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Abstract

In light of the era of information explosion, tra-
ditional relation extraction methods are in a bot-
tleneck due to data limitations in the face of the
constant emergence of new relation categories.
Therefore the study of low-shot relation extrac-
tion in real scenarios is crucial. In the few-shot
scenario, it is necessary to build up the model’s
ability to summarize the semantics of instances.
In the zero-shot scenario, it is necessary to es-
tablish the label matching ability of the model.
Although they need to establish different ba-
sic abilities of the model, the common point is
that they all need to build excellent semantic
representations in the end, which is ignored by
the existing methods. In this paper, we propose
a method (TGCRE) based on token-generated
contribution to unify low-shot relation extrac-
tion by generating better semantic representa-
tions. Further, we propose a multi-level spatial
semantic matching scheme in zero-shot scenar-
i0s, in order to solve the problem of the single
matching pattern of existing methods. Exper-
imental results show that our method outper-
forms previous robust baselines and achieves
state-of-the-art performance.

1 Introduction

Relation extraction (RE) is an important basic task
in natural language understanding. Traditional rela-
tion extraction relying on large-scale high-quality
data has achieved excellent performance, but with
the development of the times, high-quality data is
consumed, and in the face of the emergence of var-
ious new relation categories that lack training data,
the traditional methods are in a bottleneck. To cope
with this situation, low-shot relation extraction has
become a hot research topic. There are two main
branches of low-shot relation extraction, namely
the study of few-shot RE and zero-shot RE. The
few-shot RE requires building the model’s ability
to summarize the semantics of instances, train the
model’s learning ability using a few labeled sam-
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Figure 1: Semantic summarization methods

ples per class and quickly generalize it to classify
new classes. At present few-shot RE approaches
focus on how to summarize better semantic proto-
types from a few illustrative examples(Snell et al.,
2017), e.g. Gao et al. (2019a) et al. employ an at-
tention mechanism to enhance the network’s ability
to generate prototypical representations. Han et al.
(2021) et al. introduced a new approach based on
supervised comparison learning in the hope that
the model would learn good prototype representa-
tions, i.e., narrowing distances within classes while
expanding distances between different classes. An-
other idea is to augment the FSRE model with
knowledge from an external knowledge base. For
example Wen et al. (2021) et al. introduced textual
descriptions of entities and relations from Wikidata.
Qu et al. (2020) et al. utilized the representation
of global relation graphs. Yang et al. (2021) et
al. utilized the intrinsic concept of entities. Zero-
shot RE requires building the model’s ability to
match labels. The knowledge transfer capability
of the model is trained and generalized to unseen
relation categories by the labeled descriptions of
the given relations. There are common solution
paradigms such as question answering(Levy et al.,
2017), textual entailment(Obamuyide and Vlachos,
2018) and semantic matching(Chen and Li, 2021).
Despite the advanced performance achieved by se-
mantic matching schemes, there are still some prob-
lems, the most representative of which is the sin-
gle matching pattern, which causes the model to
be negatively affected by irrelevant context when



matching.

Since few-shot and zero-shot RE require the
model to build different basic capabilities, current
state-of-the-art methods can only be applied and
learned to handle one scenario alone. However,
what they have in common is that they ultimately
need to construct good semantic representations,
with few-shot RE requiring the semantic distance
between the class prototype representation and its
corresponding query instance to be reduced, and
zero-shot RE requiring the model to summarize the
semantic features of the different relation labels
in a focused manner. Obviously, existing methods
that rely only on the semantic summarization abil-
ity of special tokens inserted into sentences do not
do this well, resulting in a model that does not sum-
marize an optimal semantic representation. The
existing methods for contextual semantic summa-
rization are shown in Figure 1. See appendix E.1
for detailed analysis

For this reason, based on the commonalities
between the above two we propose the method
TGCRE, which utilizes and learns the token at-
tributes inherent to each token in the sentence, i.e.,
the specific contribution each token makes to ex-
press the meaning of the sentence, to generate bet-
ter semantic representations that unify the low-shot
relational extraction. Moreover, in order to solve
the problem of a single matching pattern in zero-
shot RE, we propose a multi-level spatial semantic
matching scheme. Label matching is performed
by projecting semantic features to different vector
spaces and synthesizing the matching scores from
different perspectives. The contributions of this
paper are summarized as follows:

1. We develop TGCRE, a low-shot relation ex-
traction method for both zero-shot and few-shot
tasks. Experiments demonstrate that our method
outperforms previous baselines and achieves state-
of-the-art performance in both zero-shot and few-
shot tasks.

2. We propose a method for learning token at-
tribute information, based on which a model is
guided to understand the magnitude of the contri-
bution of a token, and thus generate a better se-
mantic representation of the context. To the best of
our knowledge, we are the first to propose learning
and using token attribute information for natural
language understanding (NLU) tasks.

3. In the zero-shot RE task, we propose a multi-
level spatial semantic matching scheme, which
synthesizes the matching scores under multi-angle

space to perform semantic matching and greatly
improves the accuracy of semantic matching.

2 Related Work

Zero-Shot Relation Extraction. The task means
to perform relation extraction on never-before-seen
relation instances in the absence of annotated data
for specific relation categories. Levy et al. (2017) et
al. elucidated for the first time the concept of zero-
sample learning for relation extraction by modeling
the target task as a question-and-answer problem,
and categorizing invisible classes by having the
model answer a predefined question template. Oba-
muyide and Vlachos (2018) et al. modeled the
target task as a textual entailment task, which iden-
tifies relation categories by determining whether
the input sentences entail the corresponding rela-
tion descriptions, and fits well with the task defi-
nition of zero-sample learning. Sainz et al. (2021)
et al. reformulate relation extraction as a problem
of entailment, where a linguistic representation of
relation labels is used to generate a hypothesis that
is confirmed by a ready-made entailment engine.
In the latest research, Chen and Li (2021) et al. use
different projection functions for input text and re-
lation description text respectively, transform both
to the same semantic space, and based on this repre-
sentation in the space defines relation extraction as
a semantic matching task. Zhao et al. (2023a) et al.
further proposed a fine-grained semantic matching
method to reduce the impact of irrelevant context
on matching accuracy. Wang et al. (2022) et al. use
contrastive learning to train models that mitigate
the prediction errors caused by similar relations
and similar entities to the model. Recently, an even
more difficult task, Zero-Shot Relation Triplet Ex-
traction (ZSRTE)(Chia et al., 2022; Lv et al., 2023),
has been proposed, which requires simultaneous ex-
traction of both entities and relations, which greatly
increases the task difficulty and further promotes
the research on zero-shot relation extraction.

Few-Shot Relation Extraction. Few-shot learning
is a challenging task when it relates to relation ex-
traction. Few-shot RE aims to train a model by us-
ing only a small number of labeled samples and to
improve the generalization ability of the model by
utilizing unlabeled or weakly labeled data. When
dealing with few-shot RE tasks, model training and
testing are usually performed in a meta-learning
manner(Mishra et al., 2017; Huisman et al., 2020;
Hospedales et al., 2022). Snell et al. (2017) et al.



first proposed the use of prototypical networks for
few-shot learning, Han et al. (2018) et al. further
proposed a large-scale dataset, FewRel, to study
relation extraction methods under few-shot learn-
ing. There has been an increase in the number
of people involved in few-shot RE research. Gao
et al. (2019a) et al. used an attention mechanism to
facilitate the generation of better prototype repre-
sentations from prototype networks. Ye and Ling
(2019) et al. used CNN as an encoder and proposed
a Multi-Level Matching and Aggregation Network
for encoding query instances and class prototypes
in an interactive interface. Gao et al. (2019b) et
al. present a more challenging dataset, FewRel 2.0,
in which they compute the similarity distance be-
tween a query instance and all supported instances.
Han et al. (2021) et al. proposed representation
modeling, prototype modeling and task difficulty
modeling to solve difficult and simple few-shot ex-
traction tasks. Recently, Liu et al. (2022) et al. pro-
posed a simple direct additive method to introduce
relation information, which proved that good rela-
tion information introduction is more effective than
complex model structure. Li and Qian (2022) et al.
proposed a model generation framework GM_GEN
to achieve the optimal point on different N-way-
K-shot tasks, separating the complexity of all the
individual tasks from the complexity of the whole
task space.

3 Preliminary

3.1 Encoding

Sentence Encoding. For any given input instance
I = {z1,x9,...,2,}, the head entity e,IL and the
tail entity e! are surrounded by the special sym-
bols "#" and "@", respectively. We use the pre-
trained language model BERT as a sentence en-
coder with encoded context features formulated as
I= {h{,h3,... L}, and then extract the head

entity feature e! and tail entity feature e} from the
context features based on the locations of the spe-
cially tagged annotated entities using maximum
pooling.

Relation Description Encoding. For any given
relation description d = {d;,ds,...,d,}, we use
an independently fixed sentence-BERT as a rela-
tion description encoder, following the work of
Zhao et al. (2023a) et al., we extract the con-
textual features of the relation description d =
{hcf, hg, cen hfl} and the head entity description

features efl and tail entity description feature ef .

3.2 Token Attribution

For any given sentence, the tokens in the sentence
work together and bear the responsibility of ex-
pressing the meaning of the sentence. However,
each token makes a different specific contribution
to the expression of the meaning of the sentence.
For example, in the sentence "I really like carrots.",
the contribution of "really" is obviously lower than
that of "like". Without "really", the sentence can
still convey the original meaning, but without "like",
it is not clear whether I like carrots or hate them.
We define this property as token attribution(Zhao
et al., 2023b).

A measure of a token attribution can be defined
by removing the token and observing the change
in confidence that occurs when the model predicts
the label of the instance.

g(ill) = e(I) — (I — z:) (1)

where c(I) represents the confidence of the original
sentence and c¢(I — z;) represents the confidence
after removing the token z;. ¢ (x;|I) represents
the attribution (contribution) of token x;. When
g (x;]I) is more than zero, i.e., ¢ (I) > ¢ (I — x;),
it represents that the confidence of the model de-
creases after removing token x;, which indicates
that token x; has positive contribution in the sen-
tence and can promote the expression of sentence
meaning. Instead the token x; has a negative contri-
bution in the sentence and can disrupt the model’s
predictions. Although the attribution of each token
can be obtained in this way, it requires n forward
computations, which is very inefficient and incurs a
high computational overhead. Fortunately, comput-
ing the dot product of the corresponding embedding
hf and gradient </, for token x; can approximate
the token attribution of x;, so that the token attri-
bution of all tokens can be obtained after only one
forward-backward procedure. This approximation
is proposed and applied in the interpretation meth-
ods of natural language classification models(Feng
et al., 2018; Li et al., 2016; Arras et al., 2016).
Thus, the method of measuring token attribution in
practice can be formulated as:

attr (z;]I) = Va, - hY )

)

4 Methodology

In this section, we describe TGCRE in detail, and
an overview of the methodology is shown in Figure
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Figure 2: Model overview for TGCRE.

2. In the training phase of the model, the aim is to
maximize the similarity between the approximate
attribute vector and the token attribution vector
and learn the attribute information of the tokens. In
the testing phase, the learned knowledge of token
attributes is used to guide the model to focus on
the tokens with higher semantic contribution in the
sentence, so as to generate better semantic repre-
sentations for the subsequent zero/few-shot task. It
is worth noting that the input example—Relation
Description in the zero-shot setup uses an inde-
pendently fixed encoder, Sentence-BERT, which is
not labeled in Figure 2 for the sake of presentation
simplicity.

4.1 Model Training

In the training phase, the goal is to learn infor-
mation about the attributes of tokens so that the
model has the ability to understand token contribu-
tions like a human. For the different inputs in the
zero/few-shot setting, which we collectively refer
to as input example /, which is encoded by the en-
coder to get the token embedding containing rich
contextual semantics, i.e., [ = {h{ hl, ... KL}
Forward-Backward Procedure. In section 3.3,
we introduced the first-order approximation for cal-
culating token attribution, so we need a forward-
backward procedure to obtain the gradient infor-
mation for each token in the sentence. The back-
ward process is straightforward, what matters is
how the forward inference is performed so that to-
kens with larger contributions have more distinct
gradients. We explore different forward inference
approaches(See appendix E.2 for detailed analysis
) in this paper as follows:

(1) Mean: We treat the process of computing
the mean of the token embeddings I as forward

propagation and the mean as the energy of back-
ward propagation. In this pattern, there is no need
to train any parameters other than those of the en-
coder. The advantage of this method is that it is
relatively simple to implement.

forward : energy = M A (LSE (f)) 3)

“)

where M A (-) represents the mean function, LSE is
log-sum-exp which gives better numerical stability
and prevents the data from overflow and underflow
problems during computation, and BP (-) which
is the backward propagation of the model to obtain
the gradient information.

(2) Classification: In order to obtain more rea-
sonable gradient information, we insert a forward-
backward procedure based on classification in the
forward inference process of the whole method of
TGCRE. This is done by training a classification
function cls (-) and applying it to the word embed-
ding I so that the original word vector space is
mapped into the relation vector space, obtaining
the probability distribution of each relation corre-
sponding to the input instance /. The loss is then
calculated with the real label to get the energy as
backward propagation. Compared to the Mean ap-
proach, this approach requires the training of an
additional classification function, but the use of a
supervised signal y allows the model to focus more
on meaningful tokens and obtain more reasonable
gradient information.

backward : BP (energy)

forward : energy = CEL (cls (LSE (f)) ,y) (5)

backward : BP (energy) (6)



where y represents the true label and CE'L (-) rep-
resents the cross-entropy loss function, which is
used to calculate the gap between the model’s pre-
dictions and the true values.

Normalization Token Attribution. The gradient
information v/, of all tokens can be obtained by
one forward-backward procedure, which in turn
can obtain all word attributes ‘in - h! | In order
to visualize the specific degree of contribution of
each token, it is necessary to normalize the token
attributes to obtain the token attribute vector. The
specific operation is shown below:

lattr (xs|I)] ‘Vzi hﬂ

> =1 lattr (z;]1)] - PR | Ve, hﬂ

@)

nta (x;) =

where nta (x1, xg, ..., x,) is the normalized token
attribute vector.

Training Objectivel. For the purpose of utilizing
token attribute information and training the model
for deeper understanding of natural language, a
generalized approximate attribute vector apa that
can learn token attribute information is proposed.
We take maximizing the similarity between the
approximate attribute vector natural language, a
generalized approximate attribute vector apa and
the token attribute vector nta as the training goal,
so that apa is able to learn transferable token at-
tribute knowledge, which in turn effectively guides
the model to focus on the contributing tokens in the
sentence and generate better semantic representa-
tions. First, the features of the token embedding I
are summarized based on the token attribute vec-
tor nta, and the attribute embedding is obtained by
highlighting the positively contributing token fea-
tures and ignoring the negatively contributing token
features in the sentence. Secondly, the approximate
attribute vector apa is also used to summarize the
features of token embedding I, and approximate
embedding is obtained. Finally, we use margin
loss to optimize the training objective by iteratively
training the model to shrink the similarity distance
between attribute embedding and approximate em-
bedding, and to increase the similarity between apa
and nta, so as to continuously optimize the feature
summarization ability of apa. The process can be
formulated as:

Lsim = mazx (0, 1 — cos(nta - f, apa - f)) 8)

Training Objective2. In the few-shot setting, we

do not use a generalized approximate attribute vec-
tor due to the fewer number of relation categories
that are restricted during the training process, but
instead take the approach of setting a separate ap-
proximate attribute vector apa; for each relation
category 7;. To prevent overfitting between the indi-
vidual approximate attribute vectors, which causes
most of the parameters to be invalidated, we intro-
duce the second training objective — maximizing
the differentiation between the groups of approxi-
mate attribute vectors. First, we compare the sim-
ilarity between each two vectors apa; and apa;,
and then accumulate all the similarities to get the
overall similarity score of the group of approximate
attribute vectors, and use margin loss to reduce the
value of the overall similarity score in differenti-
ated training, thus preventing all the approximate
attribute vectors from clustering in the same region
in the vector space, and realizing the objective of
differentiated training. The process can be formu-
lated as:

N N
- ., cos (apai, apa;
Lpij = max <07 >ict 2171 - (ap p J)> )

4.2 Model Testing

In the testing phase, we use the trained approximate
attribute vector apa to summarize the token embed-
dings and obtain the rich contextual semantics of
the input examples for the subsequent few-shot RE
task and zero-shot RE task. In the few-shot setting,
the input examples include support samples and
query samples, and the semantic representations af-
ter apa summarization are SSqpprozimate embeding
and QSapprovimate embeding» Tespectively. In the
zero-shot setting, the input examples consist of
input sentence / and relation description d, where
the summarized semantics of the / is represented
as I Sqpprozimate embeding. While the d is encoded
using an independently fixed encoder that does not
be summarized by the apa, and so the encoded
semantics is represented as RDcpeding. It is
worth mentioning that the semantic representations
of the head and tail entities are extracted in token
embeddings, and for the sake of brevity, this
process is not shown in Figure 2.

Zero-Shot RE Task. In this paper, we define
zero-shot RE as a semantic matching task,
and in order to avoid the monotony of match-
ing patterns, we propose a multi-level spatial
semantic matching scheme. For the context
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embedding eé and tail entity embedding e/ of
the input sentences in the given original vector

space and the context embedding RDe¢ipedings
head entity embedding e;‘fb and tail entity em-
bedding eNf of the relation descriptions, we
define the embed(}ing set of input sentences

SETrg
and the embedding set of relation descriptions
SETrp ed ed. RDembedmg}. After that,
we define the left orthogonal transform function
T; (z,w;) and the right orthogonal transform
function 7, (x,w,), through which we can map
the embedding set S ETTg and the embedding set
S ETgp into different vector spaces.

I I
€156t ISappro:cimate embeding

SET.s =T (SET;s,w) (10)
SETgp =T (SETrp, wy) (11)
SETjs =T, (SETs, wr) (12)
SETrp =T, (SETRD, wr) (13)

where w; € R3*3, w, € R are trainable orthog-
onal matrices and 4 is the hidden dimension of the
encoder. As shown in Figure 3(a), we show a sim-
ple schematic of the embedding set transformation,
although the real situation is much more complex
than this. As can be seen from the figure, after the
left (right) orthogonal transformation, S ETrg and
SETgp in the original space show different poses
in different vector spaces, but the relative positions
of the vectors in the embedding set are not changed,
which ensures that their semantic similarities can
be compared from different perspectives without
changing the attributes of the original vector set.

We separately compute the semantic matching
scores of the SET g and SETRp in different vec-
tor spaces, and the sum of all the matching scores is
used as the prediction scores of the input sentence
I and the relation description d.

p-(I,d) = a-cos (SET}S, SET}%D) + « - cos
(SET}s, SETgp) + B - cos (SETys, SETrp)

14

where o and 3 are hyperparameters.

Few-Shot RE Task. In the N-way-K-shot setting,
the context embedding is S'Sqpprozimate embeding
and QSapp'ro:rimate embeding fora given support set
S and query set Q , respectively. We average the
context embedding of each class in the support
set S to obtain a prototype representation S.S; for
each relation. As shown in Figure 3(b), the proto-
typical representation of each relation is randomly
distributed in the vector space. In this paper, we
use the cosine distance as the prediction score of
the query instance for each class prototype and use
the highest similarity as the final prediction.

Py (S,Q) = cos (55;,QS) (15)

where QS represents the context embedding
QSapproximate embedding of the query set.

4.3 Loss Function

In the zero-shot setting, in order to prevent
the model overconfidence, we randomly sam-
ple the negative pairs to constrain the model,
assuming that the prediction score of the posi-
tive pairs is p, (/,d,), and that of the negative
pairs is p’ (I,d;), then we require that the predic-
tion score of the model’s positive pairs is larger
than that of the negative pairs, i.e., p, (I,dy) —



Unseen Method Wiki-ZSL FewRel
Prec. Rec. F1 Prec. Rec. F1
R-BERT 39.22 4327 41.15 4219 48.61 45.17
ESIM 48.58 47.74 48.16 56.27 58.44 57.33
m= ZS-BERT 71.54 7239 7196 7696 7886 77.90
REPrompt 70.66 83.75 76.63 90.15 88.50 89.30
RE-Matching 79.84 78.58 79.19 9148 90.84 091.16
TGCRE 82.40 80.49 81.42 91.89 90.68 91.28
R-BERT 26.18 29.69 27.82 2552 33.02 28.20
ESIM 4412 4546 4478 42.89 44.17 43.52
m=10 ZS-BERT 60.51 6098 60.74 56.92 57.59 57.25
REPrompt 68.51 74.76 7150 80.33 79.62 79.96
RE-Matching 72.35 72.74 72.53 83.03 81.89 8245
TGCRE 74.61 72.07 7330 86.23 85.11 85.66
R-BERT 17.31 18.82 18.03 16.95 19.37 18.08
ESIM 27.31 29.62 2842 29.15 31.59 30.32
m=15 ZS-BERT 34.12 3438 34.25 3554 38.19 36.82
REPrompt 63.69 6793 65.74 7433 72.51 73.40
RE-Matching 62.35 62.34 62.33 73.11 7036 71.69
TGCRE 67.69 66.50 67.06 73.77 72.10 72.92

Table 1: Experimental results on the zero-shot task

P’ (I,d;) = ¢ > 0, and the loss term is Ly, =
maz (0,7 — ), where v > 0 is a hyperparameter.
To summarize, the total loss of the zero-shot RE is:

In the few-shot setting, we use a cross-entropy
loss function to optimize the gap between the
model’s prediction and the label, with a loss term
of L.y = CEL (p,y), where p is the model’s pre-
diction and y is the true label. To summarize, the
total loss of the few-shot RE is:

Ly = Lsim + Laig + Leel (17)

5 Experiments

In this section, we only show the main experimental
results, and the experimental setup and detailed
analysis are shown in the Appendix.

5.1 Experiments on Zero-Shot Relation
Extraction

Table 1 summarizes the experimental results of our
model with the baseline model on Wiki-ZSL and
FewRel, where bold denotes the best score and un-
derline denotes the second best score. In terms of
F1 metrics, it can be seen that our model TGCRE
significantly outperforms the other baselines, im-
proving by 1.44% and 2.85% on the Wiki-ZSL and

FewRel datasets, respectively. In terms of preci-
sion metrics, TGCRE shows excellent performance,
substantially outperforming the existing baseline,
which indicates that our model sufficiently learns
the knowledge of token attribute and summarizes
the semantic features of different relation labels in
a focused manner. In terms of recall metrics, our
model is slightly lower than REPrompt, but still per-
forms reliably and outperforms the other baseline
models. Overall, our model owes its state-of-the-art
performance to token attribute knowledge and mul-
tilevel spatial semantic matching. RE-Matching
has also achieved good results through fine-grained
semantic matching due to display modeling of rela-
tional patterns.

5.2 Experiments on Few-Shot Relation
Extraction

Table 2 summarizes the experimental results of
our model with other models on the few-shot re-
lation extraction task. As can be seen from the
table, (1) our proposed TGCRE performs the best,
indicating that our model is able to fully utilize
the knowledge of token attribute to generate better
semantic representations and effectively reduce the
semantic distance between the class prototype rep-
resentation and its corresponding query instance.
(2) GM_GEN also achieves better performance by



Method 5-way-1-shot  5-way-5-shot  10-way-1-shot 10-way-5-shot
validation/test validation/test validation/test validation/test
Proto-HATT  75.01/— 87.09/90.12 62.48/— — 77.50/83.05
MLMAN 79.01/82.98 88.86/92.66 67.37/75.59 80.07/87.29
BERT-PAIR  85.66/88.32 89.48/93.22 76.84/80.63 81.76/87.02
REGRAB 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
HCRP 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
SimpleFSRE  96.21/96.63 97.07/97.93 93.38/94.94 95.11/96.39
GM_GEN 96.97/97.03 98.32/98.34 93.97/94.99 96.58/96.91
TGCRE 97.88/98.32 98.71/99.02 95.75/95.55 97.79/97.84

Table 2: Experimental results on the few-shot task

separating different N-way-K-shot tasks and allow- Method  Prec. Rec. F1
ing a single model to focus on a single task. We -attributue  90.24 89.34  89.99
believe that it may be due to the "ONE-for-ONE" -Z] 91.39 90.78 91.08
setting of GM_GEN that the model can focus on -both 88.98 87.19 88.06
a specific task to generate semantic representa- TGCRE 91.89 90.68 91.28
tions. (3) The model REGRAB, which uses ex-

Table 3: Ablation experiments on the FewRel

ternal knowledge, did not achieve the expected re-
sults, a possible reason being that although external
knowledge can bring additional reference informa-
tion to the model, it can also introduce noise and
limit the model’s performance. (4) SimpleFSRE
achieves good performance by introducing rela-
tional information through direct addition, again
demonstrating that generating better semantic rep-
resentations is often more important than complex
network structures.

6 Ablation study

In order to understand the specific contribution
of each component of the TGCRE model, we de-
signed the following ablation experiments, and the
results are shown in Table 3. When the token
attribute vector is removed alone, i.e., the model
is not allowed to learn the token attribute knowl-
edge to summarize the contextual semantics, the
model performance drops significantly. This sug-
gests that token attribute can effectively guide the
model to focus on important tokens and generate se-
mantic representations containing rich contextual
features. When removing the multi-level spatial
semantic matching alone, the model performance
also gets degraded, which shows that synthesizing
the semantic matching scores under different vec-
tor spaces can improve the model performance and
outperform the previous single matching pattern.
When both of the above modules are removed at
the same time, the model performance is severely
impaired. From TGCRE (-attributue) and TGCRE

dataset(unseen=5).

(-both), it can be seen that the model performance
is greatly impaired by removing the multi-level
matching scheme on top of removing the token
attribute vector, indicating that relying on the multi-
level matching scheme alone can still allow the
model to maintain excellent performance when
there is no excellent semantic representation sup-
port.

7 Conclusions

In this paper, we propose TGCRE, a low-shot rela-
tion extraction method based on token-generated
contribution. The TGCRE summarizes instance
features based on the specific contributions made
by each token to generate better semantic repre-
sentations that unify low-shot relation extraction.
Specifically, TGCRE learns knowledge of token
attributes by training approximate attribute vec-
tor, which guides the model to focus on tokens
that contribute significantly to sentence expression.
Moreover, in the zero-shot scenario, we propose a
multi-level spatial semantic matching scheme that
synthesizes the matching scores from different per-
spectives for label matching and greatly improves
the matching accuracy. Extensive experiments have
proved the effectiveness of our method, achieving
state-of-the-art performance.



Limitations

The token attribute information has been shown to
facilitate the model in generating better semantic
representations, and although we propose two ap-
proaches for generating gradient information in the
paper (Mean, Classification), this is still not the op-
timal choice. Exploring richer gradient generation
approaches that motivate models to better utilize
token attribute information is a promising direction
that will be the focus of our future work.
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A Task Formulation

Few-Shot RE. In resource-poor few-sample sce-
narios, the purpose of few-shot relation extraction
is to train the model’s triplet extraction capabil-
ity using only a small number of training samples
when there are not a large number of labeled sam-
ples in the candidate class, usually with the number
of samples specified in an N-way-K-shot setting.
Specifically, there is a support set S and a query set
Q in different N-way-K-shot tasks, respectively. S
contains N randomly sampled relation categories
r € R, and each class r corresponds to K labeled
instances s; used for training. Q contains m (cus-
tom hyperparameters) query instances ¢; for test-
ing. The goal of the few-shot RE task is to train the
model’s learning ability by supporting instances s;
so that the model can quickly adapt and deal with
similar types of tasks, rather than just a single clas-
sification task. Finally, the learning capability of
the model is verified using instances ¢; in the query
set O, predicting to which of the categories r in R
that ¢; belongs. Formally, this can be formulated
as:

S B8 A(LB) R g (18)
where M(LB) represents the learning capacity

learned by the model.

Zero-Shot RE. In zero-sample scenarios where
no data resources are available, zero-shot RE aims
to use existing well-labeled datasets to train the
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model’s triple-extraction capability and then apply
it to extract the relations of entity pairs from new
unseen data. Specifically, each relation » € R in
the dataset corresponds to a relation description
d € D. A model is trained to measure the dis-
tance between sentence instances / and relation
descriptions D, and to predict to which type r in
R that I belongs. The goal of zero-shot RE is to
use relation-visible data Y to train the knowledge
transfer capability of the model, allowing the model
to use past knowledge to infer and recognize new
things that have not been seen before. Ultimately,
relation-invisible data Y, is used to validate the
model’s knowledge transfer capability. Formally,
this can be formulated as:

validation
%

train

Y, — M(KQG) Y. (19)

where M(KG) represents the knowledge transfer
capability learned by the model and Y; NY,, = 0.

B Datasets

We evaluated our method on two popular datasets
in low-shot RE. The FewRel dataset is used in the
few-shot RE task, and the FewRel and Wiki-ZSL
datasets are used in the zero-shot RE task.
FewRel dataset consists of 70,000 sentences from
100 relations on Wikipedia, annotated by crowd-
funding workers. The standard FewRel follows
the setup of training/validation/testing sets corre-
sponding to 64/16/20 relation categories, where the
training and validation sets are publicly accessible,
whereas the testing set is not.

Wiki-ZSL dataset contains 113 relations and
94,383 instances from Wikipedia, completed by re-
mote supervised annotation. The dataset is divided
into three subsets: training set/validation set/test
set, corresponding to 98/5/10 relation categories,
respectively.

C Baseline Models

In order to evaluate the effectiveness of our method,
we compare TGCRE with state-of-the-art methods
in the few-shot RE and zero-shot RE tasks, respec-
tively, selecting a representative number of models
from recent years.

For the few-shot RE, the models include Proto-
HATT(Gao et al., 2019a), MLMAN(Ye and
Ling, 2019), BERT-PAIR(Gao et al., 2019b), RE-
GRAB(Qu et al., 2020), HCRP(Han et al., 2021),
SimpleFSRE(Liu et al., 2022), and GM_GEN(Li
and Qian, 2022). For zero-shot RE, the models
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include R-BERT(Wu and He, 2019), ESIM(Levy
et al., 2017), ZS-BERT(Chen and Li, 2021), RE-
Prompt(Chia et al., 2022), and RE-Matching(Zhao
et al., 2023a).

D Experimental settings

Following existing methods, we use Bert-
base(Devlin et al., 2019) as an encoder for the in-
put sentences. In particular, we employ a separate
fixed sentence-Bert(Reimers and Gurevych, 2019)
for the relation descriptions as an encoder, with the
aim of reducing the computational overhead.

In the zero-shot RE task, the learning rate is set
to 2e-6, batchsize is set to 16, and 10 epochs are
trained. We randomly choose m € {5, 10, 15} rela-
tions as visible relations in the test set and consider
the rest as visible relations in the training set. In
this paper, we randomly repeat the relation category
selection five times and report the average results
under different selections to ensure the reliability
of the experimental results.

In the few-shot RE task, the learning rate is set
to le-5, the batchsize is set to 2, and the number
of training iterations and validation iterations are
set to 30,000 and 1,000, respectively. Following
the official evaluation setup, we use 5-way-1-shot,
5-way-5-shot, 10-way-1-shot, and 10-way-5-shot
to measure the performance of the model on the
validation and test sets.

AdamW (Loshchilov and Hutter, 2017) is used
as an optimizer in both the above tasks. In this
paper, the IDE used for the experiments is Pycharm
2021 Professional Edition. PyTorch version 1.9.1;
CUDA version 11.7. model training and inference
were performed on an NVIDIA A100-SMX with
40GB of GPU memory and 16GB of CPU memory.

E Case Study

E.1 Analysis of different semantic
summarization approaches

In order to compare the advantages and disadvan-
tages of each semantic summarization approach,
we designed the following comparison experiments,
and the results are shown in Table 4. We take the
FewRel dataset as an example and use TGCRE as
the base model for zero-shot relation extraction us-
ing different semantic summarization approaches.
From the experimental results, it can be seen that
the semantic summarization approach based on
token attributes proposed in this paper achieves
the best performance in all three metrics, which is



Method Prec. Rec. F1

CLS 91.38 90.47 90.92
CLS+Avg 89.56 88.44 88.99
En + By 90.24 89.34 89.99
Attribute  91.89 90.68 91.28

Table 4: Comparison of different semantic summariza-
tion approaches.

superior to previous approaches based on special
tokens. In particular, CLS+Avg achieves only 88.99
and Ep, + E; up to 89.99 in terms of F1 metrics,
which suggests that they do not seem to achieve the
desired results in an unsupervised task that lacks
supervised signals. Instead, the use of the most
simple [CLS] as an embedding token for seman-
tic summarization reached 90.92, just below our
proposed approach.

E.2 Analysis of different forward-backward
procedures

In order to understand the impact of our proposed
two forward-backward procedures, Mean and Clas-
sification, on the performance of the model, we set
up relevant experiments by randomly sampling the
set of invisible relations five times with unseen=5.
The experimental results are shown in Table 5. We
observe the counterfactual that the Classification
method based on supervised labeling is actually
lower than the simple Mean method, although there
is no large gap between the two methods. From the
results of the five random samples, each of the two
emerged victorious and defeated, possibly due to
the chance of random sampling. We believe that
another important reason is that the Classification
method, despite the additional support provided by
the supervised signals, only undergoes one back-
ward pass, which makes the gradient information
generated by each token more contingent, and the
model suffers from more noise compared to the
Mean method.
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Method Random Prec. Rec. F1

Mean 0 94.58 94.63 94.60
Classification 0 94.88 94.57 94.73
Mean 1 90.37 87.74 89.03
Classification 1 89.63 86.29 87.93
Mean 2 83.45 83.09 83.37
Classification 2 8542 8346 84.43
Mean 3 93.55 92.89 93.22
Classification 3 93.35 92.89 93.12
Mean 4 96.33 96.34 96.34
Classification 4 96.18 96.20 96.19
Mean average  91.66 90.94 91.31
Classification average  91.89 90.68 91.28

Table 5: Comparison of different forward-backward

procedures.
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