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Abstract
For the fundamental linear programming (LP)
problems, the simplex method remains popular,
which usually requires an appropriate initial basis
as a warm start to accelerate the solving process.
Predicting an initial basis close to an optimal one
can often accelerate the solver, but a closer initial
basis does not always result in greater accelera-
tion. To achieve better acceleration, we propose
a GNN model based on a tripartite graph repre-
sentation inspired by LP duality. This approach
enables more effective feature extraction for gen-
eral LP problems and enhances the expressive-
ness of GNNs. Additionally, we introduce novel
loss functions targeting basic variable selection
and basis feasibility, along with data preprocess-
ing schemes, to further improve learning capabil-
ity. In addition to achieving high prediction accu-
racy, we enhance the quality of the initial basis
for practical use. Experimental results show that
our approach greatly surpasses the state-of-the-art
method in predicting initial basis with greater ac-
curacy and in reducing the number of iterations
and solving time of the LP solver.

1. Introduction
Linear programming (LP) has played a vital role in decision-
making since it was first introduced by (Dantzig, 1948).
Many real-world optimization problems can be formulated
as linear models or approximated through linearization. Fur-
thermore, LP remains the most frequently used optimization
technique in complex optimization problems such as Mixed
Integer Programming (MIP).

The simplex method is a widely-used algorithm for LP
problems, known for obtaining theoretical optimal solu-
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tions represented by basic solutions rather than numeri-
cal approximations. With contributions from numerous
researchers, the simplex method has maintained high perfor-
mance on large-scale problems and remains a fundamental
approach for solving LP problems. The revised simplex
method (Dantzig & Orchard-Hays, 1954) made it practi-
cal with limited numerical accuracy on computing units.
(Lemke, 1954) demonstrated the importance of the dual sim-
plex method, while (Forrest & Goldfarb, 1992) developed a
computationally efficient steepest edge pricing rule. (Har-
ris, 1973) introduced the two-stage ratio test, which uses
feasibility tolerances to find better pivot elements. (Suhl
& Suhl, 1990) presented an efficient LU factorization im-
plementation, and (Forrest & Tomlin, 1972) improved the
updating basis method. Anti-degeneracy techniques (Ryan
& Osborne, 1988) prevent the simplex method from cy-
cling in dead loops. These improvements have significantly
enhanced the efficiency and stability of the simplex method.

Since the simplex method pivots from basic solution to basic
solution, the strategy for choosing the initial basis greatly
impacts performance. A better starting point may be closer
to the potential optimal solution in terms of logical pivot
distance, often resulting in fewer simplex iterations. The
most fundamental strategy is the logical basis introduced
by (Chvátal, 1983), which simply selects all slack variables.
This strategy is straightforward, ensuring nonsingularity
and convenient inverse computation, making it still active
in simplex solvers like HiGHS (Huangfu & Hall, 2018b).
However, this conservative strategy is independent of input
problems and does not seek better starting points for various
problems. The potential for performance improvement has
prompted extensive research.

The seminal work (Bixby, 1992) presented a heuristic
method implemented in CPLEX (Gearhart et al., 2013), con-
structing the initial basis in a preference order. It prioritizes
slack and free variables over bounded and non-singleton
variables to keep the basis sparse and well-behaved, while
minimizing the inclusion of artificial variables to avoid their
restrictive bounds on optimization. It works better for easier
problems but is less effective for harder ones. The “Idiot”
crash (Galabova & Hall, 2020), another practical method, is
more complex and time-consuming. Implemented by For-
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rest in COIN-OR Linear Programming Solver (Clp) (Forrest,
2006), it replaces the linear objective minimization with a
combination of the objective and a quadratic function of
constraint violations. This method performs better than the
primal simplex with a logical basis, especially on quadratic
assignment problems (QAPs), but may increase total solving
time for other LP problems.

Despite these challenges, researchers continue to focus on
improving initial basis selection. In recent years, deep
learning—particularly graph neural networks (GNNs)—has
shown significant promise across various domains. (Khalil
et al., 2017) proposed a GNN model for learning greedy
heuristics on several combinatorial optimization problems
defined over graphs. (Gasse et al., 2019b) applied GNNs
to enhance variable selection policies in branch-and-bound
MIP solvers, establishing the use of bipartite graphs of con-
straints and variables as a standard representation for MIP
problems. These efforts highlight the potential of GNNs
to learn the structural characteristics of optimization prob-
lems. More recently, GNNs have also been applied to initial
basis selection for LPs (Fan et al., 2023), demonstrating
promising performance compared to traditional heuristics.

However, even when GNNs predict an initial basis close to
the optimal one, this does not always lead to greater acceler-
ation. If the predicted basis is invalid, Phase I may require
significant time to recover a valid one, which may still be
far from optimal. Although predicting a closer basis is an
intuitive strategy for acceleration, additional refinements are
often necessary for performance improvements.

Our work improves the model’s ability to predict a closer
basis. More importantly, we go beyond accuracy (close-
ness) by prioritizing actual solver acceleration. Through
a detailed analysis of the LP problem, we introduce addi-
tional techniques that significantly enhance practical solving
speed, which remains the ultimate objective.

In this study, we aim to further explore the capabilities of
GNN-based models in the context of initial basis selection
for LP. Our main contributions are as follows:

• Inspired by duality in LP, we propose a tripartite graph-
based representation for general LP problems. This rep-
resentation, combined with a specially designed message
passing process on graph, enhances the ability of GNNs
to represent and aggregate LP problem features.

• We qualitatively analyze the importance of basic variable
prediction accuracy on overall prediction accuracy. Addi-
tionally, we identify the negative effect of the infeasibility
of the initial basis. Building upon these two aspects, we
design a new loss function targeted towards basic vari-
able selection and incorporate multi-level labels extracted
from the solving path into the loss function.

• We identify potential inconsistencies in raw solver-

derived labels. Based on the analysis, we propose data
preprocessing schemes to reduce Bayesian error and im-
prove learning outcomes.

• Beyond higher test prediction accuracy, utilizing the ini-
tial basis provided by our model to warm start the state-of-
the-art open-source LP solver HiGHS (Huangfu & Hall,
2018a) results in an average over 2× improvement in
reducing both average solving iterations and time com-
pared to the SOTA (Fan et al., 2023). Particularly, on
the presolved Mirp1 (Papageorgiou et al., 2014) test set,
with the solver achieving the optimal solution, our model
reduces the average solving iterations to 32% and the
average solving time to 42%, outperforming the current
SOTA, which achieves 62% and 73%, respectively.

2. Preliminaries
We first present the basic for linear programming and its
emerging solving techniques leveraging machine learning,
though the development is still in its infancy.

2.1. Linear Programming

LP Representation The general form of LP problems is:

min
x∈Rn

c⊤x

s.t. ls ≤ Ax ≤ us,

lx ≤ x ≤ ux,

(1)

where A ∈ Rm×n, c ∈ Rn, ls and lx ∈ (R ∪ {−∞})n,
us and ux ∈ (R ∪ {∞})n. We refer to the elements in x
as variables and the rows in Ax as constraints. There are n
variables and m constraints. By defining s = Ax, we can
regard each constraint as a variable in s. We can express x
as (x+ − x−), where x+ ≥ 0 and x− ≥ 0 represent the
positive and negative parts of x, respectively.

Duality A.1 provides additional details on the duality in LP.
The dual problem of the primal LP, expressed in its general
form, can be written as

min
ys
l ,y

s
u,y

x
l ,y

x
u≥0

− (ls)⊤ys
l + (us)⊤ys

u

− (lx)⊤yx
l + (ux)⊤yx

u

s.t. A⊤(ys
l − ys

u) + (yx
l − yx

u) = c.

Basis We define Bx ⊂ [n] and Bs ⊂ [m] to represent the
indices of basic variables in variable and constraint sets.
Together, Bx and Bs form a basis B = (Bx,Bs) for the
LP problem, which should satisfy that the number of basic
variables equals m, i.e., |Bx| + |Bs| = m, and the basis
matrix B = [ABx

− Im
Bs
], which is the concatenation of

ABx
and −Im

Bs
, is nonsingular. We define Nx = [n] \

Bx and Ns = [m] \ Bs to represent the indices of non-
basic variables in their respective sets. Once the basis is
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determined, all non-basic variables and constraints are set
to their finite upper or lower bounds, and the values of the
basic variables can be solved using equation

[x⊤
Bx

s⊤Bs
]⊤ = [ABx

− Im
Bs
]−1(Im

Ns
sNs

−ANx
xNx

).

If the value of any basic variable lies outside its lower and
upper bounds, we call the basis infeasible; otherwise not.

Simplex Method. It starts from a feasible basis, and com-
pute the objective value in terms of non-basic variables

c⊤x =[c⊤Bx
0]B−1Im

Ns
sNs

− ([c⊤Bx
0]B−1ANx

xNx
− c⊤Nx

)xNx

As long as changing a non-basic variable to a basic variable
can reduce the objective value, the simplex method selects
one to enter the basis and identifies a basic variable to leave
the basis. By doing this, the method transitions from one
feasible basis to a neighboring feasible basis. This process
iterates until no further reduction in the objective value is
possible. This iterative procedure can be viewed as moving
from one vertex to another vertex of the feasible region,
which forms a simplex.

Note that if the initial basis is infeasible, we need to use
simplex phase 1 to convert it into a feasible basis. For more
details about the advanced simplex algorithm for general
form LP, interested readers can refer to (Ping-Qi, 2014).

2.2. GNN-based Model for MIP

Recently, GNN-based models have gained widespread use
in the realm of MIP. In MIP problems, variables and con-
straints interact through the constraint matrix, allowing their
interactions to be represented as a graph. (Gasse et al.,
2019a) proposed encoding mixed-integer linear optimiza-
tion problems as a bipartite graph (G, C,E, V ). Each con-
straint and variable is represented as a node, forming the
node sets C and V , respectively. Each non-zero value in
the constraint matrix creates an edge in the set E, where
the weight of an edge connecting Ci and Vj is the value of
the constraint matrix at row i and column j. Lots of works
have been done using GNN based on this bipartite repre-
sentation, including learning to branch (Achterberg et al.,
2005) (Gupta et al., 2020) (Nair et al., 2020), learning cut
selection (Berthold et al., 2022)(Paulus et al., 2022) (Wang
et al., 2023b), learning to presolve (Liu et al.), data gener-
ation (Wang et al., 2023a), LP-related problems (Li et al.,
2022) (Fan et al., 2023) (Qian et al., 2024) and other MIP
problems (Khalil et al., 2022) (Zhang et al., 2023). (Ding
et al., 2020) proposed a tripartite graph representation con-
sisting of variables, constraints, and a global node.The edge
weights between variables and the global node represent the
coefficients of the variables in the objective function, while
the edge weights between constraints and the global node
represent the right-hand side (RHS) of the constraints.

On the theoretical side, (Chen et al., 2022) demonstrated
that GNNs based on bipartite graphs can learn solutions that
are infinitesimally close to the L2-norm minimal optimal so-
lutions for LP problems. (Qian et al., 2024) discovered that
GNNs can simulate iterations of the interior point method
by utilizing message passing on tripartite graphs, yielding
solutions closer to optimal LP solutions compared to those
obtained from bipartite graphs. This approach also reduces
computational costs compared to neural networks employ-
ing differential equation systems (Wu & Lisser, 2023).

2.3. GNN-based Model for Inital Basis Selection

Here we introduce the state-of-the-art GNN-based model
(Fan et al., 2023) for selecting initial bases in LP. In the
optimal basis obtained by the solver, each constraint or
variable corresponds to an integer value L(si) or L(xj) ∈
{0, 1, 2}, where a value of 1 represents a basic variable,
totaling m, while the remaining non-basic variables take
on 0 (or 2), indicating whether they are set to the lower
(or upper) bound in the optimal basis. Convert the optimal
basis obtained from the solver into a one-hot vector ysi or
yxj

∈ {0, 1}3 as the label for supervised learning.

Constructing the general LP problem as a bipartite graph,
the constraint matrix is transformed into edges, forming
the edge set E, while other information is converted into
node features, forming the sets of variables and constraints
V and C, respectively. Bidirectional message passing is
employed on the bipartite graph. In each layer, infor-
mation is passed once from variables to constraints and
once from constraints to variables for node updates. Sim-
ilar to the three-classification problem on the graph, each
node ultimately outputs a three-dimensional vector, p(si) or
p(xj), representing the probabilities of belonging to each
of the three categories. The constraints or variables cor-
responding to the largest m values in {p(si)[1] | 1 ≤ i ≤
m} ∪ {p(xj)[1] | 1 ≤ j ≤ n} are chosen as basic variables.
Among the remaining variables, if p(xi)[0] > p(xi)[2],
then the non-basic variable takes on the lower bound; other-
wise, it takes on the upper bound.

A loss function is constructed using the cross-entropy func-
tion for the 3-class classification problems:

L = l((P ), (x, s), (y))

=

m∑
i=1

α(ysi)lCE(p(si),ysi)

+

n∑
j=1

α(yxj
)lCE(p(xj),yxj

),

(2)

where α(ysi) and α(yxj
) represent the weights of different

variables, which are inversely proportional to the frequen-
cies of their label categories in the samples.
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3. Proposed Method
3.1. Tripartite Graph Representation of general LP

In the bipartite graph representation used in (Fan et al.,
2023), edge information only includes the constraint matrix,
whereas crucial data from the objective function coefficients
and the bounds of variables and constraints can only be
utilized through node features during GNN’s message pass-
ing. Directly incorporating this information into the graph
structure could enhance the representation capability for LP.

The existing tripartite graph representation in (Ding et al.,
2020) can only represent LP problems where all constraints
are less than or equal to and variable ranges are non-negative.
However, in practice, LP problems are often represented
in general form, and advanced solvers support direct in-
put of this form. Converting a general form problem to a
more standardized form increases the problem’s size, in-
flating the number of variables and constraints. In such
cases, even if the neural network can predict good results,
the increased problem size input to the solver may nega-
tively impact performance more than the neural network’s
assistance, resulting in lower overall efficiency.

Based on duality in LP, by comparing the primal problem
with the dual problem, it can be observed that each finite
upper or lower bound in the primal problem corresponds
to a variable in the dual problem. A finite lower bound in
the primal problem corresponds to a variable with the coef-
ficient of the negative of this bound in the dual problem’s
objective function, while a finite upper bound corresponds
to the bound itself. Each variable in the primal problem
corresponds to an equality constraint in the dual problem,
which can also be seen as a constraint with equal upper and
lower bounds. Furthermore, combining the two variables
corresponding to the constraints’ upper and lower bounds in
the dual problem forms (ys

l −ys
u), whose coefficients in the

constraint matrix A⊤ match the coefficients of (x+ − x−)
in the constraint matrix A in the primal problem. Similarly,
regarding the bounds of variables as constraints, In appears
both in the dual and primal problems.

In Fig. 1(a) a tripartite graph representation for general
form LP problems is proposed. Each variable in the primal
problem corresponds to two nodes in the graph, representing
the variable and its upper and lower bounds, forming the
node sets Vprimal and Vdual, respectively. Each constraint
in the primal problem corresponds to one node in the graph,
forming the set C. Additionally, there is a global node O.
All nodes can be divided into three parts: O, Vprimal, and
Vdual ∪ C, with edges connecting nodes between these sets
but no edges within each set, forming a tripartite graph.

Similar to the bipartite representation, edges between
Vprimal and C are constructed using the constraint matrix
A. Each pair of nodes in Vprimal and Vdual representing the

(a) tripartite graph representation of LP

(b) message passing on the graph

Figure 1. Tripartite graph-based GNN: The objective function
and variable bounds are encoded as graph edges, while nodes
except the global one are split in half within the tripartite graph,
allowing for the representation of both the primal and dual LP
problems. A global message passing process begins with the
global node, followed by bidirectional message passing between
variables and constraints with specific masks based on duality.

same variable are connected by an edge with a weight of 1.

In the connections involving the global node O, each node
in Vdual corresponding to xj is split into two half-nodes,
xl
j and xu

j , corresponding to −(yxl )i and (yxu)i in the dual
problem, connected to O with edges weighted lxj and ux

j ,
respectively. Each node in C corresponding to si is split
into sli and sui , corresponding to −(ysl )i and (ysu)i in the
dual problem, connected to O with edges weighted lsi and
us
i , respectively. Each node in Vprimal corresponding to xj

is split into x−
i and x+

i , representing −(x−)i and (x+)i in
the primal problem, connected to O with edges weighted cj
and cj , respectively. Note that if any of the bounds lxj , ux

j ,
lsi , us

i is ∞, we do not connect the corresponding edge since
there is actually no corresponding variable in the simplified
dual problem.
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In this tripartite graph representation, the coefficients of
the objective function and the bounds of variables and con-
straints in the primal problem are embedded in the graph
through edges connected to the global node. This represen-
tation not only captures all information from the original
LP problem but also from the dual problem. In the primal
problem, Vprimal and Vdual ∪ C represent variables and
constraints (including variable bounds), respectively. In the
dual problem, Vprimal and Vdual ∪ C represent constraints
and variables. The edges between these sets record the con-
straint matrices of both the primal and dual problems. The
edges between O and Vprimal reconstruct the objective func-
tion of the primal problem and the equality constraints of
the dual problem, while the edges between O and Vdual∪C
reconstruct all constraints of the primal problem and the
objective function of the dual problem.

3.2. Message Passing on the Graph

We apply (Qasim et al., 2019) to construct the GNN. We
chose this architecture for three main reasons:

Comparative Consistency: This architecture is also used
in the state-of-the-art work by Fan et al., which our method
builds upon. To ensure a fair and direct comparison, we
adopted their GNN design as a baseline.

Analytical Interpretability: We provide a detailed anal-
ysis of the message passing behavior of this architecture
in Appendix A.2. In particular, we aim for the amount of
message passing to be proportional to the magnitude of the
corresponding coefficients in the constraint matrix and the
projection of changes in variables (or constraints) onto the
respective rows (or columns). This behavior aligns well
with the structure and nature of LP problems.

Computational Efficiency: Compared to recent models
such as TransformerConv (Shi et al., 2020), our architecture
is more lightweight and computationally efficient, making
it well-suited for practical applications. Furthermore, as
shown in Table 14 and discussed in Section A.5, GraphConv
achieves slightly better average performance than Trans-
formerConv in our experiments.

In the first step, nodes in Vprimal, Vdual and C aggregate
information to O. Then, information is transmitted from
the global node to the nodes in Vprimal, Vdual and C. With
more informative node features, bidirectional message pass-
ing between Vprimal and Vdual ∪ C is performed. Before
each round of bidirectional message passing, masks are ap-
plied to the half-nodes in Vdual and C that correspond to
infinite bounds in the primal problem, ensuring they do not
participate in the process. The message passing process is
illustrated in Fig. 1(b), with more details provided in A.2.

3.3. Loss function for basic variable selection

Different from traditional 3-class classification problems,
for each variable or constraint, the category corresponding
to the maximum probability output by the corresponding
node prediction is not directly selected. Rather, it is en-
sured that the number of nodes with predicted category 1
exactly equals m. In practice, firstly, m basic variables are
determined. For the remaining n − m nodes, there is no
constraint on the selection between categories 0 and 2. In
the process of selecting the m basic variables, if an actual
non-basic variable is chosen, this prediction error will not
only affect the current variable, but also result in an actual
basic variable being predicted as a non-basic variable. So
the prediction of basic variables has a greater impact on
overall accuracy than the prediction of non-basic variables.

Based on the prediction results, all nodes in Vprimal are
divided into four disjoint sets: Vbb, Vbn, Vnn, and Vnb, repre-
senting nodes where the true category is 1 and the predicted
category is 1, where the true category is 1 but the predicted
category is not 1, where the true category is not 1 and the
predicted category is not 1, and where the true category is
not 1 but the predicted category is 1. Similarly, all nodes
in the C set are classified into four categories, forming Cbb,
Cbn, Cnn, and Cnb.

In accordance with the deviation between the prediction
results and the labels, we aim for the nodes in Vbn and Cbn

to increase the probability of being predicted as category 1,
thereby increasing the likelihood of being selected as a basic
variable. Conversely, we want the nodes in Vnb and Cnb

to decrease the probability of being predicted as category
1, making it less likely to be chosen as a basic variable.
Based on this, we design a loss function component for
basic variable selection.

Lbas =
1

4mbV

∑
x∈Vbn

lBCE(p(x)[1], 1)

+
1

4mbC

∑
s∈Cbn

lBCE(p(s)[1], 1)

+
1

4(n−mbV )

∑
x∈Vnb

lBCE(p(x)[1], 0)

+
1

4(m−mbC)

∑
s∈Cnb

lBCE(p(s)[1], 0),

(3)

where mbV and mbC represent the number of actual ba-
sic variables in the variables and constraints, respectively,
satisfying the condition mbV +mbC = m.

3.4. Loss function for feasibility

The simplex method iterates between feasible bases to ap-
proach the optimal solution. Besides obtaining the optimal
basis, each vertex on the solving path corresponds to a feasi-
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ble basis. These bases sampled along the solution path can
be used as additional labels to compute a new loss function
term that increases the similarity between the predicted basis
and these feasible bases, thereby enhancing its feasibility.

Assuming the total number of iterations in the solver’s solv-
ing process for the current LP problem is T , a total of N
feasible solutions are uniformly sampled between iteration
⌈θT ⌉ and T , where θ ∈ (0, 1) represents the threshold
ratio of starting sampling points to the total number of it-
erations. For convenience, evenly spaced iterations can
be sampled back from the optimal solution to determine
the sampling rounds needed. The step size can be set as
∆T = ⌊(1− θ)T/N⌋, where the feasible bases obtained at
the T −k∆T iteration steps (k ∈ [N−1]) are sampled, con-
verted into level k labels denoted as yk. The loss function
incorporates these labels and is calculated as

Lmulti =
N−1∑
k=0

µkl((P ), (x, s), (yk)), (4)

where, µk represents the weight of the loss calculated from
different labels, which should decrease as k increases to
ensure that feasible bases closer to the optimal basis have a
greater impact on the loss.

By this loss, the network not only learns how to approximate
the optimal basis but also learns the path through which the
optimal basis is approached. The differences in prediction
accuracy corresponding to different basis qualities can vary
significantly. For instance, a feasible basis located in the
middle of the solving path may have around 50% difference
from the final optimal basis, yet using it as an initial basis
for warm start can reduce the number of iterations by half.
However, an initial basis that is very close to the optimal
basis might incur a significant cost in phase 1, potentially
leading to a feasible basis that deviates far from the optimal
basis. This can result in a sharp increase in computational
complexity, leading to a total number of solver iterations
exceeding the default mode. In the original loss function,
the quality of the prediction results depends solely on the
deviation from the optimal basis, without distinguishing
between initial bases with the same deviation but different
actual qualities. The new loss function term strengthens the
labels values that appear multiple times in these labels by
summing the weights, guiding the neural network to output
the same prediction values. The repeated occurrence of
label values signifies their stability along the solving path,
implying that opting for these values in the initial basis can
reduce infeasibility and facilitate the solver to go back to
the solving path with fewer iterations in phase 1.

3.5. Data Preprocessing

To some extent, predicting the optimal basis in LP problems
is more challenging than predicting the optimal solution. A

detailed analysis of this prediction problem and the labels
provided by LP solvers is presented in A.3. Inconsistency
in labels arising from the structure of the problem is com-
monly found in practical LP problems. It stems from the
fact that the representation of LP problems is not compact
enough and contains redundant information. It is worth
noting that advanced solvers often preprocess LP problems
by eliminating redundant information, leading to a more
concise problem representation. This initial time investment
typically results in significant time savings during the subse-
quent solving process. Therefore, utilizing the LP problem
obtained after presolving as the dataset not only enhances
the learning efficacy of neural networks but also aligns with
the standard solving process in practical applications.

Label inconsistency also arises when the upper and lower
bounds of variables or constraints are equal. However, when
the upper and lower bounds of constraints are equal, repre-
senting an equality constraint, these constraints cannot be
removed during presolve. Therefore, additional processing
is required to address the label inconsistency corresponding
to the constraints.

Identifying all equality constraints based on the upper and
lower bounds of constraints in the LP problem and excluding
the ones that act as basic variables in the optimal basis result
in a set of constraints needing preprocessing, denoted as
Cpreprocess. Since these constraints have equal upper and
lower bounds, solutions corresponding to taking the upper
and lower bounds will be identical, leading to equivalent
bases. To ensure label consistency, their labels are set to 0.

By labeling the equality constraints in this manner, the pos-
sible label values for constraints with equal upper and lower
bounds can only be 0 or 1. Consequently, before obtaining
the probabilities of the three categories through softmax for
the three-dimensional logits output by the neural network
during inference, an additional knowledge-based mask can
be incorporated according to the input as

Masksi =

{
[0, 0,−∞]⊤, if lsi = us

i

[0, 0, 0]
⊤
, otherwise.

Comprehensive supervised training process: With a loss
function for basic variable selection, another for feasibility,
and the label preprocessing, each of which is tailored to the
prediction, warm start, and training tasks respectively, we
can train the GNN models following the process in Fig. 2.

4. Experimental Results
4.1. Experimental Setup

LP Solver: Access to commercial LP solvers like Gurobi
(Gurobi Optimization, LLC, 2023) and CPLEX (Cplex,
2009) is often restricted in some cases e.g. for detailed
hyperparamter setting etc. Therefore, in line with the peer
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Figure 2. Illustration of the comprehensive supervised training process: The LP instance is encoded as a tripartite graph and solved
by the LP solver. Feasible bases are selected along the solving path to create preprocessed multiple labels. The 3-dimensional logits
generated by the GNN, the predicted basis derived from the logits, and the multi-labels are collectively used to calculate the loss function.

work (Fan et al., 2023), we utilize HiGHS (Huangfu & Hall,
2018a), a state-of-the-art open-source solver specialized in
efficient solving of LP problems. We employ the dual sim-
plex method, as it is typically much more efficient than the
primal simplex method.

datasets: We utilize well-known publicly available MIP
datasets in our study, including the Load Balance, Anony-
mous, and Maritime Inventory Routing Problem (MIRP)
(Papageorgiou et al., 2014) (Jiang & Grossmann, 2015). The
Load Balance and Anonymous datasets are sourced from
the NeurIPS 2021 Competition (Gasse et al., 2022). Due
to its limited scale with solving iterations in the relaxed LP
consistently below 1000, we exclude the Item Placement
dataset from these competition datasets. We specifically
choose the validation dataset of Load Balance due to the
high similarity among its instances, eliminating the neces-
sity for a larger training dataset. The MIRP datasets consist
of three sets of instances labeled as Mirp1 (Papageorgiou
et al., 2014), Mirp2 (Papageorgiou et al., 2014), and Mirp3
(Jiang & Grossmann, 2015). We opt for the first two sets as
most of the instances in the third set are significantly smaller
in scale. We only utilize the Mirp1 dataset from the most
closely related ML method (Fan et al., 2023), as it is the
only one publicly available in that work.

We relax these MIP problems to obtain the original LP
datasets. Additionally, we use HiGHS to presolve the re-
laxed LP instances, as presolving is commonly applied be-
fore solving in practical scenarios. Our datasets include both
the original unpresolved instances and the presolved ones.
To filter out very small instances, we exclude those with
fewer than 2000 solving iterations. Using the same method

in (Fan et al., 2023), we split each dataset into training and
test sets in a 7:3 ratio. Additional details about the datasets
are available in A.4.

Compared Methods: There are few existing works for
learning to select initial basis, except for (Fan et al., 2023)
which is based on a bipartite graph-based GNN. This
method has already demonstrated better performance com-
pared to traditional heuristic-based methods in many cases.
In our experiments, we compare our tripartite graph-based
GNN model with this state-of-the-art (SOTA) model. B, M,
and P respectively represent the incorporation of the loss
function for basic variable selection, the loss function for
feasibility, and label preprocessing. For consistency in
comparison, we adopt the training hyperparameters outlined
in the SOTA method (Fan et al., 2023) for all models. The
value of µk, defined in Equation 16, is selected based on
empirical experience rather than precise fine-tuning. Further
details about the hyperparameters and GNN architectures
can be found in Appendix A.5.

Implementation: The GNN models are trained on NV
A100 GPU. The solver operates on a system equipped with
a 20-core CPU (Intel Xeon @ 2.90GHz) and 128GB of
RAM. Our code is publicly available1.

4.2. Model Evaluation

We compare the bipartite graph-based GNN model using de-
fault training with our tripartite graph-based GNN model us-
ing comprehensive supervision. Table 1 and Table 2 present
the test performance of both models on the unpresolved and

1https://github.com/HAHHHD/TripartiteLP
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Table 1. Test performance of the GNN prediction model on the
unpresolved datasets.

bipartite tripartiteBMP
Precision Recall Acc BasAcc Precision Recall Acc BasAcc

Mirp1 0.915 0.902 0.902 0.914 0.931 0.935 0.939 0.937
Mirp2 0.788 0.791 0.812 0.649 0.782 0.786 0.876 0.639

Anonymous 0.852 0.858 0.841 0.808 0.863 0.872 0.895 0.821
Load Balance 0.932 0.979 0.989 0.989 0.910 0.992 0.986 0.986

Geomean 0.870 0.880 0.883 0.830 0.870 0.893 0.923 0.834

Table 2. Test performance of the GNN prediction model on the
presolved datasets.

bipartite tripartiteBMP
Precision Recall Acc BasAcc Precision Recall Acc BasAcc

Mirp1 0.909 0.894 0.914 0.910 0.923 0.928 0.935 0.930
Mirp2 0.810 0.812 0.876 0.690 0.812 0.814 0.883 0.695

Anonymous 0.859 0.848 0.872 0.801 0.857 0.859 0.893 0.794
Load Balance 0.945 0.942 0.924 0.943 0.946 0.942 0.925 0.943

Geomean 0.879 0.873 0.896 0.830 0.883 0.884 0.909 0.834

presolved datasets respectively, showcasing test precision,
recall, accuracy, and basic variable selection accuracy. It is
evident that our model holds an advantage in predicting an
initial basis that is closer to the optimal solution.

Table 3 and 4 show the impact of the predicted initial basis
on accelerating the solver on the unpresolved dataset, and
Table 5 and 6 show the one on the presolved dataset. The
term “default” refers to the solver’s default setting without
warm start. “Iters” and “Time” represent the geometric
mean of the number of iterations and solving time for each
LP instance in the test set. “Ratio” denotes the ratio of the
number of iterations using the predicted initial basis to that
without warm start. “Improv” indicates the increase in speed
compared to the default mode. Our model significantly
reduces the number of iterations and solving time, achieving,
on average, a twofold speed improvement over SOTA on the
unpresolved datasets and a threefold improvement on the
presolved datasets. This demonstrates that our model not
only provides an initial basis closer to the optimal one but
also ensures its high quality for practical use by the solver.

Our approach scales effectively to large LP instances. In
the Mirp2 dataset, some instances take several minutes to
several hours to process. As shown in Table 7, we demon-
strate the acceleration achieved on these large instances.
The computational overhead of our tripartite graph-based
model with two bidirectional message-passing steps is com-
parable to that of the bipartite graph-based model with six
message-passing steps, typically taking less than 1 second.
As shown in Table 12, increasing the number of message-
passing layers in the bipartite graph-based model does not
necessarily lead to better prediction quality. Our GNN archi-
tecture effectively leverages its complexity, fully utilizing
the computational overhead to predict a higher-quality ba-
sis. In simpler LP cases, this added overhead may slightly
increase the total solving time, including inference time.

Table 3. Number of iterations of the solver with/without warm start
using the predicted initial basis on the unpresolved datasets.

default bipartite tripartiteBMP
Iters Iters Ratio Improv Iters Ratio Improv

Mirp1 25432 13711 53.91% 85.49% 10584 41.62% 140.3%
Mirp2 86897 85691 98.61% 1.41% 81010 93.23% 7.27%

Anonymous 35330 21997 62.26% 60.61% 20975 59.37% 68.44%
Load Balance 7965 5046 63.35% 57.85% 3656 45.90% 117.9%

Geomean 28082 19003 67.67% 47.78% 16013 57.02% 75.37%

Table 4. Solving time of the solver with/without warm start using
the predicted initial basis on the unpresolved datasets.

default bipartite tripartiteBMP
Time(s) Time(s) Ratio Improv Time(s) Ratio Improv

Mirp1 9.17 5.93 64.67% 54.64% 4.73 51.58% 93.87%
Mirp2 21.07 24.11 114.4% -12.61% 22.03 104.6% -4.36%

Anonymous 12.83 9.31 72.56% 37.81% 9.29 72.41% 38.11%
Load Balance 7.21 6.10 84.60% 18.20% 5.14 71.29% 40.27%

Geomean 11.56 9.49 82.09% 21.81% 8.40 72.66% 37.62%

Table 5. Number of iterations of the solver with/without warm start
using the predicted initial basis on the presolved datasets.

default bipartite tripartiteBMP
Iters Iters Ratio Improv Iters Ratio Improv

Mirp1 22160 13715 61.89% 61.57% 7118 32.12% 211.4%
Mirp2 40091 36528 91.11% 9.75% 34543 86.16% 16.06%

Anonymous 9452 7651 80.95% 23.54% 7023 74.30% 70.18%
Load Balance 7523 4829 64.19% 55.79% 4681 62.57% 34.59%

Geomean 15854 11664 73.57% 35.92% 9482 59.81% 67.20%

Table 6. Solving time of the solver with/without warm start using
the predicted initial basis on the presolved datasets.

default bipartite tripartiteBMP
Time(s) Time(s) Ratio Improv Time(s) Ratio Improv

Mirp1 7.12 5.22 73.31% 36.40% 2.99 41.99% 138.1%
Mirp2 7.91 7.54 95.32% 4.91% 6.56 82.93% 20.57%

Anonymous 0.985 1.23 124.9% -19.92% 1.17 118.8% -15.81%
Load Balance 2.26 1.63 72.12% 38.65% 1.59 70.35% 42.15%

Geomean 3.35 2.98 88.96% 12.41% 2.46 73.43% 36.18%

Table 7. Performance on large LP instances.
Iters Time(s)

Default TripartiteBMP Default TripartiteBMP

LR1 DR04 VC05 V17b t360 561299 409428 491.48 250.70
LR1 DR05 VC05 V25b t360 706451 777452 474.74 513.63
LR1 DR08 VC05 V40b t180 301789 309473 143.06 128.84
LR1 DR08 VC10 V40b t120 267155 298875 112.76 131.60
LR1 DR12 VC10 V70a t180 836561 619425 751.76 606.93

Geomean 484672 448942 309.27 265.74
Ratio 1 0.926 1 0.859

However, for more complex or larger problems, the impact
of this overhead becomes negligible.

4.3. Cross-dataset Evaluation

We use a model trained on one presolved dataset to predict
the initial basis for instances from another presolved dataset.
The ratio of solver solving time with and without a warm
start is shown in Table 8, where each row represents a train-
ing set and each column represents a test set. Among the
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Table 8. The ratio of solver solving time with and without warm
start using the predicted initial basis across the presolved datasets.

bipartite tripartiteBMP
Mirp1 Mirp2 Anonymous Load Balance Mirp1 Mirp2 Anonymous Load Balance

Mirp1 - 0.865 1.35 1.13 - 0.842 1.17 0.854
Mirp2 1.36 - 2.43 1.52 1.04 - 1.75 1.27

Anonymous 1.04 0.925 - 1.01 0.813 0.850 - 0.562
Load Balance 1.30 0.805 1.14 - 1.24 0.856 1.76 -

Geomean 1.22 0.864 1.55 1.20 1.02 0.849 1.53 0.847

Table 9. Solving time of the solver assisted by two GNN models
with various training components on the presolved datasets.

in units of seconds bipartiteBMP tripartiteBMP
ALL -B -M -P -BMP ALL -B -M -P -BMP

Mirp1 4.71 4.96 4.99 5.27 5.22 2.99 3.96 3.23 2.43 4.27
Mirp2 6.79 7.60 7.63 7.28 7.54 6.56 8.24 6.06 7.21 7.68

Anonymous 1.13 1.18 1.53 1.17 1.23 1.17 1.17 1.06 1.19 1.36
Load Balance 1.58 1.64 1.65 1.62 1.63 1.59 1.6 1.65 1.59 1.65

Geomean 2.75 2.92 2.92 3.13 2.98 2.46 2.80 2.42 2.40 2.93

12 cross-dataset evaluations, only 3 cases tested on Mirp2
successfully accelerate the solver using the bipartite graph-
based GNN. In contrast, our tripartite graph-based GNN,
under comprehensive supervision, accelerates 6 out of the
12 settings. Additionally, our model consistently achieves a
better acceleration ratio than the SOTA across all test sets.
This demonstrates that our model is more practical for real-
world applications, where we need to use a trained model to
predict the initial basis for instances from unseen datasets.

4.4. Ablation Study

We remove each component from the training process for
two GNN models on the presolved datasets to see their role
in accelerating solving – see Table 9. We observe that each
training component is advantageous in improving perfor-
mance for the bipartite graph-based GNN. Also, the tripar-
tite GNN exhibits a clear advantage in reducing the iteration
count compared to the bipartite GNN with the same training
settings. Moreover, the comprehensive supervision can lead
to a more significant improvement in the performance of the
tripartite graph-based GNN, showcasing its potential.

We observe that the tripartite model without the P com-
ponent outperforms the version with P, primarily due to a
significant gain on the Mirp1 dataset. This suggests that
while processing the labels to reduce inconsistency helps
the GNN learn and achieve better accuracy, it may occa-
sionally result in an initial basis that is closer to optimal but
invalid, requiring additional Phase I effort to repair. How-
ever, this appears to be an isolated case, as incorporating P
consistently improves performance on all other datasets.

5. Conclusion and Outlook
Based on the analysis of duality in LP, the crucial role of
basic variable selection, the quality of the basis in practi-
cal tasks, and the inconsistency in raw labels provided by

the solver, we introduce a tripartite graph-based GNN and
comprehensive supervision. Significant enhancements have
been observed in reducing the number of iterations and solv-
ing time of solvers by utilizing the initial basis generated by
our model.

As learning for LP is still in its relatively early stage, in
the future, we will investigate further factors beyond basis
accuracy and infeasibility that influence the solver’s actual
performance with a warm start. Additionally, we will ex-
plore whether the tripartite graph representation remains
effective for other LP- and MIP-related tasks.

Impact Statement
Linear programming has been the central problem in com-
puter science, AI and many other areas for science and
engineering. Our technique could potentially accelerate and
improve the accuracy of the solvers and thus could have
significant impact to the society.
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A. Appendix / supplemental material
A.1. Duality in linear programming

For the general form of a Linear Programming (LP) problem:

min
x∈Rn

c⊤x (5)

s.t. ls ≤ Ax ≤ us, (6)
lx ≤ x ≤ ux, (7)

we assign a dual variable y to each constraint (splitting bidirectional constraints into two), as Lagrange multipliers, and
formulate the Lagrangian function as:

L(x,ys
l ,y

s
u,y

x
l ,y

x
u) = c⊤x− (ys

l )
⊤(Ax− ls)− (ys

u)
⊤(us −Ax)

− (yx
l )

⊤(x− lx)− (yx
u)

⊤(ux − x) (8)

= x⊤(c−A⊤ys
l +A⊤ys

u − yx
l + yx

u)

+ (ls)⊤ys
l − (us)⊤ys

u + (lx)⊤yx
l − (ux)⊤yx

u. (9)

From 8, in combination with 6 and 7, for any feasible solution xfea and any ys
l ,y

s
u,y

x
l ,y

x
u > 0, we have:

min
x∈Rn

L(x,ys
l ,y

s
u,y

x
l ,y

x
u) ≤ L(xfea,y

s
l ,y

s
u,y

x
l ,y

x
u) ≤ c⊤xfea. (10)

Let g(ys
l ,y

s
u,y

x
l ,y

x
u) = minx∈Rn L(x,ys

l ,y
s
u,y

x
l ,y

x
u), and taking limits of 10 on the left hand side yields:

max
ys
l ,y

s
u,y

x
l ,y

x
u≥0

g(ys
l ,y

s
u,y

x
l ,y

x
u) ≤ c⊤xfea. (11)

According to the strong duality theorem, if the original problem has a finite optimal solution x∗, then

max
ys
l ,y

s
u,y

x
l ,y

x
u≥0

g(ys
l ,y

s
u,y

x
l ,y

x
u) = c⊤x∗. (12)

Hence, we can transform the original problem into finding the maximum value of the function g. From 9, we get:

g(ys
l ,y

s
u,y

x
l ,y

x
u) =

{
(ls)⊤ys

l − (us)⊤ys
u + (lx)⊤yx

l − (ux)⊤yx
u, S = 0,

−∞, otherwise. (13)

where S = c−A⊤ys
l +A⊤ys

u − yx
l + yx

u. Therefore, the problem of finding the maximum value of the function g can be
expressed as:

max
ys
l ,y

s
u,y

x
l ,y

x
u≥0

(ls)⊤ys
l − (us)⊤ys

u + (lx)⊤yx
l − (ux)⊤yx

u (14)

s.t. A⊤(ys
l − ys

u) + (yx
l − yx

u) = c. (15)

A.2. Message passing on the tripartite graph

Let the initial feature vectors for each node in Vprimal, Vdual and C be h
(0)

xprimal
j

, h(0)

xdual
j

and h(0)
si , respectively, with the

feature vector of the global node O being h
(0)
O . At the beginning, each initial feature is mapped to a higher dimension

h
(1)
O = W 01h

(0)
O ,

h
(1)

xprimal
j

= W 02h
(0)

xprimal
j

,

h
(1)

xdual
j

= W 03h
(0)

xdual
j

,

h(1)
si = W 04h

(0)
si .

12



Learning LP Basis Selection via Duality-Inspired Tripartite Graph Representation and Comprehensive Supervision

Then nodes in Vprimal, Vdual and C aggregate information to O

h
(2)
O = σ((W 11h

(1)
O +W 12

∑
j∈[n]

[(−cj)h
(1)l

xprimal
j

+ cjh
(1)r

xprimal
j

]

+W 13

∑
j∈[n]

[(−lxj )h
(1)l

xdual
j

+ cxjh
(1)r

xdual
j

] +W 14

∑
i∈[m]

[(−lsi )h
(1)l
si + us

ih
(1)r
si ]),

where the feature vectors of each node in Vprimal, Vdual and C are split into two halves, with the superscripts l and r
indicating the first and second halves of the vectors, respectively. The first half passes information through the lower bounds
in the primal or dual problem, while the second half passes through the upper bounds. The activation function σ, typically
a ReLU() function, zeros out negative elements, increasing matrix sparsity. The nodes in those three sets transform and
aggregate information using three different learnable matrices W 12, W 13 and W 14 to enhance the global differentiation
of information from different components. For each node, the magnitude of information passed to the global node is
proportional to its coefficient in the objective function of the primal or dual problem, reflecting the variable’s global impact.

Next, information is transmitted from the global node to the nodes in Vprimal, Vdual and C,

h
(2)

xprimal
j

= σ(CONCAT(W 15h
(1)l

xprimal
j

− cjW 16h
(2)
O ,W 15h

(1)r

xprimal
j

+ cjW 16h
(2)
O )),

h
(2)

xdual
j

= σ(CONCAT(W 17h
(1)l

xdual
j

− lxjW 18h
(2)
O ,W 17h

(1)r

xdual
j

+ ux
jW 18h

(2)
O )),

h(2)
si = σ(CONCAT(W 19h

(1)l
si − lsiW 10h

(2)
O ,W 19h

(1)r
si + us

iW 10h
(2)
O )),

where CONCAT represents the vector concatenation function, concatenating feature vectors along the last dimension.
Different transformation matrices for the three types of nodes convert the global node’s information, ensuring that the
information absorbed by each node is proportional to its coefficient in the objective function of the primal or dual problem.

The left half of Fig. 1 is completed at this point. Each node now contains not only its own original information but selectively
extracts information from all other nodes in the graph. With more informative node features in hand, bidirectional message
passing similar to that in the bipartite graph is carried out.

Before each round of bidirectional message passing, masks are placed on some nodes in Vdual and C to remove certain
information. For any variable xj , if lxj = −∞, then the first half of the feature vector h(t−1)l

xdual
j

from the previous layer

(denoted as the (t − 1)th layer) of the neural network output is zeroed out, Conversely, if ux
j = ∞, then the second half

of the feature vector h(t−1)r

xdual
j

is set to zero. Similarly, for any constraint variable si, if lsi = −∞, then the first half of the

feature vector h(t−1)l
si from the previous layer of the neural network output is zeroed out, Conversely, if us

i = ∞, then the
second half of the feature vector h(t−1)r

si is set to zero. Since the infinite constraints in the original problem indicate the
absence of these constraints, and these infinite constraints do not actually correspond to variables in dual problems, they
need to be masked to ensure they do not participate in any message passing. In the previous global message passing step,
these nodes do not have edges connecting them to global nodes and do not participate in message passing. However, in
bidirectional message passing, as they are bound together with the other constraints through coefficients in the constraint
matrix and connected to other nodes, the masks are used to eliminate their influence on message passing. Denote the feature
vectors of the nodes in sets Vdual and C in the t− 1th layer output as h(t−1)′

vdual and h(t−1)′

s after applying the masks. The
process of bidirectional message passing can be represented as

h
(t)

xprimal
j

= σ(W t1h
(t−1)

xprimal
j

+W t2h
(t−1)′

xdual
j

+W t3

∑
i∈[m]

aijh
(t−1)′

si ),

h
(t)

xdual
j

= σ(W t4h
(t−1)′

xdual
j

+W t5h
(t−1)

xprimal
j

),

h(t)
si = σ(W t6h

(t−1)′

si +W t7

∑
j∈[n]

aijh
(t−1)

xprimal
j

),

where different learnable transformation matrices W t2 and W t3 are used to aggregate information from Vdual and C nodes
in the Vprimal set, respectively, and nodes in Vdual and C receive information from Vprimal through different matrices, W t5

and W t6 , respectively.
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In practice, it is often preferred to conduct two rounds of bidirectional information exchange after the global information
transmission, resulting in h

(4)

vdual , h
(4)

vprimal , and h(4)
s . Among these, the nodes in Vdual do not contribute to the final

output. The features of all nodes in Vprimal, denoted by h
(4)

vprimal , are processed through a linear layer to map them to
a three-dimensional space, providing the logits for each variable. Similarly, the features obtained from C nodes, after
masking, are passed through another linear layer to transform them into a three-dimensional space, yielding the logits for
each constraint.

The rationale behind opting for two rounds of bidirectional information exchange is that this allows for the aggregation of a
significant portion of the information implied by the constraint matrix. The masking and activation functions essentially
sparsify the information within the matrix, and we disregard the sparse effects induced by the masking and activation
functions in our analysis. Taking h

(4)

vprimal as an example, it can be represented as a function of h(2)

vprimal , h
(2)

vdual , and h(2)
s as

h
(4)

xprimal
j

= W 41h
(3)

xprimal
j

+W 42h
(3)

xdual
j

+W 43

∑
i∈[m]

aijh
(3)
si

= W 41(W 31h
(2)

xprimal
j

+W 32h
(2)

xdual
j

+W 33

∑
i∈[m]

aijh
(2)
si )

+W 42(W 34h
(2)

xdual
j

+W 35h
(2)

xprimal
j

)

+W 43

∑
i∈[m]

aij(W 36h
(2)
si +W 37

∑
k∈[n]

aikh
(2)

vprimal
k

)

= (W 41W 31 +W 42W 35)h
(1)

xprimal
j

+ (W 41W 32 +W 42W 34)h
(1)

xdual
j

+ (W 41W 33 +W 43W 36)
∑
i∈[m]

aijh
(2)
si

+W 43W 37

∑
i∈[m]

∑
k∈[n]

aijaikh
(2)

vprimal
k

,

Following this analysis, we observe that the feature of a node xj in V primal consists of message from the node in V dual

corresponding to its upper and lower bounds, the nodes in C corresponding to constraints it lies in, and some other variable
nodes in V primal. The message passed from a constraint node si in C is proportional to the coefficients aij corresponding
to the variable in the respective constraint, and is positively correlated to any change δ in the constraint that influences the
total value of the variable, aijδ, in the dual problem. Moreover, the message passed from a variable node vk in V primal is
associated with

∑
i∈[m]

∑
k∈[n] aijaik, reflecting the inner product between the column vectors corresponding to variables

xj and vk in the constraint matrix, which is proportional to the fluctuation in the projection of the change δ in the variable vk
on A:,j , which is δ⟨A:,j , A:,k⟩/|A:,j |2. Analogously, similar effects of information transfer can be identified for h(4)

s from a
dual perspective. Consequently, this dual bidirectional information exchange on the bipartite graph effectively consolidates
the interactive information between constraints and variables inherent in the LP problem, exhibiting interpretability to a
certain extent. Furthermore, some high-order interaction information is captured through the initial global message passing.

A.3. Analysis on the labels given by LP solvers

For example, consider a simple LP problem as follows:

min − x1 − x2

s.t. 0 ≤ x1 + x2 ≤ 1

0 ≤ x1, x2 ≤ 2,

This problem involves two variables x1 and x2 and one constraint s1. The optimal solution with the 2-norm minimum is
x1 = 0.5, x2 = 0.5 with s1 = 1. The optimal solution obtained through the simplex method could be x1 = 1, x2 = 0, s1 = 1
or x1 = 0, x2 = 1, s1 = 1. It can be observed that the values of x1 and x2 are always unequal. Due to the equivalence of x1

and x2 in the original problem, no matter how the neural network is constructed, the output for nodes corresponding to x1

and x2 will be the same. Therefore, even for such a simple LP problem, the regression problem of predicting the optimal
solution with the simplex method cannot achieve close to 100% accuracy. Additionally, in any case, s1 serves as a non-basic
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variable at the upper bound, while either x1 or x2 serves as a basic variable and the other as a non-basis variable at the lower
bound. Hence, the labels for x1 and x2 in the basis prediction classification problem will never be the same, leading to at
least one variable’s prediction being incorrect, resulting in a maximum prediction accuracy of 50% for the basic variables.

This inconsistency in labels arising from the structure of the problem is commonly found in practical LP problems. It
stems from the fact that the representation of LP problems is not compact enough and contains redundant information.
For instance, x1 and x2 are completely equivalent in the example above and could be combined into a single variable to
eliminate the label inconsistency mentioned before. It is noted that advanced solvers often preprocess LP problems by
removing redundant information to obtain a more concise problem representation. The runtime for LP problem presolving
is usually very short and negligible compared to actual solving time. By inputting the equivalent problem obtained after
presolving into the solver, significant computational cost savings can be achieved compared to solving the original problem
directly. Consequently, there is limited practical significance in directly using the original problem for basis prediction, as it
does not take into account the presolving process. Moreover, as shown in the analysis above, presolving can aid in basis
prediction by reducing label inconsistency, improving model fitting, and enhancing basis prediction accuracy. Therefore,
utilizing the LP problem obtained after presolving as the dataset not only enhances the learning efficacy of neural networks
but also aligns with the standard solving process in practical applications.

Apart from the label inconsistency stemming from the problem structure itself, there can also be label inconsistencies in the
optimal basis labels output by the solver. Adding a constraint and a variable to the previous LP problem yields another LP
problem without redundant information as follows:

min − x1 − x2 − x3

s.t. x1 + x2 = 1

x2 + x3 = 1

0 ≤ x1, x2, x3 ≤ 2,

This problem involves three variables x1, x2, x3 and two constraints s1, s2. The optimal solution with the 2-norm minimum
is x1 = 1, x2 = 0, x3 = 1 with s1 = 1, s2 = 1, which is also the optimal solution obtained by the simplex method. The
prediction values of neural networks can approximate the solution obtained by the simplex method with nearly 100%
accuracy. However, this optimal solution corresponds to multiple optimal bases. One possible labeling scheme includes
Labelx1

= 1,Labelx2
= 0,Labelx3

= 1,Labels1 = 0,Labels2 = 2, indicating that x1 and x3 are basic variables, x2 is a
non-basic variable set to the lower bound 0, and s1 and s2 correspond to the lower bound 1 in one constraint and upper
bound 1 in the other. In this labeling, the labels of the two constraints s1 and s2 are different, yet in the LP problem, x1 and
x3 are completely symmetrical and so are the two constraints s1 and s2, implying that the nodes in the graph representation
are equivalent, leading to the neural network outputting the same values for them, at least one of which is different from
their labels. Therefore, in this scenario, the prediction accuracy of the constraint basis variables can reach a maximum of
only 50%, even though the prediction accuracy for the optimal solution can be 100%.

The mentioned label inconsistency primarily arises when the upper and lower bounds of variables or constraints are equal.
When the upper and lower bounds of variables are equal, indicating a fixed value for the variable, it can be eliminated
through presolving. However, when the upper and lower bounds of constraints are equal, representing an equality constraint,
these constraints cannot be removed during presolving. Therefore, additional processing is required to address the label
inconsistency corresponding to the constraints.

A.4. Datasets

Table 10 and 11 present statistical information for four datasets before and after presolve. ‘nMIP’ denotes the number of
original MIP instances, while ‘nLP’ represents the number of remaining presolved LP instances, which constitute our final
datasets. ‘nTrain’, and ‘nTest’ denote the number of LP instances in the training set and in the test set, respectively. ‘dens’,
‘nvar’, and ‘ncons’ refer to the density of constraint matrices, the number of variables, and the number of constraints. They
are presented in the ‘mean ± standard deviation’ format.

A.5. Model Setup

We employ the Adam optimizer with a weight decay of 1× 10−4. The number of training epochs is 800. The initial learning
rate is configured to 0.001, and the learning rate is reduced by a factor of γ = 0.1 every 200 epochs. Random seed is set to 0.
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Table 10. Statistics of the unpresolved datasets.

nMIP nLP nTrain nTest dens nvar ncons

Mirp1 28 28 19 9 2.0e-4±1.0e-4 28738±24508 28214±24740

Mirp2 68 68 47 21 5.6e-4±4.4e-4 33461±39425 10589±11365

Anonymous 118 76 53 23 4.3e-4±4.9e-4 50891±39009 64396±58839

Load Balancing 100 100 70 30 9.2e-5±1.4e-6 61000±0 64305±54

Table 11. Statistics of the presolved datasets.

nMIP nLP nTrain nTest dens nvar ncons

Mirp1 28 28 19 9 2.6e-4±1.4e-4 26043±22772 24028±21581

Mirp2 68 62 43 19 6.9e-4±5.1e-4 20351±17293 7126±5262

Anonymous 118 76 53 23 1.5e-3±6.7e-4 7720±4406 5670±2437

Load Balancing 100 100 70 30 6.7e-3±3.4e-5 4014±60 7136±119

The initial features of variable and constraint nodes in the graph are identical to those in the study (Fan et al., 2023),
represented as 8-dimensional vectors. The additional global node features in the tripartite graph are composed of the mean
and variance of the coefficients of normalized LP problem’s objective function, variable bounds, and constraint bounds,
forming a 6-dimensional vector. The feature vectors of all nodes in the hidden layers have a dimensionality of 256.

Our tripartite-based GNN model involves one linear layer that projects the initial features into 128-dimensional embeddings,
one global message passing iteration between the global node and other nodes, two bidirectional message passing iterations
among the remaining nodes, and a final linear layer. In particular, when applying label preprocessing, we choose θ = 0.9
and N = 10 to collect the feasible bases in the solving path, obtaining multi-level labels. The weight µk for the k-th level
label is set as

µk =

{
0.5k, 0 ≤ k ≤ 2

0.25× 0.75k−2, 3 ≤ k ≤ 9.
(16)

On the other hand, the bipartite-based GNN model (Fan et al., 2023) comprises N bidirectional message passing iterations
between variable nodes and constraint nodes and a final linear layer. The default setting for N is 2, and we also experiment
with models using N = 4, N = 6, and N = 8. As shown in Table 12, for both models utilizing the training process from
(Fan et al., 2023), labeled as ’bipartite’, and our proposed training process, labeled as ’bipartiteBMP’, adding more layers
results in little overall improvement. Therefore, using the tripartite graph-based representation, increasing the number of
layers does not enhance the learning ability. For this reason, we choose N = 2 as the setting for the comparison in the
experiments section.

We also conduct experiments studying the influence of the number of bidirectional layers on the final solver speedup on
three of the unpresolved datasets. To better study the graph representation itself, we isolate the influence of training settings
by using the base training without a loss function for basic variable selection, the loss function for feasibility, and label
preprocessing. As shown in Table 13, bidirectional message passing is crucial, as it effectively utilizes the coefficients in the
constraint matrix. Additionally, adding more bidirectional message passing layers results in a slight improvement.

We compare bipartite GNN and tripartite GNN using TransformerConv architectures, as well as tripartite GNN using
GraphConv, on three of the unpresolved datasets. As shown in Table 14, our tripartite representation demonstrates a modest
advantage over the bipartite baseline. Additionally, we observe that GraphConv generally outperforms TransformerConv,
further supporting our claim that the GraphConv architecture aligns well with the structure of LP problems and is sufficiently
expressive to capture the necessary properties.
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Table 12. Iteration counts across bipartite GNNs with different number of bidirectional message passing layers

bipartite bipartiteBMP
N=2 N=4 N=6 N=8 N=2 N=4 N=6 N=8

Mirp1 13715 12085 13272 15817 10259 12167 9949 10618
Mirp2 36528 36449 38757 39676 32302 33979 35803 35400

Anonymous 7651 9381 7717 8226 6891 7990 7728 7131
Load Balancing 4829 4624 4645 3956 4754 4602 4457 3737

Geomean 11664 11757 11653 11954 10207 11103 10525 10004

Table 13. Iteration counts and solving time across tripartite GNNs with different number of bidirectional message passing layers

Iters Time(s)
N=0 N=2 N=4 N=6 N=0 N=2 N=4 N=6

Mirp 18798 14017 12109 10813 8.29 7.43 7.07 6.39
Anonymous 60146 23583 23166 21342 7.19 7.12 6.75 6.87

Load balancing 4070 4357 4291 4512 16.71 10.49 10.98 8.85

Geomean 16633 11293 10637 10136 9.99 8.22 8.06 7.30

Table 14. Comparison of iteration counts across different GNN architectures

Bipartite-TransformerConv Tripartite-TransformerConv Tripartite-GraphConv
Iters Time(s) Iters Time(s) Iters Time(s)

Mirp 16022 7.24 16146 6.96 14017 6.04
Anonymous 4561 9.87 4804 9.75 4357 5.74

Load balancing 23946 6.37 21124 6.44 23583 10.61

Geomean 12051 7.69 11790 7.59 11294 7.17
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