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Abstract

Graph neural networks (GNNs) have been shown to be highly sensitive to the
choice of aggregation function. While summing over a node’s neighbours can
approximate any permutation-invariant function over discrete inputs, Cohen-Karlik
et al. [2020] proved there are set-aggregation problems for which summing cannot
generalise to unbounded inputs, proposing recurrent neural networks regularised
towards permutation-invariance as a more expressive aggregator. We show that
these results carry over to the graph domain: GNNs equipped with recurrent aggre-
gators are competitive with state-of-the-art permutation-invariant aggregators, on
both synthetic benchmarks and real-world problems. However, despite the benefits
of recurrent aggregators, their OpV q depth makes them both difficult to parallelise
and harder to train on large graphs. Inspired by the observation that a well-behaved
aggregator for a GNN is a commutative monoid over its latent space, we propose a
framework for constructing learnable, commutative, associative binary operators.
And with this, we construct an aggregator of Oplog V q depth, yielding exponen-
tial improvements for both parallelism and dependency length while achieving
performance competitive with recurrent aggregators. Based on our empirical obser-
vations, our proposed learnable commutative monoid (LCM) aggregator represents
a favourable tradeoff between efficient and expressive aggregators.

1 Introduction
When dealing with irregularly structured data [Bronstein et al., 2021], neural networks typically
need to process data of arbitrary sizes. In such scenarios, the heart of the network is arguably its
aggregation function—a function that reduces a collection of neighbour feature vectors into a single
vector. Indeed, graph neural networks (GNNs) have been shown empirically to be highly sensitive to
the choice of aggregator [Veličković et al., 2019, Richter and Wattenhofer, 2020], with a wide range
of aggregators (e.g. sum, max and mean) and their combinations [Corso et al., 2020] in common use.

In this paper, we offer a new perspective for studying aggregators, with clear theoretical and practical
implications. It can be said that the true objective of choosing an aggregator is to make it as simple as
possible (i.e. to minimise the sample complexity required) for the parameters of the GNNs to exploit
that aggregator in a way that makes it easier to solve the learning problem. Specifically, we study this
in the context of learning to align the GNN’s aggregator to a desirable target aggregation function
(as defined in [Xu et al., 2019a]). It is already a known fact that higher alignment implies reduced
sample complexity [Xu et al., 2019a], and in the context of algorithmic reasoning, it is well-known
that a neural network will be better at learning to imitate an algorithm if its aggregator matches that
of the algorithm it is trying to imitate [Veličković et al., 2019, Xu et al., 2020].

However, beyond the realm of learning a task with a concrete aggregator, many real-world problems
offer more challenging settings, wherein the optimal aggregator to learn is not clear—but unlikely
to be a trivial fixed aggregator. To formalise this notion, while preserving the useful assumption of
permutation invariance, we leverage commutative monoids as a formalism for both the aggregators
supported by GNNs and the (potentially unknown) target aggregators one would wish to align to.
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This formalism allows us to derive several relevant results, including the fact that using any fixed
commutative monoid F (e.g. sum or max) as an aggregator would compel the GNN to learn a
commutative monoid homomorphism from F to the target commutative monoid, purely from data.
We hypothesise that this is often difficult to do robustly, and verify our hypothesis by demonstrating
several instances (both synthetic and real-world) where fixed aggregators (including combinations of
them [Corso et al., 2020]) fail to generalise.

Our perspective, inspired by the functional programming motif of folds (or catamorphisms) over
arbitrary data structures, leads us to consider flexible and learnable aggregation functions, which
can more easily fit a wide range of commutative monoids directly, without needing to learn such
a homomorphism. The most popular such aggregator has previously been the RNN (i.e. ‘a fold
over a list’) – used, for instance, in GraphSAGE [Hamilton et al., 2017]. The reason for RNNs’
expressive power is simple: their usage of a hidden recurrent state allows them to break away from the
constraints of commutative monoids and aggregate inputs more flexibly. However, while empirically
powerful, the sequential structure of RNN aggregators leads to clear shortcomings in efficiency: if an
RNN had learnt to aggregate n neighbours under a commutative monoid operation ‘, it would do so
with a depth that is linear in n, as pppp. . . px1 ‘ x2q ‘ x3q ‘ . . . q ‘ xn´1q ‘ xnq.

But, by folding over a binary tree instead of a list (in other words, rearranging the order of operations
to a balanced binary tree p. . . ppx1 ‘ x2q ‘ px3 ‘ x4qq ‘ ¨ ¨ ¨ ‘ pxn´1 ‘ xnq . . . q), we derive an
aggregator that achieves a favourable trade-off between flexibility and efficiency, empirically retaining
most of the performance of RNNs while having a depth that is logarithmic in n. We also demonstrate
how such layers can be effectively constrained and regularised to respect the commutative monoid
axioms (essentially creating a learnable commutative monoid), leading to further gains in robustness.

2 Motivation
Before exploring GNN aggregators, we first review the structure of a GNN. For a graph G “ pV,Eq

whose nodes u have one-hop neighbourhoods Nu “ tv P V | pv, uq P Eu and features xu, a
message-passing GNN over G is defined by Bronstein et al. [2021] as

hu “ ϕ

˜

xu,
à

vPNu

ψpxu,xvq

¸

for ψ the message function, ϕ the readout function and ‘ a permutation-invariant aggregation function.
This GNN ‘template’ can be instantiated in many ways, with different choices of ϕ, ψ and ‘ yielding
popular architectures such as GCNs [Kipf and Welling, 2017] and GATs [Veličković et al., 2018].

2.1 To learn a complex aggregator is to learn a commutative monoid homomorphism

So we’ve seen that, in order to define a GNN, we must define a permutation-invariant aggregator ‘

over its messages. But how can we characterise a permutation-invariant aggregator in general?

In abstract algebra (and in functional programming), a permutation-invariant aggregator over a set can
be described as (maps into and out of) a commutative monoid. A commutative monoid pM,‘, e‘q

is a set M equipped with a commutative, associative binary operator ‘ : M ˆ M Ñ M and an
identity element e‘ P M – in other words, an instance of the following Haskell typeclass, satisfying
the identities to the right for all x y z :: a (see Snippet 1 in Appendix I for a Python version):

class CommutativeMonoid a = x <> e == e
e :: a x <> y == y <> x
<> :: a -> a -> a x <> (y <> z) == (x <> y) <> z

Intuitively, commutative monoids over a set M are ‘operations you can use to reduce a multiset,
whose members are in M , to a single value’. These include GNN aggregators, like sum-aggregation
pRn,`,0q and max-aggregation pRn,max,0q. Indeed, Dudzik and Veličković [2022] observe that,
for the aggregation function ‘ of a GNN to be well-behaved (in the sense of respecting the axioms of
the multiset monad), it must form a commutative monoid pS,‘, e‘q over some subspace S of Rn.

The vast majority of GNNs choose a fixed permutation-invariant function ‘ (or fixed combinations of
them [Corso et al., 2020]). While some research [Pellegrini et al., 2020, Li et al., 2020] has explored
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aggregation functions with learnable parameters, these functions are only very weakly parameterised,
and give us limited additional expressivity.

For problems where we can anticipate the kind of aggregation function we might need, this approach
works well: indeed, choosing a commutative monoid that aligns with the algorithm we want our
GNN to learn can improve performance both in and out of distribution [Veličković et al., 2019]. But
there are many problems (e.g. those involving learning aggregations over representations of discrete
values, or representations encoding many different types of data) for which these monoids may not
always be the most natural choice for the aggregation we’re trying to learn. So in such cases, ψ
and ϕ must take on some of the work of mapping our representations into and out of a space where
‘-aggregation makes sense.

Formally, suppose we use a GNN equipped with a fixed commutative monoid aggregator pF,‘, e‘q,
on a problem for which the ‘true’ aggregation we want to perform is the commutative monoid
pM, ˚, e˚q over the GNN’s latent space. What would it take for our GNN to perform M -aggregation?

Proposition 1. Let pM, ˚, e˚q and pF,‘, e‘q be commutative monoids. Then for functions g :M Ñ

F and h : F Ñ M ,

˚
xPX

x “ h

˜

à

xPX

gpxq

¸

for all finite multisets X of M , if and only if h is both a left inverse of g and a surjective monoid
homomorphism from xgpMqy Ď F 1 to M .

Now, given Proposition 1 above (proven in Appendix A), suppose we had a trained GNN, parame-
terised by ϕ : Rk ˆ F Ñ Rk and ψ : Rk ˆ Rk Ñ F , with a fixed F -aggregator. Suppose this GNN
has learned to imitate the M -aggregation commutative monoid. We will model this property as there
existing functions ϕ1 : Rk ˆM Ñ Rk, ψ1 : Rk ˆ Rk Ñ M , g :M Ñ F and h : F Ñ M such that

• ϕpxu,mN puqq “ ϕ1pxu, hpmN puqqq

• ψpxu,xvq “ gpψ1pxu,xvqq

and ˚xPX x “ hp‘xPXgpxqq for all finite multisets X of M .

(Observe that this implies the following:

ϕ

˜

xu,
à

vPNu

ψpxu,xvq

¸

“ ϕ1

˜

xu, h

˜

à

vPNu

gpψ1pxu,xvqq

¸¸

“ ϕ1

ˆ

xu, ˚
vPNu

ψ1pxu,xvq

˙

for all nodes u, v in graphs G.)

Hence h is a surjective monoid homomorphism from xgpMqy to M (i.e. M is a subquotient of F ).

So at a high level, for a GNN with aggregator F to imitate an aggregator M , it must learn a function
that can decompose into a surjective monoid homomorphism from a submonoid of F to M .

2.2 Limitations on expressivity and generalisation for constructed aggregators

Given this result, what are the implications for prior and present work?

As has been seen in [Veličković et al., 2019, Sanchez-Gonzalez et al., 2020], it’s clear that if our
fixed commutative monoid F is aligned with a target monoid M for the problem we want to solve –
intuitively, ‘if the homomorphism doesn’t have to do much work’ – then we can easily learn to imitate
M . Indeed, if the target homomorphism is linear, and we have appropriate training set coverage, then
by [Xu et al., 2020] it may well generalise out-of-distribution – a result that holds (to an extent) in the
case of learning to imitate path-finding algorithms such as Bellman-Ford [Veličković et al., 2019].

But there are many cases where M is more complex, and there is no commonly-used fixed aggregator
F for which we can simply apply a linear homomorphism to get from F to M . One such example is

1
xgpMqy denotes the submonoid of F generated by gpMq.
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the problem of finding the 2nd-minimum element in a set. Here, the desired monoid M is as follows:
(Snippet 2)

type M = (Int, Int)
instance CommutativeMonoid M where

e = (infinity, infinity)
(a1, a2) <> (b1, b2) = (c1, c2)

where c1:c2:_ =
sort [a1, a2, b1, b2]

secondMinimum :: [Int] -> Int
secondMinimum = dec . agg . map enc

where
enc x = (x, infinity)
agg = reduce (<>)
dec (_, x2) = x2

Observe that, for this monoid, there is no such F (e.g. sum, max, min, mean) for which there is a
trivial choice of homomorphism from F to M .

In principle, there exists an F from which it is possible to construct a homomorphism to M : by
[Zaheer et al., 2017] and [Xu et al., 2019a], for any pM, ˚, e˚q with M Ď Qn, there exists a surjective
monoid homomorphism h from pRn,`, 0q to pM, ˚, e˚q. But Wagstaff et al. [2019] show that
this guarantee may require an h that is highly discontinuous, and therefore not only hard to learn
in-distribution2, but fully misaligned with the assumptions of the universal approximation theorem.
Further, as domphq “ xgpMqy, we are not learning a function whose domain is a bounded set, so we
have little hope of generalising out-of-distribution. Indeed, we demonstrate in Section 3.1 that all
common fixed aggregators fail to learn the 2nd-minimum problem, both in and out of distribution.

Similarly, Cohen-Karlik et al. [2020] show that sum-aggregators as implemented in [Zaheer et al.,
2017] (i.e. maps into and out of the pRn,`, 0q commutative monoid) require Ωplog 2nq neurons
to learn the parity function over sets of size n. Intuitively, the crux of their proof is that the
homomorphism the aggregator would have to learn from pRn,`, 0q to the parity monoid is a periodic
function with unbounded domain. Similar arguments hold for all aggregation tasks involving modular
counting.

2.3 Fully learnable recurrent aggregators and their limitations

We will now take a step back from homomorphisms, and try to discover a more flexible aggregator.
An emerging narrative within deep learning is that of representations as types [Olah, 2015]. If we
view the construction of neural networks as the construction of differentiable, parameterised pure
functional programs, many of the design patterns commonly used in deep learning correspond to
higher-order functions commonly used in functional programming (FP). This paradigm has proven
valuable in recent times, embodied by deep learning frameworks such as JAX [Bradbury et al., 2018].

In FP, a simple way to aggregate a multiset of elements is to represent them as a list and fold over it:3
(Snippet 3)

fold :: (a -> b -> b) -> b -> [a] -> b
fold f z [] = z
fold f z (x:xs) = f x (fold f z xs)

And in some sense, a recurrent neural network (RNN) is simply a fold over a list, parameterised by a
learnable accumulator f and a learnable initialisation element z:4 (Snippet 4)

rnnCell :: Learnable
(Vec R h1 -> Vec R h2 -> Vec R h2)

initialState :: Learnable (Vec R h2)

rnn :: Learnable
([Vec R h1] -> Vec R h2)

rnn = fold rnnCell initialState

Hence a natural way to construct a learnable aggregator over multisets could be to use an RNN – a
‘learnable fold’ – and to somehow ensure it is permutation-invariant.

Indeed, this approach has been used for permutation-invariant set aggregation, with Murphy et al.
[2019] enforcing permutation-invariance by design by taking the average of an RNN applied

2Suppose f : X Ñ Y is a model trained to learn h : X Ñ Y given a training set tpxi, yiu
n
i“1 Ď D for

yi “ hpxiq and D the support of the training distribution. Now, for some loss function L : Y ˆ Y Ñ R, we say
that f has learned h in-distribution if Ex„DrLpfpxq, hpxqqs is small, and that f has learned h out-of-distribution
if if Ex„P rLpfpxq, hpxqqs is small for distributions P over XzD.

3Note that a Ñ b Ñ b is an equivalent way (via currying) of specifying a function a ˆ b Ñ b.
4Note that an RNN can also be viewed as a map to the carrier set of the monoid of endofunctions (i.e.

functions from a set to itself – in this case, from b to b) under composition: see Appendix B for details.
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to all permutations of its input, and Cohen-Karlik et al. [2020] regularising RNNs f towards
permutation-invariance by adding a pairwise regularisation term Lswappx1,x2q “ pfpfps,x1q,x2q´

fpfps,x2q,x1qq2 (which we motivate through the lens of commutative monoids in Appendix B).

Recurrent aggregators have also occasionally seen use in GNNs [Hamilton et al., 2017, Xu et al.,
2018], but they are scarcely used despite their competitive performance. We assume RNNs likely
remain unpopular as a GNN aggregator due to their depth. Indeed, observe that an N -layer GNN
equipped with a recurrent aggregator has (worst-case) depth OpV Nq. By contrast, the same GNN
equipped with a fixed aggregator has (worst-case) depth OpNq. And as many graphs on which we
want to deploy GNNs can have upwards of 100,000 nodes [Hu et al., 2020], the same problems of
efficiency and maximum dependency length observed by Vaswani et al. [2017] when using RNNs for
sequence transduction also hold when using RNNs for graph message aggregation.

2.4 A compromise: fully learnable commutative monoids

So, if recurrent aggregators are too deep, is there any way to get a fully learnable aggregator? We’ve
considered the fixed-aggregator approach, where we learn maps into and out of the carrier set of a
pre-determined commutative monoid. We’ve considered the recurrent-aggregator approach, where
we represent multisets as lists and implement aggregation as a learnable fold over lists.5 But another
way to represent multisets in FP is as a balanced binary tree, over which aggregation is implemented
as a fold parameterised by a commutative monoid. So what if we implemented aggregation as a
learnable fold over a balanced binary tree? Or in other words, what if, instead of learning maps into
and out of some commutative monoid, we simply learn the commutative monoid itself ?

Let’s make precise what exactly we mean by ‘learning a commutative monoid’ for use in a GNN. Re-
call that a commutative monoid pM,‘, e‘q is defined by its carrier set M , its binary operation ‘ and
its identity element e‘. So given some learnable commutative, associative binary operator ‘ (written
binOp :: Learnable (Vec R h -> Vec R h -> Vec R h)), and some learnable identity ele-
ment e‘ (written identity :: Learnable (Vec R h)), we can define a learnable commutative
monoid over some learned embedding space (in other words, a subset of Rh): (Snippet 5)

type HiddenState = Vec R h
instance CommutativeMonoid HiddenState where

e = identity; <> = binOp

Thus, our aggregation function can be specified simply, as
À

x x, or

aggregate :: Learnable ([HiddenState] -> HiddenState)
aggregate = reduce (<>)

Note that, here, the carrier set is implicit – when used in a GNN, we expect the message function (i.e.
the producer of the elements to be aggregated) to learn a ‘return type’ representation whose members
are elements of this implicit carrier set, and similarly for the ‘input type’ of the readout function.

Now, why do we care about this at all? Indeed, if we implement reduce as a fold, we’re no
better off than if we just used a recurrent aggregator. But consider the computation graph (or rather,
computation binary tree) of such an aggregation x1 ‘px2 ‘px3 ‘x4qq. By Tamari’s theorem [Tamari,
1962], the associativity of ‘ means that the result of evaluating this computation tree is invariant
under rotations of nodes in the tree. Therefore, in order to minimise the depth of the computation,
we can rewrite our reduction as a balanced binary tree: px1 ‘ x2q ‘ px3 ‘ x4q (see Appendix D).
And by doing so, for V elements to aggregate, we obtain a network with OpV q applications of ‘ and
Oplog V q depth – an exponential improvement over our OpV q-depth recurrent aggregators.

2.5 Commutative, associative binary operators for learnable commutative monoids

So, given a commutative, associative binary operator, we can get our learnable commutative monoid
with Oplog V q depth. But how do we construct such an operator in the first place? As with
permutation-invariant RNNs, we have two options: either we construct an operator that strongly
enforces the axioms of commutativity and associativity by construction, or we construct some arbitrary
binary operator and weakly enforce the axioms through regularisation.

5Alternatively, we can see this, as in Appendix B, as learning maps into and out of the carrier set of the
monoid of endofunctions.
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Strong enforcement. While some research has been conducted into learning algebraic structures with
strongly enforced axioms [Abe et al., 2021, Martires, 2021], these approaches reduce to learning maps
into and out of a fixed aggregator.6 We observe that, while we can strongly enforce commutativity
in any binary operator fpx, yq by symmetrising it to gpx, yq “

fpx,yq`fpy,xq

2 , we found no such
construction for associativity which doesn’t sacrifice expressivity.

So given this, and given the importance of gating [Tallec and Ollivier, 2018] in neural networks
applied over long time horizons, we can construct a simple strongly commutative binary aggregator
(Binary-GRU) by symmetrising a GRU [Cho et al., 2014]: (Snippet 6)

binaryGRU :: Learnable (Vec R h -> Vec R h -> Vec R h)
binaryGRU v1 v2 = do

g <- new gruCell (InputDim h) (HiddenDim h)
return (g v1 v2 + g v2 v1) / 2

Weak enforcement. Alternatively, just as we saw with recurrent aggregators in Section 2.3,
for a learnable binary operator ‘ : Rn Ñ Rn Ñ Rn we could weakly enforce commutativity
and associativity through regularisation losses Lcommpx,yq “ λcomm|px ‘ yq ´ py ‘ xq|2 and
Lassocpx,y, zq “ λassoc|px‘py‘zqq´ppx‘yq‘zq|2 (for implementation details, see Appendix E).

Now, by applying Lassoc to Binary-GRU, we obtain a strongly commutative, weakly associative
binary operator (Binary-GRU-Assoc).7

3 Assessing the utility of learnable commutative monoids
Now, we’ve seen three types of aggregator: fixed aggregators, recurrent aggregators and learnable
commutative monoids. In order to explore their trade-offs in terms of expressivity, generalisation and
efficiency, we conduct a range of experiments comparing the performance of

• state-of-the-art fixed aggregators (such as sum-aggregation [Zaheer et al., 2017], max-
aggregation [Veličković et al., 2019] and PNA [Corso et al., 2020]),

• recurrent aggregators (specifically GRUs [Cho et al., 2014]), and
• learnable commutative monoid (LCM) aggregators (using the Binary-GRU and Binary-GRU-

Assoc learnable operators as described in Section 2.5)

on the following synthetic and real-world problems:

2nd-minimum. We test fixed aggregators, recurrent aggregators and learnable commutative monoids
on the problem of finding the second-smallest element in a set of binary-encoded integers. As
observed in Section 2.2, this task is a synthetic aggregation problem with an ‘unusual’ commutative
monoid, in that it doesn’t align well with common fixed aggregators. Therefore, we expect this task
to be a standard problem for which learnable aggregators would outperform any commonly-used
fixed aggregator, especially out-of-distribution.

PNA synthetic benchmark. We then proceed to test the in-distribution performance of our aggrega-
tors on the synthetic dataset presented in [Corso et al., 2020]. This dataset consists of aggregator-
heavy, classical graph problems that are mostly aligned with the aggregators used to construct PNA.
Thus, we expect PNA (and the relevant fixed aggregators) to perform strongly here, potentially
even out-of-distribution. But while our learnable aggregators don’t necessarily have the inductive
bias to approximate these monoids well over an unbounded domain, we expect them to perform
competitively at learning the relevant monoids in-distribution.

PNA real-world benchmark. Finally, we test our aggregators on the real-world dataset presented in
[Corso et al., 2020], consisting of chemical (ZINC and MolHIV) and computer vision (CIFAR10
and MNIST) datasets from the GNN benchmarks of Dwivedi et al. [2020] and Hu et al. [2020]. In
contrast to the algorithmic tasks in the synthetic benchmark, we expect these real-world problems to
contain ‘unusual’ target monoids: for both molecular and computer vision problems, it is likely that

6i.e. choosing an algebraic structure (e.g. the Abelian group pRn,`,0q) and learning maps between the
model’s latent space and that structure.

7Note that we can instantiate this operator with different values of the regularisation parameter λassoc

(hereafter referred to as λ) by which we scale the associativity loss.
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our GNN will learn complex representations whose most natural monoid is not the image of a simple
homomorphism from any common fixed aggregator. Therefore, we expect fully learnable aggregators
(GRU and LCMs) to outperform fixed aggregators on this benchmark.

Training details for all experiments are provided in Appendix F. Notably, for all uses of learnable
aggregators, we randomly shuffle each batch of sequences before feeding it to the aggregator as a
form of regularisation through data augmentation.

3.1 2nd-minimum

For this experiment, we compared fixed (sum, max, PNA), recurrent (GRU) and LCM (Binary-GRU)
aggregators on the synthetic 2nd-minimum set aggregation problem. In order to evaluate the effects
of regularisation towards algebraic axioms on the performance of LCM aggregators, we also tested
Binary-GRU-Assoc, sweeping over values of the regularisation parameter λ from 100 to 10´7.

3.1.1 Experimental details

For training data, we used 65,536 multisets of integers „ Up0, 255q of size „ Up1, 16q. For
validation data, we used 1,024 multisets of integers „ Up0, 255q of size 32. For evaluation data,
we used 1,024 multisets of integers „ Up0, 255q of size l, for l P r1, 200s. We used a standard
multiset-aggregation architecture fpXq :“ σpψp

À

xPX ϕpxqqq for ‘ the aggregator being tested,
and ϕ and ψ MLPs. f takes as input a vector of 8-bit binary-encoded integers (as in [Yan et al.,
2020]), and returns a binary-encoded integer in r0, 1s8. The full architecture (with details on integer
embedding) is outlined in Appendix C.

3.1.2 Results and discussion

Summary. Recall that this problem was chosen for its comparatively unusual commutative monoid,
which we do not expect aligns well with fixed aggregators. Indeed, we confirm this hypothesis:
we see in Figure 1 that fixed aggregators fail to learn 2nd-minimum in-distribution, that recurrent
aggregators learn 2nd-minimum near-perfectly in-distribution, generalising well out-of-distribution,
and that LCM aggregators learn 2nd-minimum near-perfectly in-distribution and are competitive with
recurrent aggregators out-of-distribution, while achieving an exponential speedup over recurrent
aggregators on large sets. Furthermore, we observe that regularising towards algebraic axioms
improves the performance of LCM aggregators both in and out of distribution.

Figure 1: Generalisation performance for fixed (max, sum, PNA), recurrent (GRU) and LCM (Binary-
GRU) aggregators, along with the best-performing regularised LCM aggregator (Binary-GRU-Assoc
with λ “ 100). The shaded region is bounded above and below by the maximum and minimum
values across all runs. The vertical purple line denotes the maximum set size present in training data
(16); the vertical blue lines denote powers of 2 (from 21 to 27). For detailed results, see Appendix G.
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In-distribution performance. Examining Figure 1, observe that only the fully-learnable aggregators
– GRU, Binary-GRU and Binary-GRU-Assoc – managed to learn 2nd-minimum near-perfectly in-
distribution, with the next best performing aggregator being PNA.8

Out-of-distribution performance (without regularisation). Observe that, out-of-distribution, all
learnable aggregators generalise near-perfectly up to size 32 (twice the size of the input). Beyond this
point, while the performance of the recurrent aggregator decays slowly (reaching 0.912 ˘ 0.017 at
size 200), the performance of the LCM quickly drops (reaching 0.287 ˘ 0.068 at size 200). Despite
this, both learnable aggregators consistently outperform the fixed aggregators out-of-distribution.
Furthermore, out of the fixed aggregators, we see that the sum-aggregator’s performance plateaus
extremely quickly, a result we may attribute to the domain of the learned homomorphism from the
sum-aggregator being an unbounded set (see Section 2.2).

Efficiency. As hypothesised in Section 2.4, we see (in Appendix G, Figure 3) that LCMs are indeed
exponentially faster than RNNs for large sets: for n “ 20, Binary-GRU-Assoc takes 48.2 ˘ 0.4
seconds per epoch, and GRU takes 46.6 ˘ 0.5 seconds per epoch, while for n “ 200, Binary-GRU-
Assoc takes 79.4 ˘ 0.5 seconds per epoch, and GRU takes 397.2 ˘ 1.3 seconds per epoch.

Regularisation towards associativity. We show the results from the best-performing regularised
LCM aggregator (λ “ 100) in Figure 1 and Table 2. Although the unregularised Binary-GRU per-
forms better than all fixed aggregators, observe that the regularised Binary-GRU-Assoc outperforms
its unregularised sibling both in and out of distribution, and achieves generalisation performance
competitive with GRU. Furthermore, observe that the sudden performance drops experienced by
Binary-GRU when the size of the set reaches a power of two (i.e. when the depth of the aggregation
tree increases) are noticeably dampened for Binary-GRU-Assoc, suggesting that regularisation to-
wards associativity helps prevent overfitting to a particular maximum aggregation tree height. For
interest, we present the full results of the regularisation parameter sweep in Figure 4 in Appendix G.

3.2 PNA synthetic benchmark

For this experiment, we trained recurrent (GRU) and LCM (Binary-GRU, Binary-GRU-Assoc)
aggregators on the synthetic benchmark from [Corso et al., 2020], comparing against the fixed-
aggregator baselines presented there (for GATs [Veličković et al., 2018], GCNs [Kipf and Welling,
2017], GINs [Xu et al., 2019b] and MPNNs [Gilmer et al., 2017] with sum and max aggregators).

3.2.1 Experimental details

In the PNA paper [Corso et al., 2020], experiments testing fixed aggregators (sum, max, PNA) are
conducted on a custom GNN architecture centred around an MPNN layer with dimension 16, split
into four towers each with hidden dimension 4. As we hypothesise that the low dimensionality of
these towers could harm the expressivity of learnable aggregators, we test our learnable aggregators
both in MPNNs of hidden dimension 16, with four towers of hidden dimension 16, and in MPNNs of
hidden dimension 128, with one tower of hidden dimension 128.

3.2.2 Results and discussion

Summary. Recall that this dataset consists of aggregator-heavy classical graph problems9 that are
mostly aligned with the aggregators used to construct PNA. So, as expected, we see in Table 1 that
PNA outperforms all other aggregators tested on the dataset in-distribution. But observe that, on
these problems, our asymptotically more efficient LCMs are competitive with and sometimes beat
GRUs – and indeed, on the node-based problems in the dataset, our LCMs are as strong as PNA.

In Appendix G, we observe the surprising result that LCMs are more stable than PNA out-of-
distribution (OOD), and that regularising LCMs towards associativity improves OOD performance at
the cost of impairing performance in-distribution. We also discuss the effects of increasing dimension-
ality on fixed aggregator performance, through the lens of commutative monoid homomorphisms.

8Note that, out of the fixed aggregators, PNA was the only one to achieve near-perfect accuracy on the
training dataset, with a maximum training accuracy of around 0.997.

9three node-based algorithmic tasks (single-source shortest paths, eccentricity and computing the Laplacian
of node feature vectors) and three graph-based algorithmic tasks (connectedness, diameter and spectral radius)
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In-distribution performance. Observe in Table 1 that, while PNA beats all other aggregators tested,
our learnable aggregators perform competitively in-distribution, with all learnable aggregators (GRU,
Binary-GRU and Binary-GRU-Assoc) beating all single-aggregator (i.e. non-PNA) architectures.
Interestingly, our Binary-GRUs perform better than the corresponding GRUs: perhaps their inductive
bias towards commutativity helps us learn in-distribution.

Node tasks Graph tasks
Model Avg score SSSP Ecc Lap feat Conn Diam Spec rad

GCN -2.05 -2.16 -1.89 -1.60 -1.69 -2.14 -2.79
GAT -2.26 -2.34 -2.09 -1.60 -2.44 -2.40 -2.70
GIN -1.99 -2.00 -1.90 -1.60 -1.61 -2.17 -2.66
MPNN (sum) -2.50 -2.33 -2.26 -2.37 -1.82 -2.69 -3.52
MPNN (max) -2.53 -2.36 -2.16 -2.59 -2.54 -2.67 -2.87

PNA-16 -3.04 -2.99 -2.81 -2.83 -2.91 -2.98 -3.71
PNA-128 -3.09 -2.94 -2.88 -3.82 -2.42 -3.00 -3.48

GRU -2.91 -2.84 -2.71 -3.73 -2.20 -2.88 -3.11
Binary-GRU -3.00 -2.85 -2.77 -3.87 -2.34 -2.88 -3.29
Binary-GRU-Assoc -2.95 -2.99 -2.88 -2.92 -2.62 -2.92 -3.37

Table 1: Mean log10pMSEq on the PNA test dataset

Per-task performance. We present the per-task performance of all 128-dimensional aggregators
(together with fixed-aggregator baselines) in Table 1. Observe that, in fact, Binary-GRU-Assoc
outperforms Binary-GRU in all tasks apart from the the graph Laplacian.

Furthermore, while learnable aggregators do not perform as strongly as fixed aggregators on whole-
graph tasks, they perform as well as or better than fixed aggregators for node-based tasks. This
may be because the benchmark implementation for whole-graph tasks uses a sum-aggregator over
the readout values: it is likely difficult to learn a homomorphism from the sum aggregator to the
complex latent-space monoid learned by the LCM, and perhaps fixed aggregators provide an inductive
bias towards learning representations for which it is easier to map to and from the sum-aggregation
monoid.

3.3 PNA real-world benchmark

For this experiment, we trained recurrent (GRU) and LCM (Binary-GRU) aggregators on the real-
world benchmark from Corso et al. [2020], containing two molecular graph property prediction
datasets (ZINC and MolHIV) and two superpixel graph classification datasets (CIFAR10 and MNIST).
Note that, due to limitations on compute resources, we were not able to perform a regularisation
parameter sweep to test Binary-GRU-Assoc. The GNN architecture used here is identical to that
in [Corso et al., 2020], except that, for learnable aggregators, all MPNN towers have the same
dimensionality as the MPNN itself (i.e. we do not divide the towers).

3.3.1 Results and discussion

Summary. Recall that the real-world benchmark has complex problems that do not necessarily align
with common fixed aggregators. We observe in Figure 2 that, while PNA in general outperforms all
other aggregators on property prediction problems over small molecular graphs, the more expressive
GRU substantially outperforms PNA for the (more discrete) task of image classification. Also, note
that the (asymptotically efficient) Binary-GRU LCM provides a good trade-off between these two
aggregators, being the second-best aggregator for all but two problems. Finally, we see that learnable
aggregators appear particularly powerful on problems involving graphs with edge features.

Molecular datasets. Observe that PNA is the strongest aggregator over both the ZINC dataset
without edge features and the HIV dataset – indeed, due to the continuous nature of the properties
we want to estimate in these datasets, it seems likely that the ‘natural’ monoids for aggregation over
graphs in these datasets would align well with fixed aggregators.

Image datasets. By contrast, we observe that GRU-aggregators are the strongest when testing on
image data, likely as their expressivity lets them easily learn a complex, perhaps more discrete
aggregation function. And while Binary-GRU does not do quite as well as GRU here, in all but one
case it outperforms PNA on this problem.

Edge features. Finally, observe that, if we add edge features to ZINC, GRU outperforms PNA – and
comparing results on the CIFAR-10 dataset with and without edge features, the average accuracy

9
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Zinc (MAE) CIFAR10 (Acc) MNIST (MAE)
MolHIV

(%ROC-AUC)

Model
No edge
features std

Edge
features std

No edge
features std

Edge
features std

No edge
features std

Edge
features std

No edge
features std

Dwivedi
et al, Xu
et al

MLP 0.710 0.001 56.01 0.90 94.46 0.28

GCN 0.469 0.002 54.46 0.10 89.99 0.15 76.06 0.97

GIN 0.408 0.008 53.28 3.70 93.96 1.30 75.58 1.40

DiffPoll 0.466 0.006 57.99 0.45 95.02 0.42

GAT 0.463 0.002 65.48 0.33 95.62 0.13

Monet 0.407 0.007 53.42 0.43 90.36 0.47

GatedGCN 0.422 0.006 0.363 0.009 69.19 0.28 69.37 0.48 97.37 0.06 97.47 0.13

Corso et
al

MPNN (sum) 0.381 0.005 0.288 0.002 65.39 0.47 65.61 0.30 96.72 0.17 96.90 0.15

MPNN (max) 0.468 0.002 0.328 0.008 69.70 0.55 70.86 0.27 97.37 0.11 97.82 0.08

PNA (no scalers) 0.413 0.006 0.247 0.036 70.46 0.44 70.47 0.72 97.41 0.16 97.94 0.12 78.76 1.04

PNA 0.320 0.032 0.188 0.004 70.21 0.15 70.35 0.63 97.19 0.08 97.69 0.22 79.05 1.32

Ours
Binary-GRU 0.340 0.003 0.175 0.003 69.61 0.18 71.86 0.26 97.79 0.20 98.11 0.07 77.37 1.11

GRU 0.342 0.004 0.171 0.006 72.03 1.06 74.44 0.52 98.15 0.04 98.41 0.10 76.04 1.01

Figure 2: Results of learnable aggregators on the PNA real-world dataset, in comparison with those
analysed by Corso et al. [2020]. Best results in bold-face, second-best in underline.

improvement for fixed aggregators when adding edge features is 0.34%, whereas the equivalent
improvement for learnable aggregators is 2.33%. Learnable aggregators may be particularly strong on
tasks with edge features, as making full use of them tends to require the learning of a more complex
aggregation function.

4 Conclusions
In this work we have conducted a thorough study of aggregation functions within graph neural
networks (GNNs), demonstrating both theoretically and empirically that many tasks of practical
interest rely on a nontrivial integration of neighbourhoods (i.e. a nontrivial commutative monoid). This
motivates the use of fully-learnable aggregation functions, but prior proposals based on RNNs had
several shortcomings in terms of efficiency. Accordingly, we propose learnable commutative monoid
(LCM) aggregators, which trade off the flexibility of RNNs with efficiency of fixed aggregators,
producing a simple, yet empirically powerful, GNN aggregator with only Oplog V q depth.

Implications for GNN practitioners. Based on our results, we present some suggestions to those
using GNNs in practice:

• When choosing a fixed aggregator F for a GNN architecture, consider the type of aggregation
your problem is likely to involve – if it can be framed as a commutative monoid M , is it likely
that a homomorphism can be learned from F to M?

• For graph problems manipulating discrete data, or problems for which the aggregation
required doesn’t align with existing fixed aggregators, learnable aggregators may improve
performance (especially out-of-distribution).

• When choosing a learnable aggregator, for problems over small graphs, recurrent aggregators
will likely perform well – but if they prove too slow, you may wish to try a learnable commutative
monoid aggregator.

• And if your learnable aggregator is overfitting, perhaps try regularising it towards the relevant
axioms (e.g. invariance under pairwise swaps for recurrent aggregators, commutativity and
associativity for learnable commutative monoids).
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Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural Execution
of Graph Algorithms. 2019. URL http://arxiv.org/abs/1910.10593. 1, 3, 6

Oliver Richter and Roger Wattenhofer. Normalized attention without probability cage. arXiv preprint
arXiv:2005.09561, 2020. 1

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal
Neighbourhood Aggregation for Graph Nets. Advances in Neural Information Processing Systems,
2020-Decem, April 2020. ISSN 10495258. URL https://arxiv.org/abs/2004.05718v5. 1,
2, 6, 8, 9, 10, 16, 17, 18

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What Can Neural Networks Reason About? May 2019a. URL https://arxiv.org/abs/1905.
13211v4. 1, 4

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. September
2020. URL https://arxiv.org/abs/2009.11848v5. 1, 3

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017. 2, 5

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl. 2, 8
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A Proof of Proposition 1

Proposition 1. Let pM, ˚, e˚q and pF,‘, e‘q be commutative monoids. Then for functions g :M Ñ

F and h : F Ñ M ,

˚
xPX

x “ h

˜

à

xPX

gpxq

¸

for all finite multisets X of M , if and only if h is both a left inverse of g and a surjective monoid
homomorphism from xgpMqy Ď F 10 to M .

Proof. We proceed by cases.

pÑq Suppose ˚xPX x “ hp
À

xPX gpxqq for all finite multisets X of M .

WhenX “ txu, have that hpgpxqq “ x trivially, so hmust be a left inverse of g (and is therefore
surjective).

Now for x, y P xgpMqy, we want to show that hpx‘ yq “ hpxq ˚ hpyq and that hpe‘q “ e˚.

To show the former, observe that x “
À

aPA gpaq and y “
À

bPB gpbq for some finite multisets
A,B of M .

Now have that

hpx‘ yq “ h

˜˜

à

aPA

gpaq

¸

‘

˜

à

bPB

gpbq

¸¸

“ h

˜

à

xPAZB

gpxq

¸

“ ˚
xPAZB

x

“

ˆ

˚
aPA

a

˙

˚

ˆ

˚
bPB

b

˙

“ h

˜

à

aPA

gpaq

¸

˚ h

˜

à

bPB

gpbq

¸

“ hpxq ˚ hpyq

as desired.

To show the latter, observe that hpe‘q ˚ hpfq “ hpe‘ ‘ fq “ hpfq for all f P F . As h is
surjective, we have that hpF q “ M , so hpe‘q ˚ m “ m ˚ hpe‘q “ m for all m P M , and
hpe‘q “ e˚.

10
xgpMqy denotes the submonoid of F generated by gpMq.
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pÐq Suppose h is a left inverse of g and a surjective monoid homomorphism from xgpMqy to M .
Then

h

˜

à

xPX

gpxq

¸

“ h

˜

n
à

i“1

gpxiq

¸

“ h

˜

fpx1q ‘

n
à

i“2

gpxiq

¸

“ hpgpx1qq ˚ h

˜

n
à

i“2

gpxiq

¸

“ x1 ˚ h

˜

n
à

i“2

gpxiq

¸

“ ...

“
n
˚
i“1

xi

“ ˚
xPX

x

as desired.

B Motivating the conditions for permutation-invariance in RNNs
An alternative way to motivate the regularisation loss of Cohen-Karlik et al. [2020], through the lens
of monoids, is to frame the recurrent aggregator as a monoid, and identify the conditions required for
this monoid to be commutative.

Keeping in mind that ‘RNNs are just learnable folds’, we notice that endofunctions form a monoid
under composition:

instance Monoid (a -> a) where
e = id
<> = (.)

and observing that, for instance,

fold f z [x1, x2, x3]
= f x1 (f x2 (f x3 z))
= (f x1 . f x2 . f x3) z
= ($ z) (f x1 . f x2 . f x3)
= ($ z) (reduce (.) (map f [x1; x2; x3]))

we can rewrite fold as an aggregation over the composition monoid:

fold :: (a -> b -> b) -> b -> [a] -> b
fold f z = dec . reduce (.) . map enc

where
enc x = f x
dec f = f z

Now, applying this to our recurrent aggregator, we have

rnn :: Learnable ([Vec R h1] -> Vec R h2)
rnn = dec . reduce (.) . map enc

where
enc x = rnnCell x
dec f = f initialState
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Observe that, for rnn, the carrier set of the composition (sub)monoid consists of functions rnnCell
x for inputs x to the aggregation function. So, in order to enforce that this monoid is commutative,
we must simply ensure that

f <> g = g <> f
=> (rnnCell x1) . (rnnCell x2) = (rnnCell x2) . (rnnCell x1)
=> rnnCell x1 (rnnCell x2 h) = rnnCell x2 (rnnCell x1 h)

for all inputs x1, x2 and all hidden states h.

C Architecture used for 2nd-minimum benchmark
We present Haskell pseudocode for the architecture used in the 2nd-minimum benchmark below.

h = 128

ofMlp :: Learnable (Vec R h -> Vec R h)
ofMlp = do

dense <- new ofLinearLayer (In h) (Out h)
return gelu . dense

intEmbedding :: Learnable (Vec Bool 8 -> Vec R h)
intEmbedding = toLearnable $ \int -> do

one_vecs <- newList (Length 8) (Of (learnableParameter (Dim h)))
zero_vecs <- newList (Length 8) (Of (learnableParameter (Dim h)))
return

[ one*i + zero*(1-i)
| (i, one, zero) <- zip3 int oneVecs zeroVecs]

enc :: Learnable (Vec Bool 8 -> Vec R h)
enc = do

mlp <- new ofMlp
return mlp . intEmbedding

agg :: Learnable ([Vec R h] -> Vec R h)
-- Implementation-dependent

dec :: Learnable (Vec R h -> Vec R 8)
dec = do

mlp <- new ofMlp
dense <- new ofLinearLayer (In h) (Out h)
return sigmoid . dense . mlp

net :: Learnable ([Vec Bool 8] -> Vec R 8)
net = dec . agg . map enc

D Implementing binary tree aggregation for learnable commutative monoids
More precisely, given a learnable commutative monoid operator <> and a function toBalancedTree
which takes a list of elements and returns a balanced Tree whose leaves contain these elements, we
aggregate in the following way:

data Tree a = Lf a | Nd Tree Tree
toBalancedTree :: [a] -> Tree a

fold :: (a -> a -> a) -> Tree a -> a
fold f = \case

Nd l r -> f (fold f l) (fold f r)
Lf m -> m
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aggregate :: Learnable ([LearnableMonoid] -> LearnableMonoid)
aggregate = fold (<>) . toBalancedTree

E Implementing regularisation losses for learnable commutative monoids
Observe that, for any learnable binary operator

(<>) :: Learnable (Vec R h -> Vec R h -> Vec R h)

aggregating over a tree of messages (of type Tree (Vec R h)), we can construct regularisation
losses that penalise the operator for violating commutativity and associativity each time it is applied:

-- Computes getLossesAtNode at every node in the tree,
-- returning a list of the results.
accumLosses :: ((Tree (Vec R h)) -> [R]) -> (Tree (Vec R h)) -> [R]
accumLosses getLossesAtNode = \case

Nd a b ->
getLossesAtNode (Nd a b) :

(accumLosses getLossesAtNode a ++ accumLosses getLossesAtNode b)
Lf -> _

commLoss :: (Tree (Vec R h)) -> R
commLoss = mean . accumLosses getLossesAtNode

where getLossesAtNode = \case
Nd a b -> [|(a <> b) - (b <> a)|**2]
Lf -> []

assocLoss :: (Tree (Vec R h)) -> R
assocLoss = mean . accumLosses getLossesAtNode

where
loss a b c = |((a <> b) <> c) - (a <> (b <> c))|**2
getLossesAtNode = \case

Nd (Nd a b) (Nd c d) ->
[loss (aggregate a) (aggregate b) (aggregate c),
loss (aggregate b) (aggregate c) (aggregate d)]

Nd (Nd a b) (Lf c) ->
[loss (aggregate a) (aggregate b) c]

_ -> []

aggregateWithLoss :: Learnable ([LearnableMonoid] -> LearnableMonoid)
aggregateWithLoss xs = aggregate tree

with extraLosses = [commLoss tree, assocLoss tree]
where tree = toBalancedTree xs

F Training details for experiments
On every experiment, for each model, we performed 3 training runs with different seeds; for each run
we used a validation set to choose the highest-performing checkpoint for evaluation.

2nd-minimum. We trained each aggregator with the Adam optimiser for 1,000 epochs, with batch
size 32 and learning rate 1e´ 4.

PNA synthetic benchmark. We trained each aggregator for 1,000 epochs. To ensure convergence,
16-dimensional models were trained with a learning rate of 10´3 as in Corso et al. [2020], and
128-dimensional models were trained with a learning rate of 10´4. All other hyperparameters were
as in Corso et al. [2020].

PNA real-world benchmark. All hyperparameters (including training time) are as in [Corso et al.,
2020].
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G Detailed results for the 2nd-minimum benchmark
We present more detailed results for the 2nd-minimum benchmark below:

• Table 2 contains in-distribution and out-of-distribution results for all aggregators tested.

• Figure 3 presents network efficiency against set size for all aggregators tested.

• Figure 4 presents the full results of the regularisation parameter sweep for Binary-GRU-Assoc.

As a side note, when training the non-regularised Binary-GRU aggregators, we observed that while
associativity regularisation loss increased initially, it started decreasing as the GNN’s training accuracy
began to plateau. This potentially hints at the model’s learning trajectory: one might hypothesise
that the point at which the loss decreases is the point at which the model shifts from memorisation to
learning a parsimonious algorithm that generalises.

Type Aggregator
ID accuracy OOD accuracy

n P r1, 16s n “ 32 n “ 200

Recurrent GRU 0.996 ˘ 0.001 0.998 ˘ 0.001 0.912 ˘ 0.017
LCM Binary-GRU-Assoc 0.997 ˘ 0.002 0.997 ˘ 0.002 0.822 ˘ 0.064
LCM Binary-GRU 0.997 ˘ 0.001 0.992 ˘ 0.005 0.443 ˘ 0.122
Fixed PNA 0.961 ˘ 0.003 0.794 ˘ 0.012 0.110 ˘ 0.027
Fixed Max 0.901 ˘ 0.007 0.723 ˘ 0.025 0.069 ˘ 0.039
Fixed Sum 0.845 ˘ 0.010 0.261 ˘ 0.020 0.045 ˘ 0.011

Table 2: Accuracy (the fraction of multisets at each size for which the 2nd-minimum is correctly
identified) for fixed, recurrent and LCM aggregators, along with the best-performing regularised
LCM aggregator (Binary-GRU-Assoc with λ “ 100).

Figure 3: Efficiency (mean time per epoch on a GPU, over 5 epochs) for fixed (max, sum, PNA),
recurrent (GRU), LCM (Binary-GRU) and regularised LCM (Binary-GRU-Assoc) aggregators. The
shaded region is bounded above and below by the maximum and minimum values across all runs.

H Detailed results and discussion for the PNA synthetic benchmark
Out-of-distribution performance. We present the out-of-distribution performance of our aggrega-
tors in Figure 5. Note that the MPNN (max) curve corresponds to the second-best aggregator tested
out-of-distribution in [Corso et al., 2020], after PNA – this curve stops at graphs of sizes between 45
and 50 as this is the maximum graph size on which the aggregator was tested in the paper.

Observe that all learnable aggregators generalise as well as, or better than, the max-aggregator.
Notably, while the Binary-GRU-Assoc aggregator underperforms in-distribution compared to Binary-
GRU, it beats Binary-GRU out-of-distribution and performs competitively with GRU: indeed, the
regularisation towards associativity has improved performance out-of-distribution at the cost of a
slight decrease in performance in-distribution.
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Figure 4: Mean generalisation performance for fixed, recurrent and LCM aggregators, sweeping
across regularisation rate λ for Binary-GRU-Assoc.

Figure 5: Mean generalisation performance (multi-task log10 of the ratio between the MSE loss for
the GNN and the MSE loss for the baseline) for fixed, recurrent and LCM aggregators on the PNA
multi-task benchmark.

Notice also that all learnable aggregators are more stable than PNA for very large graphs – in fact,
the 128-dimensional PNA explodes for graph sizes above 75.

Dimensionality and overfitting. Finally, we take a look at the effects of high dimensionality on the
performance of various aggregators.

For learnable aggregators, increasing dimensionality seems to help performance. We demonstrated
that, if learnable aggregators operate over a latent space with a high enough dimension, they can beat
individual fixed aggregators on tasks the fixed aggregators should be aligned to, and can even be
competitive with PNA. Informal testing showed that the performance of learnable aggregators drops
substantially if the dimensionality of these aggregators is reduced.

By contrast, for fixed aggregators, increasing dimensionality seems to harm performance: Corso
et al. [2020] found that “even when [models with fixed aggregators] are given 30% more parameters
than the [model using] PNA, they are qualitatively less capable of capturing the graph structure”.
(And for this reason, we did not test models with fixed aggregators in the 128-dimensional setting.)

For PNA, the story is slightly more complex: while the 16-dimensional PNA performs well in-
distribution (and, to some extent, out-of-distribution), this improvement in performance is small,
especially when compared to PNA’s standard deviation. And notably, unlike the 16-dimensional
PNA, the 128-dimensional PNA explodes out-of-distribution.

So it seems that, when increasing the dimensionality of the aggregator, fixed aggregators may have
more of a tendency to overfit.

One possible hypothesis for this phenomenon comes from observing that, by Section 2.2,
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• in cases where the problem we’re attempting to solve aligns with the fixed aggregator we want
to use, we can often learn a simple homomorphism from the fixed aggregator to our latent space,
and

• while homomorphisms from fixed aggregators are expressive enough in principle to model
any commutative monoid, the required homomorphism is complex and doesn’t generalise
out-of-distribution.

Note that, even for choices of fixed aggregator where some tasks align with the underlying monoid,
the aggregator still doesn’t align perfectly with the combined ‘multitask benchmark monoid’ that
we would need to learn to imitate in order to perform all tasks simultaneously. So, if we have the
dimensionality to do so, our fixed aggregator may try to combine the existing monoids to approximate
this multitask monoid in-distribution, in a way that does not generalise. In other words, it may be
easier to get better performance by learning a very complex homomorphism from our fixed aggregator
that works well in-distribution but struggles to extrapolate, than by learning a simple homomorphism
from the fixed aggregator that ‘mostly works’.

Under this hypothesis, low-dimensional feature spaces provide an inductive bias towards learning
simple homomorphisms that generalise out-of-distribution.
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I Reference table for code snippets
Throughout this work, we present code snippets in Haskell [Marlow et al., 2010], a statically typed,
purely functional programming language.

As the fundamental idea behind this work – using algebraic structures as a means of abstraction in
software development – was popularised by Haskell and its surrounding community, we observe that
the ideas presented in this paper are most concisely stated through the lens of Haskell.

Furthermore, in the spirit of Olah [2015], we observe that there is a very close correspondence
between the construction of neural networks and the construction of purely functional programs:
indeed, we believe that strongly typed, purely functional languages like Haskell offer great potential
for safe, succinct specification and training of neural networks.

For those unfamiliar with Haskell, we present the Haskell snippets featured in the main body of this
work, alongside roughly equivalent implementations in Python.

Haskell Python

class CommutativeMonoid a =
e :: a
<> :: a -> a -> a

{-
where commutative monoids M satisfy

x <> e == e
x <> y == y <> x
x <> (y <> z) == (x <> y) <> z

-}

class CommutativeMonoid(Protocol, Generic[A]):
@staticmethod
def id() -> A:

...

@staticmethod
def plus(a: A, b: A) -> A:

...

@classmethod
def reduce(cls, xs: List[A]) -> A:

accumulator = cls.id()
for x in xs:

accumulator = cls.plus(accumulator, x)
return accumulator

"""
where commutative monoids M satisfy

M.plus(x, M.id()) == x
M.plus(x, y) == M.plus(y, x)
M.plus(x, M.plus(y, z)) == M.plus(M.plus(x, y), z)

"""

Snippet 1: Defining the interface for commutative monoids. In Haskell, we do this by specifying
a typeclass, such that a commutative monoid over some type T is defined by giving an instance of
the typeclass for type T. In Python, we do this by defining an abstract class, such that a commutative
monoid over some type T is defined by specifying a child class of CommutativeMonoid[T].
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Haskell Python

type M = (Int, Int)
instance CommutativeMonoid M where

e = (infinity, infinity)
(a1, a2) <> (b1, b2) = (c1, c2)

where c1:c2:_ =
sort [a1, a2, b1, b2]

secondMinimum :: [Int] -> Int
secondMinimum = dec . agg . map enc

where
enc x = (x, infinity)
agg = reduce (<>)
dec (_, x2) = x2

class SecondMinCM(CommutativeMonoid[Tuple[int, int]]):
@staticmethod
def plus(

a: Tuple[int, int], b: Tuple[int, int]
) -> Tuple[int, int]:

c1, c2 = sorted([*a, *b])[:2]
return (c1, c2)

@staticmethod
def id() -> Tuple[int, int]:

return (INFINITY, INFINITY)

def secondMinimum(xs: List[int]) -> int:
encoded = [(x, INFINITY) for x in xs]
(_, x2) = SecondMinimumCM.reduce(encoded)
return x2

Snippet 2: Defining the 2nd-minimum commutative monoid.

Haskell Python

fold :: (a -> b -> b) -> b -> [a] -> b
fold f z [] = z
fold f z (x:xs) = f x (fold f z xs)

def fold(f: Callable[[B, A], B], z: B, xs: List[A]):
accumulator = z
for x in xs:

accumulator = f(accumulator, x)
return accumulator

Snippet 3: Implementing a polymorphic fold over lists. Note that, for idiomatic reasons, the Haskell
implementation presents a right fold, whereas the Python implementation presents a left fold – i.e.
when folding f over a list ra, b, cs, the Haskell implementation would return fpa, fpb, fpc, zqqq

whereas the Python implementation would return fpfpfpz, aq, bq, cq.

Haskell Python

rnnCell :: Learnable
(Vec R h1 -> Vec R h2 -> Vec R h2)

initialState :: Learnable (Vec R h2)

rnn :: Learnable
([Vec R h1] -> Vec R h2)

rnn = fold rnnCell initialState

rnnCell: Callable[
[HiddenState, InputState], HiddenState

]
initialState: HiddenState

def rnn(inputs: List[InputState]) -> HiddenState:
return fold(rnnCell, initialState, inputs)

Snippet 4: Implementing an RNN as a fold over lists. Note that, as mentioned in Snippet 3, the RNN
as implemented in Haskell will consume its list of input states ‘in reverse’.
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Haskell Python

binOp :: Learnable
(Vec R h -> Vec R h -> Vec R h)

identity :: Learnable (Vec R h)

type HiddenState = Vec R h
instance (CommutativeMonoid

HiddenState) where
e = identity; <> = binOp

aggregate :: Learnable
([HiddenState] -> HiddenState)

aggregate = reduce (<>)

binOp: Callable[[HiddenState, HiddenState], HiddenState]
identity: HiddenState

class LearnableCommutativeMonoid(
CommutativeMonoid[HiddenState]

):
@staticmethod
def plus(

a: HiddenState, b: HiddenState
) -> HiddenState:

return binOp(a, b)

@staticmethod
def id() -> HiddenState:

return identity

def aggregate(xs: List[HiddenState]) -> HiddenState:
return LearnableCommutativeMonoid.reduce(xs)

Snippet 5: Defining a learnable commutative monoid over hidden states. We assume we have access
to a learnable binary operation binOp P pRh ˆ Rhq Ñ Rh and a learnable vector identity P Rh.

Haskell Python

binaryGRU :: Learnable
(Vec R h -> Vec R h -> Vec R h)

binaryGRU v1 v2 = do
g <- new (gruCell

(InputDim h) (HiddenDim h))
return (g v1 v2 + g v2 v1) / 2

class BinaryGRU:
def __init__(self, h):

self.gruCell: Callable[
[HiddenState, HiddenState], HiddenState

] = GRUCell()

def __call__(self, x: HiddenState, y: HiddenState):
return (

(self.gruCell(x, y) + self.gruCell(y, x)) / 2
)

Snippet 6: Defining the Binary-GRU operator. In Haskell, we present this via a (hypothetical)
monadic API for defining neural networks; in Python, we define a class in the style of TensorFlow /
PyTorch modules.
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