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Abstract

Semantic parsing is the task of producing001
structured meaning representations for natu-002
ral language sentences. Recent research has003
pointed out that the commonly-used sequence-004
to-sequence (seq2seq) semantic parsers strug-005
gle to generalize systematically, i.e. to han-006
dle examples that require recombining known007
knowledge in novel settings. In this work,008
we show that better systematic generalization009
can be achieved by producing the meaning010
representation directly as a graph and not as011
a sequence. To this end we propose LAGr012
(Label Aligned Graphs), a general framework013
to produce semantic parses by independently014
predicting node and edge labels for a com-015
plete multi-layer input-aligned graph. The016
strongly-supervised LAGr algorithm requires017
aligned graphs as inputs, whereas weakly-018
supervised LAGr infers alignments for orig-019
inally unaligned target graphs using approxi-020
mate maximum-a-posteriori inference. Exper-021
iments demonstrate that LAGr achieves signif-022
icant improvements in systematic generaliza-023
tion upon the baseline seq2seq parsers in both024
strongly- and weakly-supervised settings.025

1 Introduction026

Recent research has shown that neural models strug-027

gle to systematically generalize to examples with028

unseen combinations of seen rules from the training029

set (Lake and Baroni, 2018; Finegan-Dollak et al.,030

2018; Hupkes et al., 2019). Systematic generaliza-031

tion is especially important for the task of semantic032

parsing, which requires models to translate natural033

language sentences to structured meaning represen-034

tations (MRs), such as SPARQL database queries035

or lambda calculus logical forms. To generalize036

systematically in this task, the model must be ca-037

pable of producing MRs for examples that feature038

new combinations of meaning construction rules,039

such as the rule that maps a noun like “hedgehog”040

in Figure 1 to its respective predicate ℎ4364ℎ>6(.),041

Training: A hedgehog ate the cake→
∗ℎ4364ℎ>6(G1) ∧ 20:4(G4) ∧ 40C.064=C (G2, G1) ∧
40C.Cℎ4<4(G4)
Generalization: The baby liked the hedgehog→
∗101H(G1)∧ℎ4364ℎ>6(G4)∧;8:4.064=C (G2, G1)∧
;8:4.Cℎ4<4(G4))

Figure 1: Examples from the training and the generaliza-
tion sets of the COGS dataset (Kim and Linzen, 2020b).
While “hedgehog” is only observed in the agent role dur-
ing training, the generalization set features this word in
the theme role.

and the rule that defines which semantic role with 042

respect to the verb (e.g. agent or theme) the re- 043

sulting predicate takes. Using synthetic (Bahdanau 044

et al., 2019; Kim and Linzen, 2020a; Keysers et al., 045

2020) and natural benchmarks (Finegan-Dollak 046

et al., 2018; Shaw et al., 2020), researchers have 047

been studying systematic generalization of existing 048

semantic parsing methods as well as proposing new 049

approaches such as using meta-learning (Conklin 050

et al., 2021), pretrained models (Furrer et al., 2020), 051

or intermediate meaning representations (Herzig 052

et al., 2021). 053

The dominant framework in these studies is 054

sequence-to-sequence (seq2seq, Sutskever et al., 055

2014; Bahdanau et al., 2015) learning, whereby 056

the model produces a serialized MR in an autore- 057

gressive fashion, by predicting one token at a time, 058

while conditioning on all previously generated to- 059

kens. We hypothesize that for semantic parsing 060

constructing the MR by combining independent 061

predictions that are not conditioned on each other 062

can generalize more systematically than seq2seq. 063

For example, consider the sentence “The dog liked 064

that the hippo danced”. Arguably, the predictions 065

that “dog” is the agent of “like” and that “hippo” is 066

the agent of “danced” can be made independently 067

of each other. Our intuition is that a model that pre- 068

dicts such aspects of meaning independently of each 069

other can be better at learning context-insensitive 070
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rules because the overall context for each individual071

prediction is reduced.072

Following this intuition, we proposeLAGr (Label073

AlignedGraphs), a framework to produce semantic074

parses by independently labelling the nodes and075

edges of a fully-connected multi-layer output graph076

that is aligned with the input utterance. While the077

general idea of predicting semantic parses as graphs078

is not new (Lyu and Titov, 2018), the systematic079

generalization benefits of doing so have not been080

investigated prior to this work1. Importantly, LAGr081

retains most of the flexibility that seq2seq models082

have, without the complexity and rigidity that comes083

with other alternatives to seq2seq, such as grammar-084

based methods (Herzig and Berant, 2020).085

We first introduce LAGr in the strongly-086

supervised setting where output graphs are aligned087

to the input sequences, thus allowing for standard088

supervised training. For the weakly-supervised089

case when the alignment is not available, we090

treat it as a latent variable. We infer the latent091

alingment with a simple and novel approximate092

maximum-a-posteriori (MAP) inference approach093

which involves solving several minimum cost bi-094

partite matching problems with the Hungarian al-095

gorithm (Kuhn, 1955a). We then use the result-096

ing aligned graphs to train the model. Our ex-097

periments demonstrate that in both strongly- and098

weakly-supervised settings LAGr significantly im-099

proves upon comparable seq2seq semantic parsers100

on the COGS and CFQ datasets (Kim and Linzen,101

2020a; Keysers et al., 2020).102

2 Semantic Parsing by Labeling Aligned103

Graphs104

We present LAGr (LabelAlignedGraphs), a frame-105

work for constructing meaning representations106

(MR) directly as graphs (i.e., MR graphs). When107

LAGr is used to output logical forms, the graph108

nodes can be variables, entities, categories and pred-109

icates, and graph edges can be the Neo-Davidsonian110

style semantic role relations that the nodes appear111

in, e.g. “is-agent-of” or “is-theme-of” (Parsons,112

1990). While this work focuses on predicting log-113

ical forms, LAGr can, in principle, also be used114

to output other kinds of graphs, such as abstract115

syntax tree parses of SQL queries. As illustrated in116

Figure 2, LAGr predicts the output by labeling the117

1A concurrent systematic generalization study by Ontañón
et al. (2021) that was put on ArXiv on August 5 features
a “sequence tagging” approach that is similar to strongly-
supervised LAGr.

nodes and edges of a fully-connected multi-layer 118

output graph that is aligned with the input utterance. 119

We label a multi-layer as opposed to a single-layer 120

graph because some MR graphs have more nodes 121

than the number of input tokens (see Section 4.2 122

for an example). 123

Notation and Terminology Formally, let G = 124

G1, G2, ..., G# denote a natural language utterance 125

of # tokens. LAGr produces an MR graph � by 126

labeling the nodes and edges of a complete graph Γa 127

with " = ! · # nodes that are arranged in ! layers. 128

The layers are aligned with the input sequence G in 129

a way that for each input position 8 there is a unique 130

corresponding output node in each layer. We say 131

that nodes from different layers that are aligned with 132

the position 8 form a column (an example column 133

in Figure 2b contains the nodes labeled as actor 134

and ?x0 for the word star at the position 8 = 3). 135

We write Γa = (I, b) to indicate that a complete 136

labeled graph Γa is characterized by its node labels 137

I ∈ +"= and edge labels b ∈ +"×"4 , where += and 138

+4 are node and edge label vocabularies, respec- 139

tively. Both vocabularies also include additional 140

null labels that we use as padding (e.g. grey nodes 141

in Figure 2 are labeled as null). To produce the 142

output MR graph � from Γa, we remove all null 143

nodes and null edges. Lastly, we use I 9 and b 9: 144

notations to refer to the labels of node 9 and of 145

the edge ( 9 , :) where 9 = (; − 1)# + 8 is a one- 146

dimensional index that corresponds to the 8-th node 147

in the ;-th layer. 148

2.1 Labeling Aligned Graphs 149

To label the nodes of Γa we encode the input ut- 150

terance G as a matrix of # 3-dimensional vectors 151

� = 54=2 (G) ∈ R#×3 , where 54=2 can be an arbi- 152

trary encoder model such as LSTM (Hochreiter and 153

Schmidhuber, 1997) or a Transformer (Vaswani 154

et al., 2017). LAGr then defines a factorized distri- 155

bution ?(I |G) over the node labels I as follows: 156

$ =
!

| |
;=1
�, ;, (1) 157

c = softmax($), (2) 158

?(I |G) =
"∏
9=1

?(I 9 |G) = c 9 ,I 9 , (3) 159

where $ ∈ R"×|+= | contains logits for " = # × ! 160

nodes from all the ! graph layers, | | denotes the 161

concatenation operation along the node axis, ,; 162

denotes the weight matrix for layer ;. Here and 163
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* hedgehog ( x _ 1 ); 
apple ( x _ 4 ); 
eat.agent ( x _ 2 ; x _ 1 ) AND 
eat.theme ( x _ 4 )

eat

apple
*

The  hedgehog  ate  an  apple.

  *  hedgehog  eat  apple
hedgehog

(a) COGS

M1

actor

parent

sibling

?x0

Did M1 star    a    child  and  sibling  of    M0  ?

M1 ?x0           M0

?x0 parent M0 
?x0 sibling M0 . 
FILTER ( ?x0 != M0 )  
M1 actor ?x0 .

        actor   parent   sibling 

M0

(b) CFQ

Figure 2: Aligned and unaligned graphs for COGS (a) and CFQ (b). For COGS, pink, blue and black denote
agent, theme and article edges, respectively. For CFQ, yellow, pink and blue mark FILTER, agent, theme
edges. Grey nodes mark null nodes, and * denotes the definite article. The aligned graph for CFQ is provided for
illustration purposes, and was not used for training. For the learned CFQ aligned graphs see Section 4.

in following equations softmax(.) is applied to164

the last dimension of the input tensor and every165

multiplication by a weight matrix is followed by166

the addition of a bias vector which we omit to167

enhance clarity. Our edge labelling computation168

is reminiscent of the multi-head self-attention by169

Vaswani et al. (2017), with the key difference that170

softmax is applied across the edge labels and not171

across positions:172

�U@ =
!

| |
;=1
�*U,;, �U: =

!

| |
;=1
�+ U,; ,173

d = softmax

[
stack
U∈+4

[
�U@ �

U
:
)
] ]
,174

where �U@ and �U
:
contain concatenated key and175

query vectors for the label U ∈ +4 across all ! graph176

layers, *U,;, + U,; ∈ R
3
|+4 | ,

3
|+4 | are the weights for177

the edge label U, and the stack operator stacks178

the matrices into a 3D tensor to which softmax179

is subsequently applied. Similarly to ?(I |G), we180

obtain ?(b |G) as follows:181

?(b |G) =
"∏
9=1

"∏
:=1

?(b 9: |G) =
"∏
9=1

"∏
:=1

d 9: b 9: . (4)182

The factorized nature of Equations 3 and 4 makes183

the argmax inference Î, b̂ = arg max ?(I, b |G) triv-184

ial to perform. When the groundtruth aligned185

graph Γ∗a = (I∗, b∗) for the MR graph � is avail-186

able, LAGr can be trained by directly optimizing187

log ?(I = I∗, b = b∗ |G). We refer to this training188

setting as strongly-supervised LAGr.189

2.2 Weakly-supervised LAGr190

In many practical settings, the alignment between191

the MR graph � and the question G is unavail-192

able, making the aligned graph Γa unknown. To193

address this common scenario, we propose aweakly- 194

supervised LAGr algorithm based on a latent align- 195

ment model. Similarly to the strongly-supervised 196

case, we assume that the MR graph can be rep- 197

resented as a labeled complete, multi-layer graph 198

Γna = (B ∈ +"= , 4 ∈ +"×"4 ), with the difference 199

that in this case the alignment between G and Γna 200

is not known. We assume a generative process 201

whereby Γna is obtained by permuting the columns 202

of the latent aligned graph Γa with a random per- 203

mutation 0, where 0 9 is the number of the column 204

in Γa that becomes the 9-th column in Γna. For 205

the rest of this section we focus on the single layer 206

(! = 1) case to simplify the formulas. For this 207

case our probabilistic model defines the following 208

distribution over Γna = (B, 4): 209

?(4, B |G) =
∑
0

∑
I

∑
b

?(4, B, 0, I, b |G)

=
∑
0

?(0)
∏
9

?(I0 9
= B 9 |G)∏

9

∏
:

?(b0 90: = 4 9: |G),

(5) 210

where ?(0) = 1/#!. Computing ?(4, B |G) exactly 211

is intractable. For this reason, we train LAGr 212

by using an approximation of ?(4, B |G) in which 213

instead of summing over all possible aligments 214

0, we only consider the maximum-a-posteriori 215

(MAP) alignment 0̂ = arg max0 ?(0 |4, B, G). This 216

approach is sometimes called the hard Expectation- 217

Maximization algorithm in the literature on proba- 218

bilistic models (Svensén and Bishop, 2007). The 219

training objective thus becomes 220

?(4, B |0̂, G) =∏
9

?(I0̂ 9
= B 9 |G)

∏
9

∏
:

?(b0̂ 9 ,0̂: = 4 9: |G). 221
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To infer the MAP alignment 0̂, we need to solve the222

following inference problem:223

0̂ = arg max
0

?(0 |4, B, G)

= arg max
0

log ?(B |0, G) + log ?(4 |0, G)

= arg max
0

[∑
9

log ?(I0 9
= B 9 |G)

+
∑
9

∑
:

log ?(b0 9 ,0: = 4 9 ,: |G)
] (6)224

We are not aware of an exact algorithm for solving225

the above optimization problem, however if the226

edge log-likelihood term log ?(4 |0, G) is dropped227

in the equations above, maximizing the node la-228

bel probability ?(B |0, G) is equivalent to a standard229

minimum cost bipartite matching problem. This op-230

timization problem can be solved by a polynomial-231

time Hungarian algorithm (Kuhn, 1955b). We232

can thus use an approximate MAP alignment233

0̂1 = arg max0
∑
9 log ?(I0 9

= B 9 |G). While drop-234

ping ?(4 |0, G) from Equation 6 is a drastic simplifi-235

cation, in situations where node labels B are unique236

and the model is sufficiently trained to output sharp237

probabilities ?(I 9 |G) we expect 0̂1 to often match238

0̂. To further improve the MAP alignment approxi-239

mation and alleviate the reliance on the node label240

uniqueness, we generate a shortlist of  candidate241

alignments by solving  noisy matching problems242

of the form arg max0
∑
9 log ?(I0 9

= B 9 |G) + n 90 9
,243

where n 90 9
∼ # (0, f). We then select the align-244

ment candidate 0 that yields the highest full log-245

likelihood log ?(B |0, G) + log ?(4 |0, G).246

We refer the reader to Algorithm 1 for a detailed247

presentation of weakly-supervised LAGr.248

3 Related Work249

The LAGr approach is heavily inspired by graph-250

based dependency parsing algorithms (Mcdonald,251

2006). In neural graph-based dependency parsers252

(Kiperwasser and Goldberg, 2016; Dozat and Man-253

ning, 2017) the model is trained to predict the254

existence and the label of each of the possible edges255

between the input words. The Abstract Meaning256

Representation (AMR) parser by Lyu and Titov257

(2018) brings similar methodology to the realm258

of semantic parsing, although they do not con-259

sider the systematic generalization implications of260

using a graph-based parser instead of a seq2seq261

one. Lyu and Titov (2018) only output single layer262

graphs which requires aggresive graph compres-263

sion; in LAGr we allow the model to output a264

Algorithm 1: Training LAGr with weak
supervision
Init: Let  be the number of alignment

candidates, ) be the number of
training steps, and \C be the model
parameters after C steps.

1 for t=1, ..., T do
2 sample example (G, 4, B)
3 for ^=1, ..., K do
4 n 98 ∼ # (0, f)
5 2>BC 98 = − log ?(I8 = B 9 |G) + n 98
6 0^ =

MinCostBipartiteMatching(2>BC)
7 �^ =

∑
9 log ?(I0^

9
= B 9 |G)

8 +∑
9

∑
: log ?(b0^

9
0^
:
= 4 9: |G)

9 ˆ̂ = arg max^ �^
10 \C+1 ← Optimizer(\C ,∇\ − � ˆ̂)
11 return \) +1

multiple layer graph instead. Lastly, the amortized 265

Gumbel-Sinkhorn alignment inference used by Lyu 266

and Titov (2018) is much more complex than the 267

Hungarian-algorithm-based approximate MAP in- 268

ference that we employ here. Another important 269

inspiration for LAGr is the UDepLambda method 270

(Reddy et al., 2016) that converts dependency parses 271

into graph-like logical forms. LAGr can be seen as 272

an algorithm that produces UDepLambda graphs 273

directly with the neural model, side-stepping the 274

intermediate dependency parsing step. 275

Another alternative to seq2seq semantic parsers 276

are span-based parsers that predict span-level 277

actions for building MR expressions from sub- 278

expressions. (Herzig and Berant, 2020; Pasupat 279

et al., 2019). A prerequisite for using a span-based 280

parser is an MR that can be viewed as a recursive 281

composition ofMRs for subspans. While this strong 282

compositionality assumption holds for the logical 283

forms used in earlier semantic parsing research (e.g. 284

Zettlemoyer and Collins (2005)), an intermediate 285

MR would be required to produce other meaning 286

representations, such as e.g. SPARQL or SQL 287

queries, with a span-based parser. The designer for 288

an intermediate MR for a span-based parser must 289

think about MRs for spans and how they should be 290

composed. This can sometimes lead to non-trivial 291

corner cases, such as e.g. ternary grammar rules in 292

Herzig and Berant (2020). On the contrary, a graph- 293

based parser can in principle produce any graph, 294
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although in practice in our experiments we com-295

press the raw graphs slightly to make the learning296

problem easier.297

Other related semantic parsing approaches in-298

clude the semantic labeling method by Zheng and299

Lapata (2020) and the structured reordering ap-300

proach by Wang et al. (2021). Zheng and Lapata301

(2020) show that labelling the input sequence prior302

to feeding it to the seq2seq semantic parser improves303

systematic generalization. Compared to that study,304

our work goes one step further by adding edge label-305

ing, which allows us to let go of the seq2seq model306

entirely. Wang et al. (2021) model semantic pars-307

ing as structured permutation of the input sequence308

followed by monotonic segment-level transduction.309

This approach achieves impressive results, but is310

considerably more complex than LAGr. Finally,311

Guo et al. (2020) achieve a very high performance312

on CFQ by combining the sketch prediction ap-313

proach (Dong and Lapata, 2018) with an algorithm314

that outputs the MR as a directed acyclic graph315

(DAG). Unlike LAGr, their algorithm produces the316

DAG in a sequential left-to-right fashion. Notably,317

the non-hierachical version of this algorithm with-318

out sketch prediction performs poorly.319

Concurrently with this work, Ontañón et al.320

(2021) show that semantic parsing by sequence321

tagging improves systematic generalization. Their322

sequence tags are similar to 1-layer aligned graphs323

that we predict here. Ontañón et al. (2021) do not324

discuss how to infer sequence tags from logical325

forms when the former are not available.326

4 Experiments327

We demonstrate the effectiveness of LAGr on two328

systematic generalization benchmarks for semantic329

parsing: COGS (Kim and Linzen, 2020a) and330

Compositional Freebase Questions (CFQ, Keysers331

et al. (2020)).332

4.1 COGS333

Dataset COGS (Kim and Linzen, 2020a) is a se-334

mantic parsing benchmark that requires models335

to translate English sentences to Neo-Davidsonian336

lambda calculus logical forms. As shown in Fig-337

ure 1, the out-of-distribution generalization set of338

COGS features novel combinations of words and339

syntactic structures from the training dataset (more340

examples available in Appendix A.4).341

Graph Construction In order to study LAGr342

on COGS, we first convert the logical forms to343

UDepLambda-style (Reddy et al., 2016)MR graphs. 344

Specifically, we construct the graph nodes using the 345

one- and two-place predicates and definite articles 346

(e.g. hedgehog, apple, eat and the * nodes 347

in Figure 2a). We do not create dedicated nodes 348

for variables, as every variable in COGS is either 349

an argument to a unique one-place predicate (e.g. 350

G1 is for hedgehog(G1)), or the first argument to 351

a unique two-place predicate (e.g. G2 for eat in 352

eat.agent(G2, G1)). Instead, we let the respective 353

predicate node represent the variable. 354

The labeled edges for our graphs are defined 355

by the Neo-Davidsonian role predicates of 356

the logical forms (such as agent, theme, 357

recipient, ccomp, nmod.on, nmod.in, 358

xcomp, nmod.beside). For example, the 359

conjunct eat.agent(G2, G1) results in an agent 360

edge between the eat and hedgehog nodes. We 361

also add special article edges to connect definite 362

article nodes (denoted by the * label) to their 363

respective nouns (hedgehog in Figure 2a). We 364

take advantage of the correspondence between 365

variable names and input positions (G8 corresponds 366

to the 8-th token) to construct single-layer (! = 1) 367

aligned graphs Γa for COGS that are suitable 368

for strongly-supervised LAGr, as described in 369

Section 2.1. The node and edge vocabularies 370

for the aligned graphs contain 645 and 10 labels 371

respectively, each including a null label. 372

Training Details Hyperparameter tuning on 373

COGS is challenging since the the performance 374

on the in-distribution development set always satu- 375

rates to near 100%. We adopt the hyperparameter 376

tuning procedure discussed in Conklin et al. (2021) 377

to find the best configuration for our baselines and 378

strongly-supervised LAGr models. Specifically, we 379

create a “Gen Dev” dataset by sampling 1000 ran- 380

dom examples from the generalization set and use 381

them to find the best hyperparameter configuration. 382

We find that our Transformer-based seq2seq and 383

LAGr models perform better when embeddings 384

are initialized following He et al. (2015) and when 385

positional embeddings are scaled down by 1√
38<

. 386

The latter technique has been recently proposed by 387

Csordás et al. (2021) under the PED (Positional 388

Embedding Downscaling) name. We report the ex- 389

act match accuracy, i.e., the percentage of examples 390

for which the predicted graphs after serialization 391

yielded the same logical form, as well as the stan- 392

dard deviation over 10 random seeds. We tune the 393

hyperparameters for strongly-supervised LAGr first; 394
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Exact match accuracy
train test gen

LSTM+Attn ♦ - 99. 16. (±8.)
Transformer ♦ - 96. 35. (±6.)
LSTM+Attn ♥ - - 51. (±5.)
Transformer ♠ - - 81. (±1.)
LSTM + Lex: Simple ♥ - - 82. (±1.)
LSTM + Lex: PMI ♥ - - 82. (±0.)
LSTM + Lex: IBMM2 ♥ - - 82. (±0.)
LSTM+Attn (ours) 100 (±0.0) 99.6 (±0.2) 26.1 (±6.8)
LSTMBℎ strongly-supervised LAGr 100 (±0.0) 99.9 (±0.1) 39.0 (±9.1)
LSTMB4? strongly-supervised LAGr 100 (±0.0) 100 (±0.0) 71.4 (±2.9)
Transformer (ours) 100 (±0.0) 99.2 (±0.1) 70.3 (±5.6)
TransformerBℎ strongly-supervised LAGr 100 (±0.0) 99.9 (±0.1) 78.1 (±2.4)
TransformerB4? strongly-supervised LAGr 100 (±0.0) 99.9 (±0.2) 82.2 (±2.5)
TransformerBℎ weakly-supervised LAGr 99.4 (± 0.3) 99.3 (± 0.5) 78.5 (± 3.4)
TransformerB4? weakly-supervised LAGr 99.3 (± 0.4) 99.0 (±0.7) 80.8 (± 2.3)

Table 1: Average exact match accuracy and standard deviation on COGS. Bottom: reproduced seq2seq baselines
and LAGr over 10 runs. Middle: Seq2seq baselines including the original results by Kim and Linzen (2020a) ♦,
best Transformer baseline by Csordás et al. (2021) ♣, and the best LSTM baseline by Akyürek and Andreas (2021)
♥. We also show a lexicon-based approach by Akyürek and Andreas (2021).

for weakly-supervised LAGr we reuse the found395

configuration and only tune the inference hyperpa-396

rameters, i.e. the number of candidates  and the397

noise level f. Weakly-supervised LAGr often does398

not converge on the training. To remedy this, we399

tune  and f to make convergence more frequent.400

Setting  = 5 and f = 15 allows us to achieve401

a convergence rate of above 45%. We restart the402

experiments that do not achieve at least 98% perfor-403

mance on the training set. For more details on our404

hyperparameter search, and best configurations, we405

refer the reader to Appendix A.1.406

Baselines We compare LAGr to LSTM- and407

Transformer- based seq2seq semantic parsers that408

produce logical forms as sequences of tokens. In409

addition to training our own seq2seq baselines,410

we also include baseline results from the original411

COGS paper by Kim and Linzen (2020a) and from412

follow-up works by Akyürek and Andreas (2021),413

and Csordás et al. (2021). We also compare LAGr414

to a lexicon-based seq2seq model “LSTM+Lex”415

by Akyürek and Andreas (2021) that leverages the416

copy mechanism in the seq2seq decoder to perform417

a lexical lookup to generate the output token.418

Results Table 1 shows that our best Transformers419

trained with LAGr outperform the original (35%)420

and our reproduced (70.3%) seq2seq Transformer421

baselines, obtaining 82.2% (±2.5) and 80.8% (±2.3)422

exact match accuracy in the strongly- and weakly-423

supervised settings, respectively. Only the very re-424

cent work by Csordás et al. (2021) reports seq2seq425

results that are comparable to LAGr performance,426

however when applied to our codebase their pro-427

posed PED technique only brought a modest im- 428

provement for both our seq2seq and LAGr models. 429

We experiments two variations of LAGr: using 430

shared and separate encoders for node and edge 431

predictions — reflected in Table 1 by the subindex 432

"_Bℎ" versus "_B4?" in the model names respec- 433

tively. For both strongly- and weakly-supervised 434

LAGr, using separate encoder models achieves the 435

best results. While this setting significantly im- 436

proves the performance of LAGr in all cases, for 437

the strongly-supervised LSTM-based LAGrmodels, 438

separating encoders seems to be crucial (71.4% vs 439

39.0%). 440

Finally, LAGr is able tomatch the performance of 441

the LSTM+Lex approach by Akyürek and Andreas 442

(2021) without relying on the use of lexicons — a 443

result we further discuss in Section 5. 444

4.2 CFQ 445

Dataset CFQ (Keysers et al., 2020) is a benchmark 446

for systematic generalization in semantic parsing 447

that requires models to translate English sentences 448

to SPARQL database queries. We use CFQ’sMaxi- 449

mum Compound Divergence (MCD) splits, which 450

were generated by making the distribution of com- 451

positional structures in the train and test sets as 452

divergent as possible. 453

SPARQL queries contain two components: a 454

SELECT and a WHERE clause. The SELECT clause 455

is either of the form SELECT count(*) for yes/no 456

questions or SELECT DISTINCT ?x0 for wh- ques- 457

tions (those starting with "which", "what", "who", 458

etc.). The WHERE clause can contain constrains of 459
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Graph Accuracy
Random Mean MCD MCD1 MCD2 MCD3

train test test test test test
HPD ♠ - - 67.3 (∓4.1) 72.0 (∓7.5) 66.1 (∓6.4) 63.9 (∓5.7)
HPD w/o Hierarchical Mechanism ♠ - - - 21.3 6.4 10.1
T5-small + IR ♦ - - 47.9 - - -
LSTM + Attn ♥ - 97.4 (∓0.3) 14.9 (∓1.1) 28.9 (∓1.8) 5.0 (∓0.8) 10.8 (∓0.6)
Transformer ♥ - 98.5 (∓0.2) 17.9 (∓0.9) 34.9 (∓1.1) 8.2 (∓0.3) 10.6 (∓1.1)
Universal Transformer ♥ - 98.0 (∓0.3) 18.9 (∓1.4) 37.4 (∓2.2) 8.1 (∓1.6) 11.3 (∓0.3)
Evol. Transformer ♣ - - 20.8 (∓0.7) 42.4 (∓1.0) 9.3 (∓0.8) 10.8 (∓0.2)
LSTM + Simplified SPARQL ♠ - - 26.1 42.2 14.5 21.5
Transformer + Simplified SPARQL ♠ - - 31.4 53.0 19.5 21.6
T5-small from scratch ♦ - - 20.8 - - -
T5-small from scratch + IR ♦ - - 22.6 - - -
TransformerBℎ weakly sup. LAGr,  = 1 99.6 (∓0.5) 98.5 (∓0.6) 29.2 (∓15.9) 50.9 (∓4.9) 18.3 (∓1.6) 18.4 (∓1.2)
TransformerBℎ weakly sup. LAGr,  = 5, f = 10 100 (∓0.1) 99.7 (∓0.2) 34.9 (∓16.9) 57.9(∓3.21) 26.0 (∓3.0) 20.9 (∓1.2)

Table 2: Average graph accuracy and standard deviation over 10 runs of weakly-supervised LAGr on CFQ (bottom).
Middle: results by several seq2seq baselines from prior work (Keysers et al. (2020)♥, Furrer et al. (2020) ♣ ). Top:
results not directly comparable to LAGr: Hierarchical Poset Decoding (Guo et al., 2020) ♠, and pretrained T5-small
seq2seq model with intermediate representations (IR) (Herzig et al., 2021) ♦. Approaches other than LAGr report
the average exact match accuracy with 95% confidence intervals.

three kinds: filter constraints ensuring two vari-460

ables or entities are distinct (e.g. FILTER ?x0 !=461

M0), two-place predicates expressing a relation be-462

tween two entities (e.g. ?x0 parent ?x1), and463

one-place predicates expressing if an entity belongs464

to a category (e.g. ?x0 a ns:film.actor)465

Graph Construction Before constructing the466

graphs, similarly to prior work (Furrer et al., 2020;467

Guo et al., 2020), we compress the SPARQL468

queries by merging some triples in the WHERE469

clauses. As an example, consider the question470

“Were M2 and M3 directed by a screenwriter471

that executive produced M1?”, where the original472

MR contains both [M2 directed_by ?x0, M3473

directed_by ?x0] conjuncts. To make it easier474

to align SPARQL queries to the input question, we475

merge triples by concatenating their subjects and476

objects, e.g. yielding [[M2, M3] directed_by477

?x0] for the above example. With this compression,478

the SPARQL queries can now contain an arbitrary479

number of entities in the triples.480

To convert the compressed SPARQL queries to481

graphs we first remove the SELECT clauses. To482

preserve the question type information, for wh-483

questions we replace the ?x0 variable in the WHERE484

clause with a special select_?x0 variable. As the485

example in Figure 2b shows, we define the graph486

nodes by taking the entities (including variables, e.g.487

?x0, M1) and all predicates (parent, sibling,488

actor) from the triples. For one-place predicates,489

we connect the entity nodes to the predicate node490

with an agent edge label. For triples with two-491

place predicates, we connect the predicate to the 492

left-hand side and right-hand side entities with the 493

agent and theme edge respectively. We add a 494

FILTER edge between the variables or entities that 495

participate in a filter constraint. The resulting node 496

and the edge vocabularies contain 84 and 4 labels 497

respectively, each also including a null label. 498

Training Details Unlike COGS, for CFQ we 499

need to accommodate the larger MR graphs by 500

using L=2 graph layers. This is because CFQ 501

contains examples such as “Who married M1’s 502

female German executive producer?” that contains 503

8 tokens, but induces the following 10 nodes: 504

?x1, executive_produced, M1, gender, 505

ns:m.02zsn, nationality, ns:m.0345h, 506

select_?x0, spouses, person. 507

In all our CFQ experiments we use a shared Trans- 508

former encoder for both node and edge prediction. 509

To assess performance, we use exact graph accu- 510

racy, which we define as the percentage of examples 511

where the predicted and true graphs are isomorphic. 512

The predicted graphs contain enough information to 513

exactly reconstruct the SPARQL query, hence our 514

exact graph accuracy can be compared to the exact 515

match accuracy from the prior work. For hyper- 516

parameter tuning, we follow Keysers et al. (2020) 517

and use CFQ’s in-distribution random split to find 518

the best model configuration. We do this by first 519

fixing the number of candidate alignments at  = 1 520

to search for the best hyperparameters, then fixing 521

the best configuration and varying  and f. For 522

the best found configuration of  = 5 and f = 10 523
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Graph Accuracy
 f train test
1 0.0 99.79 (∓0.4) 98.75 (∓0.5)
5 0.01 99.92 (∓0.1) 99.01 (∓0.2)

0.1 99.88 (∓0.1) 99.10 (∓0.3)
1.0 99.85 (∓0.2) 99.10 (∓0.3)
10.0 99.97 (∓0.1) 99.69 (∓0.1)
15.0 83.78 (∓1.6) 83.73 (∓1.7)
20.0 2.18 (∓0.17) 2.28 (∓0.19)

10 0.01 99.77 (∓0.3) 98.85 (∓0.6)
0.1 99.92 (∓0.1) 99.10 (∓0.2)
1.0 99.70 (∓0.3) 98.68 (∓0.7)
10.0 99.96 (∓0.1) 99.58 (∓0.2)
15.0 99.77 (∓0.4) 99.42 (∓0.5)
20.0 69.69 (∓3.9) 68.91 (∓4.0)

Table 3: The effect of the number of alignment candi-
dates and noise levelf on the performance of weakly-
supervised LAGr using CFQ’s random split. We report
the average graph accuracy and the standard deviation
over 5 runs. We show the best configuration in bold.

we report the average graph accuracy and standard524

deviation for 10 runs of weakly-supervised LAGr525

on the out-of-distribution splits MCD1, MCD2, and526

MCD3 as well as on the random split. In contrast527

to COGS, the PED technique from Csordás et al.528

(2021) for training Transformers leads to worse529

results on the random split. For this reason, we use530

the standard OpenNMT-py Transformer implemen-531

tation by Klein et al. (2017). Lastly, similarly to532

COGS, we discard runs where weakly-supervised533

LAGr does not reach at least 98% graph accuracy534

on the training set, which for CFQ is rare (less than535

5% of all runs). For further details on our CFQ536

experiments we refer the reader to Appendix A.2.537

Results We compare LAGr to seq2seq semantic538

parsing results reported in prior work (Keysers539

et al., 2020; Furrer et al., 2020), as well as results540

obtained with compressed SPARQL queries (Guo541

et al., 2020; Herzig et al., 2021). As shown in542

Table 2, weakly-supervised LAGr outperforms all543

these baselines on the MCD1 and MCD2 splits. On544

MCD3, we match the compressed SPARQL results545

reported byGuo et al. (2020). For reference, Table 2546

also includes the state-of-the-art Hierarchical Poset547

Decoding (HPD, Guo et al., 2020) method (see548

Section 3), which arguably is not a fair baseline to549

LAGr because of its use of sketch prediction and550

lexicons. Notably, when these techniques are not551

used, LAGr performs much better than their base552

poset decoding algorithm.553

Table 3 zooms in on the impact of the hyperpa-554

rameters of weakly-supervised LAGr, namely, the555

number of alignment candidates  and the noise556

level f. One can see that choosing the best align-557

ment out of  > 1 candidates is indeed helpful, 558

and that noise of high magnitude (f = 10) brings 559

the best improvement on the random split. These 560

improvements also translate into systematic gen- 561

eralization gains, as shown when comparing the 562

MCD results for  = 1 versus  = 5 in Table 2. 563

The positive effect of a larger  is in line with our 564

expectation since 3.7 - 5.7% of examples in each 565

CFQ split have at least two predicates with identical 566

node labels, which can make it hard to align the 567

MR graph to the input by looking at node labels 568

only. Interestingly, in contrast to our intuition, when 569

using ten candidate alignments, the random split 570

test performance is slightly worse than when using 571

five. We show examples of the node labels that 572

weakly-supervised LAGr predicts in the learned 573

aligned CFQ graphs as well as the corresponding 574

SPARQL queries in Figure 3 (Appendix A.3). 575

5 Discussion & Future Work 576

In this work we have shown that performing se- 577

mantic parsing by labeling aligned graphs brings 578

significant gains in systematic generalization. In 579

our COGS and CFQ experiments, LAGr signifi- 580

cantly improves upon sequence-to-sequence base- 581

lines in both strongly and weakly-supervised set- 582

tings. Specifically, on COGS, LAGr outperforms 583

our carefully-tuned seq2seq baselines and performs 584

similarly to LSTMs that leverage lexicons. The use 585

of lexicons can be integrated into LAGr althoughwe 586

do not expect this to improve LAGr performance 587

on COGS, as our best performing LAGr model 588

already predicts node labels almost perfectly. Lex- 589

icons also bring their own challenges of dealing 590

with context-dependency and ambiguity, hence it 591

is notable that LAGr matches the performance of 592

a lexicon-equipped model while making less as- 593

sumptions about the nature of the input-to-output 594

mapping. On CFQ, LAGr outperforms all seq2seq 595

baselines on 2 out of 3 MCD splits. Based on 596

our error analysis (see Appendix A.3), we believe 597

that a modification of LAGr that conditions edge 598

predictions on node labels could bring further im- 599

provements. Importantly, this modification would 600

be compatible with our current alignment inference 601

algorithm. Another obvious direction to improve 602

LAGr performance is by using a pretrained encoder. 603

Lastly, while the current alignment inference algo- 604

rithm is effective, applying more advanced discrete 605

optimization or amortized inference methods could 606

be an interesting direction for future work. 607
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A Appendix 772

A.1 COGS Hyperparameter Tuning 773

COGS does not include an out-of-distribution de- 774

velopment set, which makes it challenging to find 775

the best model configuration. To overcome this 776

problem, we followed the same hyperparameter 777

tuning procedure for our baselines and our strongly- 778

supervised LAGr models as proposed by Conklin 779

et al. (2021). We sampled 1000 examples from 780

the generalization set as a "Gen Dev" set which 781

was used to pick the best hyperparameter configura- 782

tion. We tested 0.001, 0.004, 0.0001 and 0.0004 for 783

learning rates, 64, 128 and 256 for batch sizes, and 784

0.1 versus 0.4 for dropout. We tested an embedding 785

size of 256 versus 512. Furthermore, for the Trans- 786

former baselines and for LAGr with a Transformer 787

encoder, we also tested 2 versus 4 layers, and 4 788

versus 8 attention heads. 789

Each configuration was evaluated on 5 seeds. 790

Once the best configuration was found, we retrained 791

all models on 10 new seeds. We trained all models 792

for 70,000 steps validating at every 5000 steps, with 793

no early stopping. We used the same procedure for 794

tuning the original sequence-to-sequence baselines, 795

except we only trained models for 50,000 steps. The 796

best configurations for COGS are shown in Table 6. 797

For weakly-supervised LAGr, we used the best 798

configuration we found for strongly-supervised 799

LAGr. We then investigated different values for 800

 , the number of candidate alignments, with 1, 5 801

versus 10, and for the noise levels f of 0, 0.01, 0.1, 802

1, 10, 15 and 20. In addition, we also implemented 803

a random restart procedure to restart runs with a 804

new random seed if they were not able to reach at 805

least 98% of training accuracy. We found that only 806

when we used  = 5 with a sufficiently high noise 807

level such as f = 15, we were able to get 46-47% 808

of the runs to converge. This was different from our 809

CFQ experiments, where 97% of runs converged 810

when appropriate noise levels were chosen (i.e., 811

f < 15). 812

A.2 CFQ Hyperparameter Tuning 813

We performed hyperparameter tuning on CFQ’s 814

random split, and chose the best configuration based 815

on the development exact graph accuracy. For 816

LAGr with both shared and separate Transformer 817

encoders, we tested learning rates of 0.0001, 0.0004, 818

0.0006, 0.0008 and 0.001, with a linear warmup of 819

0, 1000 versus 5000 steps, with dropout of 0.1 and 820

0.4, batch sizes of 64, 128 and 256, and 2 versus 821
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4 Transformer layers. For LAGr with a separate822

LSTM encoder, we tested learning rates of 64, 128,823

and 256, with a linear warmup of 1000 versus 5000824

steps, a dropout of 0.1 and 0.4, and embedding825

size of 256 versus 512. In addition, we also tested826

the PED modifications proposed by Csordás et al.827

(2021) to improve the performance of Transformer-828

based models. However, we found that this did829

not improve our models, so we used the standard830

Transformer implementation from OpenNMT-py831

(Klein et al., 2017). Lastly, similarly to COGS,832

we filtered out runs that diverged in terms of their833

training graph accuracy. While for COGS weakly-834

supervised LAGr is more sensitive to varying  835

and f, in CFQ, we obtained 97% convergence836

from all our runs in Table 3. We report the best837

configuration used for CFQ in Table 7.838

A.3 Error analysis839

Table 4 shows some commonly encountered errors840

on COGS with strongly-supervised LAGr. In all841

examples, the model predicted the correct set of842

nodes. However, even when all nodes are correctly843

predicted, some may not show up in the final logical844

form, if it has no connecting edges to other nodes845

(see the "dog" node in example 4.).846

Figure 3 shows the predicted nodes of aligned847

graphs and resulting queries produced by the best848

weakly-supervised LAGr model on CFQ. The top849

two rows show common errors where some edge850

labels do not get predicted, and where some nodes851

are missing due to the model not having predicted852

any connecting edges for the nodes, thus omitting853

the nodes from the final output graph. The bottom854

two rows show the inferred aligned graphs for855

examples that result in the correct output graph.856

A.4 Further COGS examples857

Table 5 shows further examples from COGS’s gen-858

eralization set with various cases for challenging859

models’ ability to test systematic generalization.860
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Example 1: wrong edge label, between right nodes
In A cockroach sent Sophia the sandwich beside the yacht .

Out * sandwich ( x _ 5 ) ; * yacht ( x _ 8 ) ; cockroach ( x _ 1 ) AND send . theme ( x _ 2 , x _ 1 ) AND send . recipient ( x _ 2 , Sophia )
AND send . theme ( x _ 2 , x _ 5 ) AND sandwich . nmod . beside ( x _ 5 , x _ 8 )

Pred * sandwich ( x _ 5 ) ; * yacht ( x _ 8 ) ; cockroach ( x _ 1 ) AND send . agent ( x _ 2 , x _ 1 ) AND send . recipient ( x _ 2 , Sophia )
AND send . theme ( x _ 2 , x _ 5 ) AND sandwich . nmod . beside ( x _ 5 , x _ 8 )

Example 2: Right edge label, but between wrong nodes
In The girl beside the bed lended the manager the leaf .

Out * girl ( x _ 1 ) ; * bed ( x _ 4 ) ; * manager ( x _ 7 ) ; * leaf ( x _ 9 ) ; girl . nmod . beside ( x _ 1 , x _ 4 ) AND lend . agent ( x _ 5 , x _ 1 )
AND lend . recipient ( x _ 5 , x _ 7 ) AND lend . theme ( x _ 5 , x _ 9 )

Pred * girl ( x _ 1 ) ; * bed ( x _ 4 ) ; * manager ( x _ 7 ) ; * leaf ( x _ 9 ) ; lend . agent ( x _ 5 , x _ 1 )
AND lend . recipient ( x _ 5 , x _ 7 ) AND lend . theme ( x _ 5 , x _ 9 ) AND leaf . nmod . beside ( x _ 9 , x _ 4 )

Example 3: Mistaking edge labels
In The dog noticed that a hippo juggled .
Out * dog ( x _ 1 ) ; notice . agent ( x _ 2 , x _ 1 ) AND notice . ccomp ( x _ 2 , x _ 6 ) AND hippo ( x _ 5 ) AND juggle . agent ( x _ 6 , x _ 5 )
Pred * dog ( x _ 1 ) ; notice . agent ( x _ 2 , x _ 1 ) AND notice . ccomp ( x _ 2 , x _ 6 ) AND hippo ( x _ 5 ) AND juggle . theme ( x _ 6 , x _ 5 )

Example 4: Correct nodes, but incorrect edges predicted
In A dog beside a chair said that a melon on the bed was liked .

Out * bed ( x _ 11 ) ; dog ( x _ 1 ) AND dog . nmod . beside ( x _ 1 , x _ 4 ) AND chair ( x _ 4 ) AND say . agent ( x _ 5 , x _ 1 )
AND say . ccomp ( x _ 5 , x _ 13 ) AND melon ( x _ 8 ) AND melon . nmod . on ( x _ 8 , x _ 11 ) AND like . theme ( x _ 13 , x _ 8 )

Pred * bed ( x _ 11 ) ; chair ( x _ 4 ) AND say . agent ( x _ 5 , x _ 4 ) AND melon ( x _ 8 ) AND bed . nmod . in ( x _ 11 , x _ 13 )
AND like . theme ( x _ 13 , x _ 8 )

Table 4: Incorrectly predicted logical forms for COGS with strongly-supervised LAGr. Errors are highlighted in
bold.

Example 1: Wrong edge predictions
Layer 2 ?x0 M3 influenced director spouse M2 ?x2 cinematographer M4 ?x1 actor
Layer 1
Input Did M3 influence a film director , marry M2 ’s cinematographer , influence M4 , and influence a actor
Target ?x1 actor . ?x0 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2
Predicted ?x0 actor . ?x0 director . ?x1 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2

Example 2: Missing node
Layer 2 select_?x0 ns:m.0f8l9c editor M1 influenced_ by ?x1 employer ?x2 organizations_founded M2
Layer 1 nationality
Input What French film editor that M1 influenced influenced a company s founder and was influenced by M2
Target ?x1 actor . ?x0 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2
Predicted ?x0 actor . ?x0 director . ?x1 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2

Example 3: Correct prediction
Layer 2 select_?x0 ns:m.05zppz ns:m.059j2 editor director M3
Layer 1 gender nationality
Input Which male Dutch film editor directed M3
Predicted select_?x0 director M3 . select_?x0 editor . select_?x0 gender ns:m.05zppz . select_?x0

nationality ns:m.059j2

Example 4: Correct prediction
Layer 2 select_?x0 ns:m.06mkj actor influenced M2 ?x1 actor
Layer 1 nationality person
Input Who was a Spanish actor that influenced M2 and influenced a actor
Predicted ?x1 actor . select_?x0 actor . select_?x0 influenced ?x1 . select_?x0 influenced M2 . select_?x0 person . select_?x0 nationality

ns:m.06mkj

Figure 3: Predicted nodes of aligned graphs and resulting queries produced by the best weakly-supervised LAGr
with k=5, f = 10 on the development set of CFQ. Top two rows show common errors with missing edge labels and
missing nodes, and bottom rows show the inferred alignments for correct examples.

Case Training Generalization
Subject→ Object A hedgehog ate the cake. The baby liked the hedgehog.
Object→ Subject Henry liked a cockroach. The cockroach ate the bat.
Primitive→ Object Paula The child helped Paula.

Depth generalization Ava saw the ball in the bottle
on the table.

Ava saw the ball in the bottle
on the table on the floor.

Active→ Passive Emma blessedWilliam. A child was blessed.

Table 5: Example from Kim and Linzen (2020a) that show various linguistic phenomena from the COGS general-
ization set.
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Reproduced baselines . Strongly-supervised LAGr with different encoders
. LSTM Transformer LSTMBℎ LSTMB4? TransformerBℎ TransformerB4?

batch_size 256 128 128 64 128 128
learning_rate 0.004 0.0001 0.0001 0.0004 0.0001 0.0001

scheduler linear with
warmup of 1000 steps

linear with
no warmup

linear with
warmup of 1000 steps

linear with
warmup of 1000 steps

linear with
no warmup

linear with
no warmup

layers 2 4 2 2 4 4
enc_dim 256 256 256 256 512 512
train_steps 50000 50000 70000 70000 70000 70000
validate_every
(step) 5000 5000 5000 5000 10000 10000

dropout 0.4 0.1 0.1 0.4 0.4 0.4
attention heads - 8 - - 4 4

Table 6: Best hyperparameters for our COGS baseline and strongly-supervised LAGr experiments

CFQ
Weakly-supervised LAGr

LSTMB4? TransformerBℎ
batch_size 64 256
learning_rate 0.001 0.0004

scheduler linear with warmup
of 1000 steps

linear with warmup
of 1000 steps

layers 2 4
enc_dim 512 256
train_steps 200000 200000
validate_every
(step) 10000 10000

early_stopping
(valid steps) 5 5

dropout 0.4 0.1
attention
heads - 8

Table 7: Best configuration for CFQ weakly-supervised LAGr.
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