) and CIFAR-100 (Krizhevsky et al.,
2009) datasets.

4.0
Downstream Task

Omniglot

KMNIST
e Caltech-101
CIFAR-100

3.5

3.0

15

1.0

0.2 0.4 0.6 0.8 1.0
Task Performance

Figure 4. Regression plot for RMQM versus the scaled test accu-
racy of a KNN model, with K = 1, trained on the representations
created by the encoders.

Figure 4 represents RMQM versus downstream task perfor-
mance. What is clear from Figure 4 is that there is a strong
positive correlation (0.75) between RMQM and downstream

task performance. This justifies our statement that RM char-
acteristics are essential and not simply the number of fea-
tures learned by an encoder. That is, when vector search is
the downstream task performance, an encoder that learned
an RM with smooth structure and large displacements will
tend to perform well on downstream search tasks.

Intuitively this makes sense, especially when we calculate
the RMQM using white noise alterations. Take the MNIST
encoders as an example, and consider a specific MNIST
image (any digit). When applied to this digit, there is a
random vector that will transform it to one of the Omniglot
characters. In general, the variants of this Omniglot charac-
ter will differ from that digit image by similar noise vectors.
Thus when we encode this Omniglot character image and its
variants using a self-supervised trained encoder, the KNN
models can accurately identify new images, because from
the perspective of the RM, these new characters correspond
to the noise-altered version of our original MNIST digit.

On the RM then, this new character and its variants are
projected with a similar step size away from the original
MNIST digit. Due to the similar noise vector added, these
projections are also in a similar direction. These projected
characters are also close because there are few chasms or
bumps a projection can land on, allowing a nearest neigh-
bour search to perform well.

5. Conclusion

We propose a framework to measure the characteristics of
learned representation manifolds (RM). We measure the
characteristics by applying sequentially stronger local al-
terations to the input data and measuring how these altered
representations move relative to the original representation
and the successive alterations. Doing this, we show that self-
supervised learning methods learn RMs in which motion in
any direction on the surface will result in relatively large
displacements. However, these displacements are, relatively
similar no matter where or in what direction a step is taken.

To identify RM characteristics related to good downstream
task performance, we combine our measurements into a
single metric, the Representation Manifold Quality Met-
ric (RMQM). RMQM is designed to yield large values for
relatively smooth RMs with relatively large sensitivity to
changes in the input. We then measure the downstream
task performance for several tasks and find a strong positive
correlation with RMQM. This strong correlation indicates
that the structure of a learned manifold is another strong
predictor for generalisation of neural networks.

This also shows that self-supervised methods lead to state-
of-the-art performance due to the underlying RM structure,
which is sensitive to alterations in the input, utilising a
relatively smooth manifold.
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A. Alteration Methods

Let an RM be represented by ¢ = fo(X), where fp is a feature extractor parameterised by 6 and X is a data set (e.g. input
images). With A representing a function that applies small local alterations to pixels in the image, each altered data point
projected down to the RM is represented as ¢p ; = fo(A;(x;)), where z; € X and A; the jth iteration of the alteration
function.

The two alteration methods we use in our experiments are the same methods (Hoffman et al., 2019) used to evaluate the
robustness of a Jacobian regulariser. We chose these methods because they result in either random local alterations or guided
alteration, thus giving us different paths on the RM to evaluate.

White noise injection. Here we alter each input image x; by adding an alteration vector randomly, a, with components
independently drawn from a normal distribution with variance €2, thus a ~ A(0, €?). In order to increase the alteration
strength, we increase e from zero to one with 100 in equal steps, indexed by j. Thus, alteration j for datapoint x; is given by
xi; = (@i + a;]aip, where a; ~ N (0, ef) and [.]o;, clips the image to be between zero and one.

PGD attack. Whereas white noise injections will allow us to walk on the surface of an RM in random directions, altering
the image in a way that deliberately aims to fool the trained function fy will allow us to walk in a direction influenced
by decision boundaries on the RM. In this paper we will implement an extension of fast gradient sign method (FGSM)
(Goodfellow et al., 2015), namely projected gradient descent (PGD) (Madry et al., 2018). FGSM consists of adding a
vector to the original image, where this vector consists of the sign of the gradient for the loss functions with respect to the
input image, scaled by a value e rggas. PGD iterates this process for several iterations. Calculating the jth alteration of x;,
represented by x; ; can be defined as

v = [vij1+ersam  (Va,;, L0, 25 5-1,9))]ctip (5)
where L is the loss function for the relevant training method.

Given that the original target for these adversarial attacks was a network that classifies images. In order to then apply PGD
attack to the triplet variants, we calculate the loss precisely as usual and then calculate the gradient with regards to the anchor
image. When calculating the gradient for NT-XENT methods, we compare a non-augmented image with an augmented
version and then calculate the gradient with respect to the unaugmented image. We apply the PGD attack for 30 iterations
and save each iteration, with epgspr = 2/255.

B. Related Work

Representation learning: Some of the earliest work in representation learning focused on pretraining networks by generating
artificial labels from images and then training the network to predict these labels (Doersch et al., 2015; Zhang et al.; Gidaris
et al., 2018). Other techniques involve contrastive learning where representations from images are directly contrasted against
one another such that the network learns to encode similar images to similar representations (Schroff et al., 2015; Oord et al.,
2018; Chen et al., 2020; He et al., 2020; Le-Khac et al., 2020).

Comparing representations from trained neural networks: (Yamins et al., 2014; Cadena et al., 2019) compares how
similar representations are by linearly regressing over the one representation to predict the other representation. The R?
coefficient is then used as a metric to quantify similarity. This metric is not symmetric. Symmetrical methods compare
representations from different neural networks by creating a similarity matrix between the hidden representations of all
layers as was done in (Laakso & Cottrell, 2000; Kriegeskorte et al., 2008; Li et al., 2016; Wang et al., 2018; Kornblith et al.).

Manifold Learning: The Manifold Hypothesis states that practical high dimensional datasets lie on a much lower
dimensional manifold (Carlsson et al., 2008; Fefferman et al., 2016; Goodfellow et al., 2016). Manifold learning techniques
aim to learn this lower-dimensional manifold by performing non-linear dimensionality reduction. A typical application of
these non-linear reductions is visualising high dimensional data in two-dimensional or three-dimensional settings. Popular
techniques include(Tenenbaum et al., 2000; Van der Maaten & Hinton, 2008; MclInnes et al., 2018). These techniques have
been used in various studies to compare different learned representation manifolds (Chen et al., 2019; van der Merwe, 2020;
Liet al., 2020; Liu et al., 2022).

Comparing manifolds.: To evaluate the performance of Generative Adversarial Networks, (Barannikov et al., 2021)
introduces the Cross-Barcode tool that measures the differences in topologies between two manifolds, which they ap-
proximate by the sampled data points from the underlying data distributions. They then derive the Manifold Topology
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Divergence, based on the sum of the lengths of segments in the Cross-Barcode. (Zhou et al., 2021) also evaluates generative
models by quantifying representation disentanglement. They do this by measuring the topological similarity of conditional
submanifolds from the latent space. (Shao et al., 2018) investigates the Riemannian geometry of latent manifolds, specifically
the curvature of the manifolds. They conclude that having latent coordinates that approximate geodesics is a desirable
property of latent manifolds. To our knowledge, there has not been a study done on measuring the manifold’s structural
characteristics based on small local alterations to the input data, applied to non-generative encoders.

Predictors of generalisation:(Jiang et al., 2020) performed a large scale study of generalisation in deep learning, and we
refer the reader to this work for a well-documented review. To our knowledge there has been no work done on using the
structure of the RM as a predictor of generalisation.

C. Experiment Figures
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Figure 5. The normalised Euclidean distance between the original CIFAR-10 image and the same image altered by sequential PGD attack
iterations.
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Figure 6. The relative change in distance to the original point, plotted against number of amount of PGD iterations for the encoders trained
on the MNIST dataset.
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Figure 7. The relative change in distance to the original point, plotted against the amount of noise injected for the encoders trained on the
CIFAR-10 dataset.

D. Source Code

We also release all code used in this project, which can be found in the link below.

https://github.com/ByteFuse/representation-manifold-quality-metric.
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