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ABSTRACT

Deep noise suppression (DNS) models enjoy widespread use throughout a variety
of high-stakes speech applications. However, we show that four recent DNS mod-
els can each be reduced to outputting unintelligible gibberish through the addition
of psychoacoustically hidden adversarial noise, even in low-background-noise and
simulated over-the-air settings. For three of the models, a small transcription study
with audio and multimedia experts confirms unintelligibility of the attacked au-
dio; simultaneously, an ABX study shows that the adversarial noise is generally
imperceptible, with some variance between participants and samples. While we
also establish several negative results around targeted attacks and model transfer,
our results nevertheless highlight the need for practical countermeasures before
open-source DNS systems can be used in safety-critical applications.

1 INTRODUCTION

Deep neural networks (DNNs) have found widespread use in speech denoising tasks (herein consid-
ered synonymous with speech enhancement and noise suppression). With existing usage in video-
conferencing software (Cutler, 2022) and speech recognition systems (Milling et al., 2024), and
potential future usage in hearing aids (Westhausen et al., 2024), the robustness of such deep noise
suppression (DNS) models is clearly of paramount concern.

However, it is well-documented that DNNs are often susceptible to adversarial perturbations—slight
modifications to the input data that are subtle or imperceptible to humans, but which can lead to
dramatically incorrect outputs from DNNs (Szegedy et al., 2014). This vulnerability has been ex-
tensively studied in domains such as automatic speech recognition (ASR) (Carlini & Wagner, 2018;
Schönherr et al., 2018; Qin et al., 2019) and speaker recognition (Gong & Poellabauer, 2017; Wang
et al., 2020), where attacks induce the models to mistranscribe speech or misclassify speakers.

Given their ubiquity and the vulnerability of similar models, we therefore posit that DNS models
might also be appealing targets for adversarial attacks. For example, consider a person whose hear-
ing aids run an open-source DNS model with publicly available weights. Many public-address sys-
tems rely on fixed phrases (“This is an emergency”, “Fire”, medication reminders, gate announce-
ments); perhaps a carefully crafted, imperceptible perturbation broadcast in the wearer’s vicinity
could suppress or garble just those phrases, preventing the user from hearing an evacuation order or
life-saving alert. In such scenarios, even an attack surface confined to a few canonical utterances is
enough to pose health- and safety-critical risk. Yet this scenario might seem to present limited dan-
ger: DNS models are designed to remove noise, and prior attacks on speech enhancement models
were perceptible, limited to high-noise settings, and might not work over-the-air (Dong et al., 2023).

To the contrary, we show that, across a variety of settings, psychoacoustically hidden noise can
cause four recent DNS models to output unintelligible gibberish, thus raising urgent security
concerns for such open-source DNS models (Schönherr et al., 2018; Defossez et al., 2020; Chen
et al., 2022; Zhao et al., 2022b; Lu et al., 2024). The success of our attacks varies little by setting,
such as the presence and strength of reverb and normal background noise, and we demonstrate
attacks in simulated over-the-air settings. While our attacks are white-box, and we find that naive
model transfer fails, this is cold comfort: gradients are always available in open-source DNS models.

We also identify some areas for optimism. First, attacks appear to work best when designed for
only a single utterance from the speaker; similar to other audio tasks (Neekhara et al., 2019; Abdoli
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et al., 2019; Zhang et al., 2021; Sun et al., 2024), imperceptible universal perturbations (Moosavi-
Dezfooli et al., 2017) are not yet possible in this domain. Second, we find that one of the models
we test, Full-SubNet+ (Chen et al., 2022), enjoys limited protection from white-box attack due to
exploding gradients, though previous research suggests this is easily circumvented (Athalye et al.,
2018). Third, targeted attacks may succeed according to objective metrics without subjectively
producing the target utterance. Finally, simple Gaussian perturbation appears to be a moderately
effective baseline defense; nevertheless, the prior success of adaptive attacks (Tramer et al., 2020)
highlights that safety-critical DNS systems will need more sophisticated defenses.1

Contributions.

1. First systematic study of imperceptible adversarial attacks on speech denoising models. Contrary
to prior image–denoising results, we show that four state-of-the-art DNS models can be driven
to produce unintelligible outputs by perturbations that are psychoacoustically hidden, in speech
settings ranging from nearly-clean (70 dB SNR, no reverb) to noisy and reverberant. We also
show that auditory masking offsets allow easy tuning of power versus imperceptibility (App. D).

2. Evidence: Human study, comprehensive computational measurement, and samples. We demon-
strate the success of our core untargeted attacks using three complementary approaches: a) tran-
scription and ABX studies with audio/multimedia experts; b) five distinct computational metrics;
c) online samples to allow the reader to evaluate subjective imperceptibility and attack success.

3. Masking- and RIR-aware attack framework. We show that clipping to auditory masking thresh-
olds in STFT space offers a ready-made projection operator for projected gradient descent (Madry
et al., 2018). To ensure imperceptibility in simulated over-the-air experiments where the perturba-
tion itself is convolved with a non-invertible room-impulse response, we evaluate a combination
of Wiener deconvolution and gradient descent-based projection.

4. Mechanistic insights: Gradient flow matters more than model size and input features. We show
that, contrary to common wisdom (Madry et al., 2018), the size of the models we test matters
little for robustness; instead, the only protection we find comes from obfuscated gradients in
Full-SubNet+ (Chen et al., 2022), protection which is known to be brittle (Athalye et al., 2018).

5. Practical threat analysis. Attacks are model- and utterance-specific and require gradient access,
but successful over-the-air white-box attacks still preclude the deployment of open-source models
in safety-critical applications such as hearing aids without additional defenses. We also quantify
the partial protection offered by Gaussian perturbation as a baseline defense.

2 RELATED WORK

Adversarial perturbations for audio models. Adversarial perturbations originated in image clas-
sification (Szegedy et al., 2014) and subsequently extended to various DNN-based audio tasks. Like
visual attacks, audio perturbations are most commonly studied in classification tasks such as speaker
recognition (Gong & Poellabauer, 2017; Zhang et al., 2020; Wang et al., 2020; Chen et al., 2021; Jati
et al., 2021; Xie et al., 2021; Shamsabadi et al., 2021; Chen et al., 2023; Li et al., 2020), speaker ver-
ification (Kreuk et al., 2018; Zhang et al., 2021), environmental sound classification (Abdoli et al.,
2019; Xie et al., 2021; Ntalampiras, 2022), and speech command recognition (Zhang et al., 2017;
Xie et al., 2021).

Successful attacks also target audio models with discrete outputs, like ASR systems (Cisse et al.,
2017; Alzantot et al., 2018; Carlini & Wagner, 2018; Schönherr et al., 2018; Qin et al., 2019;
Neekhara et al., 2019; Sun et al., 2024; Jin et al., 2024). This work includes demonstrating im-
perceptible targeted attacks that force ASR systems to output attacker-chosen transcriptions.

The success of attacks on complex tasks like ASR raises questions about the vulnerability of models
with continuous audio outputs. However, research on attacking generative audio models is limited.
Takahashi et al. (2021) and Trinh (2022) demonstrated vulnerability in speech separation models,
though the required perturbation perceptibility remains unclear. Dong et al. (2023) first attacked
speech-enhancement networks, but their study left open questions regarding: (i) Imperceptibility.
They used ∞-norm-bounded, audible perturbations; we use strict psychoacoustic masking (with

1Samples are available online.
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pre/post masking and a −12 to −16 dB offset) for imperceptible samples. (ii) Attack goals. Their
attacks were untargeted; we analyze both intelligibility destruction and targeted utterance injection.
(iii) Real-world coverage. Their experiments covered limited conditions ([-8,8] dB SNR, no reverb,
two models). We test four open-source DNS models in diverse conditions (near-clean to noisy,
with/without reverb, simulated over-the-air), and report on transferability, universal perturbations,
and defenses. Our work thus generalizes and significantly extends the threat landscape they outlined.

Imperceptible audio perturbations. Prior work highlights the complexity of ensuring impercepti-
ble audio perturbations. Standard image perturbations are constrained by p-norms (initially 2-norm
(Szegedy et al., 2014; Fawzi et al., 2018), now often ∞-norm (Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2017)). User studies suggest these norm constraints yield imperceptible perturbations
for classification tasks like speaker verification (Kreuk et al., 2018), and for weaker ASR attacks
(e.g., untargeted, single-word attacks (Cisse et al., 2017; Alzantot et al., 2018)).

However, recent work indicates norm-constrained perturbations may lack capacity for stronger
sentence-level targeted ASR attacks (Schönherr et al., 2018; Qin et al., 2019), prompting the use
of psychoacoustic models for masking. Yet, even psychoacoustically masked perturbations can be
shown perceptible in user studies, implying that difficult attacks still push perceptually solid con-
straints to their limits. For our attacks, we therefore enhance existing models (§4.2).

3 BACKGROUND

We study the existence of adversarial perturbations for DNS models. As background, we first re-
view the standard behavior of DNS models and important characteristics of the models we study. We
then formally state the definition of adversarial perturbations for DNS models, and review auditory
masking, a perceptibility constraint for audio attacks (Schönherr et al., 2018; Qin et al., 2019).

3.1 SPEECH DENOISING

The primary goal of speech denoising models is to remove background noise from a speech signal
(Defossez et al., 2020; Chen et al., 2022; Zhao et al., 2022b; Lu et al., 2023; 2024). In some cases
(Defossez et al., 2020), but not all (Chen et al., 2022; Zhao et al., 2022b; Lu et al., 2023), the model
is also trained to dereverberate signals that have been distorted by the environment or microphone.

Concretely, in this paper, speech denoising models are functions f : Rn → Rn which map to and
from the space of audio waveforms. We model the denoising model’s input as some clean speech
y ∈ Rn, mixed additively with some (possibly zero) background noise b ∈ Rn, and (optionally)
convolved with some room impulse response (RIR) r ∈ Rm: x = r ∗ (y+ b). (Note that some work
only convolves the speech with r (Zhao et al., 2022b); in this paper, we convolve both speech and
background noise.) Given this input, the model produces f(x) = ŷ, where ŷ is as close to either y
or r ∗ y as possible. For consistency with past benchmarks (Dubey et al., 2024), and because we do
not attempt to evaluate healthy model behavior, we assume that the model attempts to infer y.

3.1.1 MODELS

We test the robustness of four recent open-source DNS models with publicly available checkpoints:
Demucs, published online as Denoiser (Defossez et al., 2020); Full-SubNet+ (Chen et al., 2022);
FRCRN (Zhao et al., 2022b); and MP-SENet (Lu et al., 2023; 2024). The models we study operate
in either the time domain (waveforms) or the time-frequency (TF) domain (STFT spectrograms) (Lu
et al., 2023); see Table 1. Note that FSN+, FRCRN and MP-SENet do not attempt to dereverberate:
they infer r ∗ y instead of y. For exact checkpoints and detailed architectural notes, see Appendix E.

3.2 ADVERSARIAL PERTURBATIONS

Given the definition of speech denoising given in §3.1, an adversarial perturbation for some input
x = r ∗ (y+ b) is any δ ∈ Rn such that x+ δ 7→ y′, where (a) y′ is undesirable and (b) x+ δ sounds
identical to x. To make these notions concrete, we distinguish untargeted and targeted attacks.

Untargeted attacks. Here, we assume that the attacker has a loss function L : Rn × Rn → R, and
they wish to maximize the value of L(y′, y). They do so by selecting δ from a set of perturbations
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which are imperceptible when added to x, a feasible set which we refer to as D(x). Thus, the
adversary in an untargeted attack wishes to find δ∗ ∈ argmaxδ∈D(x) L (f(x+ δ), y) .

Targeted attacks. In this case, the attacker has a target output y′ that they wish to cause f to output.
We model this as the attacker wishing to minimize the loss L(f(x+ δ), y′), i.e., the adversary wants
δ∗ ∈ argminδ∈D(x) L (f(x+ δ), y′) .

Over-the-air attacks. In an over-the-air attack, the adversarial perturbation is distorted by
the room’s acoustic characteristics and received through a microphone. As these distortions
are assumed to be applied equally to all audio, this is generally simulated by applying the
given RIR to the perturbation δ as well as speech y and background noise b (Qin et al., 2019;
Schönherr et al., 2020). For example, the untargeted attack becomes the problem of finding
δ∗ ∈ argmaxδ∈D∗(x) L (f(r ∗ (y + b+ δ)), y) , where D∗ is all perturbations that are impercepti-
ble after all audio, including the perturbation, is convolved with r.

3.3 AUDITORY MASKING

We use a perceptibility constraint based on auditory masking, also known as psychoacoustic hiding:
(Lin & Abdulla, 2015; Schönherr et al., 2018; Qin et al., 2019): by varying the loudness constraint on
the perturbation according to how loud the original signal is across different time segments and fre-
quency bands, the perturbation can be effectively hidden in the original signal. This is accomplished
through the computation of masking thresholds θτ,ω on the power spectral density (PSD) matrix of
the perturbation, such that any audio whose PSD is upper-bounded by these masking thresholds is,
in principle, imperceptible by humans. Expanding on the auditory masking algorithms used in this
prior work, we apply several enhancements to the threshold calculation to maximize attack power
and minimize perceptibility; see §4.2.

4 METHOD

Most of the perturbations we study can be characterized as instantiations of the attacks shown in
§3.2, given varying settings of f , y, b, r, L, D, and y′. Here, we discuss L, D, and optimization.

4.1 OPTIMIZATION OBJECTIVE

In this work, we used Short-Term Objective Intelligibility (STOI) (Taal et al., 2011) as the loss
function L for both targeted and untargeted attacks. STOI is open-source and differentiable, and
hewed closely to our perceptions of intelligibility in untargeted experiments.

While mean-squared error (MSE) is widely used in comparable image tasks and has been success-
fully employed in prior attacks on generative audio models (Takahashi et al., 2021; Dong et al.,
2023), it remains an unreliable metric for intelligibility. It suffers from a lack of several detailed
desiderata; for example, it is strongly phase-dependent, meaning that simply delaying the audio by
a few milliseconds can cause very large MSE but almost no loss in intelligibility. Nevertheless, the
central issue with MSE is that it is simply not designed to be an intelligibility metric; in our experi-
ments, attacks would often achieve a large (untargeted) MSE by simply inducing the DNS model to
fail to remove noise, rather than rendering the speech unintelligible.

We could not use Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001), a notable
intelligibility metric, as its license owners did not grant us an academic license for this project.
However, real adversaries would of course face no such ethical or legal concerns.

Finally, we also considered DNN-based intelligibility metrics such as DNSMOS (Reddy et al.,
2022), NISQA (Mittag et al., 2021), and the word error rate (WER) of Whisper (Radford et al.,
2022). While such metrics were reasonably effective as unoptimized metrics for attack success,
we found empirically that they work poorly as objectives, as the attack simply learns to induce the
model to output adversarial noise against the metric network.
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4.2 PERCEPTIBILITY CONSTRAINT ENHANCEMENTS

Our precise procedure for computing the masking thresholds is almost identical to the MP3 psy-
choacoustic model as described by Lin & Abdulla (2015) and used by Schönherr et al. (2018) and
Qin et al. (2019), with the following changes: (a) for simplicity, we calculate the PSD of the input
audio by normalizing to [-1, 1] and converting to dB SPL explicitly, rather than setting the maximum
bin to equal 96; (b) we enhance the psychoacoustic model with temporal pre- and post-masking, as
described by Lin & Abdulla (2015) (see Appendix A for details); (c) because prior studies have
found even attacks generated according to these masking thresholds to still be detectable by humans
(Schönherr et al., 2018; Qin et al., 2019), we restrict our attacks further by shifting all masking
thresholds down by 12 dB. We combine thresholds from contemporaneous masking and pre- and
post-masking by taking the maximum between each. See Appendices A and B for details.

4.3 OPTIMIZATION ALGORITHM

We use projected gradient descent (PGD; Madry et al. 2018) to find the perturbation δ∗:

δt+1 = ΠD(x) (δt + α∇δtL (x+ δt)) , (1)

where Π is the projection operator. Fortunately, the projection step is straightforward when using
auditory masking on unreverberated perturbations (see §4.4 for details on reverberated perturbation
optimization). If δ̃τ,ω is the STFT spectrogram of δ at frame τ and frequency bin ω, then we clip
the magnitude of δ̃τ,ω such that PSD(δ)τ,ω ≤ θτ,ω while preserving its phase. See Appendix B for
details. We also tested Lagrangian dual descent, a variant of which was used by Qin et al. (2019),
and the fast gradient sign method (Goodfellow et al., 2015), but these did not perform as well.

4.4 ADDITIONAL EXPERIMENTAL METHODS

Optimization in Simulated Over-the-air Attacks. We simulate over-the-air attacks in a specific
acoustic environment by applying the given RIR to the adversarial perturbation as well as to the
clean speech and background noise (see §3.2). Doing so dramatically increases the difficulty of the
optimization problem, as the projection step in (1) no longer has a closed-form solution: rather than
directly clipping δ, we must instead solve for some δ such that PSD(r ∗ δ)τ,ω ≤ θτ,ω .

We explore three methods to find such a δ: Wiener deconvolution, manual projection through gradi-
ent descent, and a combination of both. See Appendix C for details.

Targeted Attacks. We test three types of targets for targeted attacks: speech samples from the same
speaker, speech samples from different speakers, and artificial targets generated using voice cloning
systems such as MaskGCT Wang et al. (2024a). For all target types, our attack objective is the STOI
of the model’s output versus the clean speech minus the STOI of the model’s output versus the target
speech, maximizing the relative intelligibility of the target speech.

Defenses. Prior work has investigated a wide range of defenses against adversarial audio pertur-
bations, from pre-processing steps like randomized smoothing (Subramanian et al., 2019; Olivier
& Raj, 2021), purification (Wu et al., 2023), and adversarial example detection (Yang et al., 2019;
Hussain et al., 2021), to more involved defenses like adversarial training (Sallo et al., 2021). In
this paper, we evaluate the simplest of these defenses: Gaussian noise applied to the attacked audio,
normalized to various SNRs.

Universal Adversarial Perturbations. While most of our experiments focus on attacking a single
known input, we also explore the existence of universal adversarial perturbations (UAPs): individual
perturbations that lead one or more models to misbehave on multiple inputs (Moosavi-Dezfooli et al.,
2017; Abdoli et al., 2019; Neekhara et al., 2019; Xie et al., 2021; Zhang et al., 2021; Sun et al.,
2024). We design UAPs for DNS models under the assumption that the background noise b and RIR
r remain the same for varying clean speech samples yn, and calculate DU =

⋂
n D(r∗(yn+b)) (i.e.,

take the minimum of the different masking thresholds). To train the attack, we iteratively execute
one step of PGD sequentially on each input r ∗ (yn + b).
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Figure 1: Untargeted intelligibility degradation. Dashed curves show the DNS models’ baseline
STOI improvement ∆STOI = STOI(clean, output) − STOI(clean, input); solid curves show the
same quantity after adding an imperceptible perturbation. Values flip from >0 to <0 upon addition
of adversarial noise across environmental settings, meaning the attack pushes speech from “cleaner
than input” to “less intelligible than the noisy input itself.” Error bars: ± s.e. over 20 seeds.

5 EXPERIMENTS

In our computational experiments, we focused on answering the following questions: a) Are DNS
models susceptible to adversarial noise, or do they denoise that successfully as well? b) In which
use cases (amount of noise, reverb, etc.) are the models we study vulnerable to adversarial attacks?
c) How does adversarial robustness vary by model, and which model characteristics seem to cor-
relate with robustness? d) Can attackers induce the model to output a target utterance, as in the
case of ASR transcriptions, or are they limited to untargeted attacks? e) Do imperceptible univer-
sal adversarial perturbations exist, or does the attacker need to know what the speaker will say?
f) Do attackers need to have access to model gradients in order to successfully attack these models?
g) Are sophisticated defenses (e.g., adversarial training) necessary, or is Gaussian perturbation good
enough? h) Are real, over-the-air attacks possible in principle, or is this setting too difficult? i) How
does our perceptibility constraint trade off against attack success as we tighten it (Appendix D.3)?

5.1 EXPERIMENTAL DETAILS

Datasets. All audio samples – speech, noise, and RIRs – were taken from the main track of the
ICASSP 2022 DNS Challenge 4 (Dubey et al., 2022). Ten-second clean speech samples were se-
lected randomly from English read speech (as noted by Dubey et al. (2022), collated from Lib-
riVox.org) and VCTK Corpus (Yamagishi et al., 2019). Audio was clipped to five seconds for
MP-SENet due to insufficient VRAM. We filtered speech to contain at least 15 words according to
Whisper. See Appendix E for more details.

Metrics. In addition to STOI, we evaluated attacked audio and the model outputs using ViSQOL
(Hines et al., 2015), an intrusive (binary with ground-truth) and unlearned metric; two non-intrusive
deep metrics, NISQA (Mittag et al., 2021) and DNSMOS (Reddy et al., 2022); and word accuracy
(de Oliveira et al., 2023) using the ASR model Whisper (Radford et al., 2022). See Figure 2.

Attacks. All combinations of environment setting (background SNR and reverb/no reverb) and
model choice were run for 20 shared seeds. The attack lasted for a different number of iterations
for each model, chosen to ensure that the entire attack (including metric computation) lasted for
about one hour on an Nvidia L40S GPU. In particular, this allowed 20,000 iterations for Demucs
and FSN+, 10,000 iterations for MP-SENet, and 5,000 iterations for FRCRN.

5.2 RESULTS AND DISCUSSION

Figure 1 demonstrates our fundamental result: all DNS models we tested could be induced to output
far worse-quality audio than the input through the addition of imperceptible adversarial noise, and
indeed, all models could be reliably (or often, in the case of FSN+) reduced to outputting gibberish.
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(b) Over-the-air attack

Figure 3: Real-world implications: defenses and over-the-air attacks. (a) Adding moderate
Gaussian (“white”) noise to the attacked input partially smooths out adversarial perturbations, rais-
ing STOI but not restoring clean performance. (b) When perturbations are trained and tested under
a simulated room impulse response, they still cripple every model except FSN+. Curves show
∆STOI = STOI(clean, output)− STOI(clean, input); error bars: ± s.e. over 20 seeds.

Furthermore, the success of the attack was relatively invariant with respect to setting: all models
could be successfully attacked in all settings, including a setting which has almost no attack vector:
70 dB SNR noise with no reverb. Thus, we can answer question b): three out of four tested models
were completely susceptible in all settings, while FSN+ was fairly susceptible in most settings.

5.2.1 MODEL RESULTS

STOI ViSQOL NISQA DNSMOS ASR Acc.
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Figure 2: Normalized values of the five speech
intelligibility and quality metrics we test, av-
eraged across all models and settings of Figure
1 and 20 seeds, with s.e. error bars. “Output”
refers to model output given the attacked input.
ASR accuracy is computed as 1−min(WER, 1).
Ranges used for normalization were: STOI: [-1,
1]. ViSQOL: [1, 5]. NISQA: [0, 5]. DNSMOS:
[0, 5]. ASR accuracy: [0, 1]. ASR ground-truth
is Whisper applied to clean speech.

Figures 1 and 5 suggest that FSN+ is by far the
most resilient, FRCRN and Demucs have compa-
rable resilience, and MP-SENet is slightly more
susceptible. Surprisingly, though, the resilience
of FSN+ is not due to high-level architecture dif-
ferences such as domain or parameter count (see
Appendix D.1). Instead, the large difference be-
tween FSN+’s susceptibility and others was due
to the pseudo-robustness of exploding gradients
(Athalye et al., 2018): during the course of the at-
tack on FSN+, the gradient of the STOI loss with
respect to the adversarial waveform would often
grow to have a norm of 1030 or greater, caus-
ing numerical instability even with gradient clip-
ping. Therefore, FSN+ might be more vulnerable
to black-box attacks (Athalye et al., 2018).

5.2.2 SIMULATED OVER-THE-AIR ATTACKS

While the pseudo-protection of FSN+’s explod-
ing gradients was amplified in our simulated over-
the-air experiments, we discovered that all other
models are highly vulnerable to untargeted rever-
berated perturbations, despite the additional opti-
mization challenges in developing them (see Fig-
ure 3). However, the increased challenge of this
attack did require that we slightly loosen our per-
ceptibility constraint, reducing the masking thresholds by only 6 dB rather than 12 dB. While this
loosening still implies a tighter constraint than prior work, it did cause slight crackling to be audible
in the speech, though it would be difficult to distinguish from minor distortion in real settings.
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Figure 4: Human study. We ran transcription and ABX studies with 15 audio/multimedia re-
searchers using high-quality audio setups. The transcription task consisted of 18 random 5-second
samples (sampled once for all participants), including 6 attacked inputs, 6 model outputs given clean
inputs, and 6 model outputs given attacked inputs. Word accuracy (WAcc) results show that the
attacked input and clean output were reasonably intelligible, while the attacked output was unintel-
ligible. The ABX task consisted of 12 pairs of 5-second samples (also common across participants),
each consisting of a clean sample and its attacked counterpart, as well as two attention checks each
consisting of a pair of clean and aggressively attacked audio. For both plots, we show 95% two-way
bootstrap CIs (Owen, 2007); for the ABX study, we plot participant-wise marginal accuracies (i.e.,
averaged across samples). ABX results show that the average participant’s accuracy is insignifi-
cantly above the random chance baseline of 50%, with substantial variance.

5.2.3 MIXED AND NEGATIVE RESULTS: TARGETED ATTACKS, UAPS, TRANSFER

We found that the answers to questions d), e), and f) are currently negative for the attacker; see
Appendix D.2 for full details.

5.2.4 DEFENSES

We discovered that simple Gaussian perturbation offers reasonable protection against adversarial
perturbations, though only when applied at a low enough SNR to damage model performance (Fig-
ure 3; note that a STOI enhancement of 0 is slightly lower than the unattacked average of ∼ 0.044).
However, we do not assume adaptation by the attacker; knowledge of this defense would likely allow
the attacker to train more noise-resistant perturbations (see, e.g., Tramer et al. (2020) for an example
of such adaptive attacks in image classifiers), emphasizing a need for more sophisticated defenses.

6 HUMAN STUDY

Participants & ethics. We recruited 15 adult audio/multimedia researchers from an industrial re-
search lab. Participation was voluntary and conducted during paid working hours; no additional
compensation was provided. Under the host institution’s policy for minimal-risk studies, our study
did not require formal IRB/ethics review. All participants provided informed consent and could
withdraw at any time, and no personally identifying information or audio recordings were collected;
we stored only anonymized task responses and timestamps.

Tasks and protocol. Each participant completed two tasks in a fixed order: (1) transcription and (2)
ABX discrimination. Participants could take as long as they wished, though tasks were designed to
be completed in less than 25 minutes. Once a participant advanced from transcription to ABX, they
could not return to transcription. Participants typically use high-quality headphones in their day-to-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

day work; we recommended (but did not enforce) headphone use. Participants were instructed to
leave transcription boxes blank if no intelligible speech was detected.

Stimuli and conditions. All stimuli were 5 s clips cropped from the same datasets as in the com-
putational study (pilot feedback indicated 10 s was too long to transcribe or compare reliably). We
filtered candidate clips to contain at least 10 words and to use only the 2,000 most common English
words to reduce ESL burden, again thanks to pilot feedback. We used two background conditions
designed to mimic common listening scenarios: 30 dB and 50 dB SNR with reverberation. We eval-
uated Denoiser, FRCRN, and MP-SENet in the human study in the human study; Full-SubNet+ was
excluded here because our computational evaluation did not yield successful attacks for it.

Attacks. Attacks were conducted as in the computational study, here using the tight psychoa-
coustic masking constraint (App. E).

Measures and analysis. For transcription we report word accuracy (WAcc; 1 – WER), calculated
without any equivalencies besides uppercase–lowercase. For ABX we report accuracy versus the
50% chance baseline. For confidence intervals, we use 95% two-way bootstrap intervals (a.k.a.
pigeonhole bootstrap intervals; Owen, 2007), a model-free alternative to generalized linear mixed
models (GLMMs) for data with crossed effects. Note that, because samples were shared between
participants, naive bootstrap and the Student’s t-test would not be appropriate statistical tests, as they
would underestimate variance.

Results. Transcription WAcc (Figure 4a) shows that the Attacked Output had near-zero intelligi-
bility, while both the Attacked Input and Clean Output were reasonably intelligible. In particular,
an intersection-union test indicates that the attacked output was significantly less intelligible than
both the attacked input and clean output (95% upper bounds on the mean differences of -0.464 and
-0.458, respectively; see Appendix F for details).

ABX accuracy (Figure 4b) had a mean of 59%, marginally above chance, but with substantial vari-
ance between participants and samples. The mean was not significantly different from 50% accord-
ing to a one-sided 95% pigeonhole bootstrap test (lower bound: 0.478). While other less conserva-
tive statistical tests (e.g., a Wald test with a GLMM) might conclude significance, the present results
offer preliminary support for the subjective imperceptibility of our attacks.

7 CONCLUSION

In this paper, we show for the first time that DNS models are susceptible to imperceptible adversarial
attacks in a wide variety of simulated settings: through the addition of adversarial noise hidden in
the original input signal, all of the models we study can be induced to output audio with almost
no resemblance to either clean or noisy speech. Our attacks generalize to a wide variety of settings,
including simulated over-the-air attacks and attacks with no background noise or reverb, and suggest
that subjectively effective targeted attacks may be enabled by better optimization targets (Appendix
D.2). Finally, our human study validates that our attacks are generally imperceptible, and the outputs
generally unintelligible, even to audio experts.

Our results have several important limitations and caveats. First, the DNS model Full-SubNet+
(FSN+) is partially protected from gradient-based attacks due to its exploding gradients, though this
pseudo-defense is generally easily overcome by determined adversaries (Athalye et al., 2018). Sec-
ond, our attacks all rely on gradient access for now, as we showed model transfer to be ineffective for
the adversarial perturbations that we found. Third, we only attack fully differentiable DNS models;
token-based DNS models (Wang et al., 2024b) will require new techniques to attack. Finally, our
attacks require that the target utterance is known in advance.

Nevertheless, we hope to convince the research community that open-source DNS models are both
an appealing and feasible target for attack, with the potential to incapacitate live audio streams,
speech recognition systems, hearing aid users, and more. With simple defenses such as white noise
only offering limited protection, we urge researchers to evaluate further models in more lifelike
settings and develop and apply better defenses before attackers exploit these critical weaknesses.
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Dual-use adversarial robustness research. This paper demonstrates research into the adversar-
ial robustness of DNS models, including methodological advancements in adversarial perturbation
generation. However, we believe the security utility of our present work outweighs any utility it
could provide to real-world adversaries. First, the focus of the study is on precisely characterizing
long-standing vulnerabilities so as to spur future research rather than providing methods for over-
coming existing defenses. Second, we indeed document that there are several further steps required
for an attacker before successfully applying the present methods to a real-world scenario, including
extending the simulated over-the-air attacks shown here to real over-the-air scenarios. Finally, we
show that simple, easily implemented defenses such as Gaussian perturbation are effective against
naive attacks, thus leaving the immediate advantage with a well-informed defender.

Human subjects. The present paper also describes a small human study with 15 industry re-
searchers. Participation was purely voluntary during business hours, with compensation only in
the form of their existing salary; explicit consent was collected before each participant began the
study; the study consisted purely of audio tasks containing no offensive speech; each participant
was free to withdraw at any time without penalty; and no personal information was collected or
stored at any time. While the host institution of the study does not require IRB approval for low-risk
studies, we believe the risks to subjects posed by our study design are minimal.

Licensing and credit. We carefully track the licenses of all artifacts we use other than standard PyPI
libraries (Appendix G). In particular, we did not use the proprietary speech quality metric PESQ, as
it is not licensed for research use by default and the maintainers did not respond to our request.
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A AUDITORY MASKING

Temporal Masking. Let θτ,ω be the masking threshold in frame τ and frequency bin ω, as computed
by the default approach (Lin & Abdulla, 2015; Qin et al., 2019). This computation already involves
consideration of the effect of sound in one frame τ and frequency bin ω on the masking thresholds
in the same frame, τ , but adjacent frequency bins, ω′. For example, the model already accounts for
the fact that a 1 kHz sine tone would mask a 990 Hz tone as well.

However, it is well known (Lin & Abdulla, 2015) that masking also occurs between frames, along
the same frequency bin; this is known as pre-masking and post-masking. Combining results shown
by Lin & Abdulla (2015) with our own experimentation, we model this by first computing contem-
poraneous masking thresholds as before, then for each θτ,ω computing the post-masking threshold
it causes on later frames τ ′ > τ using exponential decay of 0.02 ms−1, clipping to zero at a gap of
100 ms. Pre-masking, where τ ′ < τ , is modeled similarly but much more sharply, with a decay of
0.16 ms−1, clipping to zero after a gap of 20 ms.

Finally, each frame and frequency bin now has one contemporaneous masking threshold, a small
number of masking thresholds due to pre-masking by future sounds, and a larger number of masking
thresholds due to post-masking by previous sounds. To combine all of these thresholds, we set the
final threshold to be their maximum, as we find this to empirically produce the best perceptibility
constraint.

B PROJECTED GRADIENT DESCENT WITH MASKING

Given the TF masking thresholds θτ,ω calculated for the normalized input x, we seek an impercep-
tible perturbation δ whose reverberation-free STFT magnitude does not exceed θτ,ω . Let

δ̃τ,ω = STFT(δ)τ,ω.

For the purposes of illustration, let

PSD(δ)τ,ω = 10 log10
(
|δ̃τ,ω|2

)
.
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(In reality, there are subtleties around Hann window energy and length correction which we elide
here; the full process is discussed by Lin & Abdulla (2015) and Qin et al. (2019).)

To enforce PSD(δ)τ,ω ≤ θτ,ω , we use a projection operator ΠD(x) in each iteration of projected
gradient descent (PGD). Specifically, after each gradient step, we adjust δ̃τ,ω to satisfy

PSD(δ)τ,ω ≤ θτ,ω

by scaling its magnitude if necessary:

δ̃τ,ω ← δ̃τ,ω ×min
(
1, 10

θτ,ω−PSD(δ)τ,ω
20

)
.

This enforces time-frequency masking constraints bin-by-bin while preserving the phase of δ̃τ,ω .

Note that this is not necessarily a projection operator in the strict sense of mapping to the nearest
point in D(x), particularly when δ is parameterized in the time domain, but it does ensure a feasible
δ after each projection step.

C OVER-THE-AIR ATTACK OPTIMIZATION

Given knowledge of an RIR r and a clipped, imperceptible reverberated perturbation δr = r ∗ δ,
Wiener deconvolution is the following process: if δ̃rω is the full frequency spectrogram of δr in bin
ω, and similar for r̃ω , we approximate

δ̃ω ≈
δ̃rω r̃

∗
ω

|r̃∗ω|2 + ϵ
,

where ϵ is a small stability term (10−4) and ∗ represents complex conjugation. Although a mathe-
matically principled inversion, Wiener deconvolution is approximate for our use case, as convolution
by RIRs is generally non-invertible.

One could attempt to apply Wiener deconvolution iteratively to find an exact δ such that (r ∗ δ) ∈
D∗(x). However, a simpler iterative approach is gradient descent: we directly compute the total
constraint violation g(δ) as

g(δ) =
∑
τ,ω

max(PSD(r ∗ δ)τ,ω − (θτ,ω − d), 0),

where d is a small positive offset (1 dB) to ensure that gradient descent finds an exact feasible solu-
tion; we then find ∇g(δ) using autodifferentiation and repeat until δ ∈ D∗(x), i.e., g(δ) = 0. For
over-the-air attacks, we parameterize δ in STFT spectrogram space, as this representation produces
smoother gradient descent behavior. Because these attacks are harder, we gradually decrease the
masking thresholds from a high starting point over time, similar to iterative constraint tightening in
other works (Qin et al., 2019).

Finally, we also test applying one step of Wiener deconvolution and then finishing the projection
with gradient descent.

D ADDITIONAL EXPERIMENTS

D.1 MODEL ATTACK SUCCESS VERSUS ARCHITECTURAL DETAILS

D.2 NEGATIVE RESULTS

In this section, we explore several of our research questions that presented mixed or negative results.

Universal Adversarial Perturbations (UAPs). We found that UAPs were unable to cause more
than slight decreases in the quality of the model output while remaining imperceptible (question e));
this is likely due to the difficulty of hiding relevant perturbations inside of background noise alone,
rather than a single clean speech sample. This result is consistent with prior work showing that audio
UAPs are generally perceptible (Sun et al., 2024).
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Figure 5: Intelligibility of injected target audio. We plot ∆target = STOI(target, audio) −
STOI(clean, audio) for the attacked input (dashed) and the DNS output (solid). Positive solid
values indicate that the model’s output makes a hidden target phrase clearer than the original clean
speech, demonstrating a successful targeted attack. Targets are real utterances from the same speaker
as the clean audio. Error bars: ± s.e. over 20 seeds.

Table 1: Effect of architecture on robustness to adversarial perturbations. FSN+ shows sub-
stantially smaller STOI degradation than other models with similar domains or parameter counts, so
coarse architectural statistics do not predict robustness.

Model Domain #Par. (M) ∆STOI
Demucs Time 33.5 −1.08
FRCRN TF 10.3 −0.99
FSN+ TF 8.7 −0.49
MPSE TF 2.3 −1.25

D.2.1 TARGETED ATTACKS

Figure 5 demonstrates our results for the strongest targeted attack, where targets are real samples
from the same speaker. At first glance, it appears to suggest that the answer to question d) is re-
soundingly positive: DNS models are equally susceptible to targeted attacks as ASR models, and
equally susceptible to adversarial perturbations in general. However, we found that, while STOI
was an excellent minimization objective (low STOI implies low intelligibility), it broke down when
used as a metric for maximization (high STOI does not imply high intelligibility). This issue is
audible in our samples: even in attacked model outputs that are judged to have STOIs of more than
0.5 with respect to the target audio, a human listener can discern at most a faint robotic hint of the
target speech. Thus, while future attackers may find ways to generate targeted attacks using more
sophisticated objectives, the answer to question d) is currently both positive and negative.

D.2.2 MODEL TRANSFER

To answer question f), we evaluated the possibility of model transfer attacks, where an attack is
trained for one model but applied to another. Our results indicated that attacks generally do not
transfer between different architectures (e.g., from Demucs to FSN+); see Table 2. We also tested
whether attacks between three different available Demucs checkpoints transfer to each other. Sur-
prisingly, we found that they did not.

Our results stand in contrast to those of Dong et al. (2023), who found that perceptible adversarial
examples can transfer between models. Thus, without more sophisticated transfer techniques (Guo
et al., 2023), our results suggest an affirmative answer to question f), as long as the attacker is truly
constrained to producing imperceptible attacks. However, further research is urgently required,
particularly on pure black-box attacks (Chen et al., 2021).
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Table 2: Psychoacoustically hidden attacks do not transfer between models. Off-diagonal entries
in the attack-transfer matrix are close to 0 despite similar training data, indicating that gradient
access is required for effective imperceptible attacks and that naive cross-architecture transfer is
weak.

Trained
on

Evaluated on
Demucs FSN+ FRCRN MPSE

Demucs −1.08 0.04 0.06 0.08
FSN+ 0.05 −0.49 0.05 0.08
FRCRN 0.06 0.04 −0.99 0.08
MPSE 0.03 0.03 0.05 −1.25

D.3 ADJUSTING PERCEPTIBILITY CONSTRAINTS

Setup. In this section, we explore the effect on our objective metrics of adjusting the perceptibility
constraint described in the main text. We do this primarily by adjusting the masking offset, setting
it to either -8 dB (looser), -12 dB (default, same as experiments in main text), and -16 dB
(tighter). For the ’tighter’ setting, we also double the decay constant used in post-masking
(see Appendix A) to 0.04 ms−1. To simplify presentation, we show results for each constraint
setting averaged across the four models. All other experimental details are the same as in the main
experiments.

Note that, as in the experiment shown in the main text, we adjust the mask offsets for the simulated
OTA up by 4 dB relative to the other experiments. Furthermore, one simulated over-the-air attack in
Figure 10 failed to converge in a reasonable amount of time (3 hours on an L40S); we therefore set
its final STOI enhancement value to be that of the initial unperturbed input.

Results. We include samples from an attack on a moderately noisy, no-reverb speech sample
using each of the perceptibility constraints described here at https://sites.google.com/view/adv-
dns/perceptibility. Subjective listening evaluation suggests that the looser constraint results in audi-
ble crackling in the sample, which goes away completely as the constraints are tightened.

Overall, our objective results suggest that the specific setting of the perceptibility constraint matters
much more in relatively low-degradation environments (no reverb and moderate-to-low SNR); see
Figures 6 and 7. This is unsurprising, as high-degradation environments naturally offer more space
to hide the adversarial perturbation. When averaged across environments, though, the setting of
the perceptibility constraint makes a significant difference in success, though all constraints we
test allow substantial success (Figure 8), as measured by metrics other than NISQA and DNSMOS.
Interestingly, most metrics (except NISQA) suggest that there is no statistically significant difference
in audio quality between attacked inputs under the various constraints, implying that even the loosest
constraint damages audio only very slightly.

Unsurprisingly, the white noise defense is proportionally roughly equally effective against attacks
under all perceptibility constraints (Figure 9): as implied by Figure 8, even the loosest constraint
still only allows very slight perturbations, which are therefore largely smoothed out by 15 dB white
noise. (0 dB white noise smooths out the signal as well, hence its worse performance.)

Finally, we found that the perceptibility constraint had less effect on simulated over-the-air attack
success (Figure 10) than on our directly applied attacks (Figure 6), mostly due to loosening of the
constraint not seeming to allow for significantly stronger attacks. We are not certain why this is the
case; while this phenomenon may be specific to the particular OTA attack optimization algorithm
we use, it may also indicate more generally that convolution with an RIR – which can indeed be con-
sidered a form of smoothing – may represent a defense against adversarial perturbations, including
even those which are designed adaptively against that RIR.
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STOI(clean, input); solid curves show the same quantity after adding an imperceptible pertur-
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meaning the attack pushes speech from “cleaner than input” to “less intelligible than the noisy input
itself.” Values are averaged across all four models. Error bars: ± s.e. over 20 seeds.
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(looser) than for other experiments.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 MODEL DETAILS

Demucs. The earliest of the models we study, Demucs – specifically, the master64 Demucs
checkpoint provided in the Denoiser library – is a time-domain denoising model with 33.5M (train-
able) parameters. Uniquely among the models we study, Demucs operates end-to-end on waveforms,
rather than spectrograms: it processes the input waveform using several convolutional layers, then
encodes temporal dependencies with an LSTM, before decoding again with convolutional layers.
Unlike the other models we study, Demucs is designed to dereverberate as well as denoise audio.

Full-SubNet+. Full-SubNet+ (FSN+) is a TF-domain denoising model with 8.67M parameters.
Full-SubNet+ takes magnitude, real, and imaginary spectra as input, and passes them through a
variety of modules, including attention, convolution, and LSTMs. Like all TF-domain models we
study, Full-SubNet+ outputs a ratio mask, a complex-valued spectrogram q such that ŷ equals the
element-wise complex product of x and q (Williamson et al., 2016).

FRCRN. FRCRN is a TF-domain model with 10.3M parameters. Similar to FSN+, FRCRN uses a
mixture of convolutional, attention and recurrent structures in its architecture.

MP-SENet. MP-SENet (MPSE) – specifically, the DNS checkpoint provided in the official GitHub
repository – is a TF-domain model with only 2.26M parameters. Similar to FSN+ and FRCRN,
MP-SENet also uses convolution, attention and recurrence for temporal modeling.

Note that, as mentioned in the main paper, MP-SENet used an unusually large amount of memory
in our experiments, forcing us to curtail its input audio to 5 seconds. A note was later added to the
MP-SENet README explaining that this is due to a bug in the behavior of the model with default
arguments, and can be solved with alternative arguments; unfortunately, this note was added after
we ran our experiments, so our experiments still curtail MP-SENet’s input audio.
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E.2 OTHER EXPERIMENTAL DETAILS

Dataset. Noise was selected randomly from the dataset and repeated up to ten seconds. All audio
was sampled single-channel at 16 bits and 16 kHz. All settings had five sources of background noise
added to them, with their post-RIR sum being set to various SNRs with respect to the post-RIR clean
speech. (While five is a large number of sources, note that 70 dB SNR still represents an effectively
zero-noise setting.)

Optimal perturbation selection. Within each trial, the final output was selected as the perturbation
with the lowest final loss – i.e., STOI(output, clean) for untargeted attacks, and STOI(output, clean)
- STOI(output, target) for targeted attacks. For over-the-air attacks where not every attack iteration
converged to the feasible set, we instead selected the final output, as earlier outputs might not satisfy
the final masking threshold (see Appendix C).

STFT. We use short-time Fourier transforms with Hann windows, 512 FFT points, a window length
of 512, and a hop length of 256.

Optimization Details. In all experiments except the simulated over-the-air experiment, we parame-
terize δ in the time domain. We use Adam for all optimization, using an initial learning rate of 0.01,
and clip gradients to a 2-norm of 10. We decrease the learning rate by a factor of 0.99 whenever the
loss fails to decrease for 10 iterations in a row.

Hyperparameter selection. Our hyperparameters were selected by hand through extensive subjec-
tive evaluation (by us) of attack perceptibility and attack success.

Computation resources. For all experiments, we used a GPU with at least 40 GB of VRAM (gen-
erally an A40, A100, or L40S), 8 CPU cores, and 40 GB of RAM. Except where noted, experiments
took less than 2 hours with this setup.

F HUMAN STUDY DETAILS

F.1 DESIGN AND COUNTERBALANCING

Transcription comprised 18 clips per participant: for each {model} × {background} ×
{stimulus type} combination we included one clip, where stimulus types were (Attacked Input)
noisy+reverberant speech with an imperceptible perturbation, (Clean Output) model output for
clean input, and (Attacked Output) model output for attacked input. To avoid leakage and learning
effects, no clip was reused across stimulus types for the same participant. ABX comprised 12 pairs
per participant constructed from the attacked-input and clean-output pools. We also included two
ABX attention checks with clearly audible degradations: these followed the same design as the pri-
mary samples, except their attacks were generated with a positive masking threshold offset of 16.0
(other attacks in the human study used a negative offset of -16.0). Clip identities were fixed across
participants to standardize difficulty and reduce computational burden.

The second seed (sample) out of 20 was manually omitted from the study due to being nearly-
unintelligible whispering. Otherwise, for simplicity, assignment of seeds to (model, stimulus type,
background) configurations was done through iteration using that hierarchy: iterating from 0, 2,
3, ..., 18, we changed background every seed, stimulus type every two seeds, and model every six
seeds.

F.2 STATISTICS

Let p ∈ P index participants and i ∈ I index items (clips). For the transcrip-
tion task, let Ypi,c ∈ [0, 1] denote the word accuracy (WAcc) for condition c ∈
{Attacked Input (AI),Clean Output (CO),Attacked Output (AO)} on the (p, i) cell (observed when
that participant transcribed that clip under that condition). Let µc = E[Ypi,c] be the population mean
WAcc for condition c.

Two-way (“pigeonhole”) bootstrap for crossed effects. To obtain CIs that respect crossed par-
ticipant–item variance (Owen, 2007), we independently resample participants and items with re-
placement. On each bootstrap replicate b = 1, . . . , B, draw counts U

(b)
p for p ∈ P from
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Multinomial(|P|; 1/|P|, . . . ) and V
(b)
i for i ∈ I analogously; form replicate weights W

(b)
pi =

U
(b)
p V

(b)
i . For any condition c, the replicate mean is

Ȳ ∗(b)
c =

∑
(p,i)∈Dc

W
(b)
pi Ypi,c∑

(p,i)∈Dc
W

(b)
pi

,

where Dc ⊆ P × I is the set of observed cells under c (missing cells receive weight 0 by construc-
tion). Percentile one-sided (1− α) CIs use the empirical quantiles of {Ȳ ∗(b)

c }Bb=1.

Primary claim via an intersection–union test (IUT). We test that the attacked output is simulta-
neously less intelligible than both the attacked input and the clean output:

H0 :
(
∆1 ≥ 0

)
or

(
∆2 ≥ 0

)
vs H1 :

(
∆1 < 0

)
and

(
∆2 < 0

)
,

where the mean differences are ∆1 = µAO − µAI and ∆2 = µAO − µCO. By the IUT, an overall
level-α test rejects H0 iff each elementary one-sided test rejects at level α. Operationally, using the
two-way bootstrap, compute the (1− α) upper percentile bounds

Uk = Quantile1−α

(
{∆∗(b)

k }Bb=1

)
, ∆

∗(b)
k = Ȳ

∗(b)
AO − Ȳ

∗(b)
(·) , k ∈ {1, 2},

with (·) = AI for k = 1 and (·) = CO for k = 2. Reject H0 (and conclude AO is worse than both)
iff U1 < 0 and U2 < 0. In our data, the 95% upper bounds were U1 = −0.464 and U2 = −0.458,
yielding rejection. Note that, by construction, the IUT does not need a multiple-comparisons cor-
rection.

ABX discrimination. Let Zpi ∈ {0, 1} indicate whether participant p correctly identified the
attacked clip in pair i. We test H0 : µABX ≤ 0.5 vs H1 : µABX > 0.5, where µABX = E[Zpi]. Using
the same two-way bootstrap on {Zpi}, form the lower one-sided (1 − α) percentile bound L for
µABX and reject H0 iff L > 0.5. Our lower 95% bound was L = 0.478, so we did not reject.

G LICENSE DETAILS

See Table 3.
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Table 3: External assets (excludes standard Python libraries installed with pip, versioning for which
is included in the code’s requirements.txt).

Asset Authorship / citation License Version /
commit

Special terms of use

openai-
Whisper

Radford et al. (2022); MIT v20240930 /
90db0de

None beyond MIT

MP-SENet Lu et al. (2023); MIT 611cd89 None beyond MIT

Denoiser Defossez et al. (2020); MIT 8afd7c1 None beyond MIT

FRCRN
(ClearerVoice-
Studio)

Zhao et al. (2022a) Apache-2.0 634f004 None beyond Apache-2.0

MaskGCT
(Amphion)

Wang et al. (2024a) MIT f7cb4b4 None beyond MIT

DNS-
Challenge
(datasets &
code)

Dubey et al. (2022); CC-BY-4.0
(data), MIT
(code)

4dfd2f6 Attribution required for
dataset

DNSMOS
P.835

Reddy et al. (2022); same
repo/commit as above

CC-BY-4.0
(data), MIT
(code)

4dfd2f6 Attribution required

FullSubNet-
Plus

Chen et al. (2022); Apache-2.0 0d11530 None beyond Apache-2.0

NISQA Mittag et al. (2021); MIT fe84f0f None beyond MIT

ViSQOL Hines et al. (2015); Apache-2.0 b2b2a64 None beyond Apache-2.0

ViSQOL
Docker image

jonashaag/visqol, Docker
Hub; https://hub.do
cker.com/r/jonasha
ag/visqol

Not declared
(container
redistributes
ViSQOL
Apache-2.0)

‘v3’ Used only for build con-
venience; inherits up-
stream license
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