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Abstract

In light of the era of information explosion, tra-001
ditional relation extraction methods are in a bot-002
tleneck due to data limitations in the face of the003
constant emergence of new relation categories.004
Therefore the study of low-shot relation extrac-005
tion in real scenarios is crucial. In the few-shot006
scenario, it is necessary to build up the model’s007
ability to summarize the semantics of instances.008
In the zero-shot scenario, it is necessary to es-009
tablish the label matching ability of the model.010
Although they need to establish different ba-011
sic abilities of the model, the common point is012
that they all need to build excellent semantic013
representations in the end, which is ignored by014
the existing methods. In this paper, we propose015
a method (TGCRE) based on token-generated016
contribution to unify low-shot relation extrac-017
tion by generating better semantic representa-018
tions. Further, we propose a multi-level spatial019
semantic matching scheme in zero-shot scenar-020
ios, in order to solve the problem of the single021
matching pattern of existing methods. Exper-022
imental results show that our method outper-023
forms previous robust baselines and achieves024
state-of-the-art performance.025

1 Introduction026

Relation extraction (RE) is an important basic task027

in natural language understanding. Traditional rela-028

tion extraction relying on large-scale high-quality029

data has achieved excellent performance, but with030

the development of the times, high-quality data is031

consumed, and in the face of the emergence of var-032

ious new relation categories that lack training data,033

the traditional methods are in a bottleneck. To cope034

with this situation, low-shot relation extraction has035

become a hot research topic. There are two main036

branches of low-shot relation extraction, namely037

the study of few-shot RE and zero-shot RE. The038

few-shot RE requires building the model’s ability039

to summarize the semantics of instances, train the040

model’s learning ability using a few labeled sam-041

Figure 1: Semantic summarization methods

ples per class and quickly generalize it to classify 042

new classes. At present few-shot RE approaches 043

focus on how to summarize better semantic proto- 044

types from a few illustrative examples(Snell et al., 045

2017), e.g. Gao et al. (2019a) et al. employ an at- 046

tention mechanism to enhance the network’s ability 047

to generate prototypical representations. Han et al. 048

(2021) et al. introduced a new approach based on 049

supervised comparison learning in the hope that 050

the model would learn good prototype representa- 051

tions, i.e., narrowing distances within classes while 052

expanding distances between different classes. An- 053

other idea is to augment the FSRE model with 054

knowledge from an external knowledge base. For 055

example Wen et al. (2021) et al. introduced textual 056

descriptions of entities and relations from Wikidata. 057

Qu et al. (2020) et al. utilized the representation 058

of global relation graphs. Yang et al. (2021) et 059

al. utilized the intrinsic concept of entities. Zero- 060

shot RE requires building the model’s ability to 061

match labels. The knowledge transfer capability 062

of the model is trained and generalized to unseen 063

relation categories by the labeled descriptions of 064

the given relations. There are common solution 065

paradigms such as question answering(Levy et al., 066

2017), textual entailment(Obamuyide and Vlachos, 067

2018) and semantic matching(Chen and Li, 2021). 068

Despite the advanced performance achieved by se- 069

mantic matching schemes, there are still some prob- 070

lems, the most representative of which is the sin- 071

gle matching pattern, which causes the model to 072

be negatively affected by irrelevant context when 073
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matching.074

Since few-shot and zero-shot RE require the075

model to build different basic capabilities, current076

state-of-the-art methods can only be applied and077

learned to handle one scenario alone. However,078

what they have in common is that they ultimately079

need to construct good semantic representations,080

with few-shot RE requiring the semantic distance081

between the class prototype representation and its082

corresponding query instance to be reduced, and083

zero-shot RE requiring the model to summarize the084

semantic features of the different relation labels085

in a focused manner. Obviously, existing methods086

that rely only on the semantic summarization abil-087

ity of special tokens inserted into sentences do not088

do this well, resulting in a model that does not sum-089

marize an optimal semantic representation. The090

existing methods for contextual semantic summa-091

rization are shown in Figure 1. See appendix E.1092

for detailed analysis093

For this reason, based on the commonalities094

between the above two we propose the method095

TGCRE, which utilizes and learns the token at-096

tributes inherent to each token in the sentence, i.e.,097

the specific contribution each token makes to ex-098

press the meaning of the sentence, to generate bet-099

ter semantic representations that unify the low-shot100

relational extraction. Moreover, in order to solve101

the problem of a single matching pattern in zero-102

shot RE, we propose a multi-level spatial semantic103

matching scheme. Label matching is performed104

by projecting semantic features to different vector105

spaces and synthesizing the matching scores from106

different perspectives. The contributions of this107

paper are summarized as follows:108

1. We develop TGCRE, a low-shot relation ex-109

traction method for both zero-shot and few-shot110

tasks. Experiments demonstrate that our method111

outperforms previous baselines and achieves state-112

of-the-art performance in both zero-shot and few-113

shot tasks.114

2. We propose a method for learning token at-115

tribute information, based on which a model is116

guided to understand the magnitude of the contri-117

bution of a token, and thus generate a better se-118

mantic representation of the context. To the best of119

our knowledge, we are the first to propose learning120

and using token attribute information for natural121

language understanding (NLU) tasks.122

3. In the zero-shot RE task, we propose a multi-123

level spatial semantic matching scheme, which124

synthesizes the matching scores under multi-angle125

space to perform semantic matching and greatly 126

improves the accuracy of semantic matching. 127

2 Related Work 128

Zero-Shot Relation Extraction. The task means 129

to perform relation extraction on never-before-seen 130

relation instances in the absence of annotated data 131

for specific relation categories. Levy et al. (2017) et 132

al. elucidated for the first time the concept of zero- 133

sample learning for relation extraction by modeling 134

the target task as a question-and-answer problem, 135

and categorizing invisible classes by having the 136

model answer a predefined question template. Oba- 137

muyide and Vlachos (2018) et al. modeled the 138

target task as a textual entailment task, which iden- 139

tifies relation categories by determining whether 140

the input sentences entail the corresponding rela- 141

tion descriptions, and fits well with the task defi- 142

nition of zero-sample learning. Sainz et al. (2021) 143

et al. reformulate relation extraction as a problem 144

of entailment, where a linguistic representation of 145

relation labels is used to generate a hypothesis that 146

is confirmed by a ready-made entailment engine. 147

In the latest research, Chen and Li (2021) et al. use 148

different projection functions for input text and re- 149

lation description text respectively, transform both 150

to the same semantic space, and based on this repre- 151

sentation in the space defines relation extraction as 152

a semantic matching task. Zhao et al. (2023a) et al. 153

further proposed a fine-grained semantic matching 154

method to reduce the impact of irrelevant context 155

on matching accuracy. Wang et al. (2022) et al. use 156

contrastive learning to train models that mitigate 157

the prediction errors caused by similar relations 158

and similar entities to the model. Recently, an even 159

more difficult task, Zero-Shot Relation Triplet Ex- 160

traction (ZSRTE)(Chia et al., 2022; Lv et al., 2023), 161

has been proposed, which requires simultaneous ex- 162

traction of both entities and relations, which greatly 163

increases the task difficulty and further promotes 164

the research on zero-shot relation extraction. 165

Few-Shot Relation Extraction. Few-shot learning 166

is a challenging task when it relates to relation ex- 167

traction. Few-shot RE aims to train a model by us- 168

ing only a small number of labeled samples and to 169

improve the generalization ability of the model by 170

utilizing unlabeled or weakly labeled data. When 171

dealing with few-shot RE tasks, model training and 172

testing are usually performed in a meta-learning 173

manner(Mishra et al., 2017; Huisman et al., 2020; 174

Hospedales et al., 2022). Snell et al. (2017) et al. 175
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first proposed the use of prototypical networks for176

few-shot learning, Han et al. (2018) et al. further177

proposed a large-scale dataset, FewRel, to study178

relation extraction methods under few-shot learn-179

ing. There has been an increase in the number180

of people involved in few-shot RE research. Gao181

et al. (2019a) et al. used an attention mechanism to182

facilitate the generation of better prototype repre-183

sentations from prototype networks. Ye and Ling184

(2019) et al. used CNN as an encoder and proposed185

a Multi-Level Matching and Aggregation Network186

for encoding query instances and class prototypes187

in an interactive interface. Gao et al. (2019b) et188

al. present a more challenging dataset, FewRel 2.0,189

in which they compute the similarity distance be-190

tween a query instance and all supported instances.191

Han et al. (2021) et al. proposed representation192

modeling, prototype modeling and task difficulty193

modeling to solve difficult and simple few-shot ex-194

traction tasks. Recently, Liu et al. (2022) et al. pro-195

posed a simple direct additive method to introduce196

relation information, which proved that good rela-197

tion information introduction is more effective than198

complex model structure. Li and Qian (2022) et al.199

proposed a model generation framework GM_GEN200

to achieve the optimal point on different N-way-201

K-shot tasks, separating the complexity of all the202

individual tasks from the complexity of the whole203

task space.204

3 Preliminary205

3.1 Encoding206

Sentence Encoding. For any given input instance207

I = {x1, x2, . . . , xn}, the head entity eIh and the208

tail entity eIt are surrounded by the special sym-209

bols "#" and "@", respectively. We use the pre-210

trained language model BERT as a sentence en-211

coder with encoded context features formulated as212

Ĩ =
{
hI1, h

I
2, . . . , h

I
n

}
, and then extract the head213

entity feature ẽIh and tail entity feature ẽIt from the214

context features based on the locations of the spe-215

cially tagged annotated entities using maximum216

pooling.217

Relation Description Encoding. For any given218

relation description d = {d1, d2, . . . , dn}, we use219

an independently fixed sentence-BERT as a rela-220

tion description encoder, following the work of221

Zhao et al. (2023a) et al., we extract the con-222

textual features of the relation description d̃ =223 {
hd1, h

d
2, . . . , h

d
n

}
and the head entity description224

features ẽdh and tail entity description feature ẽdt .225

3.2 Token Attribution 226

For any given sentence, the tokens in the sentence 227

work together and bear the responsibility of ex- 228

pressing the meaning of the sentence. However, 229

each token makes a different specific contribution 230

to the expression of the meaning of the sentence. 231

For example, in the sentence "I really like carrots.", 232

the contribution of "really" is obviously lower than 233

that of "like". Without "really", the sentence can 234

still convey the original meaning, but without "like", 235

it is not clear whether I like carrots or hate them. 236

We define this property as token attribution(Zhao 237

et al., 2023b). 238

A measure of a token attribution can be defined 239

by removing the token and observing the change 240

in confidence that occurs when the model predicts 241

the label of the instance. 242

g(xi|I) = c(I)− c(I − xi) (1) 243

where c(I) represents the confidence of the original 244

sentence and c(I − xi) represents the confidence 245

after removing the token xi. g (xi|I) represents 246

the attribution (contribution) of token xi. When 247

g (xi|I) is more than zero, i.e., c (I) > c (I − xi), 248

it represents that the confidence of the model de- 249

creases after removing token xi, which indicates 250

that token xi has positive contribution in the sen- 251

tence and can promote the expression of sentence 252

meaning. Instead the token xi has a negative contri- 253

bution in the sentence and can disrupt the model’s 254

predictions. Although the attribution of each token 255

can be obtained in this way, it requires n forward 256

computations, which is very inefficient and incurs a 257

high computational overhead. Fortunately, comput- 258

ing the dot product of the corresponding embedding 259

hIi and gradient▽xi for token xi can approximate 260

the token attribution of xi, so that the token attri- 261

bution of all tokens can be obtained after only one 262

forward-backward procedure. This approximation 263

is proposed and applied in the interpretation meth- 264

ods of natural language classification models(Feng 265

et al., 2018; Li et al., 2016; Arras et al., 2016). 266

Thus, the method of measuring token attribution in 267

practice can be formulated as: 268

attr (xi|I) = ▽xi · hIi (2) 269

270

4 Methodology 271

In this section, we describe TGCRE in detail, and 272

an overview of the methodology is shown in Figure 273
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Figure 2: Model overview for TGCRE.

2. In the training phase of the model, the aim is to274

maximize the similarity between the approximate275

attribute vector and the token attribution vector276

and learn the attribute information of the tokens. In277

the testing phase, the learned knowledge of token278

attributes is used to guide the model to focus on279

the tokens with higher semantic contribution in the280

sentence, so as to generate better semantic repre-281

sentations for the subsequent zero/few-shot task. It282

is worth noting that the input example—Relation283

Description in the zero-shot setup uses an inde-284

pendently fixed encoder, Sentence-BERT, which is285

not labeled in Figure 2 for the sake of presentation286

simplicity.287

4.1 Model Training288

In the training phase, the goal is to learn infor-289

mation about the attributes of tokens so that the290

model has the ability to understand token contribu-291

tions like a human. For the different inputs in the292

zero/few-shot setting, which we collectively refer293

to as input example I, which is encoded by the en-294

coder to get the token embedding containing rich295

contextual semantics, i.e., Ĩ =
{
hI1, h

I
2, . . . , h

I
n

}
.296

Forward-Backward Procedure. In section 3.3,297

we introduced the first-order approximation for cal-298

culating token attribution, so we need a forward-299

backward procedure to obtain the gradient infor-300

mation for each token in the sentence. The back-301

ward process is straightforward, what matters is302

how the forward inference is performed so that to-303

kens with larger contributions have more distinct304

gradients. We explore different forward inference305

approaches(See appendix E.2 for detailed analysis306

) in this paper as follows:307

(1) Mean: We treat the process of computing308

the mean of the token embeddings Ĩ as forward309

propagation and the mean as the energy of back- 310

ward propagation. In this pattern, there is no need 311

to train any parameters other than those of the en- 312

coder. The advantage of this method is that it is 313

relatively simple to implement. 314

forward : energy = MA
(
LSE

(
Ĩ
))

(3) 315

316
backward : BP (energy) (4) 317

where MA (·) represents the mean function, LSE is 318

log-sum-exp which gives better numerical stability 319

and prevents the data from overflow and underflow 320

problems during computation, and BP (·) which 321

is the backward propagation of the model to obtain 322

the gradient information. 323

(2) Classification: In order to obtain more rea- 324

sonable gradient information, we insert a forward- 325

backward procedure based on classification in the 326

forward inference process of the whole method of 327

TGCRE. This is done by training a classification 328

function cls (·) and applying it to the word embed- 329

ding Ĩ so that the original word vector space is 330

mapped into the relation vector space, obtaining 331

the probability distribution of each relation corre- 332

sponding to the input instance I. The loss is then 333

calculated with the real label to get the energy as 334

backward propagation. Compared to the Mean ap- 335

proach, this approach requires the training of an 336

additional classification function, but the use of a 337

supervised signal y allows the model to focus more 338

on meaningful tokens and obtain more reasonable 339

gradient information. 340

forward : energy = CEL
(
cls
(
LSE

(
Ĩ
))

, y
)

(5) 341

342
backward : BP (energy) (6) 343
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344

where y represents the true label and CEL (·) rep-345

resents the cross-entropy loss function, which is346

used to calculate the gap between the model’s pre-347

dictions and the true values.348

Normalization Token Attribution. The gradient349

information▽xi of all tokens can be obtained by350

one forward-backward procedure, which in turn351

can obtain all word attributes
∣∣▽xi · hIi

∣∣. In order352

to visualize the specific degree of contribution of353

each token, it is necessary to normalize the token354

attributes to obtain the token attribute vector. The355

specific operation is shown below:356

nta (xi) =
|attr (xi|I)|∑n
j=1 |attr (xj |I)|

=

∣∣▽xi · hI
i

∣∣∑n
j=1

∣∣▽xj · hI
j

∣∣ (7)357

358

where nta (x1, x2, . . . , xn) is the normalized token359

attribute vector.360

Training Objective1. For the purpose of utilizing361

token attribute information and training the model362

for deeper understanding of natural language, a363

generalized approximate attribute vector apa that364

can learn token attribute information is proposed.365

We take maximizing the similarity between the366

approximate attribute vector natural language, a367

generalized approximate attribute vector apa and368

the token attribute vector nta as the training goal,369

so that apa is able to learn transferable token at-370

tribute knowledge, which in turn effectively guides371

the model to focus on the contributing tokens in the372

sentence and generate better semantic representa-373

tions. First, the features of the token embedding Ĩ374

are summarized based on the token attribute vec-375

tor nta, and the attribute embedding is obtained by376

highlighting the positively contributing token fea-377

tures and ignoring the negatively contributing token378

features in the sentence. Secondly, the approximate379

attribute vector apa is also used to summarize the380

features of token embedding Ĩ , and approximate381

embedding is obtained. Finally, we use margin382

loss to optimize the training objective by iteratively383

training the model to shrink the similarity distance384

between attribute embedding and approximate em-385

bedding, and to increase the similarity between apa386

and nta, so as to continuously optimize the feature387

summarization ability of apa. The process can be388

formulated as:389

Lsim = max
(
0, 1− cos(nta · Ĩ , apa · Ĩ)

)
(8)390

Training Objective2. In the few-shot setting, we391

do not use a generalized approximate attribute vec- 392

tor due to the fewer number of relation categories 393

that are restricted during the training process, but 394

instead take the approach of setting a separate ap- 395

proximate attribute vector apai for each relation 396

category ri. To prevent overfitting between the indi- 397

vidual approximate attribute vectors, which causes 398

most of the parameters to be invalidated, we intro- 399

duce the second training objective — maximizing 400

the differentiation between the groups of approxi- 401

mate attribute vectors. First, we compare the sim- 402

ilarity between each two vectors apai and apaj , 403

and then accumulate all the similarities to get the 404

overall similarity score of the group of approximate 405

attribute vectors, and use margin loss to reduce the 406

value of the overall similarity score in differenti- 407

ated training, thus preventing all the approximate 408

attribute vectors from clustering in the same region 409

in the vector space, and realizing the objective of 410

differentiated training. The process can be formu- 411

lated as: 412

LDif = max

(
0,

∑N
i=1

∑N
j=1 cos (apai, apaj)

N

)
(9) 413

4.2 Model Testing 414

In the testing phase, we use the trained approximate 415

attribute vector apa to summarize the token embed- 416

dings and obtain the rich contextual semantics of 417

the input examples for the subsequent few-shot RE 418

task and zero-shot RE task. In the few-shot setting, 419

the input examples include support samples and 420

query samples, and the semantic representations af- 421

ter apa summarization are SSapproximate embeding 422

and QSapproximate embeding, respectively. In the 423

zero-shot setting, the input examples consist of 424

input sentence I and relation description d, where 425

the summarized semantics of the I is represented 426

as ISapproximate embeding, while the d is encoded 427

using an independently fixed encoder that does not 428

be summarized by the apa, and so the encoded 429

semantics is represented as RDembeding. It is 430

worth mentioning that the semantic representations 431

of the head and tail entities are extracted in token 432

embeddings, and for the sake of brevity, this 433

process is not shown in Figure 2. 434

Zero-Shot RE Task. In this paper, we define 435

zero-shot RE as a semantic matching task, 436

and in order to avoid the monotony of match- 437

ing patterns, we propose a multi-level spatial 438

semantic matching scheme. For the context 439
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Figure 3: zero/few-shot task.

embedding ISapproximate embeding, head entity440

embedding ẽIh and tail entity embedding ẽIt of441

the input sentences in the given original vector442

space and the context embedding RDembeding,443

head entity embedding ẽdh and tail entity em-444

bedding ẽdt of the relation descriptions, we445

define the embedding set of input sentences446

SETIS =
{
ẽIh, ẽ

I
t , ISapproximate embeding

}
447

and the embedding set of relation descriptions448

SETRD =
{
ẽdh, ẽ

d
t , RDembeding

}
. After that,449

we define the left orthogonal transform function450

Tl (x,wl) and the right orthogonal transform451

function Tr (x,wr), through which we can map452

the embedding set SETIS and the embedding set453

SETRD into different vector spaces.454

455

SET l
IS = Tl (SETIS , wl) (10)456

457
SET l

RD = Tl (SETRD, wl) (11)458
459

SET r
IS = Tr (SETIS , wr) (12)460

461
SET r

RD = Tr (SETRD, wr) (13)462

where wl ∈ R3×3, wr ∈ Rh×h are trainable orthog-463

onal matrices and h is the hidden dimension of the464

encoder. As shown in Figure 3(a), we show a sim-465

ple schematic of the embedding set transformation,466

although the real situation is much more complex467

than this. As can be seen from the figure, after the468

left (right) orthogonal transformation, SETIS and469

SETRD in the original space show different poses470

in different vector spaces, but the relative positions471

of the vectors in the embedding set are not changed,472

which ensures that their semantic similarities can473

be compared from different perspectives without474

changing the attributes of the original vector set.475

We separately compute the semantic matching 476

scores of the SETIS and SETRD in different vec- 477

tor spaces, and the sum of all the matching scores is 478

used as the prediction scores of the input sentence 479

I and the relation description d. 480

pz(I, d) = α · cos
(
SET l

IS , SET l
RD

)
+ α · cos

(SET r
IS , SET r

RD) + β · cos (SETIS , SETRD)
(14) 481

482

where α and β are hyperparameters. 483

Few-Shot RE Task. In the N-way-K-shot setting, 484

the context embedding is SSapproximate embeding 485

and QSapproximate embeding for a given support set 486

S and query set Q , respectively. We average the 487

context embedding of each class in the support 488

set S to obtain a prototype representation SSi for 489

each relation. As shown in Figure 3(b), the proto- 490

typical representation of each relation is randomly 491

distributed in the vector space. In this paper, we 492

use the cosine distance as the prediction score of 493

the query instance for each class prototype and use 494

the highest similarity as the final prediction. 495

Pf (S,Q) = cos (SSi, QS) (15) 496

where QS represents the context embedding 497

QSapproximate embedding of the query set. 498

4.3 Loss Function 499

In the zero-shot setting, in order to prevent 500

the model overconfidence, we randomly sam- 501

ple the negative pairs to constrain the model, 502

assuming that the prediction score of the posi- 503

tive pairs is pz (I, dy), and that of the negative 504

pairs is piz (I, di), then we require that the predic- 505

tion score of the model’s positive pairs is larger 506

than that of the negative pairs, i.e., pz (I, dy) − 507

6



Unseen Method Wiki-ZSL FewRel

Prec. Rec. F1 Prec. Rec. F1

m=5

R-BERT 39.22 43.27 41.15 42.19 48.61 45.17
ESIM 48.58 47.74 48.16 56.27 58.44 57.33
ZS-BERT 71.54 72.39 71.96 76.96 78.86 77.90
REPrompt 70.66 83.75 76.63 90.15 88.50 89.30
RE-Matching 79.84 78.58 79.19 91.48 90.84 91.16
TGCRE 82.40 80.49 81.42 91.89 90.68 91.28

m=10

R-BERT 26.18 29.69 27.82 25.52 33.02 28.20
ESIM 44.12 45.46 44.78 42.89 44.17 43.52
ZS-BERT 60.51 60.98 60.74 56.92 57.59 57.25
REPrompt 68.51 74.76 71.50 80.33 79.62 79.96
RE-Matching 72.35 72.74 72.53 83.03 81.89 82.45
TGCRE 74.61 72.07 73.30 86.23 85.11 85.66

m=15

R-BERT 17.31 18.82 18.03 16.95 19.37 18.08
ESIM 27.31 29.62 28.42 29.15 31.59 30.32
ZS-BERT 34.12 34.38 34.25 35.54 38.19 36.82
REPrompt 63.69 67.93 65.74 74.33 72.51 73.40
RE-Matching 62.35 62.34 62.33 73.11 70.36 71.69
TGCRE 67.69 66.50 67.06 73.77 72.10 72.92

Table 1: Experimental results on the zero-shot task

piz (I, di) = φ > 0, and the loss term is Llim =508

max (0, γ − φ), where γ > 0 is a hyperparameter.509

To summarize, the total loss of the zero-shot RE is:510

Lz = Lsim + Llim (16)511

In the few-shot setting, we use a cross-entropy512

loss function to optimize the gap between the513

model’s prediction and the label, with a loss term514

of Lcel = CEL (p, y), where p is the model’s pre-515

diction and y is the true label. To summarize, the516

total loss of the few-shot RE is:517

Lf = Lsim + Ldif + Lcel (17)518

5 Experiments519

In this section, we only show the main experimental520

results, and the experimental setup and detailed521

analysis are shown in the Appendix.522

5.1 Experiments on Zero-Shot Relation523

Extraction524

Table 1 summarizes the experimental results of our525

model with the baseline model on Wiki-ZSL and526

FewRel, where bold denotes the best score and un-527

derline denotes the second best score. In terms of528

F1 metrics, it can be seen that our model TGCRE529

significantly outperforms the other baselines, im-530

proving by 1.44% and 2.85% on the Wiki-ZSL and531

FewRel datasets, respectively. In terms of preci- 532

sion metrics, TGCRE shows excellent performance, 533

substantially outperforming the existing baseline, 534

which indicates that our model sufficiently learns 535

the knowledge of token attribute and summarizes 536

the semantic features of different relation labels in 537

a focused manner. In terms of recall metrics, our 538

model is slightly lower than REPrompt, but still per- 539

forms reliably and outperforms the other baseline 540

models. Overall, our model owes its state-of-the-art 541

performance to token attribute knowledge and mul- 542

tilevel spatial semantic matching. RE-Matching 543

has also achieved good results through fine-grained 544

semantic matching due to display modeling of rela- 545

tional patterns. 546

5.2 Experiments on Few-Shot Relation 547

Extraction 548

Table 2 summarizes the experimental results of 549

our model with other models on the few-shot re- 550

lation extraction task. As can be seen from the 551

table, (1) our proposed TGCRE performs the best, 552

indicating that our model is able to fully utilize 553

the knowledge of token attribute to generate better 554

semantic representations and effectively reduce the 555

semantic distance between the class prototype rep- 556

resentation and its corresponding query instance. 557

(2) GM_GEN also achieves better performance by 558
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Method
5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

validation/test validation/test validation/test validation/test
Proto-HATT 75.01/–– 87.09/90.12 62.48/– – 77.50/83.05
MLMAN 79.01/82.98 88.86/92.66 67.37/75.59 80.07/87.29
BERT-PAIR 85.66/88.32 89.48/93.22 76.84/80.63 81.76/87.02
REGRAB 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
HCRP 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
SimpleFSRE 96.21/96.63 97.07/97.93 93.38/94.94 95.11/96.39
GM_GEN 96.97/97.03 98.32/98.34 93.97/94.99 96.58/96.91
TGCRE 97.88/98.32 98.71/99.02 95.75/95.55 97.79/97.84

Table 2: Experimental results on the few-shot task

separating different N-way-K-shot tasks and allow-559

ing a single model to focus on a single task. We560

believe that it may be due to the "ONE-for-ONE"561

setting of GM_GEN that the model can focus on562

a specific task to generate semantic representa-563

tions. (3) The model REGRAB, which uses ex-564

ternal knowledge, did not achieve the expected re-565

sults, a possible reason being that although external566

knowledge can bring additional reference informa-567

tion to the model, it can also introduce noise and568

limit the model’s performance. (4) SimpleFSRE569

achieves good performance by introducing rela-570

tional information through direct addition, again571

demonstrating that generating better semantic rep-572

resentations is often more important than complex573

network structures.574

6 Ablation study575

In order to understand the specific contribution576

of each component of the TGCRE model, we de-577

signed the following ablation experiments, and the578

results are shown in Table 3. When the token579

attribute vector is removed alone, i.e., the model580

is not allowed to learn the token attribute knowl-581

edge to summarize the contextual semantics, the582

model performance drops significantly. This sug-583

gests that token attribute can effectively guide the584

model to focus on important tokens and generate se-585

mantic representations containing rich contextual586

features. When removing the multi-level spatial587

semantic matching alone, the model performance588

also gets degraded, which shows that synthesizing589

the semantic matching scores under different vec-590

tor spaces can improve the model performance and591

outperform the previous single matching pattern.592

When both of the above modules are removed at593

the same time, the model performance is severely594

impaired. From TGCRE (-attributue) and TGCRE595

Method Prec. Rec. F1
-attributue 90.24 89.34 89.99
-zj 91.39 90.78 91.08
-both 88.98 87.19 88.06
TGCRE 91.89 90.68 91.28

Table 3: Ablation experiments on the FewRel
dataset(unseen=5).

(-both), it can be seen that the model performance 596

is greatly impaired by removing the multi-level 597

matching scheme on top of removing the token 598

attribute vector, indicating that relying on the multi- 599

level matching scheme alone can still allow the 600

model to maintain excellent performance when 601

there is no excellent semantic representation sup- 602

port. 603

7 Conclusions 604

In this paper, we propose TGCRE, a low-shot rela- 605

tion extraction method based on token-generated 606

contribution. The TGCRE summarizes instance 607

features based on the specific contributions made 608

by each token to generate better semantic repre- 609

sentations that unify low-shot relation extraction. 610

Specifically, TGCRE learns knowledge of token 611

attributes by training approximate attribute vec- 612

tor, which guides the model to focus on tokens 613

that contribute significantly to sentence expression. 614

Moreover, in the zero-shot scenario, we propose a 615

multi-level spatial semantic matching scheme that 616

synthesizes the matching scores from different per- 617

spectives for label matching and greatly improves 618

the matching accuracy. Extensive experiments have 619

proved the effectiveness of our method, achieving 620

state-of-the-art performance. 621
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Limitations622

The token attribute information has been shown to623

facilitate the model in generating better semantic624

representations, and although we propose two ap-625

proaches for generating gradient information in the626

paper (Mean, Classification), this is still not the op-627

timal choice. Exploring richer gradient generation628

approaches that motivate models to better utilize629

token attribute information is a promising direction630

that will be the focus of our future work.631
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A Task Formulation 813

Few-Shot RE. In resource-poor few-sample sce- 814

narios, the purpose of few-shot relation extraction 815

is to train the model’s triplet extraction capabil- 816

ity using only a small number of training samples 817

when there are not a large number of labeled sam- 818

ples in the candidate class, usually with the number 819

of samples specified in an N-way-K-shot setting. 820

Specifically, there is a support set S and a query set 821

Q in different N-way-K-shot tasks, respectively. S 822

contains N randomly sampled relation categories 823

r ∈ Rs and each class r corresponds to K labeled 824

instances si used for training. Q contains m (cus- 825

tom hyperparameters) query instances qi for test- 826

ing. The goal of the few-shot RE task is to train the 827

model’s learning ability by supporting instances si 828

so that the model can quickly adapt and deal with 829

similar types of tasks, rather than just a single clas- 830

sification task. Finally, the learning capability of 831

the model is verified using instances qi in the query 832

set Q, predicting to which of the categories r in Rs 833

that qi belongs. Formally, this can be formulated 834

as: 835

S
train−→ M(LB)

validation←− Q (18) 836

where M(LB) represents the learning capacity 837

learned by the model. 838

Zero-Shot RE. In zero-sample scenarios where 839

no data resources are available, zero-shot RE aims 840

to use existing well-labeled datasets to train the 841
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model’s triple-extraction capability and then apply842

it to extract the relations of entity pairs from new843

unseen data. Specifically, each relation r ∈ R in844

the dataset corresponds to a relation description845

d ∈ D. A model is trained to measure the dis-846

tance between sentence instances I and relation847

descriptions D, and to predict to which type r in848

R that I belongs. The goal of zero-shot RE is to849

use relation-visible data Ys to train the knowledge850

transfer capability of the model, allowing the model851

to use past knowledge to infer and recognize new852

things that have not been seen before. Ultimately,853

relation-invisible data Yu is used to validate the854

model’s knowledge transfer capability. Formally,855

this can be formulated as:856

Ys
train−→ M(KG)

validation←− Yu (19)857

where M(KG) represents the knowledge transfer858

capability learned by the model and Ys ∩ Yu = ∅.859

B Datasets860

We evaluated our method on two popular datasets861

in low-shot RE. The FewRel dataset is used in the862

few-shot RE task, and the FewRel and Wiki-ZSL863

datasets are used in the zero-shot RE task.864

FewRel dataset consists of 70,000 sentences from865

100 relations on Wikipedia, annotated by crowd-866

funding workers. The standard FewRel follows867

the setup of training/validation/testing sets corre-868

sponding to 64/16/20 relation categories, where the869

training and validation sets are publicly accessible,870

whereas the testing set is not.871

Wiki-ZSL dataset contains 113 relations and872

94,383 instances from Wikipedia, completed by re-873

mote supervised annotation. The dataset is divided874

into three subsets: training set/validation set/test875

set, corresponding to 98/5/10 relation categories,876

respectively.877

C Baseline Models878

In order to evaluate the effectiveness of our method,879

we compare TGCRE with state-of-the-art methods880

in the few-shot RE and zero-shot RE tasks, respec-881

tively, selecting a representative number of models882

from recent years.883

For the few-shot RE, the models include Proto-884

HATT(Gao et al., 2019a), MLMAN(Ye and885

Ling, 2019), BERT-PAIR(Gao et al., 2019b), RE-886

GRAB(Qu et al., 2020), HCRP(Han et al., 2021),887

SimpleFSRE(Liu et al., 2022), and GM_GEN(Li888

and Qian, 2022). For zero-shot RE, the models889

include R-BERT(Wu and He, 2019), ESIM(Levy 890

et al., 2017), ZS-BERT(Chen and Li, 2021), RE- 891

Prompt(Chia et al., 2022), and RE-Matching(Zhao 892

et al., 2023a). 893

D Experimental settings 894

Following existing methods, we use Bert- 895

base(Devlin et al., 2019) as an encoder for the in- 896

put sentences. In particular, we employ a separate 897

fixed sentence-Bert(Reimers and Gurevych, 2019) 898

for the relation descriptions as an encoder, with the 899

aim of reducing the computational overhead. 900

In the zero-shot RE task, the learning rate is set 901

to 2e-6, batchsize is set to 16, and 10 epochs are 902

trained. We randomly choose m ∈ {5, 10, 15} rela- 903

tions as visible relations in the test set and consider 904

the rest as visible relations in the training set. In 905

this paper, we randomly repeat the relation category 906

selection five times and report the average results 907

under different selections to ensure the reliability 908

of the experimental results. 909

In the few-shot RE task, the learning rate is set 910

to 1e-5, the batchsize is set to 2, and the number 911

of training iterations and validation iterations are 912

set to 30,000 and 1,000, respectively. Following 913

the official evaluation setup, we use 5-way-1-shot, 914

5-way-5-shot, 10-way-1-shot, and 10-way-5-shot 915

to measure the performance of the model on the 916

validation and test sets. 917

AdamW(Loshchilov and Hutter, 2017) is used 918

as an optimizer in both the above tasks. In this 919

paper, the IDE used for the experiments is Pycharm 920

2021 Professional Edition. PyTorch version 1.9.1; 921

CUDA version 11.7. model training and inference 922

were performed on an NVIDIA A100-SMX with 923

40GB of GPU memory and 16GB of CPU memory. 924

E Case Study 925

E.1 Analysis of different semantic 926

summarization approaches 927

In order to compare the advantages and disadvan- 928

tages of each semantic summarization approach, 929

we designed the following comparison experiments, 930

and the results are shown in Table 4. We take the 931

FewRel dataset as an example and use TGCRE as 932

the base model for zero-shot relation extraction us- 933

ing different semantic summarization approaches. 934

From the experimental results, it can be seen that 935

the semantic summarization approach based on 936

token attributes proposed in this paper achieves 937

the best performance in all three metrics, which is 938
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Method Prec. Rec. F1
CLS 91.38 90.47 90.92
CLS+Avg 89.56 88.44 88.99
Eh + Et 90.24 89.34 89.99
Attribute 91.89 90.68 91.28

Table 4: Comparison of different semantic summariza-
tion approaches.

superior to previous approaches based on special939

tokens. In particular, CLS+Avg achieves only 88.99940

and Eh + Et up to 89.99 in terms of F1 metrics,941

which suggests that they do not seem to achieve the942

desired results in an unsupervised task that lacks943

supervised signals. Instead, the use of the most944

simple [CLS] as an embedding token for seman-945

tic summarization reached 90.92, just below our946

proposed approach.947

E.2 Analysis of different forward-backward948

procedures949

In order to understand the impact of our proposed950

two forward-backward procedures, Mean and Clas-951

sification, on the performance of the model, we set952

up relevant experiments by randomly sampling the953

set of invisible relations five times with unseen=5.954

The experimental results are shown in Table 5. We955

observe the counterfactual that the Classification956

method based on supervised labeling is actually957

lower than the simple Mean method, although there958

is no large gap between the two methods. From the959

results of the five random samples, each of the two960

emerged victorious and defeated, possibly due to961

the chance of random sampling. We believe that962

another important reason is that the Classification963

method, despite the additional support provided by964

the supervised signals, only undergoes one back-965

ward pass, which makes the gradient information966

generated by each token more contingent, and the967

model suffers from more noise compared to the968

Mean method.969

Method Random Prec. Rec. F1
Mean 0 94.58 94.63 94.60
Classification 0 94.88 94.57 94.73
Mean 1 90.37 87.74 89.03
Classification 1 89.63 86.29 87.93
Mean 2 83.45 83.09 83.37
Classification 2 85.42 83.46 84.43
Mean 3 93.55 92.89 93.22
Classification 3 93.35 92.89 93.12
Mean 4 96.33 96.34 96.34
Classification 4 96.18 96.20 96.19
Mean average 91.66 90.94 91.31
Classification average 91.89 90.68 91.28

Table 5: Comparison of different forward-backward
procedures.
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