
Under review as a conference paper at ICLR 2024

GENERATING ROBOT POLICY CODE FOR
HIGH-PRECISION AND CONTACT-RICH
MANIPULATION TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have been successful at generating robot policy
code, but so far these results have been limited to high-level tasks that do not
require accurate movement. It is an open question how well such approaches can
work for high-precision, contact-rich tasks that require controlling contact forces
with the environment. We find that, with the right action space, LLMs are capable
of successfully generating policies for a variety of contact-rich and high-precision
manipulation tasks in a zero-shot fashion. Specifically, we reparameterize the
action space to include robot compliance with constraints on the interaction forces
and stiffnesses involved in reaching a target pose. We validate this approach on
subtasks derived from the Functional Manipulation Benchmark (FMB) and the
IROS 2020 Robotic Grasping and Manipulation Competition, where zero-shot
policy generation in this action space improves success rates over non-compliant
action spaces by greater than 3x and 4x, respectively, over a baseline that uses free
space motions. To further investigate properties that make language models well
posed to generate contact-rich tasks, we also analyse language models ability to
complete control-relevant arithmetic reasoning tasks over continuous numbers in-
context and ablate the importance of different prompt components in generating
relevant motion patterns. Project webpage: https://dex-code-gen.github.io/dex-
code-gen/

1 INTRODUCTION
Many of the open problems in learning-based robotics revolve around the issue of scaling: deep-
learning methods require vast datasets that are not readily available for robotics applications. One
workaround for the data scarcity problem is to retrofit large models that have been trained on
internet-scale datasets from other modalities for robotics tasks. Recently, large language mod-
els (LLMs) have emerged as a strong candidate for this approach. LLMs are able to success-
fully generate programming code, complete numeric sequences, and solve common-sense reasoning
tasks (Liang et al., 2022; Mirchandani et al., 2023; Huang et al., 2022a). Because code is one of the
most popular interfaces for specifying robotic planning and control commands, these capabilities
hint at enormous potential when applied to robotics.

Past work demonstrated that generating robot policy code from LLMs is successful for high-level
tasks such as navigation and open-vocabulary pick-and-place (Liang et al., 2022; Mirchandani
et al., 2023). For example, a language model can compose high-level action primitives such as
grab(chips) or move to(human) to generate a successful policy conditioned on a natural
language command like “bring me the chips” (Liang et al., 2022). But at present, lower-level tasks
and behaviors are generally considered out of reach for LLMs and to the best of our knowledge,
there have not been any compelling demonstrations of such capabilities with these tools.

While various robot learning approaches have been able to demonstrate impressive generalization
across different settings and target objects for pick-and-place tasks (Jiang et al., 2022; Shridhar
et al., 2022; Brohan et al., 2022; 2023; Shridhar et al., 2023), such generalization is arguably more
difficult for dexterous tasks where a higher level of precision is required. For example, for a peg-
in-hole insertion task, surfaces with more friction or tight insertion tolerances may require multiple
insertion attempts or contact force tuning to reach the insertion site. Similarly, pegs with different
geometries may need different approach trajectories to achieve proper alignment: a peg with a star-
shaped cross-section may require an initial rotation for insertion, whereas no such rotation is required

1

Under review as a conference paper at ICLR 2024

"""With Compliant Action Space"""
move_to_start()

Compliant zigzag search
move(translation=[0.01, 0.0, 0.0],

constraint='force.x < 3')
move(translation=[0.0, -0.01, 0.0],
 constraint='force.y > -3')

Compliant insertion
move(translation=[0.0, 0.0, -0.01],
 constraint='force.z > -5')

"""Non-compliant Action Space"""
move_to_start()

Zigzag search to ensure alignment
move(translation=[0.01, 0.00, 0.0])
move(translation=[0.00, -0.01, 0.0])

Insert
move(translation=[0.00, 0.0, -0.01])

Time

Fo
rc

e
S

en
se

d

Time

Fo
rc

e
S

en
se

d

"""Non-compliant Action Space"""
move_to_start()

Insert
move(translation=[0.00, 0.0, -0.01])

Time

Fo
rc

e
S

en
se

d

(a)

rotate to align the
points of the star
move(
 rotation=[0,0,math.pi/4,
 constraint=’z.force>2’)
move(
 rotation=[0,0,-math.pi/4],
 constraint=’z.force>2’)
move down
move(translation=[0,0,1])

up to make contact
move(translation=[0,0,1],
 constraint=’z.force>1’)
search left and right
move(translation=[1,0,0],
 constraint=’z.force<3’)
move(translation=[-1,0,0],
 constraint=’z.force<3’)
up again
move(translation=[0,0,1])

(b)

Figure 1: (a) We prompt an LLM to generate code for high-precision tasks. By using an action space that
includes parameters that enable compliant behavior, the LLM is able to generate action sequences that success-
fully complete contact-rich manipulation tasks like this peg insertion. (b) Language models’ ability to reason
about object geometry and make plans by using world knowledge about different object types enables zero-shot
generalization to new objects and scenes.

for a peg with a circular cross-section. In practice, the parameters of contact-rich insertion skills are
mostly tuned by experts to handle these differences and automating this process is still an open
problem. Therefore, directly providing a language model with a library of more dexterous skills
(such as insert(peg)) will not work out of the box.

In this paper, we propose a promising alternative for automating the parameter-tuning process within
the control API, where we aim to leverage the world knowledge inside language models to set control
parameters. In particular, our goal is to understand if LLMs have the ability to reason about motions
and forces acting on objects, such as to generalize over a much larger class of objects and robot
manipulations. To study this topic, we modify the action space in which a language model operates
by exposing constraints on the contact stiffness and forces observed in the process of contact-rich
manipulation. These modification open up the possibility to study code generation for contact-rich
tasks, including industry relevant tasks such as high precision insertion, rigid body assembly, and
deformable object manipulation (see Figure 1).

The main contribution of this work is to demonstrate that LLMs, without any specialized training,
have the ability to perform contact-rich tasks when given the appropriate action space. In particular,
we develop a system for automatically generating robot policy code for dexterous tasks by allowing
LLMs to specify constraints on the stiffness, forces, and trajectories required to perform contact-rich
manipulation tasks. We show that this approach is able to outperform a contact-unaware model by
over 3x on average on subtasks developed from two challenging contact-rich benchmarks. Specifi-
cally, this approach is able to generate novel insertion patterns from high level descriptions of object
shape and texture on insertion tasks from the Functional Manipulation Benchmark (FMB) (Luo
et al., 2023) and to route and un-route cables in the style of the IROS 2020 Robotic Grasping and
Manipulation Competition (IROS RGMCS) (Sun et al., 2021). We hope that our demonstration
could provide a step towards adapting language models to generate robot code for more dexterous
tasks and unlock the benefits of internet-scale data and foundation models for robotics applications.

2 RELATED WORK

LLMs in robotics. Past work demonstrated that LLMs can successfully generate robot policy code
for pick-and-place style manipulation tasks (Huang et al., 2022b), compose mid-level plans for
navigation tasks (Huang et al., 2022a), and compose multiple navigation and manipulation skills
for integrated household agents (Singh et al., 2023; Wu et al., 2023). Many of these approaches
rely on filtering LLM-generated code based on what is executable (Gai et al., 2021) or on making
hierarchically queries (Liang et al., 2022). However, to the best of our knowledge, it is not yet
established in the literature whether LLMs can generate robot policy code for performing high-
precision contact-rich manipulation tasks, which we study in this work.

2

Under review as a conference paper at ICLR 2024

Arithmetic Reasoning and Pattern Extrapolation Abilities of LLMs. Mirchandani et al. (2023)
demonstrated that models trained on internet-scale data are capable of doing general spatial and
sequential reasoning tasks. Similar to our work, their analysis is inspired by robot control-relevant
reasoning problems. However, unlike them, we produce a proof of concept on real hardware and on
a challenging contact rich manipulation task. Our arithmetic reasoning tasks are inspired by work
from Garg et al. (2022), which shows that the Transformers (Vaswani et al., 2017) can learn simple
function classes in-context after training on regression problems. Unlike them, we show that this
capability emerges in models trained only on text generation.

Contact-rich robot manipulation tasks are those that involve a robot making controlled contact
with its environment while performing them. These tasks constitute a vast majority of manipula-
tion tasks in daily life, including household tasks such as wiping tables and sweeping dust into a
dust-pan (Wi et al., 2023), and industrial tasks such as high precision insertion (Luo et al., 2019;
Zhao et al., 2022) and rigid body assembly (Narang et al., 2022; Liu et al., 2022). A robot needs to
reason about the contact forces it will impart and experience from the environment while perform-
ing such tasks to complete them successfully. Learning a general policy to perform a wide array of
high-precision contact-rich manipulation tasks has been studied in great detail in the robotics liter-
ature (Kroemer et al., 2021), (Suomalainen et al., 2022; Elguea-Aguinaco et al., 2023; Zhao et al.,
2022; Morgan et al., 2021; Davchev et al., 2022; Luo et al., 2019; Migimatsu et al., 2022), yet how to
find a general approach to these tasks remains an open question. Prior work directly learns policies
with imitation learning Chi et al. (2023) or reinforcement learning Schoettler et al. (2019); Narang
et al. (2022); Brahmbhatt et al. (2023), but these require hundreds of human demonstrations, sig-
nificant operator training, dedicated simulators, or thousands of environment interactions to achieve
a performant policy. In this work, we step towards obtaining a general policy for high-precision
contact-rich manipulation tasks by leveraging the world knowledge inside LLMs and combining it
with the appropriate task action spaces. We choose robot impedance (or equivalently, admittance)
control as the action space for contact-rich robot manipulation tasks as it can regulate the relationship
between robot position and contact forces effectively (Beltran-Hernandez et al., 2020; Abu-Dakka
& Saveriano, 2020).

3 PRELIMINARIES

You're a robot trying to insert a
peg in a hole. Grab the circular peg.

pick_up(circular_peg)

Figure 2: LLM-generated code (highlighted
in blue) from a NL request.

Our goal is to develop a system that can translate natu-
ral language (NL) instructions into robotic actions by
leveraging a sufficiently expressive API for control.
Past work (Liang et al., 2022) has shown that off-the-
shelf language models can be adapted towards this goal
with few-shot prompting. Concretely, pairs of natural
language requests with corresponding robot policy code
are fed into a language model. Then, the language model can output novel programs in response
to new commands as shown in Figure 2. The success of this approach can be attributed to the fact
that during offline training on vast internet datasets language models absorb world knowledge about
common-sense interactions and learn mappings between natural language instructions and code.
Strategies for adapting this approach towards a contact-rich setting are discussed in the next section.

4 GENERATING CONTACT-RICH POLICY CODE WITH LANGUAGE MODELS
We begin by describing the prompting strategies for contact-rich high-precision manipulation tasks.
Equipped with a set of prompts, we then discuss the different choices of robotic action spaces that
can be made available to a language model including our proposed action space.

4.1 PROMPTING FOR CONTACT-RICH CONTROL

We consider five prompting strategies when generating robot policy code from a language model:

1. Task descriptions are high-level descriptions of the scene and the task goal written in natural
language. These can occur at both the beginning and end of a prompt and often include important
information about the task setup such as the peg shape or the available objects. See Fig. 3a for an
example.

2. Descriptions of available control APIs are formatted doc-strings that describe the code that
can be used by the LLM. These include lists of available variables as well as the expected range
of values for floating point numbers. Fig. 3b shows an example description for the available move

3

Under review as a conference paper at ICLR 2024

function. We also include descriptions for the full library of available methods, which includes a
point-to-point move, a compliant move, conditions, gripper movements, and methods or variables
specifying the positions of relevant objects.

"""You're a robot trying to undo
cable routing. Unroute the cable
from the screws and brackets it is
wrapped around."""

(a) Task Description

"""Use these methods:
- move: moves to specified offset

Args:
translation: (x, y, z) tuple
rotation: (x, y, z) tuple

..."""

(b) Control API Descriptions

"""Because the bracket opening is
small, the cable is very prone to
getting caught in the opening."""

(c) Hints

"""Here is a board layout:
c c c c c c
c S c B c
c c S c B c
c c c c c c c"""

(d) Spatial Patterns

Move the cable to the left until
it snags

move((1, 0, 0),
constraint=(x.force>-1))

(e) Examples

Figure 3: Categories of prompts.

3. Hints in our setting include rules, keywords that spec-
ify relevant control primitives, and requests to have the
model explain its reasoning in natural language or in
pseudocode. Phrases such as “perform a pattern search”
guide the model towards predicting behavior that better
recovers from errors and better handles imprecision in
the position of target poses. Intuitively these keywords
help reducing task ambiguity (e.g., by emphasizing that
provided locations are imprecise) and guide the model
towards motion patterns that are relevant to contact-rich
tasks. Requests to explain in natural language can be
thought of as a variant of chain-of-thought prompting Ko-
jima et al. (2022). The specific keywords and requests
that are helpful in each task are described in the experi-
mental section.

4. Spatial patterns are symbolic summaries of a given
scene and act as a character-based representation of what
is visible to the agent. An example of a symbolic repre-
sentation of an IROS RGMCS (Sun et al., 2021) board is
summarized in Figure 3d. The c symbol refers to the path
of the cable, S refers to a screw, and B refers to a plas-
tic channel component through which the cable is routed.
These would also be defined in the prompt. Although
these are specified by the prompt designer in our exam-
ples, they could also be generated by a vision-language
model or other perception APIs (Wi et al., 2023).

5. Examples of the control APIs being used for basic
movements, such as making contact with a surface, are
useful for tasks with ambiguity or where the desired force
constraints are difficult to infer from the given ranges.

The combination of the prompt strategies described above allows us to prompt a language model
with enough contextual information about the dexterous task at hand. Next, we discuss how we can
design the action space of the robot to be able to perform such tasks in practice.

4.2 ACTION SPACES FOR ROBOT MANIPULATION TASKS

Past approaches assume access to a library of methods that exhaustively cover all user-requested
commands (Liang et al., 2022; Mirchandani et al., 2023). Building such a library is challenging for
contact-rich tasks because in practice these policies are tuned by experts across different object ge-
ometries, frictions, and scene layouts. This section describes different approaches to parameterizing
the control API and what the right choice of a control API can achieve. Formally, we consider a
contact-rich robot manipulation task to be composed of a sequence of subtasks τ = (t1, . . . , tn).
The specific definition of a subtask will change based on the action space, as described below.

Insert a peg into a hole
pick_up(peg)
go down to make contact
move([0, 0, -1])
wiggle to find opening
move([1, 0, 0])
move([-1, 0, 0])
go down to insert
move([0, 0, -1])

Figure 4: Generated code with free space
motions

Point-to-point moves. In the past work, (Liang et al.,
2022; Mirchandani et al., 2023), the authors make use
of an action space that directly command the robot to
move to target poses in the Cartesian space, [xtarget]i
(See Fig. 4). In this setting, each sub-task ti is sim-
ply defined as the next Cartesian pose (a.k.a. waypoint):
ti = ([xtarget]i).

While this approach is successful for executing motions
in free-space or for simple pick-and-place tasks, it fails
when the robot needs to explicitly make a purposeful contact with its environment. Consider a robot
trying to make contact with a surface to perform a wiping motion. Successfully parameterizing a

4

Under review as a conference paper at ICLR 2024

policy in this action space would require predicting a precise Cartesian pose with very little tolerance
for error. Predicting millimeters short of the surface would fail to make a contact and predicting
millimeters too deep into the surface would cause the robot to exert high forces on the surface,
which can cause faults in the robot or even break it in the worst case scenario.

Compliant moves. Addressing this shortcoming, we propose to parameterize the action space for
performing contact-rich manipulation tasks using robot’s compliance, realized in impedance control
(or equivalently admittance control which has been shown to be an adequate action space for robot
learning in Martı́n-Martı́n et al. (2019)). An impedance move action is parameterized by both a
target Cartesian pose, [xtarget]i, and a vector that specifies stiffness along each degree of freedom,
σi: ti = ([xtarget]i, σi), when the robot is in contact with the environment. During execution,
the stiffness vector for each subtask can be used to define the parameters for a variable impedance
controller (Buchli et al., 2011) of the form:

Fexternal = Kp(xd − x) +Kd(ẋd − ẋ) + Λ(ẍd − ẍ) (1)

where xd, x, ẋd, ẋ, ẍd, and ẍ denote the target and current Cartesian pose, twist, and accelerations,
respectively. Kp, Kd, and Λ correspond to the stiffness, the damping, and the task-space inertia
matrices, respectively. The impedance controller realizes that the robot’s end-effector in contact
with the environment behaves like the linear spring-damper-mass system above. Kp, Kd, and Λ
are computed as a function of our specified stiffness vector σi (explained below) and robot specific
parameters in order to achieve stable yet responsive robot behavior (see Appendix).

Insert a peg into a hole
pick_up(peg)
go down to make contact
move([0, 0, -1],

constraint=(z.force>1))
wiggle to find opening
stop when force lessens
move([1, 0, 0],

constraint=(z.force<1))
move([-1, 0, 0],

constraint=(z.force<1))
go down to insert
move([0, 0, -1],

constraint=(z.force>2))

Figure 5: Generated code with impedance
moves and constraints.

Intuitively, the stiffness vector determines the interaction
forces that the robot will impart on its environment while
performing the task. Low stiffness coefficients in σ reg-
ulate the robot’s compromise between contact forces and
the attempt to achieve position accuracy. In the example
that we discussed in the last paragraph, a low stiffness
value would enable the robot to maintain gentle contact
with a surface that prevents the robot from reaching a
desired position. A higher stiffness value would create
higher contact forces, equivalent to a higher priority to
reduce position error.

Conditional compliant moves. In addition to the
impedance control specification described above, we also
allow the LLM to specify the set of conditions under
which to terminate an impedance move. Specifically, these are thresholds on force or position in
a specified coordinate direction. An example pseudocode is presented in Fig. 5. This is a power-
ful primitive as it enables the robot to construct recipes for high-precision tasks that do not rely on
fine-grained visual perception. In the example of making contact with a surface, this may look like
moving a peg downwards with a termination constraint on upward force.

5 EXPERIMENTS: HIGH-PRECISION CONTACT-RICH MANIPULATION TASKS
In this section, we evaluate the ability of LLMs to generate code for fine-grained manipulation tasks
that require high precision in a series of experiments. First, we perform a set of isolated experiments
in order to establish the general feasibility of this approach to arithmetic reasoning tasks, which are
a prerequisite to the numerical reasoning needed for effectively generating robotic controller code
(Section 5.1). Second, we move on to evaluating our proposed approach on a set of real robotic tasks,
namely, a subset of high-precision contact-rich manipulation tasks from the Functional Manipulation
Benchmark (Luo et al., 2023) and a set of industrial manipulation tasks adapted from the IROS 2020
Robotic Grasping and Manipulation Competition (IROS RGMCS) (Sun et al., 2021) (Section 5.2).
Later, we evaluate prompt hint ablations to study the utility of incorporating additional hints in
generating relevant motion patterns for robot manipulation tasks (Section 5.3).

5.1 REASONING OVER CONTINUOUS SPACES

While prior work has demonstrated that LLMs are capable of serving as general pattern ma-
chines (Mirchandani et al., 2023), they have not been shown to be able to reason over floating point
numbers specifically. This is critical in contact-rich settings because they require millimeter level
precision. In this section, we thus examine two arithmetic tasks that we believe to be precursors to

5

Under review as a conference paper at ICLR 2024

30 40 50 60 70 80 90 100
Num prompt examples

0.00

0.05

0.10

0.15

0.20

Pr
ed

ict
io

n
er

ro
r

2d fitting error across prompts length and style
no space, 1 decimal points
no space, 2 decimal points
no space, 3 decimal points
with space, 1 decimal points
with space, 2 decimal points
with space, 3 decimal points

(a)

0 2 4 6 8 10 12
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Reconstruction with 4-decimal precision

0 2 4 6 8 10 12
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Reconstruction with 5 decimal precision

(b)

Figure 6: (a) Reconstruction error across different floating point number resolutions and formatting styles. (b)
Reconstructions of exemplary sinusoidal sequences for different floating point number resolutions.

reasoning successfully in continuous action spaces: (1) a linear regression task, and (2) a continuous
sequence extrapolation task. In both cases, and in contrast to prior work (Mirchandani et al., 2023),
we let the LLM operate on floating point numbers directly.

Zero-Shot Regression In-Context: In Figure 6a, we show the result of prompting a model with
x, y = f(x) from a 2-dimensional linear function f . We quantify the ability of the model to im-
plicitly learn the linear function by measuring the ŷ output by the model for a given x, and plotting
the resulting error for different floating point number resolutions. The x-axis denotes the number
of x, y pairs provided to the LLM and the y-axis is the average prediction error of ŷ for a given
value x. We compare two different formatting strategies. In the first, the x, y pairs are written out
as f(x)=y. The second formatting strategy adds spaces between each digit so that each digit is
treated as a separate token. For example, f(1.393)=4.107 is formatted as f(1.3 9 3)=4.1
0 7. As can be seen in Fig. 6a, space-formating with GPT-4 is able to successfully regress to the
targets within an error of 0.01 when using at least 3 decimal places.

Sequence Extrapolation: In Figure 6b, we illustrate the ability of an LLM to extrapolate sequences
of two-dimensional series of numbers (concretely, sinusoids of different frequencies), as this might
transfer to path-following behaviors required in the robotic context. To generate these plots, we
feed samples of the sinusoidal function up to a certain value and then auto-regressively sample from
the LLM. The sampled points are shown in orange. For visualization purposes, the true function is
shown in blue. Qualitatively, we see in the figure that the LLM is indeed capable of extrapolating the
chosen sinusoids. Unlike Mirchandani et al. (2023), we find that this ability also works for floating
point numbers. To realize these results, we modify the tokenization strategy by placing a space in
between each digit. The extrapolation ability begins to break down as the precision and frequency
of the sinusoid increase, which can be seen on the right-most side of Figure 6b.

The takeaway from this first set of experiments is that LLMs trained entirely on offline language data
can indeed achieve reasonable performance on arithmetic tasks on continuous spaces. This result
shows that large language models are capable of performing least squares up to a small degree of
error with in-context learning and encourages us to tackle the much more challenging application to
fine-grained manipulation in the next section.

5.2 CONTACT-RICH MANIPULATION TASKS

Next, we focus on testing the ability of LLMs to generate code for contact-rich manipulation tasks.
Section 5.2.1 details the task setup considered in our experiments, while the baselines and method
ablations are discussed in Section 5.2.2. We discuss experimental results in Section 5.2.4 and provide
further ablation and analysis of the prompting strategies in Section 5.3.

5.2.1 TASK DESCRIPTION

Functional Manipulation Benchmark (FMB): The Functional Manipulation Benchmark (Luo
et al., 2023) studies robotic manipulation, grasping, reorienting, and assembling of a set of dozens
of 3D printed objects. The benchmark also emphasizes generalization across different object shapes
and positions. We evaluate our approach on a subset of peg insertion tasks across three different ob-
ject shapes: the circle, star, and half-pipe. We use a script to bring the pegs into a fixed position over
the insertion points that includes a randomized rotation around the z-axis. There is no rotation for
the circular peg because it has a constant radius. Rotation of the star is sampled uniformly between 0

6

Under review as a conference paper at ICLR 2024

FMB: Half-Pipe

RGMCS: Cable Un-routing

Figure 7: Left: The Functional Manipulation Benchmark (FMB) (Luo et al., 2023) and IROS RGMCS
2020 (Sun et al., 2021) we used for experimentation. Both environments have relatively tight tolerances. Right:
Example of the rollouts produced by our method for two tasks. See appendix for rollouts of all tasks.

and π
2 . Rotation of the half pipe is sampled uniformly from either 0 or π. Inserting these peg shapes

successfully requires generating different search patterns based on the object’s geometry.

Industrial Manipulation Tasks: We study a set of industrial manipulation tasks adapted from IROS
RGMCS 2020 (Sun et al., 2021). The benchmark is designed to evaluate proficiency in robotic
assembly with an emphasis on small and medium sized parts and deformable objects. We consider
the wire routing subtasks from it. Specifically, we study routing (insertion) and unrouting (removal)
of a wire through a plastic channel component. Tasks environments are visualized in Fig. 7. Across
episodes there is noise in the orientation of the cable within the grasp of the gripper and the tautness
of the cable.

We conduct our robot experiments on a Universal Robotics UR5e robot, which is a position-
controlled robot with ATI Axia80 force-torque sensor at the wrist. To expose the compliant action
space to the language model, we prompt it with the doc-string for a Cartesian admittance move with
parameters on stiffnesses, impedances, and constraints in reaching a target pose. The exact prompt
is available in the appendix. We add a suffix describing the details of the given task in natural lan-
guage, optionally including certain keywords about relevant motion patterns when the task setup is
ambiguous (e.g., we specify that the peg in the FMB insertion tasks is not aligned, which requires
the policy to search for the opening).

5.2.2 METHODS CONSIDERED

We compare two classes of methods: a scripted baseline policy authored by an expert and different
variants of LLM-generated code using the prompting strategies and control APIs outlined in Sec-
tions 4.1 and 4.2, respectively. For LLM-generated code, we distinguish few-shot and zero-shot
settings. For the former, the prompt includes examples of the control APIs being called (Fig. 3e).
For the latter, the prompt includes Task Description (Fig. 3a), Control API Description (Fig. 3b), and
Hint (Fig. 3c). The IROS RGMCS board examples also use the Spatial Pattern prompting strategy
(Fig. 3d) for resolving spatial ambiguity in the task. The exact prompts are included in Appendix
Section A.

Scripted [Baseline]: We compare against a scripted pattern search insertion move that is tuned by
an expert on a single task setting. This baseline reflects an alternative to our approach where a
single skill is added to our control library, but is not able to be tuned by an expert across different
generalization settings. On the Functional Manipulation Benchmark, we adapt a pattern search
insertion skill for peg insertion. The scripted move implements fixed get-in-contact, pattern search,
and insertion phases, with durations, motion patterns, and force thresholds set by an expert on the
circle setting.

Code-as-Policies (Liang et al., 2022) [Baseline]: We compare with a baseline approach akin to the
prior work (Liang et al., 2022; Mirchandani et al., 2023) that uses the point-to-point action space for
performing robot manipulation tasks, i.e. to directly command the robot to move to Cartesian target
poses (Fig. 4).

Ours, Fixed Compliance: For each task, we compare against a baseline where we do not expose
the stiffness and impedance targets or the force constraints to the LLM planner, but instead, use

7

Under review as a conference paper at ICLR 2024

Table 1: Success rates for the Functional Manipulation Benchmark.

Circle Star Half-Pipe
Scripted 100% 10% 0%

Code-as-Policies (Liang et al., 2022) (Zero-Shot) 70% 0% 0%
Ours, Fixed Compliance (Zero-Shot) 100% 70% 30%

Ours (Zero-Shot) 100% 80% 50%

Table 2: Success rates for the IROS RGMCS Industrial Manipulation Benchmark Tasks.

Cable Cable
Unroute Route

Code-as-Policies (Liang et al., 2022) (Few Shot) 40% 0%
Ours, Fixed Compliance (Few Shot) 80% 30%

Ours (Zero-Shot) 60% 0%
Ours (Few-Shot) 90% 100%

predefined compliance parameters. This ablates the importance of force constraints in completing
the task, making the action space similar to the one of prior work (Liang et al., 2022), but with
compliant motions. Concretely, we provide a modified prompt and access to a wrapper around the
Cartesian admittance move that provides fixed stiffness and impedance targets and a fixed constraint
on translation error.

Ours (Few-Shot): We expose force constraints to the language model and add examples of calls to
our control API, which includes conditional compliant moves. This is similar to the Code-as-Policies
+ Fixed Compliance baselines, but all of the force constraints and termination conditions are exposed
to the language model (Fig. 5). In these experiments, each “shot” is an example subcommand that
shows how to call the API. In the IROS RGMCS tasks, we include 3 example subcommands: moving
down until contact is reached, moving up unless a snag is detected, and moving right unless a snag
is detected.

Ours (Zero-Shot): We follow the same approach of exposing force constraints to the language
model as Ours (Few-Shot, Fig. 5), but do not include any examples of the control APIs being used.
This is the most difficult generalization setting because every command is an unseen command.

5.2.3 EVALUATION PROTOCOL

Similar to (Yu et al., 2023), we take the best prompt out of 5 samples from the language model and
run 10 evaluations. All of our experiments use GPT-4 with a temperature of 0.0 as the underlying
LLM. To make comparisons between different action spaces as fair as possible, we take the most
successful code generated from our method and overwrite the control API to implement the relevant
action space. For each environment, we tune the insertion reference pose that appears in the prompt.
Concretely, this is the reference pose used in the make contact in the admittance moves. This hyper-
parameter is essential on the Point-to-Point baseline because insertion reference poses that are too
deep cause a fault.

5.2.4 RESULTS

Functional Manipulation Benchmark. The main purpose of our first evaluation task is to isolate
the ability of different approaches to policy generation to generalize across different task settings,
i.e., the ability to generalize insertion search patterns based on different object geometries. The
results on the Functional Manipulation Benchmark are listed in Table 1. We find that generating
policy code through an impedance action space (Ours) outperforms other methods across different
peg shapes. Our baseline scripted policy is successful on the star only when the points are already in
close-enough alignment with the hole and fails on the half-pipe shape, which is the most difficult to
align because there is only one valid orientation for a successful insertion. In contrast, our method is
successful on the half-pipe 50% of the time. Upon further analysis, we notice that this is because the
generated code generates a successful policy in only one direction of rotation (i.e., 100% successful
for one rotation and 0% successful for the other randomized rotation). When we inspect the code
output of the LLM, we find that it generates intuitive waypoints for the search that correspond to
the object specified in the prompt. For example, for the half-pipe, the output waypoints oscillate
between 0 and π

2 while for the star shape they go through multiples of π
4 . We also find that the

language model does not require examples demonstrating how to use the admittance move, which

8

Under review as a conference paper at ICLR 2024

is particularly important since the zero-shot prompting setup is more scalable in practical robotics
applications.

Industrial Manipulation Tasks. Given these results, we proceed to presenting the results of the
IROS RGMCS Industrial Manipulation Tasks experiments, which are arguably more directly tar-
geted towards force-based manipulation than the peg insertion task. Indeed, we find it difficult to
design an analogous scripted policy baseline for cable (un-)routing that would perform well across
both tasks, which is why we omit it in this experiment. From the results in Table 2, we observe
that our method (Few-Shot) again consistently outperforms the baselines. Fixed Compliance (Few
Shot) is second-best, while Code-as-Policies (Liang et al., 2022) (Few Shot) performs worst, failing
to complete the routing task even a single time. Interestingly, the Zero-Shot version of our method
also fails for cable routing, for two reasons: (1) the language model tends to generate while loops
that are incompatible with the way the API is structured and (2) the program is successful with a
much more narrow range of force constraints that are difficult to infer without any more information
about the environment. We note that further increasing the performance of LLM-generated policy
code on routing would likely require a richer perception API to be made available to the language
model.

5.3 ABLATING PROMPT HINTS

Error Type

C
ou

nt

0

2

4

6

8

Invalid syntax
or invalid

variable access

Waypoints will
not solve task

Conditions will
not solve task

Force values in
conditions are

not correct

"Pattern Search" "Pattern Search" + Extra Rules
"Pattern Search" + Extra Rules + Translate from Pseudocode

Figure 8: Error Types Across Different Types of Hints.

In the experiments underlying Section 5.2.4, we
observed that incorporating additional hints is
critical in eliciting relevant motion patterns. To
understand this phenomenon in more depth, we
plot the distribution over different types of er-
rors for different types of hints for the cable un-
routing task in the Zero-Shot setting. We test
three hint types: specifically asking for a pat-
tern search, adding extra rules about accessing
undefined variables, and asking the model to
translate from pseudo-code, similar to Chain-
of-Thought prompting (Wei et al., 2022). Fig-
ure 8 plots the distribution of failures for com-
binations of these different types of hints. We
perform rejection sampling to estimate the like-
lihood of each error type given that the generated code fails. The errors are ordered from left to
right based on the level of intervention required by a human operator to make the task succeed. For
example, if the model outputs runnable code, but only moves the cable up without any wiggling
motion, the operator will likely need to add new waypoints and tune the termination conditions and
force values. The most common example of invalid syntax and variables accesses that we observe
is in attempts to access the force values directly to construct for loops over waypoints. Explicitly
adding rules against for loops helps somewhat, but asking the model to translate from pseudocode
is the most helpful in minimizing these types of errors.

6 CONCLUSION
In this work, we study the capabilities of Large Language Models (LLMs) to generate policies for
a variety of high-precision contact-rich manipulation tasks in a zero-shot fashion. We find that
providing LLMs with the right parameterized action spaces is the key to success, which in this case,
correspond to robot impedances and constraints on the interaction forces enabled. We validated our
approach on subtasks derived from the Functional Manipulation Benchmark (FMB) and the Robotic
Grasping and Manipulation Competition, where zero-shot policy generation in this action space
improved success rates over non-compliant action spaces by 3x and 4x, respectively. Our results
suggest that LLMs are well-suited for generating code for contact-rich tasks due to their ability to:
(1) Recapitulate world knowledge about different motion patterns, and (2) Complete control-relevant
arithmetic reasoning tasks over continuous numbers in-context. A slightly surprising result has been
that an LLM, intentionally built to output text, can actually be used to reason over continuous
variables – this domain was normally left to models that were trained to output continuous variables
from the very beginning. These results may blur the boundary between use cases that need text
output and continuous variable output. In future work, we plan to investigate the use of LLMs for
generating policies for more delicate manipulation tasks, including perception APIs and multi-step
scenarios.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY

Readers can reproduce our results by using the prompts from the appendix and included on our paper
website. The complete code for the experiments in Figure 6b is also provided on our anonymized
paper website: https://dex-code-gen.github.io/dex-code-gen/.

REFERENCES

Fares J Abu-Dakka and Matteo Saveriano. Variable impedance control and learning—a review.
Frontiers in Robotics and AI, 7:590681, 2020.

Cristian C Beltran-Hernandez, Damien Petit, Ixchel G Ramirez-Alpizar, and Kensuke Harada. Vari-
able compliance control for robotic peg-in-hole assembly: A deep-reinforcement-learning ap-
proach. Applied Sciences, 10(19):6923, 2020.

Samarth Brahmbhatt, Ankur Deka, Andrew Spielberg, and Matthias Müller. Zero-shot transfer of
haptics-based object insertion policies. In International Conference on Robotics and Automation
(ICRA), June 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Jonas Buchli, Freek Stulp, Evangelos Theodorou, and Stefan Schaal. Learning variable impedance
control. The International Journal of Robotics Research, 30(7):820–833, 2011.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023.

Todor Davchev, Kevin Sebastian Luck, Michael Burke, Franziska Meier, Stefan Schaal, and Sub-
ramanian Ramamoorthy. Residual learning from demonstration: Adapting dmps for contact-
rich manipulation. IEEE Robotics and Automation Letters, 7(2):4488–4495, 2022. doi:
10.1109/LRA.2022.3150024.

Íñigo Elguea-Aguinaco, Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Ibai Inziarte-Hidalgo,
Simon Bøgh, and Nestor Arana-Arexolaleiba. A review on reinforcement learning for contact-
rich robotic manipulation tasks. Robotics and Computer-Integrated Manufacturing, 81:102517,
2023.

Yu Gai, Paras Jain, Wendi Zhang, Joseph Gonzalez, Dawn Xiaodong Song, and Ion Sto-
ica. Grounded graph decoding improves compositional generalization in question answer-
ing. ArXiv, abs/2111.03642, 2021. URL https://api.semanticscholar.org/
CorpusID:243832674.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In arXiv preprint, 2022.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In arXiv preprint arXiv:2207.05608, 2022b.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. arXiv preprint arXiv:2210.03094, 2022.

10

https://api.semanticscholar.org/CorpusID:243832674
https://api.semanticscholar.org/CorpusID:243832674

Under review as a conference paper at ICLR 2024

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022. URL https://api.
semanticscholar.org/CorpusID:249017743.

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. J. Mach. Learn. Res., 22(1), jan 2021. ISSN 1532-
4435.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

Zhihao Liu, Quan Liu, Wenjun Xu, Lihui Wang, and Zude Zhou. Robot learning towards smart
robotic manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 77:102360,
2022.

Jianlan Luo, Eugen Solowjow, Chengtao Wen, Juan Aparicio Ojea, Alice M. Agogino, Aviv Tamar,
and Pieter Abbeel. Reinforcement learning on variable impedance controller for high-precision
robotic assembly. In 2019 International Conference on Robotics and Automation (ICRA), pp.
3080–3087, 2019. doi: 10.1109/ICRA.2019.8793506.

Jianlan Luo, Charles Xu, Liam Tan, Leo Lin, Jeffrey Wu, and Sergey Levine. Fmb: A functional
manipulation benchmark for generalizable robotic learning, 2023. URL https://sites.
google.com/view/manipulationbenchmark/.

Roberto Martı́n-Martı́n, Michelle A. Lee, Rachel Gardner, Silvio Savarese, Jeannette Bohg, and Ani-
mesh Garg. Variable impedance control in end-effector space: An action space for reinforcement
learning in contact-rich tasks. 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1010–1017, 2019. URL https://api.semanticscholar.org/
CorpusID:195316875.

Toki Migimatsu, Wenzhao Lian, Jeannette Bohg, and Stefan Schaal. Symbolic state estimation with
predicates for contact-rich manipulation tasks. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 1702–1709, 2022. doi: 10.1109/ICRA46639.2022.9811675.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint, 07 2023.

Andrew S Morgan, Bowen Wen, Junchi Liang, Abdeslam Boularias, Aaron M Dollar, and Kostas
Bekris. Vision-driven compliant manipulation for reliable, high-precision assembly tasks. arXiv
preprint arXiv:2106.14070, 2021.

Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles Macklin, Philipp Reist, Lukasz Wawrzyniak,
Yunrong Guo, Adam Moravanszky, Gavriel State, Michelle Lu, et al. Factory: Fast contact for
robotic assembly. arXiv preprint arXiv:2205.03532, 2022.

Gerrit Schoettler, Ashvin Nair, Jianlan Luo, Shikhar Bahl, Juan Aparicio Ojea, Eugen Solowjow,
and Sergey Levine. Deep reinforcement learning for industrial insertion tasks with visual in-
puts and natural rewards. 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 5548–5555, 2019. URL https://api.semanticscholar.org/
CorpusID:189762093.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on Robot Learning, pp. 894–906. PMLR, 2022.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530, 2023. doi: 10.1109/ICRA48891.2023.10161317.

11

https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://sites.google.com/view/manipulationbenchmark/
https://sites.google.com/view/manipulationbenchmark/
https://api.semanticscholar.org/CorpusID:195316875
https://api.semanticscholar.org/CorpusID:195316875
https://api.semanticscholar.org/CorpusID:189762093
https://api.semanticscholar.org/CorpusID:189762093

Under review as a conference paper at ICLR 2024

Yu Sun, Joseph Falco, Máximo A. Roa, and Berk Çalli. Research challenges and progress in robotic
grasping and manipulation competitions. IEEE Robotics and Automation Letters, 7:874–881,
2021. URL https://api.semanticscholar.org/CorpusID:236881105.

Markku Suomalainen, Yiannis Karayiannidis, and Ville Kyrki. A survey of robot manipulation in
contact. Robotics and Autonomous Systems, 156:104224, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language mod-
els. ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/
CorpusID:246411621.

Youngsun Wi, Mark Van der Merwe, Pete Florence, Andy Zeng, and Nima Fazeli. CALAMARI:
Contact-aware and language conditioned spatial action MApping for contact-RIch manipulation.
In 7th Annual Conference on Robot Learning, 2023. URL https://openreview.net/
forum?id=Nii0_rRJwN.

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with
large language models. Autonomous Robots, 2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted
Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa,
and Fei Xia. Language to rewards for robotic skill synthesis. Arxiv preprint arXiv:2306.08647,
2023.

Tony Z. Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon Scholz, Stefan
Schaal, and Sergey Levine. Offline meta-reinforcement learning for industrial insertion. In 2022
International Conference on Robotics and Automation (ICRA), pp. 6386–6393, 2022. doi: 10.
1109/ICRA46639.2022.9812312.

12

https://api.semanticscholar.org/CorpusID:236881105
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://openreview.net/forum?id=Nii0_rRJwN
https://openreview.net/forum?id=Nii0_rRJwN

Under review as a conference paper at ICLR 2024

A PROMPT AND OUTPUT CODE EXAMPLE

In this section, we provide a complete prompt example for the cable un-routing task and the GPT-
4-generated output. Importantly, this example demonstrates how that the language model is capable
of generating novel combinations of moves and constraint conditions. In the prompt, there is no
constraint on right-ward snags for poses moving to the left in the prompt, but the language model
is able to synthesize these constraints for the task. Please see our paper website for the remaining
prompts.

A.1 PROMPT EXAMPLE

prompt = """
You're a robot holding a cable that's threaded through a tunnel with a small opening at the

top.
You need to unroute the cable by removing it from the tunnel.

You will have access to the following methods, which are imported directly:
- cartesian_admittance_move: This moves the robot to a target_pose until a termination

condition is reached.
Args:

max_cartesian_stiffness:
The maximum allowed stiffness along each cartesian dof (6d), expressed in
the robot base frame.

target_impedance:
(0,1] 6d-vector specifying the target impedance along each cartesian dof.

target_pose:
Target pose for the robot flange frame in the base frame.

termination_condition:
Termination condition.

virtual_cartesian_inertia:
The diagonal representation of the desired virtual Cartesian inertia
matrix, expressed in the robot base frame [kg, kg mˆ2]

execution_timeout_seconds:
Timeout for execution. Defaults to 30s if not specified
Default value: 10.0

tare_ft_sensor: False when in contact, True otherwise.
- types_pb2.Comparison: this specifies the termination condition above. It can't be accessed

directly, it can only be passed as an argument to the cartesian_admittance_move method.
Args:

operation: types_pb2.Comparison type. One of GREATER_THAN_OR_EQUAL, LESS_THAN_OR_EQUAL,
APPROX_EQUAL, or APPROX_NOT_EQUAL.

state_variable_name: Variable where condition is applied. One of
policy.status.{x_force, y_force, z_force, translation_error, rotation_error}.

double_value: [-0.4, 0.4] value of state variable on which operation is applied
- types_pb2.Condition: Can't be accessed directly, can only be passed as an argument to the

cartesian_admittance_move method.
Args:

comparison: types_pb2.Comparison type.
- types_pb2.ConjunctionCondition: Wrapper to compose multiple conditions together.

Args:
operation: types_pb2.ConjunctionCondition type. One of ALL_OF or ANY_OF .
conditions: A list of Conditions over which the operation is applied

- pose3_rpy: returns a pose object that specifies a pose. Note: Poses can be composed using
the multiply method. E.g., pose1.multiply(pose2) applies pose2 on top of pose1.
Args:

translation: x, y, z translation.
rotation: rotation along x, y, and z.

- move_gripper: opens and closes the gripper.
Args:

percent_open: Controls how open gripper is. 0 is fully closed, 100 is fully open.
- grasp_cable: grab the free edge of the routed cable

You will also have access to the following fields:
- pose(number): the robot pose just above number. You can build more poses by using this as a

reference with the multiply method.
Args:

number: the pose number for the layout below.
- grasp(pose): go to grasp pose and grasp the cable.

Args:
pose: the robot pose above the grasp position

Rules:
- Don't define any new methods
- Don't call any undefined methods
- Don't add any if statements or while loops

Here are some examples using the cartesian_admittance_move method while holding the cable:

```python
position_condition = types_pb2.Comparison(

13



Under review as a conference paper at ICLR 2024

operation=types_pb2.Comparison.LESS_THAN_OR_EQUAL,
state_variable_name="policy.status.translation_error",
double_value=0.001,

)

# move down until contact is reached
upward_force_threshold = 0.4
contact_condition = types_pb2.Condition(

comparison=types_pb2.Comparison(
operation=types_pb2.Comparison.GREATER_THAN_OR_EQUAL,
state_variable_name="policy.status.z_force",
double_value=upward_force_threshold,

)
)
down_pose = pose(1).multiply(pose3_rpy(translation=[0, 0, -.01]))
cartesian_admittance_move(

target_pose=down_pose,
termination_condition=termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[contact_condition, position_condition]

))

# move up unless snag is detected
downward_force_threshold = -0.4
snag_condition = types_pb2.Condition(

comparison=types_pb2.Comparison(
operation=types_pb2.Comparison.LESS_THAN_OR_EQUAL,
state_variable_name="policy.status.z_force",
double_value=downward_force_threshold,

)
)
up_pose = pose(1).multiply(pose3_rpy(translation=[0, 0, .01]))
cartesian_admittance_move(

target_pose=up_pose,
termination_condition=termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[snag_condition, position_condition]

))

# move the cable to the right unless snag is detected
leftward_force_threshold = 0.4
leftwardsnag_condition = types_pb2.Condition(

comparison=types_pb2.Comparison(
operation=types_pb2.Comparison.GREATER_THAN_OR_EQUAL,
state_variable_name="policy.status.x_force",
double_value=leftward_force_threshold,

)
)
right_pose = pose(1).multiply(pose3_rpy(translation=[-0.01, 0, 0]))
cartesian_admittance_move(

target_pose=up_pose,
termination_condition=termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[leftwardsnag_condition, position_condition],

))
```

Currently the robot is holding the cable at pose(1), but the cable is stuck in a tunnel with
a small opening at the top. Describe a strategy for unrouting the cable using force
information to search for the opening and then write a program using the APIs above to
unroute the cable and lift it out of the tunnel."""

messages = [{"role": "user", "content":prompt}]
response = openai.ChatCompletion.create(

model="gpt-4",
messages = messages,
temperature=0.0,
max_tokens=512*3,
frequency_penalty=0.0

)
print(response["choices"][0]["message"]["content"])

A.2 GENERATED CODE EXAMPLE

Strategy:
1. First, we will move the cable upwards until we detect a snag. This will help us to find

the top of the tunnel.
2. Once we detect a snag, we will move the cable to the right until we detect another snag.

This will help us to find the right wall of the tunnel.
3. After finding the right wall, we will move the cable to the left until we no longer detect

a snag. This will help us to find the opening of the tunnel.
4. Finally, we will move the cable upwards again to lift it out of the tunnel.

14

Under review as a conference paper at ICLR 2024

Program:

```python
# Step 1: Move up until snag is detected
downward_force_threshold = -0.4
snag_condition = types_pb2.Condition(

comparison=types_pb2.Comparison(
operation=types_pb2.Comparison.LESS_THAN_OR_EQUAL,
state_variable_name="policy.status.z_force",
double_value=downward_force_threshold,

)
)
up_pose = pose(1).multiply(pose3_rpy(translation=[0, 0, .01]))
cartesian_admittance_move(

target_pose=up_pose,
termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[snag_condition, position_condition]

))

# Step 2: Move right until snag is detected
leftward_force_threshold = 0.4
leftwardsnag_condition = types_pb2.Condition(

comparison=types_pb2.Comparison(
operation=types_pb2.Comparison.GREATER_THAN_OR_EQUAL,
state_variable_name="policy.status.x_force",
double_value=leftward_force_threshold,

)
)
right_pose = pose(1).multiply(pose3_rpy(translation=[-0.01, 0, 0]))
cartesian_admittance_move(

target_pose=right_pose,
termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[leftwardsnag_condition, position_condition],

))

# Step 3: Move left until no snag is detected
rightward_force_threshold = -0.4
rightwardsnag_condition = types_pb2.Condition(

comparison=types_pb2.Comparison(
operation=types_pb2.Comparison.LESS_THAN_OR_EQUAL,
state_variable_name="policy.status.x_force",
double_value=rightward_force_threshold,

)
)
left_pose = pose(1).multiply(pose3_rpy(translation=[0.01, 0, 0]))
cartesian_admittance_move(

target_pose=left_pose,
termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[rightwardsnag_condition, position_condition],

))

# Step 4: Move up to lift the cable out of the tunnel
cartesian_admittance_move(

target_pose=up_pose,
termination_condition=types_pb2.ConjunctionCondition(

operation=types_pb2.ConjunctionCondition.ANY_OF,
conditions=[snag_condition, position_condition]

))
```

B PROMPT ABLATION DETAILS

To generate Figure 8, we take the first 15 prompts that generate an error (skipping any successful
prompts) and classify them based on failure type. Table 2 uses the best of five samples from the
complete prompt.

C COMPLIANT ACTION SPACE PARAMETERIZATIONS

It is worth noting that different robotic platforms offer different interfaces to controlling their robots.
Torque controlled robots, such as Franka-Emika Panda and Kuka LBR iiwa robots, readily lend
themselves to the impedance control law described in Equation 1. On the other hand, position
controlled robots (like the UR5e used in our experiments) require a target position.

15

Under review as a conference paper at ICLR 2024

To achieve soft interaction with the environment, we can implement an admittance controller that
makes use of a force-torque sensor attached to our robot end-effector:

ẍ = M−1(Kp(xd − x) +Kd(ẋd − ẋ) + (fd − fs))

where fd is a desired force value, and fs is the current sensed force value. The use of an admittance
controller enabled us to parameterize our action space as ti = ([xtarget]i, σi), where [xtarget]i
denote target Cartesian pose and σi denote the stiffness vector.

Note that even though the admittance controller differs from the impedance controller described
in Equation 1, the parameters, namely Kp, Kd, and M play a conceptually similar role to their
corresponding variables in the impedance control law, and so we believe our method can generalize
across these different robotic platforms.

D ADDITIONAL RESULTS

We visualize rollouts from our method in Figure 9.

FMB: Circle

FMB: Star

FMB:
Half-Pipe

RGMCS:
Cable
Un-routing

RGMCS:
Cable Routing

Figure 9: Example rollouts on the experimental tasks.

16

	Introduction
	Related Work
	Preliminaries
	Generating Contact-Rich Policy Code with Language Models
	Prompting for Contact-Rich Control
	Action Spaces For Robot Manipulation Tasks

	Experiments: High-Precision Contact-Rich Manipulation Tasks
	Reasoning Over Continuous Spaces
	Contact-Rich Manipulation Tasks
	Task Description
	Methods Considered
	Evaluation Protocol
	Results

	Ablating Prompt Hints

	Conclusion
	Prompt and Output Code Example
	Prompt Example
	Generated Code Example

	Prompt Ablation Details
	Compliant Action Space Parameterizations
	Additional Results

