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Abstract001

Large Vision-Language Models (LVLMs) face002
the challenge of object hallucination, where the003
model generates descriptions of nonexistent ob-004
jects. This issue primarily arises from the fail-005
ure of the visual encoder to attend to detailed006
regions and the tendency of the language model007
to favor contextual plausibility over visual evi-008
dence during generation. In this work, we pro-009
pose a dual-perspective decoding framework010
that jointly optimizes text generation from both011
visual and textual views to address hallucina-012
tions caused by image-text misalignment. Our013
framework aligns generated text with visual014
content at both the sentence and word levels015
from the textual perspective, while simultane-016
ously ensuring that visual objects are aligned017
with their corresponding textual semantics from018
the visual perspective. Extensive experiments019
demonstrate that our method significantly re-020
duces object hallucination and achieves su-021
perior image-text alignment compared to ex-022
isting state-of-the-art methods. Notably, our023
method achieves significant improvements of024
7.5% to 19.2% over previous approaches under025
the CHAIR evaluation metrics, highlighting its026
effectiveness in enhancing the visual faithful-027
ness of generation.028

1 Introduction029

Large Vision-Language Models (LVLMs) (Dai030

et al., 2023; Bai et al., 2025; Liu et al., 2023; Zhu031

et al., 2023; Team, 2024; DeepSeek-AI et al., 2025)032

have achieved remarkable progress in visual under-033

standing and reasoning tasks (Yang et al., 2025;034

Wang et al., 2023; Li et al., 2023a; Zhang et al.,035

2024; Meta, 2025) by harnessing the capabilities036

of large language models (LLMs) such as Qwen037

(Bai et al., 2023), LLaMA (Touvron et al., 2023),038

and GPT (Brown et al., 2020). Despite these ad-039

vancements, LVLMs are susceptible to a prevalent040

challenge known as object hallucination, where the041

model generates descriptions of non-existent ob-042

jects or fabricates visual details (Zhai et al., 2024;043
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Figure 1: Visualization of the effectiveness of our
method on the CHAIRS and CHAIRI metrics on
the benchmark (Lin et al., 2015). Lower values of
CHAIRI and CHAIRS indicate better performance.
The results demonstrate the significant advantage of our
approach, highlighting its superior performance in hal-
lucination mitigation for LLAVA-1.5 compared to other
methods.

Hu et al., 2023; Li et al., 2023b; Stiennon et al., 044

2022). This limitation undermines their reliabil- 045

ity and applicability, particularly in tasks requiring 046

precise visual-textual alignment. 047

To address object hallucination, recent studies 048

have proposed two main categories of mitigation 049

strategies: external knowledge-based methods and 050

decoding-based approaches (Huang et al., 2024a; 051

Liu et al., 2024b; Zhou et al., 2024). The former, 052

such as LURE and Woodpecker (Zhou et al., 2024; 053

Yin et al., 2024), leverage annotated data for super- 054

vised learning, while the latte including VCD, SID, 055

and HALC (Leng et al., 2023; Chen et al., 2024; 056

Huo et al., 2024) introduces lightweight, training- 057

free mechanisms that enhance image-text align- 058

ment during inference. Decoding-based methods 059

have gained increasing attention due to their plug- 060

and-play flexibility, often employing contrastive or 061
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alignment techniques to mitigate hallucination.062

Despite significant progress, Large Vision-063

Language Models (LVLMs) still suffer from ob-064

ject hallucination, which refers to the generation065

of descriptions that mention objects not actually066

present in the image. One major cause lies in the067

limitations of visual encoding. LVLMs often strug-068

gle to capture fine-grained visual details due to the069

way attention is allocated across visual inputs. Al-070

though visual encoders can extract semantically071

meaningful representations, they frequently over-072

look detailed image regions. This problem is fur-073

ther exacerbated by resolution bottlenecks and the074

design of projection modules, which may inadver-075

tently discard important fine-grained features dur-076

ing the conversion of images into token representa-077

tions (Li et al., 2023b; Chen et al., 2024). Another078

contributing factor is the decoding process based079

on large language models (LLMs). The attention080

mechanism in LLMs tends to prioritize linguistic081

coherence over visual accuracy. As a result, the082

generated descriptions may include content that is083

contextually plausible but not supported by the vi-084

sual input (Zhou et al., 2024; Wang et al., 2024).085

These misalignment between visual encoding and086

language decoding weakens the model’s ability to087

produce text grounded in visual content, leading088

to hallucinated descriptions that deviate from the089

actual image.090

To address the misalignment arising from both091

visual encoding and language decoding, we pro-092

pose a dual-perspective decoding framework that093

enhances image-text alignment and reduces hal-094

lucinations during text generation. From the vi-095

sual perspective, a DINO-based module performs096

object-level matching, identifying and suppressing097

hallucinated descriptions by enforcing fine-grained098

correspondence between detected objects and their099

textual mentions. From the textual perspective, a100

CLIP-based evaluator measures global semantic101

consistency between the generated caption and the102

image, ensuring that the overall description remains103

faithful to the visual content. A fusion module then104

combines the DINO alignment score, the CLIP se-105

mantic score, and the LVLM’s native generation106

confidence into a unified re-ranking criterion. By107

applying this alignment-guided re-ranking to mul-108

tiple sampled outputs, our method retains the di-109

versity and fluency of decoding-based approaches110

while substantially reducing reliance on external111

large models and avoiding additional training.112

Overall, our contributions are summarized as113

follows: 114

1. We re-examine the causes of object halluci- 115

nation and introduce a dual-perspective decoding 116

framework that provides fine-grained object align- 117

ment from the visual perspective and assesses over- 118

all semantic consistency between the generated text 119

and the image. 120

2. We design a lightweight fusion module 121

that appropriately weights and combines visual- 122

perspective alignment scores from the DINO mod- 123

ule, textual-perspective consistency scores from 124

the CLIP evaluator, and the LVLM’s native gen- 125

eration likelihood, while incorporating likelihood 126

entropy as an auxiliary metric to promote balanced, 127

high-quality outputs. 128

3. Experimental results validate the effectiveness 129

of our method, demonstrating significant perfor- 130

mance improvements across multiple benchmarks 131

while also demonstrating superior generation qual- 132

ity. 133

2 Related Work 134

2.1 Object Hallucination in LVLMs and 135

Current Mitigation Approaches 136

Inspired by the success of LLMs, large vision- 137

language models (LVLMs) derived from LLMs 138

demonstrate remarkable performance on a wide 139

range of visual tasks. Mainstream LVLMs, such as 140

LLAVA (Liu et al., 2023) and InstructBLIP (Dai 141

et al., 2023), typically comprise three core compo- 142

nents: a visual encoder to extract visual features, a 143

projection module to align visual representations 144

with the language model, and an LLM to generate 145

textual outputs. 146

Object hallucination refers to the generation text 147

by Vision-Language Models (VLMs) that includes 148

objects not faithful to the image content (Rohrbach 149

et al., 2019). In Large Vision-Language Models 150

(LVLMs), this issue primarily manifests as a mis- 151

match between the generated content and the image. 152

Mainstream methods for mitigating hallucination 153

can be broadly categorized into two types: exter- 154

nal knowledge leveraging and decoding methods. 155

External knowledge leveraging methods rely on 156

human annotations, hyper models to label train- 157

ing data, or provide feedback. LRV (Liu et al., 158

2024a) addresses data bias-induced response bi- 159

ases in LLMs by supplementing instruction data. 160

LURE (Zhou et al., 2024) utilize the GPT-4V 161

model to label additional data, which is then used 162

to train reviser for mitigating hallucination. RLAIF- 163
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V (Yu et al., 2024b) makes a significant contribu-164

tion by employing LVLMs of peers exhibiting com-165

parable or equal capabilities to provide feedback,166

which is subsequently used to reinforce learning.167

On the other hand, recently proposed decoding168

methods leverage the intermediate state distribu-169

tions of LLMs during the decoding process, the dis-170

tributions after input distortion, or assistance from171

other models to optimize the final token distribu-172

tion. These decoding approaches, which avoid the173

complex training process required for supplement-174

ing knowledge, have become a significant research175

focus in the field of hallucination mitigation.176

2.2 Decoding Strategies for Mitigating Object177

Hallucinations178

The decoding method of LVLM is a crucial ap-179

proach for optimizing the inference stage and180

serves as an important strategy for mitigating hallu-181

cination in generated text. Common basic decoding182

methods include greedy decoding, nucleus decod-183

ing (Holtzman et al., 2020), top-k sampling (Fan184

et al., 2018), and beam search (Lemons et al.,185

2022).186

Recent works have proposed further exploration187

from basic decoding methods to enhance perfor-188

mance. Internal methods like DOLA (Chuang et al.,189

2024) leverage internal state signals to refine decod-190

ing results, while contrast decoding methods such191

as VCD (Leng et al., 2023) and ICD (Kim et al.,192

2024) contrast output distributions using different193

prompts or layers. Furthermore, there are several194

independently proposed methods. HALC (Chen195

et al., 2024) introduces the visual-alignment (Liu196

et al., 2024c) module into beam search, aiming197

to identify the optimal visual context for LVLM198

inputs. Meanwhile, the CGD (Deng et al., 2024)199

method employs the text-alignment (Radford et al.,200

2021) module to assist in selecting among differ-201

ent sampling results to improve vision-language202

alignment. Our approach adopts a dual-perspective203

strategy to address vision-language misalignment,204

leveraging readily available external tools: DINO205

for visual grounding and CLIP for semantic con-206

sistency. By aligning the generated text from both207

visual and textual perspectives, the model effec-208

tively reduces hallucinated content that deviates209

from the visual input.210

3 Method 211

In this section, we introduce the detailed approach 212

of our method, which is designed to mitigate hal- 213

lucinations in text generation from large vision- 214

language models (LVLMs), the overview of our 215

method is summarized in Figure 2. Our method 216

combines both textual and visual perspectives, with 217

a final score fusion module that iteratively refines 218

the generated captions. We now describe the key 219

components of our approach in detail. 220

Textual Perspective: The first critical compo- 221

nent of our approach is aligning the generated cap- 222

tion semantically with the image information. For 223

this, we utilize the CLIP module, which provides 224

a shared embedding space for both text and image, 225

allowing us to measure the consistency between 226

them. 227

At time i, given an image ximg and a sequence 228

of sentences S = {s0, s1, s2, . . . , si−1} generated 229

by the LVLM, we compute the CLIP score for each 230

sampled sentence. We sample the generated sen- 231

tences as {si1, si2, . . . , sik} , where k measures the 232

number of sampled time of current generation state. 233

CLIP utilize the image and sampled sentence as 234

input to compute CLIP score, which measures the 235

similarity between the image and the entire sen- 236

tence in the shared embedding space and defined 237

as: 238

gsentence
CLIP (ximg, sij) = cos (fCLIP(ximg), fCLIP(sij)) (1) 239

where: fCLIP(ximg) is the CLIP feature embedding 240

of the image ximg, fCLIP(sij) is the CLIP feature 241

embedding of the generated sentence sij . j repre- 242

sents the j-th sampled sentence of current state. A 243

higher cosine similarity indicates a stronger align- 244

ment between the image and the sentence. The 245

CLIP score serves as a measure of how well the 246

generated text reflects the image content, helping 247

to identify sentences that may contain hallucinated 248

information that doesn’t correspond to any visual 249

element in the image. 250

Furthermore, to ensure that each object men- 251

tioned in the sentence is appropriately grounded in 252

the visual content, we compute the alignment score 253

for each individual word. For each sentence sij , 254

we extract the object terms using a named entity 255

recognition (NER) model (Neumann et al., 2019). 256

For instance, a sentence like “A dog is playing with 257

a ball”would result in the object terms dog and 258

ball. For each recognized object term w so called 259
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𝑠𝑖1: Here are two people visible in the scene.

𝑠𝑖2: The runway appears to be wet, possibly 

due to recent rain.

Large Vision-Language Model

Please describe this image in detail.

Image Input:

Prompt Input:

Output Sentence:

The runway appears to be wet, possibly due 

to recent rain.

Score 

Fusion

𝑤𝑖11: people …

𝑠𝑖1: Here are two people …

𝑤𝑖21: runway …

𝑠𝑖2: The runway appears …

𝑤𝑖11:people …

𝑤𝑖21:runway … 

......

DINO Score:   𝜎ij / 0

runway

......

CLIP 
Cosine 

Similarity

Current Sampling State

DINO

Figure 2: Overview of our method: For the sentences generated by LVLMs, our approach leverages the CLIP module
from the textual perspective to evaluate image-text consistency and the DINO module from the visual perspective to
ensure fine-grained object alignment. Scores from both modules are then combined with the likelihood probability
scores to derive the final scores for comparing the sampled results. Once the optimal sampling candidates are
determined, the generation process is iteratively repeated to ensure consistency and quality.

valid word in the sentence s, we calculate the co-260

sine similarity between the object embedding in261

the text and the corresponding object embedding262

in the image:263

gCLIP(ximg, wijl) = cos (fCLIP(ximg), fCLIP(wijl)) (2)264

where wijl is the l-th valid word in the j-th sampled265

sentence. The overall CLIP score for the word266

is then calculated as the minimum of word-level267

alignment scores:268

gword
CLIP (ximg, sij) = min

wijl

gCLIP(ximg, wijl) (3)269

where min
wijl

denotes the minimum value of the CLIP270

similarity score across all wijl in sij . The CLIP271

score on the sentence, combined with the scores272

for valid words, ensures that the generated caption273

is not only consistent with the image as a whole274

but also correctly grounded for each individual ob-275

ject mentioned in the text. The final CLIP score276

equation is summuriazed as follows:277

gCLIP(ximg, sij) = γ ·gsentenceCLIP (ximg, sij)

+(1− γ) · gword
CLIP (ximg, sij)

(4)278

Visual Perspective: While the textual alignment279

module ensures that the generated captions are se-280

mantically aligned with the image, it is equally im-281

portant to ensure that the specific objects described282

in the caption correspond to actual objects in the 283

image. The DINO module performs fine-grained 284

object detection and aligns image information with 285

corresponding object terms in the caption, provid- 286

ing an additional layer of visual grounding. 287

We use the same named entity recognition 288

method as CLIP module to extract objects in gen- 289

erated text. The DINO module then computes an 290

alignment score between the object mentioned in 291

the sentence and the objects present in the image. 292

It computes score as follows: 293

σijl = max
wijl

(pij,wijl
), (5) 294

where wijl represents the l-th valid word in the 295

j-th sampled sentence, and pij,wij denotes the con- 296

fidence score computed by transformers attention 297

head generated for the word wij (Liu et al., 2024c). 298

The DINO confidence score represents the visual 299

information detected by DINO from the original 300

image, we define the DINO score as follows: 301

gDINO(ximg, wijl) = σijl (6) 302

In this work, if the DINO confidence score σijl 303

falls below the threshold, the DINO score is com- 304

puted as 0; otherwise, it is replaced by a constant 305

C. We find this approach to be both simple and 306
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effective in our experiments.307

gDINO(ximg, wijl) =

{
C, if (σijl > δ)

0, otherwise
(7)308

where δ is the threshold from the default DINO309

settings, and the hyperparameter C denotes the310

weight of the DINO score. This score indicates311

how well the object is represented in the image.312

For each sentence sij , we aggregate the object-313

level DINO scores to obtain an overall alignment314

score:315

gDINO(ximg, sij) = min
wijl

gDINO(ximg, wijl) (8)316

where min
wijl

denotes the minimum value of the317

DINO score across all wijl in sij . The aggregated318

score gives a measure of how well the sentence319

reflects the visual content of the image, particularly320

with regard to the objects mentioned.321

Score Fusion: To preserve the generative qual-322

ity of LVLMs, we introduce the concept of LLM323

likelihood and utilize this probability as a scor-324

ing metric in the subsequent evaluation. Given a325

premise question text s = {t1, t2, . . . , tm}, where326

ti denotes the token generated at the i-th timestep,327

we utilize Predictive Entropy (PE) for uncertainty328

estimation(Kadavath et al., 2022; Duan et al., 2024;329

Kuhn et al., 2023), which is defined as the entropy330

of the entire sentence. To mitigate the impact of331

generation length on predictive entropy and ensure332

the proper functioning of LVLM, we adopt a vari-333

ant known as length-normalized predictive entropy334

as Equation 4. This variant divides the joint log-335

probability of each sequence by the length of the se-336

quence, as proposed by Malinin and Gales(Malinin337

and Gales, 2021) in the context of natural language338

generation (NLG) uncertainty, and has been em-339

pirically shown to be advantageous in the work by340

Kuhn(Kuhn et al., 2023).341

fθ(si) =
1

m

m∑
i=1

− log pθ(xi|s<i) (9)342

where θ represents the LVLM parameters and m is343

the length of the generated sentence.344

To combine the strengths of both the CLIP and345

DINO modules, we propose a score fusion strat-346

egy. This module integrates the textual consistency347

score from CLIP, the visual alignment score from348

DINO, and the internal likelihood score from the349

LVLM to compute a final fusion score. The final350

score F (ximg, sij) for each generated caption sij is 351

given by: 352

F (ximg, sij) = (1− α)
(
gDINO(ximg, sij) 353

+gCLIP(ximg, sij)
)
+ α · fθ(sij) (10) 354

where gDINO(ximg, sij) is the visual alignment 355

score computed by DINO, gCLIP(ximg, sij) is the 356

semantic consistency score computed by CLIP, 357

fθ(sij) is the internal likelihood score from the 358

LVLM for caption sij . α is hyperparameter repre- 359

senting the weight of the auxiliary score’s influence 360

on the decoding distribution. When α = 1, the 361

scorer reduces to greedy decoding. 362

The fusion score F (ximg, sij) provides a compre- 363

hensive measure of caption quality, incorporating 364

both visual alignment and textual consistency. This 365

score is then used to rank the generated captions, 366

and the top candidates are selected for further re- 367

finement. 368

We employ an iterative decoding strategy to re- 369

fine the generated captions further. At each itera- 370

tion, the LVLM generates a set of candidate cap- 371

tions for the given image. These candidates are 372

evaluated using the fusion score F (ximg, si), and 373

the top N candidates are selected for further refine- 374

ment. This iterative process continues for k itera- 375

tions, ensuring that the generated captions gradu- 376

ally improve in terms of both semantic consistency 377

and visual accuracy. Our method’s iteration loop is 378

summarized as Algorithm 1 in Appendix F. 379

4 Experiments 380

In this section, we evaluate the performance of our 381

method on long descriptions, focusing on its effec- 382

tiveness in mitigating object hallucination while 383

maintaining caption quality. Our experiments in- 384

clude CHAIR, OPOPE, and GPT-4V-assisted eval- 385

uations. Additional experimental results and analy- 386

ses are provided in Appendix B. 387

4.1 Experiment Setups 388

Baselines: To effectively evaluate our method, 389

we include regular greedy decoding, nucleus sam- 390

pling (Holtzman et al., 2020), top-k sampling (Fan 391

et al., 2018), and beam search (Lemons et al., 392

2022) as baselines. Additionally, we incorpo- 393

rate state-of-the-art methods specifically designed 394

to mitigate object hallucination (OH), including 395

DoLa (Chuang et al., 2024), OPERA (Huang et al., 396

2024b), VCD (Leng et al., 2023), CGD (Deng et al., 397
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Method
InstructBLIP mPLUG-Owl2 LLAVA-1.5

CHAIRS ↓ CHAIRI ↓ BLEU ↑ CHAIRS ↓ CHAIRI ↓ BLEU ↑ CHAIRS ↓ CHAIRI ↓ BLEU ↑
Greedy 57.9 17.1 15.9 52.7 16.0 18.1 47.0 13.6 18.9
Nucleus 56.1 17.0 16.4 51.9 15.6 18.1 43.3 13.1 16.4

TopK 55.8 16.9 16.5 53.1 15.9 18.1 44.9 13.2 16.3
Beam 53.2 14.8 18.7 55.8 16.1 17.1 46.6 12.7 18.3
DoLa 55.6 17.0 16.5 52.6 15.2 18.1 46.6 13.6 19.2
VCD 63.2 19.5 17.7 51.4 16.0 17.5 44.6 12.5 17.8

OPERA 51.5 15.6 18.3 48.5 16.1 17.9 49.5 13.7 18.4
HALC 61.6 18.9 18.1 51.7 15.5 17.4 40.6 11.0 19.0
CGD 42.7 10.9 16.4 35.7 8.6 19.1 29.7 8.1 18.4
Ours 23.5 6.3 19.4 24.6 6.8 18.0 22.2 5.8 19.4

Table 1: Experimental results of different decoding methods on various LVLMs using the MSCOCO-CHAIR
(Lin et al., 2015) dataset. The results are reproduced based on the original papers or official code. CS refers to
CHAIRS , CI refers to CHAIRI and B refers to BLEU-1 Score. Higher BLEU-1 scores indicate better text
generation quality, while lower CHAIRS and CHAIRI scores reflect stronger hallucination mitigation. Bold
values indicate the best performance across other methods.

2024), and HALC (Chen et al., 2024) in our analy-398

sis.399

LVLM Backbones: We conduct our experi-400

ments on different LVLMs—InstructBLIP (Dai401

et al., 2023), LLaVA-1.5 (Liu et al., 2023), and402

mPLUG-Owl2 (Li et al., 2022)—to evaluate our403

method and all the previously mentioned baselines.404

4.2 Metrics405

Datasets: We conduct our experiments mainly on406

three benchmark:We conducted our experiments407

primarily on three benchmarks: CHAIR, POPE,408

and a GPT-4V assisted evaluation. Detailed de-409

scriptions of these datasets are provided in Ap-410

pendix A. The results across all three benchmarks411

consistently demonstrate the effectiveness of our412

approach in mitigating object hallucination, while413

maintaining high-quality text generation.414

CHAIR: To evaluate the effectiveness of our415

method in mitigating object hallucination, we416

follow the standard CHAIR evaluation setting417

(Rohrbach et al., 2019). For all backbones, we418

use the prompt “Please describe this image in de-419

tail” . The generated parameters for our method420

are provided in Appendix B, with hyperparameters421

α = 0.01 and γ = 0.5. The CHAIR results are422

shown in Table 1. Throughout the experiments,423

our method achieves state-of-the-art (SOTA) per-424

formance in reducing hallucinations across other425

methods while maintaining caption generation qual-426

ity. Specifically, our method achieves a 7.5% to427

19.2% improvement over the previous SOTA under428

the CHAIR metrics. We observe that our method429

performs better with backbones exhibiting high lev-430

els of hallucination, which can be attributed to the431

alignment module’s effectiveness in mitigating hal-432

lucinations. The generated sentences contain an 433

average of 80 to 90 words, with the max new to- 434

kens parameter set to 512. Notably, we conduct 435

experiments on different lengths of generated cap- 436

tions in Appendix and evaluate our method on other 437

LVLMs under the CHAIR benchmark in Appendix. 438

These results demonstrate that the superior perfor- 439

mance of our method remains consistent across 440

both long and short description generation tasks. 441

POPE: Following the HALC’s OPOPE 442

setup (Chen et al., 2024), We conduct the POPE 443

experiment, and the results are presented in Table 2. 444

Throughout the evaluation, our method achieves 445

better results compared to the greedy baseline 446

and the HALC method, despite yielding a lower 447

accuracy score. As noted by HALC, false positives 448

become less reliable in offline POPE testing, and 449

the diversity of described content may introduce 450

biases in true positive samples. Consequently, this 451

can result in deviations in the accuracy metric. 452

Therefore, we primarily utilize precision and 453

F0.2 score as reference metrics. According to 454

our experimental results, our approach achieves 455

state-of-the-art performance within HALC’s 456

OPOPE framework. 457

GPT-4V assisted evaluation: Following the 458

OPERA(Huang et al., 2024b) protocol, we con- 459

duct a GPT-4V assisted evaluation to assess the 460

effectiveness of our method in mitigating halluci- 461

nations in generated captions. Notably, we observe 462

that GPT-4V tends to assign higher scores to cap- 463

tions presented second in sequence. To mitigate 464

this bias, we conduct a second round of evalua- 465

tion where the order of captions in each pair was 466

swapped. The evaluation results, adjusted for or- 467

der bias, are presented in the Table 3. And the 468
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Setting Deooding InstructBLIP mPLUG-Owl2 LLAVA-1.5
A ↑ P ↑ F0.2 ↑ A ↑ P ↑ F0.2 ↑ A ↑ P ↑ F0.2 ↑

Random
Greedy 76.8 94.2 91.8 75.1 92.3 90 78.4 94.8 92.6
HALC 76.7 93.8 91.5 73.7 92.2 89.5 73.8 95.8 92.4
Ours 71.9 94.4 90.8 72.3 95.0 91.4 73.4 96.1 92.6

Popular
Greedy 73.1 83.9 82.4 71.5 82.6 81 74.9 85.7 84.3
HALC 73.3 84.2 82.7 70.2 82.1 80.3 71.4 87.7 84.9
Ours 70.1 87.9 84.9 70.5 88.8 85.8 72.7 90.3 87.6

Adversarial
Greedy 72.5 82.6 81.2 68.9 76.5 75.3 73.1 81.5 80.4
HALC 71.2 79.4 78.2 68.4 77.5 76.1 70.3 84.6 82.2
Ours 69.2 85.0 82.4 68.9 83.5 81.1 70.7 86.9 84.3

Table 2: Experimental results of different decoding methods on various LVLMs in the MSCOCO-OPOPE (Chen
et al., 2024). The results are reproduced using the original papers or official code. A refers to Accuracy, P refers to
Precision and F0.2 refers to F0.2 Score. Higher Accuracy, Precision and F0.2 Score scores indicate better quality,
whereas lower CHAIRS and CHAIRI scores reflect stronger hallucination mitigation. Bold values represent the
best results among all methods.

Method
InstructBLIP mPLUG-Owl2 LLAVA-1.5

C D C D C D
Greedy 4.47 5.11 5.10 5.71 5.95 6.11
Ours 5.08 5.93 5.83 5.74 6.27 6.34

OPERA 5.44 5.75 5.35 5.70 5.98 6.24
Ours 5.90 6.04 5.78 5.71 6.11 6.29

HALC 5.95 6.34 5.51 6.29 5.10 4.91
Ours 6.27 6.11 6.24 6.16 6.28 6.40

Table 3: Experimental results of different decoding
methods on GPT4V assist evaluation in OPERA (Chen
et al., 2024). The results are reproduced using the
OPERA official code.

comprehensive results of GPT-4V assisted evalua-469

tion are shown in Appendix. Experimental results470

demonstrate that our method outperforms existing471

approaches in both hallucination mitigation and472

generation quality.473

4.3 Ablation Study and Analysis474

All ablation experiments are conducted using475

LLaVA-1.5 as the backbone model, with hyperpa-476

rameters consistent with those described in Section477

4.1 for LLaVA-1.5.478

Effectiveness of Modules: To demonstrate the479

effectiveness of individual modules and the im-480

provement in hallucination mitigation achieved by481

combining them, we conducted ablation experi-482

ments under four conditions, as shown in Table 4.483

The results demonstrate that both the DINO and484

CLIP modules, when used individually, signifi-485

cantly reduce hallucinations, with the effect being486

more pronounced when using DINO alone. This487

validates the effectiveness of using DINO and CLIP488

as alignment mechanisms in our approach. More-489

over, when both DINO and CLIP are used together,490

the performance surpasses that of either module491

alone, confirming the enhanced effect of their com-492

bined supervision.493

Greedy DINO CLIP CHAIRS CHAIRI

✓ 47.0 13.6
✓ 24.8 6.8

✓ 38.0 11.4
✓ ✓ 22.2 5.8

Table 4: Comparison of performance for different mod-
ules.

Granularity of Inputs: We conduct ablation 494

experiments by using object, attribute, and rela- 495

tion as separate inputs for DINO and CLIP. Ad- 496

ditionally, we test various input combinations for 497

CLIP to evaluate the effectiveness of both object 498

and sentence inputs. The greedy setting refers to 499

the greedy decoding baseline used for comparison. 500

The DINO experimental results are shown in Table 501

6 in Appendix. 502

Although attribute and relation are semantically 503

important categories, and previous studies, such as 504

HALC and HalluciDoctor (Yu et al., 2024a), have 505

used existence, attribute, and relation as keywords 506

for hallucination mitigation, our results indicate 507

that the best performance in hallucination mitiga- 508

tion is achieved when only object is used as the 509

input for CLIP, as shown in Table 5. 510

Our analysis reveals that DINO struggles to ef- 511

fectively localize attribute and relation, resulting 512

in excessive meaningless grounding. This issue is 513

also discussed in R-Bench (Wu et al., 2024). Con- 514

sidering the time efficiency of the DINO module, 515

we ultimately choose to use only object as the input 516

for DINO and CLIP. 517

While CGD has made significant progress in 518

sentence-level CLIP decoding, our findings sug- 519

gest that both word-level and sentence-level inputs 520

contribute uniquely to hallucination mitigation, as 521

demonstrated in Table 6. The combination of object 522
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Greedy Rel Attr Obj CHAIRS CHAIRI

✓ 47.0 13.6
✓ 45.5 14.4

✓ 42.4 13.1
✓ 38.9 11.7

✓ ✓ 40.3 12.6
✓ ✓ 40.5 12.4

✓ ✓ 42.4 12.1
✓ ✓ ✓ 45.4 12.8

Table 5: Comparison of performance for Word Cate-
gories in CLIP input.

Greedy Object Sentence CHAIRS CHAIRI

✓ 47.0 13.6
✓ 46.2 12.5

✓ 44.2 12.4
✓ ✓ 38.0 11.4

Table 6: Comparison of performance under different
input for CLIP.

and sentence inputs produces the best performance.523

Hyper Parameters: Due to the use of multi-524

ple modules in our method, we conduct detailed525

ablation experiments on various hyperparameters526

of the model.527

We first focus on the ratio of the auxiliary score528

to the likelihood score, which involves the hyper-529

parameter α, as shown in the formula. We set α to530

0.01, 0.1, and 0.9. The CHAIRS and CHAIRI531

metrics under different α settings are presented in532

Figure 3. Next, we conduct experiments on the533

ratio of word-level to sentence-level CLIP scores.534

Based on Equation 4, we experiment with different535

values of γ, set to 0.2, 0.5, and 0.8. The CHAIRS536

and CHAIRI metrics under different γ settings537

are depicted in Figure 4.538

Based on the above analysis and considering the539

results from other experiments, we set α = 0.01540

and γ = 0.5 in our experiments.541

5 Limitations.542

While our method demonstrates strong effective-543

ness in mitigating hallucinations, there are two pri-544

mary limitations.545

(1) While the method performs well across gen-546

eral benchmarks, its effectiveness in specialized547

domains, such as medical imaging, low-resource548

languages, or scenes with densely packed objects549

remains underexplored. Nonetheless, preliminary550

experiments in the safety domain have yielded551

promising results. In future work, we plan to fur-552

ther validate its effectiveness across a broader range553

of application scenarios.554

22.2
25.6

32.2

5.8 6.6
9.2

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

α=0.01 α=0.1 α=0.9

CHAIRS(%) CHAIRI(%)

Figure 3: Hallucination ratio under different settings of
the hyperparameter α

22.4 22.2 22.1

5.7 5.8 6.0

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

γ=0.2 γ=0.5 γ=0.8

CHAIRS(%) CHAIRI(%)

Figure 4: Hallucination ratio under different settings of
the hyperparameter γ

(2) Although our method remains reasonably ef- 555

ficient in practice, there remains room for improve- 556

ment in decoding speed. We provide a detailed 557

time complexity analysis and discuss potential ac- 558

celeration strategies in Appendix C. 559

6 Conclusion 560

Motivated by the misalignment between vision 561

and language during generation, we propose a 562

dual-perspective decoding framework to mitigate 563

hallucinations in large vision-language models 564

(LVLMs). Extensive experiments across multiple 565

benchmarks demonstrate that our method consis- 566

tently outperforms state-of-the-art approaches in 567

both reducing hallucinations and preserving the se- 568

mantic integrity of generated captions, achieving a 569

7.5%–19.2% improvement in CHAIR metrics. We 570

further observe that the effectiveness of hallucina- 571

tion mitigation strongly depends on the alignment 572

module, particularly for models with a high ten- 573

dency to hallucinate. Moreover, our method main- 574

tains its superior performance across both short 575

and long description generation tasks. Importantly, 576

it achieves these improvements without requiring 577

additional training or external data, making it a 578

practical and readily deployable solution for exist- 579

ing LVLMs. 580
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A Datasets825

CHAIR: The Caption Hallucination Assessment826

with Image Relevance (CHAIR) (Rohrbach et al.,827

2019) tool is specifically designed to assess halluci-828

nations in image captioning tasks. It quantifies hal-829

lucinations by evaluating how many objects men-830

tioned in the caption are absent from the ground831

truth label set. CHAIR provides two distinct eval-832

uation metrics: CHAIRS , which measures the833

proportion of hallucinated sentences relative to the834

total number of sentences, and CHAIRI , which835

evaluates the proportion of hallucinated objects836

relative to the total number of generated objects.837

Lower scores on either metric indicate fewer hal-838

lucinations. We also evaluate the methods using839

BLEU (Papineni et al., 2002), a caption-related840

metric that measures the similarity between gen-841

erated and ground truth captions. Higher BLEU842

scores, specifically BLEU-1, indicate better gener-843

ation quality.844

OPOPE: Polling-based Object Probing Eval-845

uation (POPE) is a method specifically designed846

to assess hallucination issues in LVLM. POPE fo-847

cuses on evaluating object hallucination by utiliz-848

ing an essay-style prompt in the format: “Is there849

a <object> in the image?” to pose visual question850

answering (VQA) queries to the model. The com-851

plete POPE test is divided into three splits: Ran-852

dom Split: Objects are randomly selected from the853

entire dataset for evaluation. Popular Split: This854

split assesses the presence of objects that most fre-855

quently appear in the dataset. Adversarial Split:856

This evaluates the model’s ability to identify ob-857

jects that are highly relevant to those present in the858

image.859

We adopt the OPOPE evaluation method pro-860

posed by HALC to assess hallucination under de-861

scriptive conditions rather than simple “yes” or862

“no” answers. This approach enables our method863

to be evaluated in a long-sentence generation envi-864

ronment. In practice, OPOPE employs the prompt865

“Please describe this image in detail” to generate866

captions. OPOPE then checks whether the sam-867

pled positive and negative objects appear in the868

generated captions to compute the POPE scores.869

To ensure consistency, we used the F0.2 score, as870

proposed by HALC, where false negatives (FN)871

and the resulting recall are given less weight due872

to their limited trustworthiness in offline checks.873

Additionally, we used the same parameters and874

generated captions of the same average length as875

CHAIR. 876

GPT-4V assisted evaluation: We adopt the 877

GPT-4V assisted evaluation method proposed by 878

OPERA to assess the generation quality and hal- 879

lucination phenomena of our approach compared 880

to other decoding methods. Specifically, we ran- 881

domly sample 500 images from the MSCOCO val- 882

idation set and use decoding methods to generate 883

descriptions for these images. The caption gener- 884

ation parameters and prompt we use are the same 885

as CHAIR experiment. The evaluation involves 886

presenting GPT-4V with the image and the corre- 887

sponding descriptions generated using two decod- 888

ing methods. GPT-4V is subsequently prompted 889

to assign a score ranging from 0 to 10 for each de- 890

scription, evaluating two key aspects: correctness 891

(C) and detailedness (D). 892

B Experimentation Details 893

B.1 Experiment Setups 894

The main generation parameters are configured as 895

follows: the maximum number of new tokens is set 896

to 512, top-k to 5, top-p to 1, and the temperature 897

to 1. Our method targets hallucination mitigation in 898

captions comprising multiple sentences; therefore, 899

the maximum new tokens parameter is set to 512 to 900

evaluate its effectiveness in long-caption scenarios. 901

This generation length is aligned with the standard 902

configuration in mainstream methods. The remain- 903

ing parameters follow the default settings of the 904

sampling method implemented in the HuggingFace 905

Transformers library1. 906

B.2 Generation Length Comparison 907

In our experiments, similar to mainstream methods, 908

we use 512 tokens for caption generation. Addi- 909

tionally, to ensure a fair comparison with other 910

decoding methods, such as HALC and OPERA, 911

we conduct experiments on the CHAIR benchmark 912

with a max new tokens setting of 64, as shown in 913

Table 7. Experimental results demonstrate that our 914

method attains optimal performance at this genera- 915

tion length. 916

C Time Analysis. 917

Figure 5 demonstrates that the best results are 918

achieved with a sampling time of 3. To optimize 919

generation efficiency, we set the sampling time to 920

3 for all experiments. Table 9. The experimental 921

1https://huggingface.co/docs/transformers
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Method Instuctblip mPLUG-Owl2 LLAVA-1.5
CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Greedy 30.9 12.3 23.2 8.3 20.8 6.8
VCD 30.3 12.6 27.3 9.7 23.3 7.90

OPERA 30.0 11.7 22.1 7.6 21.1 6.7
HALC 30.0 11.4 17.3 7.4 13.8 5.5
Ours 21.8 8.1 16.4 5.9 11.5 4.2

Table 7: Experimental results of various methods with a 64 max new tokens setting on different LVLMs in the
MSCOCO-CHAIR dataset. Results are reproduced using the original papers and official code.

Method MiniGPT-4 LLAVA-Next
CHAIRS ↓ CHAIRI ↓ BLEU ↑ CHAIRS ↓ CHAIRI ↓ BLEU ↑

Greedy 40.6 14.1 16.7 19.8 6.2 16.6
Nucleus 34.0 12.5 17.3 23.0 7.9 16.3

TopK 35.0 12.5 17.1 21.2 7.1 16.4
Beam 32.2 11.9 17.1 15.5 5.5 16.8
DoLa 31.8 11.6 17.0 17.8 6.1 16.8
VCD 35.7 13.8 18.1 21.4 7.3 16.4

OPERA 36.4 12.7 17.0 17.8 6.1 16.8
HALC 34.3 11.8 16.8 16.6 6.3 16.7
Ours 21.0 8.2 16.2 14.1 4.7 16.2

Table 8: Experimental results of different methods on MiniGPT-4 and LLAVA-Next in the MSCOCO-CHAIR
.
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Figure 5: Performance of our method sampling times in
range of 2 to 5

Method Decoding Time
Greedy 3.90
HALC 89.88
CGD 19.13
Ours 27.68

Table 9: Comparison of time cost of different decoding
method. The parameters are configured to the official
settings.

parameters for each method are selected based on922

their best performance. The results indicate that our923

method achieves state-of-the-art hallucination mit-924

igation while maintaining competitive generation925

efficiency.926

Based on the (Biber et al., 2000), nouns comprise927

approximately 25% of generated words. Since928

sentence-level decoding is independent, these steps929

can be parallelized, enabling a tractable estimation930

of time cost. Assuming an average sentence length931

of m words, and that each sentence triggers one932

additional CLIP evaluation, the average per-token933

time cost can be approximated as: 934

TLVLM + 0.25× (TDINO + TCLIP) +
1

m
TCLIP 935

Here, TLVLM denotes the time required for the 936

base vision-language model to decode one token. 937

The term 0.25× (TDINO + TCLIP) reflects the fact 938

that roughly 25% of tokens (nouns) are grounded 939

using DINO and undergo additional CLIP valida- 940

tion, while the 1
mTCLIP accounts for sentence-level 941

scoring applied once per sentence. 942

In practice, since TDINO and TCLIP are signif- 943

icantly smaller than TLVLM, the overall time cost 944

is close to standard greedy decoding. Therefore, 945

despite the integration of two alignment modules, 946

the expected runtime overhead remains minimal 947

due to both their low per-call latency and the paral- 948

lelizable nature of the added operations. 949

D CHAIR Results 950

We conduct CHAIR experiments on other main- 951

stream LVLMs, including Minigpt4 (Zhu et al., 952

2023) and LLAVA-Next (Team, 2024), which 953

are less commonly used with CHAIR compared 954

to models such as LLAVA-1.5, Instructblip, and 955

mPLUG-Owl2. For Minigpt4, we use Llama2 as 956

its large language model, and for LLAVA-Next, we 957

use the Vicuna-7B version2. The experimental re- 958

sults are shown in Table B.1. These experiments 959

demonstrate the generalizability of our method, 960

2https://huggingface.co/liuhaotian/llava-v1.
6-vicuna-7b
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Greedy Rel Attr Obj CHAIRS CHAIRI

✓ 47.0 13.6
✓ 47.4 13.6

✓ 46.6 13.9
✓ 22.2 5.8

Table 10: Comparison of CHAIRS and CHAIRI for
different DINO inputs, Bold values represent the best
results.

highlighting its ability to mitigate hallucinations961

even when applied to more advanced models.962

E Ablation Study and Analysis963

We also conduct experiment on different granu-964

larity inputs for DINO, which contains object, at-965

tribute and relation. The experimental results are966

presented in Table 10. Our analysis reveals that967

DINO struggles to effectively localize attribute968

and relation, resulting in excessive meaningless969

grounding.970

F Algorithm971

We summarize the process of our method in Algo-972

rithm 1.973

Algorithm 1 Our method’s Algorithm
Input: LVLM parameterized by θ, sampling times k, candi-
dates number N , weight hyperparameter α, image input ximg

and text prompt s0
Parameter: θ, k, N , α
Output: y
1: Let t = 0
2: SET0 ← {⟨Input(ximg, s0) ⟩}
3: while SETt is not empty do
4: SETt+1 ← ∅
5: for all candidate in SETi do
6: repeat
7: Sample s ∼ LVLMθ(st+1|x, s0, s1, . . . , sij)
8: F (ximg, sij) = (1 − α)

(
gDINO(ximg, sij)) +

gCLIP(ximg, sij)
)
+ α · fθ(sij)

9: SETt+1 ← SETt+1 ∪ {x, s0, s1, . . . , sij}
10: until k times
11: end for
12: Rank SETt+1 by F(s)
13: SETt+1 ← Top N candidates in SETt+1

14: t← t+ 1
15: end while
16: y = argmax(SET)
17: return y

G Comprehensive GPT-4V Assisted974

Evaluation975

Following the GPT-4V assisted evaluation pro-976

posed by OPERA, we conduct experiments on977

mainstream LVLMs such as LLAVA-1.5, Instruct-978

BLIP, and Mplug-Owl2. Two aspects are evaluated:979

correctness (C) and detailedness (D), both scored980

Order Method
InstructBLIP mPLUG-Owl2 LLAVA-1.5

C D C D C D

Original Order
Greedy 4.63 5.12 5.25 5.62 6.05 6.07
Ours 5.73 5.89 5.63 5.61 6.14 6.28

Difference +1.10 +0.77 +0.38 -0.01 +0.09 +0.17

Reverse Order
Ours 6.42 5.96 6.02 5.87 6.39 6.4

Greedy 4.3 5.09 4.95 5.8 5.85 6.14
Difference +2.17 +0.87 +1.07 +0.07 +0.54 +0.26

Table 11: Experimental results of comparing between
our decoding method and greedy decoding methods on
GPT4V-assist benchmark in OPERA paper. The “origi-
nal order” refers to the prompt where greedy captions
appear first, followed by our method’s captions. In con-
trast, the “reverse order” refers to the prompt where
our method’s captions appear first, followed by greedy
captions.

Order Method
InstructBLIP mPLUG-Owl2 LLAVA-1.5

C D C D C D

Original Order
OPERA 5.25 5.79 5.55 5.82 5.97 6.09

Ours 6.02 6.05 5.56 5.81 6.03 6.18
Difference +0.77 +0.26 +0.01 -0.01 +0.06 +0.09

Reverse Order
Ours 5.77 6.02 6.00 6.5 6.19 6.4

OPERA 5.63 5.70 5.14 5.58 5.99 6.39
Difference +0.14 +0.32 +0.86 +0.92 +0.20 +0.01

Table 12: Experimental results of comparing between
our decoding method and OPERA decoding method
on GPT4V-assist benchmark. The “original order” and
“reverse order” correspond to the same content as de-
scribed in Table 11.

by GPT-4V. Since we observe that GPT-4V tends to 981

assign higher scores to captions presented second in 982

sequence, we construct prompts in both orders: the 983

original prompt order, as used in OPERA’s official 984

code, where baseline captions appear first followed 985

by our method’s captions, and the reverse prompt 986

order, where our method’s captions appear first fol- 987

lowed by baseline captions. Experimental results 988

from Table 11 to Table 13 demonstrate that our 989

method outperforms existing approaches in both 990

hallucination mitigation and generation quality. 991

H Case Study 992

We present case studies on hallucination mitigation 993

using the COCO 2014 validation dataset, as shown 994

in Figure 6. The table compares captions gener- 995

Order Method
InstructBLIP mPLUG-Owl2 LLAVA-1.5

C D C D C D

Original Order
HALC 6.05 6.28 6.03 6.18 5.21 4.89
Ours 6.14 6.07 5.97 6.13 6.13 6.41

Difference +0.09 -0.21 -0.06 -0.05 +0.92 +1.52

Reverse Order
Ours 6.39 6.14 6.5 6.19 6.42 6.38

HALC 5.85 6.40 5.99 6.39 4.98 4.93
Difference +0.54 -0.26 +0.51 -0.20 +1.44 +1.45

Table 13: Experimental results of comparing between
our decoding method and HALC decoding method on
GPT4V-assist benchmark. The The “original order”
and “reverse order” correspond to the same content as
described in Table 11.
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Image Greedy HALC CGD Ours

The image features a 

delicious breakfast plate 

filled with various fruits 

and waffles. The plate is 

placed on a dining table, 

and it contains a generous 

portion of blueberries, 

apples, and bananas. The 

fruits are spread across the 

plate, with some blueberries 

on the left.

The image features a 

delicious breakfast plate 

filled with various fruits and 

waffles. The plate is placed 

on a dining tablecloth, and it 

is adorned with a blue floral 

pattern. The breakfast 

consists of two waffles, 

each topped with 

blueberries and apples.

The image shows a plate filled 

with delicious food consisting of 

pancakes topped with sliced 

apples, blueberries, and syrup. 

The blueberries are spread out 

across the plate, with some 

closer to the center and others 

closer to the edges. This 

combination of flavors is not 

only visually appealing but also 

looks like a tasty and healthy 

breakfast option.

The image displays a plate of 

delicious food, containing waffles, 

fruit, and syrup on a dining table. 

The waffles are garnished with 

fresh blueberries, adding a touch 

of color and flavor to the dish. 

There are multiple blueberries on 

the plate, distributed evenly 

throughout the waffles. The 

presentation of this scrumptious 

breakfast is quite appetizing and 

inviting.

The image features a 

woman with short hair, 

wearing a black shirt, and 

holding a banana in her 

mouth. She appears to be 

making a funny face while 

eating the banana. The 

woman is standing in a 

kitchen, with a refrigerator 

visible in the background.

The image features a 

woman with short hair, 

wearing a black shirt, and 

holding a banana in her 

mouth. She appears to be 

making a funny face while 

eating the banana. The 

woman is standing in a 

kitchen, with a refrigerator 

visible in the background.

In the image, a woman is sitting 

in a kitchen, chewing on a 

banana. She is leaning back with 

the banana in her mouth, and her 

eyes are closed. In the 

background, there is an oven and 

a microwave visible, which are 

likely part of the kitchen 

appliances. Additionally, a knife 

can be seen placed nearby on the 

counter.

She is wearing a black shirt and is 

holding a half-eaten banana in her 

mouth. The woman is looking at 

the camera, showcasing her 

unique style and humor. In the 

background, there are a few 

kitchen items visible. An oven is 

placed near the top left corn is 

placed near the top left corner of 

the scene, and a cup is located on 

the right side.

The image depicts a small, 

cluttered kitchen with a 

wooden dining table 

surrounded by chairs. The 

table is covered with papers, 

and there are several chairs 

placed around it. A 

refrigerator is located on the 

left side of the room, and a 

microwave can be seen 

above.

The image depicts a small, 

cluttered kitchen with a 

wooden dining table 

surrounded by chairs. The 

table is covered with papers, 

and there are several chairs 

placed around it. A person is 

standing near the table, 

possibly working on the 

papers.

The image depicts a large 

residential garage turned into a 

multipurpose room, featuring 

various appliances and furniture. 

There is a refrigerator on the left 

side of the room, surrounded by 

numerous chairs and dining 

tables. Some of the chairs are 

closer to the refrigerator, while 

others are situated around the 

dining tables.

The image depicts a small home 

office space, likely an unfinished 

garage, set up for various 

activities. It is equipped with a 

refrigerator situated on the left 

side of the room and a white table 

in the center. The table is 

surrounded by four wooden chairs, 

with two chairs positioned on the 

left side, one on the right side, and 

one chair at the head of the table. 

A variety of objects and supplies 

can be found throughout the space.

The image features a 

woman standing in front of 

a video game display, 

possibly at a convention or 

a store. She is wearing a 

white shirt and appears to 

be observing the game. The 

display consists of a large 

TV screen and a Wii 

console, with a remote 

control placed nearby. A 

chair is positioned in the 

background, and a handbag 

can be seen placed on the 

floor.

The image features a 

woman standing in front of 

a video game display, 

possibly at a convention or 

a store. She is wearing a 

white shirt and appears to 

be observing the game. The 

display consists of a large 

TV screen and a Wii 

console, with a man's image 

on the screen. There are also 

a few chairs in the area, 

with one located near the 

center of the scene and 

another towards the right 

side. A chair is also present 

in the background.

The scene features a person 

standing in front of a video game 

display, which includes a 

Nintendo Wii gaming console 

with a TV screen attached. The 

display is set up in a booth-like 

area to attract visitors, and there 

is a person positioned in the 

background of the display, 

potentially working behind the 

counter. A chair is positioned in 

the background, and a handbag 

can be seen placed on the floor.

The image displays a busy event 

featuring a large screen in the 

center, which appears to be a 

Nintendo Wii game. Numerous 

individuals can be seen playing 

games at the event, with some 

standing around and enjoying the 

experience. The main display 

features a black and white image 

of a man playing with a Nintendo 

Wii, likely on a television screen 

or a large monitor. A row of 

figures, representing the Wii 

players, are also present, likely set 

up on the front of the screen for an 

interactive element at the event.

Figure 6: A comparison of text generated by Greedy Search, HALC, CGD, and our proposed method, using
examples from the COCO 2014 validation dataset with LLaVA-1.5. The hallucinated parts are highlighted in red.

ated by Greedy, HALC, CGD, and our proposed996

approach for the images in the leftmost column.997

Notably, our method generates longer and more998

detailed captions. Hallucinated content in the de-999

scriptions is highlighted in red.1000

15


	Introduction
	Related Work
	Object Hallucination in LVLMs and Current Mitigation Approaches
	Decoding Strategies for Mitigating Object Hallucinations

	Method
	Experiments
	Experiment Setups
	Metrics
	Ablation Study and Analysis

	Limitations.
	Conclusion
	Datasets
	Experimentation Details
	Experiment Setups
	Generation Length Comparison

	Time Analysis.
	CHAIR Results
	Ablation Study and Analysis
	Algorithm
	Comprehensive GPT-4V Assisted Evaluation
	Case Study

