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Abstract

Large Vision-Language Models (LVLMs) face
the challenge of object hallucination, where the
model generates descriptions of nonexistent ob-
jects. This issue primarily arises from the fail-
ure of the visual encoder to attend to detailed
regions and the tendency of the language model
to favor contextual plausibility over visual evi-
dence during generation. In this work, we pro-
pose a dual-perspective decoding framework
that jointly optimizes text generation from both
visual and textual views to address hallucina-
tions caused by image-text misalignment. Our
framework aligns generated text with visual
content at both the sentence and word levels
from the textual perspective, while simultane-
ously ensuring that visual objects are aligned
with their corresponding textual semantics from
the visual perspective. Extensive experiments
demonstrate that our method significantly re-
duces object hallucination and achieves su-
perior image-text alignment compared to ex-
isting state-of-the-art methods. Notably, our
method achieves significant improvements of
7.5% to 19.2% over previous approaches under
the CHAIR evaluation metrics, highlighting its
effectiveness in enhancing the visual faithful-
ness of generation.

1 Introduction

Large Vision-Language Models (LVLMs) (Dai
et al., 2023; Bai et al., 2025; Liu et al., 2023; Zhu
etal., 2023; Team, 2024; DeepSeek-Al et al., 2025)
have achieved remarkable progress in visual under-
standing and reasoning tasks (Yang et al., 2025;
Wang et al., 2023; Li et al., 2023a; Zhang et al.,
2024; Meta, 2025) by harnessing the capabilities
of large language models (LLMs) such as Qwen
(Bai et al., 2023), LLaMA (Touvron et al., 2023),
and GPT (Brown et al., 2020). Despite these ad-
vancements, LVLMs are susceptible to a prevalent
challenge known as object hallucination, where the
model generates descriptions of non-existent ob-
jects or fabricates visual details (Zhai et al., 2024;
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Figure 1: Visualization of the effectiveness of our
method on the CHAIRg and CHAI Ry metrics on
the benchmark (Lin et al., 2015). Lower values of
CHAIR; and CH Al Rg indicate better performance.
The results demonstrate the significant advantage of our
approach, highlighting its superior performance in hal-
lucination mitigation for LLAVA-1.5 compared to other
methods.

Hu et al., 2023; Li et al., 2023b; Stiennon et al.,
2022). This limitation undermines their reliabil-
ity and applicability, particularly in tasks requiring
precise visual-textual alignment.

To address object hallucination, recent studies
have proposed two main categories of mitigation
strategies: external knowledge-based methods and
decoding-based approaches (Huang et al., 2024a;
Liu et al., 2024b; Zhou et al., 2024). The former,
such as LURE and Woodpecker (Zhou et al., 2024;
Yin et al., 2024), leverage annotated data for super-
vised learning, while the latte including VCD, SID,
and HALC (Leng et al., 2023; Chen et al., 2024;
Huo et al., 2024) introduces lightweight, training-
free mechanisms that enhance image-text align-
ment during inference. Decoding-based methods
have gained increasing attention due to their plug-
and-play flexibility, often employing contrastive or



alignment techniques to mitigate hallucination.

Despite significant progress, Large Vision-
Language Models (LVLMs) still suffer from ob-
ject hallucination, which refers to the generation
of descriptions that mention objects not actually
present in the image. One major cause lies in the
limitations of visual encoding. LVLMs often strug-
gle to capture fine-grained visual details due to the
way attention is allocated across visual inputs. Al-
though visual encoders can extract semantically
meaningful representations, they frequently over-
look detailed image regions. This problem is fur-
ther exacerbated by resolution bottlenecks and the
design of projection modules, which may inadver-
tently discard important fine-grained features dur-
ing the conversion of images into token representa-
tions (Li et al., 2023b; Chen et al., 2024). Another
contributing factor is the decoding process based
on large language models (LLMs). The attention
mechanism in LLMs tends to prioritize linguistic
coherence over visual accuracy. As a result, the
generated descriptions may include content that is
contextually plausible but not supported by the vi-
sual input (Zhou et al., 2024; Wang et al., 2024).
These misalignment between visual encoding and
language decoding weakens the model’s ability to
produce text grounded in visual content, leading
to hallucinated descriptions that deviate from the
actual image.

To address the misalignment arising from both
visual encoding and language decoding, we pro-
pose a dual-perspective decoding framework that
enhances image-text alignment and reduces hal-
lucinations during text generation. From the vi-
sual perspective, a DINO-based module performs
object-level matching, identifying and suppressing
hallucinated descriptions by enforcing fine-grained
correspondence between detected objects and their
textual mentions. From the textual perspective, a
CLIP-based evaluator measures global semantic
consistency between the generated caption and the
image, ensuring that the overall description remains
faithful to the visual content. A fusion module then
combines the DINO alignment score, the CLIP se-
mantic score, and the LVLM’s native generation
confidence into a unified re-ranking criterion. By
applying this alignment-guided re-ranking to mul-
tiple sampled outputs, our method retains the di-
versity and fluency of decoding-based approaches
while substantially reducing reliance on external
large models and avoiding additional training.

Overall, our contributions are summarized as

follows:

1. We re-examine the causes of object halluci-
nation and introduce a dual-perspective decoding
framework that provides fine-grained object align-
ment from the visual perspective and assesses over-
all semantic consistency between the generated text
and the image.

2. We design a lightweight fusion module
that appropriately weights and combines visual-
perspective alignment scores from the DINO mod-
ule, textual-perspective consistency scores from
the CLIP evaluator, and the LVLM’s native gen-
eration likelihood, while incorporating likelihood
entropy as an auxiliary metric to promote balanced,
high-quality outputs.

3. Experimental results validate the effectiveness
of our method, demonstrating significant perfor-
mance improvements across multiple benchmarks
while also demonstrating superior generation qual-

ity.
2 Related Work

2.1 Object Hallucination in LVLMs and
Current Mitigation Approaches

Inspired by the success of LLMs, large vision-
language models (LVLMs) derived from LLMs
demonstrate remarkable performance on a wide
range of visual tasks. Mainstream LVLMs, such as
LLAVA (Liu et al., 2023) and InstructBLIP (Dai
et al., 2023), typically comprise three core compo-
nents: a visual encoder to extract visual features, a
projection module to align visual representations
with the language model, and an LLM to generate
textual outputs.

Object hallucination refers to the generation text
by Vision-Language Models (VLMs) that includes
objects not faithful to the image content (Rohrbach
et al., 2019). In Large Vision-Language Models
(LVLMs), this issue primarily manifests as a mis-
match between the generated content and the image.
Mainstream methods for mitigating hallucination
can be broadly categorized into two types: exter-
nal knowledge leveraging and decoding methods.
External knowledge leveraging methods rely on
human annotations, hyper models to label train-
ing data, or provide feedback. LRV (Liu et al.,
2024a) addresses data bias-induced response bi-
ases in LLMs by supplementing instruction data.
LURE (Zhou et al., 2024) utilize the GPT-4V
model to label additional data, which is then used
to train reviser for mitigating hallucination. RLAIF-



V (Yu et al., 2024b) makes a significant contribu-
tion by employing LVLM:s of peers exhibiting com-
parable or equal capabilities to provide feedback,
which is subsequently used to reinforce learning.
On the other hand, recently proposed decoding
methods leverage the intermediate state distribu-
tions of LLMs during the decoding process, the dis-
tributions after input distortion, or assistance from
other models to optimize the final token distribu-
tion. These decoding approaches, which avoid the
complex training process required for supplement-
ing knowledge, have become a significant research
focus in the field of hallucination mitigation.

2.2 Decoding Strategies for Mitigating Object
Hallucinations

The decoding method of LVLM is a crucial ap-
proach for optimizing the inference stage and
serves as an important strategy for mitigating hallu-
cination in generated text. Common basic decoding
methods include greedy decoding, nucleus decod-
ing (Holtzman et al., 2020), top-k sampling (Fan
et al., 2018), and beam search (Lemons et al.,
2022).

Recent works have proposed further exploration
from basic decoding methods to enhance perfor-
mance. Internal methods like DOLA (Chuang et al.,
2024) leverage internal state signals to refine decod-
ing results, while contrast decoding methods such
as VCD (Leng et al., 2023) and ICD (Kim et al.,
2024) contrast output distributions using different
prompts or layers. Furthermore, there are several
independently proposed methods. HALC (Chen
et al., 2024) introduces the visual-alignment (Liu
et al., 2024c) module into beam search, aiming
to identify the optimal visual context for LVLM
inputs. Meanwhile, the CGD (Deng et al., 2024)
method employs the text-alignment (Radford et al.,
2021) module to assist in selecting among differ-
ent sampling results to improve vision-language
alignment. Our approach adopts a dual-perspective
strategy to address vision-language misalignment,
leveraging readily available external tools: DINO
for visual grounding and CLIP for semantic con-
sistency. By aligning the generated text from both
visual and textual perspectives, the model effec-
tively reduces hallucinated content that deviates
from the visual input.

3 Method

In this section, we introduce the detailed approach
of our method, which is designed to mitigate hal-
lucinations in text generation from large vision-
language models (LVLMs), the overview of our
method is summarized in Figure 2. Our method
combines both textual and visual perspectives, with
a final score fusion module that iteratively refines
the generated captions. We now describe the key
components of our approach in detail.

Textual Perspective: The first critical compo-
nent of our approach is aligning the generated cap-
tion semantically with the image information. For
this, we utilize the CLIP module, which provides
a shared embedding space for both text and image,
allowing us to measure the consistency between
them.

At time ¢, given an image Tjme and a sequence
of sentences S = {so, s1, S2, ..., Si—1} generated
by the LVLM, we compute the CLIP score for each
sampled sentence. We sample the generated sen-
tences as {s;1, Si2, - - ., Sik } » Wwhere k measures the
number of sampled time of current generation state.
CLIP utilize the image and sampled sentence as
input to compute CLIP score, which measures the
similarity between the image and the entire sen-
tence in the shared embedding space and defined
as:

getip < (Timg, $ij) = 08 (fep(Timg), fouw(sij)) (1)

where: ferip(img) is the CLIP feature embedding
of the image Zimg, fcLp(si;) is the CLIP feature
embedding of the generated sentence s;;. j repre-
sents the j-th sampled sentence of current state. A
higher cosine similarity indicates a stronger align-
ment between the image and the sentence. The
CLIP score serves as a measure of how well the
generated text reflects the image content, helping
to identify sentences that may contain hallucinated
information that doesn’t correspond to any visual
element in the image.

Furthermore, to ensure that each object men-
tioned in the sentence is appropriately grounded in
the visual content, we compute the alignment score
for each individual word. For each sentence s;;,
we extract the object terms using a named entity
recognition (NER) model (Neumann et al., 2019).
For instance, a sentence like “A dog is playing with
a ball’would result in the object terms dog and
ball. For each recognized object term w so called
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Figure 2: Overview of our method: For the sentences generated by LVLMs, our approach leverages the CLIP module
from the textual perspective to evaluate image-text consistency and the DINO module from the visual perspective to
ensure fine-grained object alignment. Scores from both modules are then combined with the likelihood probability
scores to derive the final scores for comparing the sampled results. Once the optimal sampling candidates are
determined, the generation process is iteratively repeated to ensure consistency and quality.

valid word in the sentence s, we calculate the co-
sine similarity between the object embedding in
the text and the corresponding object embedding
in the image:

geLp (Timg, wijr) = cos (feur(Timg), feur(wisi))  (2)

where wj;; is the [-th valid word in the j-th sampled
sentence. The overall CLIP score for the word
is then calculated as the minimum of word-level
alignment scores:
d .
9P (Timgs Sij) = min geLp(Timgs wiji)  (3)
ij
where min denotes the minimum value of the CLIP
Wil
similarity score across all w;;; in s;;. The CLIP
score on the sentence, combined with the scores
for valid words, ensures that the generated caption
is not only consistent with the image as a whole
but also correctly grounded for each individual ob-
ject mentioned in the text. The final CLIP score
equation is summuriazed as follows:

geLp(Timg, Sij) = 7 -9 16" (Timg, 5i)

+(1 =) - 848 (img, 5i5)

Visual Perspective: While the textual alignment
module ensures that the generated captions are se-
mantically aligned with the image, it is equally im-
portant to ensure that the specific objects described

4

in the caption correspond to actual objects in the
image. The DINO module performs fine-grained
object detection and aligns image information with
corresponding object terms in the caption, provid-
ing an additional layer of visual grounding.

We use the same named entity recognition
method as CLIP module to extract objects in gen-
erated text. The DINO module then computes an
alignment score between the object mentioned in
the sentence and the objects present in the image.
It computes score as follows:

ot = max(Pijuw, ;) )
W41

where w;;; represents the [-th valid word in the
J-th sampled sentence, and p;; .,,; denotes the con-
fidence score computed by transformers attention
head generated for the word w;; (Liu et al., 2024c).
The DINO confidence score represents the visual
information detected by DINO from the original
image, we define the DINO score as follows:

9DINO(Zimg, Wij1) = Oyt (6)

In this work, if the DINO confidence score o;;;
falls below the threshold, the DINO score is com-
puted as 0; otherwise, it is replaced by a constant
C. We find this approach to be both simple and



effective in our experiments.

C, if (i > 9)

7
0, otherwise ™

9pINO (Timg, Wij1) = {

where ¢ is the threshold from the default DINO
settings, and the hyperparameter C' denotes the
weight of the DINO score. This score indicates
how well the object is represented in the image.

For each sentence s;;, we aggregate the object-
level DINO scores to obtain an overall alignment
score:

9pINO (Timg, Sij) = wi};lgDINo(wimg,wijl) ®)
ij

where rgin denotes the minimum value of the
ijl

DINO SC(;I‘C across all w;j; in s;;. The aggregated

score gives a measure of how well the sentence

reflects the visual content of the image, particularly

with regard to the objects mentioned.

Score Fusion: To preserve the generative qual-
ity of LVLMs, we introduce the concept of LLM
likelihood and utilize this probability as a scor-
ing metric in the subsequent evaluation. Given a
premise question text s = {¢,t2, ...ty }, where
t; denotes the token generated at the ¢-th timestep,
we utilize Predictive Entropy (PE) for uncertainty
estimation(Kadavath et al., 2022; Duan et al., 2024;
Kuhn et al., 2023), which is defined as the entropy
of the entire sentence. To mitigate the impact of
generation length on predictive entropy and ensure
the proper functioning of LVLM, we adopt a vari-
ant known as length-normalized predictive entropy
as Equation 4. This variant divides the joint log-
probability of each sequence by the length of the se-
quence, as proposed by Malinin and Gales(Malinin
and Gales, 2021) in the context of natural language
generation (NLG) uncertainty, and has been em-
pirically shown to be advantageous in the work by
Kuhn(Kuhn et al., 2023).

m

1
folsi) = — > —logpa(wils<i) 9

=1

where 6 represents the LVLM parameters and m is
the length of the generated sentence.

To combine the strengths of both the CLIP and
DINO modules, we propose a score fusion strat-
egy. This module integrates the textual consistency
score from CLIP, the visual alignment score from
DINO, and the internal likelihood score from the
LVLM to compute a final fusion score. The final

score F'(Zimg, si;) for each generated caption s;; is
given by:

F(Zimg, si5) = (1 — @) (900 (Timg, Sij)

+gcLip(Zimg, 5i5)) + - fo(sij)  (10)
where gpiNO(Zimg, Sij) is the visual alignment
score computed by DINO, gcrip(Zimg, Si5) is the
semantic consistency score computed by CLIP,
fo(sij) is the internal likelihood score from the
LVLM for caption s;;. « is hyperparameter repre-
senting the weight of the auxiliary score’s influence
on the decoding distribution. When a@ = 1, the
scorer reduces to greedy decoding.

The fusion score F'(Zimg, Sij) provides a compre-
hensive measure of caption quality, incorporating
both visual alignment and textual consistency. This
score is then used to rank the generated captions,
and the top candidates are selected for further re-
finement.

We employ an iterative decoding strategy to re-
fine the generated captions further. At each itera-
tion, the LVLM generates a set of candidate cap-
tions for the given image. These candidates are
evaluated using the fusion score F'(Zimg, s;), and
the top /V candidates are selected for further refine-
ment. This iterative process continues for k itera-
tions, ensuring that the generated captions gradu-
ally improve in terms of both semantic consistency
and visual accuracy. Our method’s iteration loop is
summarized as Algorithm 1 in Appendix F.

4 Experiments

In this section, we evaluate the performance of our
method on long descriptions, focusing on its effec-
tiveness in mitigating object hallucination while
maintaining caption quality. Our experiments in-
clude CHAIR, OPOPE, and GPT-4V-assisted eval-
uations. Additional experimental results and analy-
ses are provided in Appendix B.

4.1 Experiment Setups

Baselines: To effectively evaluate our method,
we include regular greedy decoding, nucleus sam-
pling (Holtzman et al., 2020), top-k sampling (Fan
et al., 2018), and beam search (Lemons et al.,
2022) as baselines. Additionally, we incorpo-
rate state-of-the-art methods specifically designed
to mitigate object hallucination (OH), including
DoLa (Chuang et al., 2024), OPERA (Huang et al.,
2024b), VCD (Leng et al., 2023), CGD (Deng et al.,



Method InstructBLIP mPLUG-OwI2 LLAVA-1.5
CHAIRs| CHAIR;| BLEU?1 | CHAIRs| CHAIR;| BLEU?T |CHAIRs| CHAIR;| BLEU?®
Greedy 57.9 17.1 15.9 52.7 16.0 18.1 47.0 13.6 18.9
Nucleus 56.1 17.0 16.4 51.9 15.6 18.1 433 13.1 16.4
TopK 55.8 16.9 16.5 53.1 15.9 18.1 44.9 13.2 16.3
Beam 53.2 14.8 18.7 55.8 16.1 17.1 46.6 12.7 18.3
DoLa 55.6 17.0 16.5 52.6 15.2 18.1 46.6 13.6 19.2
VCD 63.2 19.5 17.7 514 16.0 17.5 44.6 12.5 17.8
OPERA 51.5 15.6 18.3 48.5 16.1 17.9 49.5 13.7 18.4
HALC 61.6 18.9 18.1 51.7 15.5 17.4 40.6 11.0 19.0
CGD 42.7 10.9 16.4 35.7 8.6 19.1 29.7 8.1 18.4
Ours 235 6.3 194 24.6 6.8 18.0 22.2 5.8 194

Table 1: Experimental results of different decoding methods on various LVLMs using the MSCOCO-CHAIR
(Lin et al., 2015) dataset. The results are reproduced based on the original papers or official code. Cg refers to
CHAIRg, Cy refers to CHAIRy and B refers to BLEU-1 Score. Higher BLEU-1 scores indicate better text
generation quality, while lower CHAIRg and C'H AI Ry scores reflect stronger hallucination mitigation. Bold

values indicate the best performance across other methods.

2024), and HALC (Chen et al., 2024) in our analy-
Sis.

LVLM Backbones: We conduct our experi-
ments on different LVLMs—InstructBLIP (Dai
et al., 2023), LLaVA-1.5 (Liu et al., 2023), and
mPLUG-OwI2 (Li et al., 2022)—to evaluate our
method and all the previously mentioned baselines.

4.2 Metrics

Datasets: We conduct our experiments mainly on
three benchmark:We conducted our experiments
primarily on three benchmarks: CHAIR, POPE,
and a GPT-4V assisted evaluation. Detailed de-
scriptions of these datasets are provided in Ap-
pendix A. The results across all three benchmarks
consistently demonstrate the effectiveness of our
approach in mitigating object hallucination, while
maintaining high-quality text generation.
CHAIR: To evaluate the effectiveness of our
method in mitigating object hallucination, we
follow the standard CHAIR evaluation setting
(Rohrbach et al., 2019). For all backbones, we
use the prompt “Please describe this image in de-
tail” . The generated parameters for our method
are provided in Appendix B, with hyperparameters
a = 0.01 and v = 0.5. The CHAIR results are
shown in Table 1. Throughout the experiments,
our method achieves state-of-the-art (SOTA) per-
formance in reducing hallucinations across other
methods while maintaining caption generation qual-
ity. Specifically, our method achieves a 7.5% to
19.2% improvement over the previous SOTA under
the CHAIR metrics. We observe that our method
performs better with backbones exhibiting high lev-
els of hallucination, which can be attributed to the
alignment module’s effectiveness in mitigating hal-

lucinations. The generated sentences contain an
average of 80 to 90 words, with the max new to-
kens parameter set to 512. Notably, we conduct
experiments on different lengths of generated cap-
tions in Appendix and evaluate our method on other
LVLMs under the CHAIR benchmark in Appendix.
These results demonstrate that the superior perfor-
mance of our method remains consistent across
both long and short description generation tasks.

POPE: Following the HALC’s OPOPE
setup (Chen et al., 2024), We conduct the POPE
experiment, and the results are presented in Table 2.
Throughout the evaluation, our method achieves
better results compared to the greedy baseline
and the HALC method, despite yielding a lower
accuracy score. As noted by HALC, false positives
become less reliable in offline POPE testing, and
the diversity of described content may introduce
biases in true positive samples. Consequently, this
can result in deviations in the accuracy metric.
Therefore, we primarily utilize precision and
Fyo score as reference metrics. According to
our experimental results, our approach achieves
state-of-the-art performance within HALC’s
OPOPE framework.

GPT-4V assisted evaluation: Following the
OPERA(Huang et al., 2024b) protocol, we con-
duct a GPT-4V assisted evaluation to assess the
effectiveness of our method in mitigating halluci-
nations in generated captions. Notably, we observe
that GPT-4V tends to assign higher scores to cap-
tions presented second in sequence. To mitigate
this bias, we conduct a second round of evalua-
tion where the order of captions in each pair was
swapped. The evaluation results, adjusted for or-
der bias, are presented in the Table 3. And the



Setting Deooding InstructBLIP mPLUG-Owl2 LLAVA-1.5
AT _PT _ Foal | AT _PT_ Foaf | AT _PT _ Foad

Greedy 76.8 94.2 91.8 75.1 92.3 90 78.4 94.8 92.6
Random HALC 76.7 93.8 91.5 73.7 92.2 89.5 73.8 95.8 92.4
Ours 71.9 94.4 90.8 72.3 95.0 91.4 73.4 96.1 92.6
Greedy 73.1 83.9 82.4 71.5 82.6 81 74.9 85.7 84.3
Popular HALC 73.3 84.2 82.7 70.2 82.1 80.3 71.4 87.7 84.9
Ours 70.1 87.9 84.9 70.5 88.8 85.8 72.7 90.3 87.6
Greedy 72.5 82.6 81.2 68.9 76.5 75.3 73.1 81.5 80.4
Adversarial HALC 71.2 79.4 78.2 68.4 71.5 76.1 70.3 84.6 82.2
Ours 69.2 85.0 82.4 68.9 83.5 81.1 70.7 86.9 84.3

Table 2: Experimental results of different decoding methods on various LVLMs in the MSCOCO-OPOPE (Chen
et al., 2024). The results are reproduced using the original papers or official code. A refers to Accuracy, P refers to
Precision and Fj » refers to Fy o Score. Higher Accuracy, Precision and Fj 5 Score scores indicate better quality,
whereas lower CHAIRg and C'H AI Ry scores reflect stronger hallucination mitigation. Bold values represent the

best results among all methods.

InstructBLIP | mPLUG-Owl2 | LLAVA-1.5
C D C D C D
Greedy | 447  5.11 5.10 5.71 595 6.11

Ours | 5.08 593 | 583 5.74 6.27 6.34
OPERA | 544 575 5.35 5.70 598 6.24
Ours | 590 6.04 |5.78 5.71 6.11 6.29
HALC | 5.95 6.34 5.51 6.29 5.10 491
Ours | 627 6.11 6.24 6.16 6.28 6.40

Method

Table 3: Experimental results of different decoding
methods on GPT4V assist evaluation in OPERA (Chen
et al., 2024). The results are reproduced using the
OPERA official code.

comprehensive results of GPT-4V assisted evalua-
tion are shown in Appendix. Experimental results
demonstrate that our method outperforms existing
approaches in both hallucination mitigation and
generation quality.

4.3 Ablation Study and Analysis

All ablation experiments are conducted using
LLaVA-1.5 as the backbone model, with hyperpa-
rameters consistent with those described in Section
4.1 for LLaVA-1.5.

Effectiveness of Modules: To demonstrate the
effectiveness of individual modules and the im-
provement in hallucination mitigation achieved by
combining them, we conducted ablation experi-
ments under four conditions, as shown in Table 4.
The results demonstrate that both the DINO and
CLIP modules, when used individually, signifi-
cantly reduce hallucinations, with the effect being
more pronounced when using DINO alone. This
validates the effectiveness of using DINO and CLIP
as alignment mechanisms in our approach. More-
over, when both DINO and CLIP are used together,
the performance surpasses that of either module
alone, confirming the enhanced effect of their com-
bined supervision.

Greedy | DINO CLIP CHAIRs CHAIR;
v 47.0 13.6
v 24.8 6.8
v 38.0 11.4
v v 22.2 5.8

Table 4: Comparison of performance for different mod-
ules.

Granularity of Inputs: We conduct ablation
experiments by using object, attribute, and rela-
tion as separate inputs for DINO and CLIP. Ad-
ditionally, we test various input combinations for
CLIP to evaluate the effectiveness of both object
and sentence inputs. The greedy setting refers to
the greedy decoding baseline used for comparison.
The DINO experimental results are shown in Table
6 in Appendix.

Although attribute and relation are semantically
important categories, and previous studies, such as
HALC and HalluciDoctor (Yu et al., 2024a), have
used existence, attribute, and relation as keywords
for hallucination mitigation, our results indicate
that the best performance in hallucination mitiga-
tion is achieved when only object is used as the
input for CLIP, as shown in Table 5.

Our analysis reveals that DINO struggles to ef-
fectively localize attribute and relation, resulting
in excessive meaningless grounding. This issue is
also discussed in R-Bench (Wu et al., 2024). Con-
sidering the time efficiency of the DINO module,
we ultimately choose to use only object as the input
for DINO and CLIP.

While CGD has made significant progress in
sentence-level CLIP decoding, our findings sug-
gest that both word-level and sentence-level inputs
contribute uniquely to hallucination mitigation, as
demonstrated in Table 6. The combination of object



Greedy | Rel Attr Obj | CHAIRs CHAIR;
v 47.0 13.6
v 45.5 14.4
v 42.4 13.1
v 38.9 11.7
v v 40.3 12.6
v v 40.5 12.4
v v 42.4 12.1
v v v 45.4 12.8

Table 5: Comparison of performance for Word Cate-
gories in CLIP input.

Greedy | Object Sentence | CHAIRs CHAIR;
v 47.0 13.6
v 46.2 12.5
v 44.2 124
v v 38.0 114

Table 6: Comparison of performance under different
input for CLIP.

and sentence inputs produces the best performance.

Hyper Parameters: Due to the use of multi-
ple modules in our method, we conduct detailed
ablation experiments on various hyperparameters
of the model.

We first focus on the ratio of the auxiliary score
to the likelihood score, which involves the hyper-
parameter «, as shown in the formula. We set o to
0.01, 0.1, and 0.9. The CHAIRg and CHAIR;
metrics under different « settings are presented in
Figure 3. Next, we conduct experiments on the
ratio of word-level to sentence-level CLIP scores.
Based on Equation 4, we experiment with different
values of -, set to 0.2, 0.5, and 0.8. The CHAIRg
and C'H AI R; metrics under different 7 settings
are depicted in Figure 4.

Based on the above analysis and considering the
results from other experiments, we set o = 0.01
and v = 0.5 in our experiments.

5 Limitations.

While our method demonstrates strong effective-
ness in mitigating hallucinations, there are two pri-
mary limitations.

(1) While the method performs well across gen-
eral benchmarks, its effectiveness in specialized
domains, such as medical imaging, low-resource
languages, or scenes with densely packed objects
remains underexplored. Nonetheless, preliminary
experiments in the safety domain have yielded
promising results. In future work, we plan to fur-
ther validate its effectiveness across a broader range
of application scenarios.
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Figure 3: Hallucination ratio under different settings of
the hyperparameter o
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Figure 4: Hallucination ratio under different settings of
the hyperparameter ~y

(2) Although our method remains reasonably ef-
ficient in practice, there remains room for improve-
ment in decoding speed. We provide a detailed
time complexity analysis and discuss potential ac-
celeration strategies in Appendix C.

6 Conclusion

Motivated by the misalignment between vision
and language during generation, we propose a
dual-perspective decoding framework to mitigate
hallucinations in large vision-language models
(LVLMs). Extensive experiments across multiple
benchmarks demonstrate that our method consis-
tently outperforms state-of-the-art approaches in
both reducing hallucinations and preserving the se-
mantic integrity of generated captions, achieving a
7.5%—-19.2% improvement in CHAIR metrics. We
further observe that the effectiveness of hallucina-
tion mitigation strongly depends on the alignment
module, particularly for models with a high ten-
dency to hallucinate. Moreover, our method main-
tains its superior performance across both short
and long description generation tasks. Importantly,
it achieves these improvements without requiring
additional training or external data, making it a
practical and readily deployable solution for exist-
ing LVLMs.
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A Datasets

CHAIR: The Caption Hallucination Assessment
with Image Relevance (CHAIR) (Rohrbach et al.,
2019) tool is specifically designed to assess halluci-
nations in image captioning tasks. It quantifies hal-
lucinations by evaluating how many objects men-
tioned in the caption are absent from the ground
truth label set. CHAIR provides two distinct eval-
uation metrics: CHAIRg, which measures the
proportion of hallucinated sentences relative to the
total number of sentences, and CH AI Ry, which
evaluates the proportion of hallucinated objects
relative to the total number of generated objects.
Lower scores on either metric indicate fewer hal-
lucinations. We also evaluate the methods using
BLEU (Papineni et al., 2002), a caption-related
metric that measures the similarity between gen-
erated and ground truth captions. Higher BLEU
scores, specifically BLEU-1, indicate better gener-
ation quality.

OPOPE: Polling-based Object Probing Eval-
uation (POPE) is a method specifically designed
to assess hallucination issues in LVLM. POPE fo-
cuses on evaluating object hallucination by utiliz-
ing an essay-style prompt in the format: “Is there
a <object> in the image?” to pose visual question
answering (VQA) queries to the model. The com-
plete POPE test is divided into three splits: Ran-
dom Split: Objects are randomly selected from the
entire dataset for evaluation. Popular Split: This
split assesses the presence of objects that most fre-
quently appear in the dataset. Adversarial Split:
This evaluates the model’s ability to identify ob-
jects that are highly relevant to those present in the
image.

We adopt the OPOPE evaluation method pro-
posed by HALC to assess hallucination under de-
scriptive conditions rather than simple “yes” or
“no” answers. This approach enables our method
to be evaluated in a long-sentence generation envi-
ronment. In practice, OPOPE employs the prompt
“Please describe this image in detail” to generate
captions. OPOPE then checks whether the sam-
pled positive and negative objects appear in the
generated captions to compute the POPE scores.
To ensure consistency, we used the Fj 2 score, as
proposed by HALC, where false negatives (FN)
and the resulting recall are given less weight due
to their limited trustworthiness in offline checks.
Additionally, we used the same parameters and
generated captions of the same average length as
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CHAIR.

GPT-4V assisted evaluation: We adopt the
GPT-4V assisted evaluation method proposed by
OPERA to assess the generation quality and hal-
lucination phenomena of our approach compared
to other decoding methods. Specifically, we ran-
domly sample 500 images from the MSCOCO val-
idation set and use decoding methods to generate
descriptions for these images. The caption gener-
ation parameters and prompt we use are the same
as CHAIR experiment. The evaluation involves
presenting GPT-4V with the image and the corre-
sponding descriptions generated using two decod-
ing methods. GPT-4V is subsequently prompted
to assign a score ranging from O to 10 for each de-
scription, evaluating two key aspects: correctness
(C) and detailedness (D).

B Experimentation Details

B.1 Experiment Setups

The main generation parameters are configured as
follows: the maximum number of new tokens is set
to 512, top-k to 5, top-p to 1, and the temperature
to 1. Our method targets hallucination mitigation in
captions comprising multiple sentences; therefore,
the maximum new tokens parameter is set to 512 to
evaluate its effectiveness in long-caption scenarios.
This generation length is aligned with the standard
configuration in mainstream methods. The remain-
ing parameters follow the default settings of the
sampling method implemented in the HuggingFace
Transformers library'.

B.2 Generation Length Comparison

In our experiments, similar to mainstream methods,
we use 512 tokens for caption generation. Addi-
tionally, to ensure a fair comparison with other
decoding methods, such as HALC and OPERA,
we conduct experiments on the CHAIR benchmark
with a max new tokens setting of 64, as shown in
Table 7. Experimental results demonstrate that our
method attains optimal performance at this genera-
tion length.

C Time Analysis.

Figure 5 demonstrates that the best results are
achieved with a sampling time of 3. To optimize
generation efficiency, we set the sampling time to
3 for all experiments. Table 9. The experimental

"https://huggingface.co/docs/transformers


https://huggingface.co/docs/transformers

Method Tnstuctblip mPLUG-OwI2 LLAVA-1.5
CHAIRg ] CHAIR;] | CHAIRs] CHAIR;] | CHAIRg] CHAIR;J
Greedy 30.9 123 232 33 20.8 6.8
VCD 303 12.6 273 9.7 233 7.90
OPERA 30.0 11.7 22.1 7.6 21.1 6.7
HALC 30.0 11.4 17.3 7.4 13.8 55
Ours 21.8 8.1 16.4 5.9 115 4.2

Table 7: Experimental results of various methods with a 64 max new tokens setting on different LVLMs in the
MSCOCO-CHAIR dataset. Results are reproduced using the original papers and official code.

Method MiniGPT-4 LLAVA-Next
CHAIRs] CHAIR;] BLEUT | CHAIRs] CHAIR;]l BLEUT
Greedy 40.6 4.1 16.7 19.8 6.2 16.6
Nucleus 34.0 12,5 17.3 23.0 7.9 16.3
TopK 35.0 12.5 17.1 212 7.1 16.4
Beam 322 11.9 17.1 15.5 55 16.8
DoLa 31.8 11.6 17.0 17.8 6.1 16.8
VCD 35.7 13.8 18.1 21.4 73 16.4
OPERA 36.4 12.7 17.0 17.8 6.1 16.8
HALC 343 11.8 16.8 16.6 6.3 16.7
Ours 21.0 8.2 162 14.1 47 162

Table 8: Experimental results of different methods on MiniGPT-4 and LLAVA-Next in the MSCOCO-CHAIR
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Figure 5: Performance of our method sampling times in
range of 2 to 5

Method Decoding Time
Greedy 3.90
HALC 89.88

CGD 19.13
Ours 27.68

Table 9: Comparison of time cost of different decoding
method. The parameters are configured to the official
settings.

parameters for each method are selected based on
their best performance. The results indicate that our
method achieves state-of-the-art hallucination mit-
igation while maintaining competitive generation
efficiency.

Based on the (Biber et al., 2000), nouns comprise
approximately 25% of generated words. Since
sentence-level decoding is independent, these steps
can be parallelized, enabling a tractable estimation
of time cost. Assuming an average sentence length
of m words, and that each sentence triggers one
additional CLIP evaluation, the average per-token
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time cost can be approximated as:

1
Tivim + 0.25 X (Tpivo + Tene) + ETCLIP

Here, T1y1,M denotes the time required for the
base vision-language model to decode one token.
The term 0.25 X (Tpino + Terip) reflects the fact
that roughly 25% of tokens (nouns) are grounded
using DINO and undergo additional CLIP valida-
tion, while the %TCLIP accounts for sentence-level
scoring applied once per sentence.

In practice, since Tpino and Tcrp are signif-
icantly smaller than 71y1,Mm, the overall time cost
is close to standard greedy decoding. Therefore,
despite the integration of two alignment modules,
the expected runtime overhead remains minimal
due to both their low per-call latency and the paral-
lelizable nature of the added operations.

D CHAIR Results

We conduct CHAIR experiments on other main-
stream LVLMs, including Minigpt4 (Zhu et al.,
2023) and LLAVA-Next (Team, 2024), which
are less commonly used with CHAIR compared
to models such as LLAVA-1.5, Instructblip, and
mPLUG-OwI2. For Minigpt4, we use Llama2 as
its large language model, and for LLAVA-Next, we
use the Vicuna-7B version?. The experimental re-
sults are shown in Table B.1. These experiments
demonstrate the generalizability of our method,

2https://huggingface.co/liuhaotian/llava—v1.
6-vicuna-7b
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Greedy | Rel Attr Obj | CHAIRs CHAIR; Order Method | 1nstructBLIP | mPLUG-OwI2 | LLAVA-L5
v 470 3.6 c_p  c Db lc b
Greedy | 4.63 512 | 525 562 | 605 6.07

v 474 13.6 Original Order Ours 573 589 | 5.63 5.61 6.14  6.28

v 46.6 13.9 Difference | +1.10  +0.77 | +0.38  -0.01 | +0.09 +0.17

v 22.2 5.8 Ours 642 596 | 602 587 | 639 64

Reverse Order Greedy 4.3 509 | 495 58 585 6.14

Difference | +2.17 +0.87 | +1.07 +0.07 | +0.54 +0.26

Table 10: Comparison of CHAIRg and C HAI Ry for
different DINO inputs, Bold values represent the best
results.

highlighting its ability to mitigate hallucinations
even when applied to more advanced models.

E Ablation Study and Analysis

We also conduct experiment on different granu-
larity inputs for DINO, which contains object, at-
tribute and relation. The experimental results are
presented in Table 10. Our analysis reveals that
DINO struggles to effectively localize attribute
and relation, resulting in excessive meaningless
grounding.

F Algorithm

We summarize the process of our method in Algo-
rithm 1.

Algorithm 1 Our method’s Algorithm

Input: LVLM parameterized by 6, sampling times k, candi-
dates number NV, weight hyperparameter «, image input Zimg
and text prompt So
Parameter: 0, k, N, o
Output: y
:Lett =0
: SETo « {{Input(Ximg, o) )}
: while SET; is not empty do
SET; 41 < 0
for all candidate in SET; do
repeat
Sample s ~ LVLMp (s¢+1]x, So, $1, - - -, Sij)
F(Timg, Sij) = (1-0a) (gDINo(inmg7 Sij) +
geup (Timg, Si5)) + o - fo(si;)
SET:4+1 < SET¢41 U {:E, S0, 51, - -
until £ times
end for
Rank SET1+1 by F(S)
SET:11 < Top N candidates in SET;11
t—t+1
: end while
: y = arg max(SET)
: return y

1
2
3
4.
5:
6.
7
8

-5 8ij}

G Comprehensive GPT-4V Assisted

Evaluation

Following the GPT-4V assisted evaluation pro-
posed by OPERA, we conduct experiments on
mainstream LVLMs such as LLAVA-1.5, Instruct-
BLIP, and Mplug-Owl2. Two aspects are evaluated:
correctness (C) and detailedness (D), both scored
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Table 11: Experimental results of comparing between
our decoding method and greedy decoding methods on
GPT4V-assist benchmark in OPERA paper. The “origi-
nal order” refers to the prompt where greedy captions
appear first, followed by our method’s captions. In con-
trast, the “reverse order” refers to the prompt where
our method’s captions appear first, followed by greedy
captions.

InstructBLIP | mPLUG-OwI2 | LLAVA-1.5
Order Method C D C ) C D

OPERA 525 579 | 555 5.82 597  6.09

Original Order Ours 6.02 6.05 | 556 5.81 6.03 6.18
Difference | +0.77 +0.26 | 40.01  -0.01 | +0.06 +0.09

Ours 577 6.02 | 6.00 6.5 6.19 6.4

Reverse Order | OPERA 563 570 | 5.14 5.58 599 639
Difference | +0.14 +0.32 | +0.86 +0.92 | +0.20 +0.01

Table 12: Experimental results of comparing between
our decoding method and OPERA decoding method
on GPT4V-assist benchmark. The “original order”” and
“reverse order” correspond to the same content as de-
scribed in Table 11.

by GPT-4V. Since we observe that GPT-4V tends to
assign higher scores to captions presented second in
sequence, we construct prompts in both orders: the
original prompt order, as used in OPERA’s official
code, where baseline captions appear first followed
by our method’s captions, and the reverse prompt
order, where our method’s captions appear first fol-
lowed by baseline captions. Experimental results
from Table 11 to Table 13 demonstrate that our
method outperforms existing approaches in both
hallucination mitigation and generation quality.

H Case Study

We present case studies on hallucination mitigation
using the COCO 2014 validation dataset, as shown
in Figure 6. The table compares captions gener-

InstructBLIP | mPLUG-Owl2 | LLAVA-1.5
Order Method C D C ) C )

HALC 6.05 628 | 6.03 6.18 521  4.89

Original Order Ours 6.14 6.07 | 597 6.13 6.13 6.41
Difference | +0.09 -0.21 | -0.06  -0.05 | +0.92 +1.52

Ours 639 6.14 6.5 6.19 642  6.38

Reverse Order HALC 585 640 | 599 6.39 498 493
Difference | +0.54 -0.26 | +0.51 -0.20 | +1.44 +1.45

Table 13: Experimental results of comparing between
our decoding method and HALC decoding method on
GPT4V-assist benchmark. The The “original order”
and “reverse order” correspond to the same content as
described in Table 11.
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The image features a
delicious breakfast plate
filled with various fruits
and waffles. The plate is
placed on a dining table,

and it contains a generous
portion of blueberries,
apples, and bananas. The
fruits are spread across the
plate, with some blueberries
on the left.

The image features a
delicious breakfast plate
filled with various fruits and
waffles. The plate is placed
on a dining tablecloth, and it
is adorned with a blue floral
pattern. The breakfast
consists of two waffles,
each topped with
blueberries and apples.

The image shows a plate filled
with delicious food consisting of
pancakes topped with sliced
apples, blueberries, and syrup.
The blueberries are spread out
across the plate, with some
closer to the center and others
closer to the edges. This
combination of flavors is not
only visually appealing but also
looks like a tasty and healthy
breakfast option.

The image displays a plate of
delicious food, containing waffles,
fruit, and syrup on a dining table.
The waffles are garnished with
fresh blueberries, adding a touch
of color and flavor to the dish.
There are multiple blueberries on
the plate, distributed evenly
throughout the waffles. The
presentation of this scrumptious
breakfast is quite appetizing and
inviting.

The image features a
woman with short hair,
wearing a black shirt, and
holding a banana in her
mouth. She appears to be
making a funny face while
eating the banana. The
woman is standing in a
kitchen, with a refrigerator
visible in the background.

The image features a
woman with short hair,
wearing a black shirt, and
holding a banana in her
mouth. She appears to be
making a funny face while
eating the banana. The
woman is standing in a
kitchen, with a refrigerator
visible in the background.

In the image, a woman is sitting
in a kitchen, chewing on a
banana. She is leaning back with
the banana in her mouth, and her
eyes are closed. In the
background, there is an oven and
a microwave visible, which are
likely part of the kitchen
appliances. Additionally, a knife
can be seen placed nearby on the
counter.

She is wearing a black shirt and is
holding a half-eaten banana in her
mouth. The woman is looking at
the camera, showcasing her
unique style and humor. In the
background, there are a few
kitchen items visible. An oven is
placed near the top left corn is
placed near the top left corner of
the scene, and a cup is located on
the right side.

The image depicts a small,
cluttered kitchen with a
wooden dining table

§ surrounded by chairs. The

table is covered with papers,

| land there are several chairs

placed around it. A
refrigerator is located on the|
left side of the room, and a
microwave can be seen
above.

The image depicts a small,
cluttered kitchen with a
\wooden dining table
surrounded by chairs. The
table is covered with papers,
and there are several chairs
placed around it. A person is
standing near the table,
possibly working on the
papers.

The image depicts a large
residential garage turned into a
multipurpose room, featuring
\various appliances and furniture.
There is a refrigerator on the left
side of the room, surrounded by
numerous chairs and dining
tables. Some of the chairs are
closer to the refrigerator, while
others are situated around the
dining tables.

The image depicts a small home
office space, likely an unfinished
garage, set up for various
activities. It is equipped with a
refrigerator situated on the left
side of the room and a white table
in the center. The table is
surrounded by four wooden chairs,
\with two chairs positioned on the
left side, one on the right side, and
one chair at the head of the table.
A variety of objects and supplies
can be found throughout the space.

The image features a
woman standing in front of
a video game display,
possibly at a convention or
a store. She is wearing a
white shirt and appears to
be observing the game. The
display consists of a large
TV screen and a Wii
console, with a remote
control placed nearby. A
chair is positioned in the
background, and a handbag
can be seen placed on the
floor.

The image features a
'woman standing in front of
a video game display,
possibly at a convention or
a store. She is wearing a
\white shirt and appears to
be observing the game. The
display consists of a large
TV screen and a Wii
console, with a man's image
on the screen. There are also|
la few chairs in the area,
with one located near the
center of the scene and
lanother towards the right
side. A chair is also present
in the background.

IThe scene features a person
standing in front of a video game
display, which includes a
Nintendo Wii gaming console
with a TV screen attached. The
display is set up in a booth-like
area to attract visitors, and there
is a person positioned in the
background of the display,
potentially working behind the
counter. A chair is positioned in
the background, and a handbag
can be seen placed on the floor.

The image displays a busy event
featuring a large screen in the
center, which appears to be a
Nintendo Wii game. Numerous
individuals can be seen playing
games at the event, with some
standing around and enjoying the
experience. The main display
features a black and white image
of a man playing with a Nintendo
\Wii, likely on a television screen
or a large monitor. A row of
figures, representing the Wii
players, are also present, likely set
up on the front of the screen for an

interactive element at the event.

Figure 6: A comparison of text generated by Greedy Search, HALC, CGD, and our proposed method, using
examples from the COCO 2014 validation dataset with LLaVA-1.5. The hallucinated parts are highlighted in red.

ated by Greedy, HALC, CGD, and our proposed
approach for the images in the leftmost column.
Notably, our method generates longer and more
detailed captions. Hallucinated content in the de-
scriptions is highlighted in red.
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