
Infodeslib: Python Library for Dynamic Ensemble Learning using
Late Fusion of Multimodal Data
Firuz Juraev1, Shaker El-Sappagh1,2 and Tamer Abuhmed1,*

1College of Computing and Informatics, Sungkyunkwan University, South Korea
2Faculty of Computer Science and Engineering, Galala University, Egypt

Abstract
There has been a notable increase in research focusing on dynamic selection (DS) techniques within the field of ensemble learning.
This leads to the development of various techniques for ensembling multiple classifiers for a specific instance or set of instances
during the prediction phase. Despite this progress, the design and development of DS approaches with late fusion settings and their
explainability remain unexplored. This work proposes an open-source Python library, Infodeslib, to address this gap. The library
provides an implementation of several DS techniques, including four dynamic classifier selections and seven dynamic ensemble selection
techniques, all of which are integrated with late data fusion settings and novel explainability features. Infodeslib offers flexibility and
customization options, making it a versatile tool for various complex applications that require the fusion of multimodal data and various
explainability features. Multimodal data, which integrates information from diverse sources or sensor modalities, is a common and
essential setting for real-world problems, enhancing the robustness and depth of data analysis. These data can be fused in two main ways:
early fusion, where different modalities are combined at the feature level before model training, and late fusion, where each modality is
processed separately and the results are combined at the decision level. The library is fully documented following the Read the Docs
standards. The documentation, code, and examples are available anonymously on GitHub at https://github.com/InfoLab-SKKU/infodeslib.

Keywords
Ensemble of classifiers, Dynamic classifier selection, Dynamic ensemble selection, multimodal data fusion, Late fusion, Machine learning,
Explainable AI, Python.

Ensemble learning is a thriving domain within the fields
of machine learning and pattern recognition [1, 2]. With
all the diverse ensemble classifiers available, each classifier
approaches the problem from a different perspective. The
main idea of ensemble learning is to leverage a group of
classifiers to provide comprehensive coverage of the learned
task [3]. By utilizing diverse models that exhibit distinct
decision boundaries, ensemble learning seeks to maximize
the accuracy and effectiveness of the overall classification
process. As a result, the performance of ensemble classi-
fiers is better than any of its base classifiers [4, 5]. This
is because each base classifier concentrates on the specific
region of the error space and combining the decisions of
these classifiers improves the overall ensemble’s decisions.
Ensemble learning approaches can be broadly classified into
two categories: static and dynamic selection approaches
[6, 7]. In static selection [8, 9], a predetermined group of
classifiers is selected, and this group is utilized to make
decisions for each new test instance. In dynamic selection
[10, 11, 12], a new group of classifiers is selected for each
test instance, and this group is employed to make a decision
for that specific instance.

Since real-world datasets are often complex and consist
of multiple feature groups or so-called ‘modalities’, ensem-
ble learning is a popular candidate to be used to combine
multiple models to improve the performance and robustness
of predictive models. One approach to ensemble learning
is early fusion, where all modalities are merged in a pool
for the classifiers to capture the potential interaction and
interdependencies among the modalities using either static
[13] or dynamic selection [14].

Another approach to ensemble learning is the late fu-
sion or decision fusion, where each classifier in the pool
is trained with different feature groups or combinations of

KiL’24: Workshop on Knowledge-infused Learning co-located with 30th
ACM KDD Conference, August 26, 2024, Barcelona, Spain
*Corresponding author.
$ fjuraev@g.skku.edu (F. Juraev); shaker@skku.edu (S. El-Sappagh);
tamer@skku.edu (T. Abuhmed)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

feature groups to achieve greater diversity in the model pool.
This diversity is crucial for constructing a robust ensemble
that can effectively generalize to previously unseen data.
Moreover, late fusion provides more flexibility as classifiers
are assigned to different modalities considering that certain
classifiers are best to model certain modalities [15].

In current literature, late fusion-based ensemble learning
is solely available with static classifiers selection [16], and
most of these studies show the superiority of late fusion
compared to early fusion for static ensemble [17, 18, 19].
This motivates us to explore the performance of late fusion
in dynamic selection compared to early fusion; however, to
the best of our knowledge, no study or implementation has
been conducted to examine the performance of late fusion
in dynamic selection settings. This work aims to implement
different types of dynamic selection techniques in the late
fusion setting. By doing so, we can explore the performance
of late fusion-based ensemble learning under dynamic se-
lection modeling, gaining a deeper understanding of its
potential advantages and limitations.

Resulting late fusion-based dynamic ensembles are ex-
pected to improve the performance of the resulting clas-
sifiers. However, these models are black boxes and not
understandable. Trustworthy classifiers that are applicable
in the real world need to be interpretable. Explainable AI
(XAI) has gained significant attention in recent years [20],
as it is crucial to provide insights into the decision-making
process of machine learning models. However, despite the
growing interest in this area, there is a lack of explainabil-
ity features for ensemble learning techniques, which are
increasingly used in complex real-world applications to im-
prove the trustworthiness of resulting models. To the best
of our knowledge, no study in the literature and no Python
packages are provided to implement XAI capabilities for
dynamic ensemble classifiers. This study aims to address
this research gap by developing a Python package that of-
fers novel explainability techniques for ensemble models,
making them accessible and informative for both domain
experts and developers.

mailto:fjuraev@g.skku.edu
mailto:shaker@skku.edu
mailto:tamer@skku.edu
https://creativecommons.org/licenses/by/4.0/deed.en

Table 1
Infodeslib implemented DS methods.

Technique Selection Reference
Modified Rank (MR) DCS Sabourin et al. [21]
Overall Local Accuracy (OLA) DCS Woods et al. [22]
Local Class Accuracy (LCA) DCS Woods et al. [22]
Modified Local Accuracy (MLA) DCS P.C. Smits [23]
DES-KNN DES Soares et al. [24, 25]
K-Nearest Oracles Eliminate (KNORA-E) DES Ko et al. [10]
K-Nearest Oracles Union (KNORA-U) DES Ko et al. [10]
Weighted KNORA-E (KNORA-E-W) DES Ko et al. [10]
Weighted KNORA-U (KNORA-U-W) DES Ko et al. [10]
DES Performance (DES-P) DES Woloszynski et al. [26]
K-Nearest Output Profiles (KNOP) DES Cavalin et al. [27]

The contributions of the study are as follows:

• We extended the literature on dynamic ensemble
modeling by implementing four dynamic classifier
selection techniques and seven dynamic ensemble
selection techniques, incorporating a late fusion of
multiple modalities (see Table 1).

• We propose three types of novel explainability that
provide deep and suitable XAI for dynamic selection
techniques: Case-Based Reasoning, deep-based clas-
sifiers contributions, and local feature importance.

• We compare the performance of the proposed tech-
niques with existing approaches on four well-known
and real-world multimodal datasets: Alzheimer’s
Disease Neuroimaging Initiative (ADNI), Credit
Card Clients, National Alzheimer’s Coordinating
Center, and Parkinson’s Progression Markers Initia-
tive (PPMI). We also tested the proposed techniques
in the Samarkand Neonatal Center dataset which is
collected by our team with the help of physicians.

• The implemented techniques have been included
in a standard public library called ‘Infodeslib’ fol-
lowing the industry-standard PEP 8 coding guide-
lines, and Infodeslib is also clearly documented
in accordance with the Read the Docs standards:
https://infodeslib.readthedocs.io/en/latest/

• We offer a wide range of valuable functions that en-
able the assessment and evaluation of the excellence
and efficacy of the selected pool.

The study is organized as follows. Section 1 highlights
the software framework of the proposed late fusion dynamic
ensemble learning. Section 2 presents Installation and Usage,
Section 4 discusses the performance analysis, and Section 5
introduces possible package extensions. Section 6 concludes
the paper.

1. Late Fusion Dynamic Ensemble
Framework

In this section, we provide an overview of the late fusion
dynamic ensemble framework in algorithmic and visual
formats. This encompasses a thorough dissection of the pri-
mary stages involved, along with step-by-step explanations
of the framework’s methodology.

Since late fusion dynamic ensemble utilizes the decision
values obtained from each modality and fuses them using a
specific fusion mechanism 𝑀 (such as averaging, weighted
averaging, majority voting, etc), let us assume that classifier
𝑐𝑖 is applied to modality 𝑓𝑖. The final prediction can be
expressed as:

𝑝 =𝑀(𝑐1(𝑓1), 𝑐2(𝑓2), ..., 𝑐𝑚(𝑓𝑚)) (1)

The proposed concept of dynamic selection with late fu-
sion is illustrated in Figure 1, which outlines a framework
consisting of three key stages: training, selection, and pre-
diction. Additionally, the concept is detailed algorithmically
in Algorithm 1.

Training Phase. A pool of classifiers is selected and
assigned different feature sets. The classifiers within the
pool are selected based on their diversity, ensuring a wide
range of decision-making capabilities. Each feature set used
by selected classifiers is extracted from the same modality
to generate a homogeneous feature set. For example, in
the medical domain, demographic and MRI features are
different modalities that could be used to train two different
classifiers. Each classifier in the pool is then trained and
optimized with its designated feature set, resulting in a pool
of trained classifiers to be utilized in the next phases (1-4
lines in Algorithm 1).

Selection Phase. During the selection phase (5-12 lines
of Algorithm 1), a region of competence (RoC) is determined
for a given new test instance by selecting the nearest sam-
ples from the validation data (DSEL). Subsequently, each
classifier in the pool is evaluated on the samples within the
RoC, and a measure of competence is calculated for each
classifier. The specific method employed to compute the
competence varies depending on the chosen DS technique
(9-10 lines in Algorithm 1). Once the competencies of each
classifier in the pool are calculated, the DS techniques use
their own selection criteria to identify the most competent
classifiers. These criteria are specific to each DS technique.
If no competent classifier satisfies the criteria for a given
DS technique, all classifiers in the pool are selected to make
the final decision.

Prediction Phase. During the final phase, the selected
classifiers are utilized to predict the class of a given test
instance, and their individual predictions are combined to
generate a final prediction. To provide more accurate deci-
sions, each of the selected classifiers could be weighed based
on its level of competence during the aggregation process
(line 13 in Algorithm 1).

2. Installation and Usage
Users can conveniently install the most recent version
of Infodeslib via pip, the Python package manager, by
executing the command pip install infodeslib.
Alternatively, the library can be installed via the
GitHub address, using the command pip install
git+https://github.com/InfoLab-SKKU/infodeslib.

To use the implemented methods in Infodeslib, a list of
classifiers and feature sets must be provided as input. The
classifiers in the list can be of any type from the scikit-learn
library and should be trained on the corresponding feature
set before being used as input.

Once the pool of classifiers and feature sets has been ini-
tialized, the method fit(X_dsel, y_dsel) is applied to fit the
Dynamic Selection method, where (X_dsel, y_dsel) is the val-
idation dataset (DSEL) with true labels. Predictions for each
test instance x can be obtained using either the predict(x)
or predict_proba(x) methods. In the example provided be-
low, we demonstrate the steps involved in implementing
the KNORA-U technique.

Training
data

DSEL
data

Testing
data

C

C

C

C
C1

3

4

2

M

Base classifier 1

Classifier
Selection

Selected
classifiers: EoC

C1
C2

C N
Aggregation

x j

Region of
competence: Φ

φ φ

φ
φ

φ

x j

k

1

3

4

2

Feature set 1

Feature set 2

Feature set 3

Feature set M

...

Base classifier 2

Base classifier 3

Base classifier M

...

Training Phase Selection Phase

Competence 1

Competence 2

Competence 3

Competence M

...

Pool of trained
classifiers

Explainability

Model Evaluation Explanation Interface

Prediction

Explainability

Models
Evaluations

0: AD

1: sMCI

2: CN

3: pMCI

x Test sample

Region of
Competence: Φ

Case-based Reasoning

[Classifier 1] XGB

[Classifier 2] XGB

[Classifier 3] MLP

[Classifier 4] SVC

[Classifier 5] XGB

[Classifier 6] KNN

1.00

1.00

0.42

0.71

1.00

1.00

2

2

1

3

2

2

0.99

0.99

0.39

0.22

0.99

1.00

Selected Classifier Prediction Competence Confidence

0.0 0.5 1.0 1.5 2.0

Contribution on decision

Contribution of models

[Classifier 1] XGB - Weight: 1.00 [Classifier 2] XGB - Weight: 1.00

Feature 72
Feature 7
Feature 70
Feature 54
Feature 10
Feature 82
Feature 8
Feature 83
Feature 11
Feature 49

Feature 7
Feature 10
Feature 11
Feature 1
Feature 19
Feature 4
Feature 21
Feature 8
Feature 24
Feature 9

0.0 0.2 0.4

Shap values

0.0 0.2 0.4

Shap values

Feature Importance

Figure 1: The architecture of the proposed late fusion dynamic ensemble learning framework implemented by Infodeslib.

Algorithm 1 Late fusion DES method
Input: Pool of classifiers 𝐶 , training dataset 𝐷𝑡𝑟 , vali-

dation dataset 𝐷𝑣𝑎, testing dataset 𝐷𝑡𝑒, feature set 𝐹 , and
neighborhood size 𝐾

Output: 𝐸𝑜𝐶*
𝑡 , an ensemble of classifiers for each

testing sample 𝑡 in 𝐷𝑡𝑒

1: for each classifier 𝑐𝑖 in 𝐶 do
2: Optimize 𝑓𝑖 in 𝐹 for 𝑐𝑖;
3: Optimize and train 𝑐𝑖 on 𝐷𝑡𝑟 with feature set 𝑓𝑖;
4: end for
5: for each testing sample 𝑡 in 𝐷𝑡𝑒 do
6: Find Ψ as the K nearest neighbors of the testing

sample 𝑡 in 𝐷𝑣𝑎;
7: for each sample 𝜓𝑖 in Ψ do
8: for each classifier 𝑐𝑖 in 𝐶 do
9: Calculate competence of 𝑐𝑖 on Ψ;

10: Select ensemble of competent classifiers
𝐸𝑜𝐶*

𝑡 ;
11: end for
12: end for
13: Use the ensemble 𝐸𝑜𝐶*

𝑡 to classify 𝑡;
14: end for

from infodeslib.des.knorau import KNORAU

pool_classifiers = [classifier1, ..., classifierN]
feature_set1 is a list of columns
feature_sets = [feature_set1, ..., feature_setN]

Initialize the DS model
knorau = KNORAU(pool_classifiers, feature_sets)

Fit the dynamic selection model
knorau.fit(X_dsel, y_dsel)

Predict new examples
knorau.predict(X_test, plot=True)

Check performance (based on accuracy)
knorau.score(X_test, y_test)

When utilizing the predict(X) method, an additional pa-
rameter "plot" can be included to obtain explainability for

each test instance. By setting plot=True, explainability for
the given test instance can be visualized through a variety
of methods (see more details in Section 3).
Infodeslib Methods. Figure 2 provides an overview
of the key methods of our library while other support-
ing methods are available in the documentation of the
library. Some of these methods such as fit(), predict(),
predict_proba(), and score() are well-known and require
no detailed explanation; there are several other methods
that are particularly useful for pool generation and ob-
taining information about new test samples. To facilitate
pool generation, we have implemented three additional
methods: get_average_accuracy(), get_pool_diversity(), and
get_coverage_score(). get_average_accuracy() method com-
putes the average performance of the classifiers in the pool
on the validation data. get_pool_diversity() method cal-
culates the diversity between classifiers in the pool and re-
quires the diversity measure type as a parameter. It supports
several diversity functions such as Q-statistic, Correlation
Coefficient, Disagreement Measure, Double Fault, Nega-
tive Double Fault, and Ratio Errors. get_coverage_score()
method determines the number of samples in the DSEL data
that can be accurately predicted by any model in the given
pool. This information is particularly useful for evaluating
the coverage of the pool and ensuring that all samples are
accurately classified by at least one model. The prediction
process in machine learning often involves the use of en-
semble methods, where multiple classifiers are combined
to improve performance. Within these ensembles, three
methods play a crucial role: get_region_of_competence(x),
estimate_competence(roc), and select(competences).

get_region_of_competence(x) method identifies the re-
gion of competence for a given test sample by returning
the k nearest neighbors from the validation dataset. This
is achieved by applying the k-nearest neighbors algorithm.
The estimate_competence(roc) method calculates the com-
petence of each classifier in the ensemble on the region of
competence. The competence calculation differs depending
on the technique being used. For example, the k-Nearest
Oracle Union (KNORA-U) technique calculates the accuracy
of each classifier on the region of competence. The Dynamic

Prepare the DS model by pre-processing
the information required to apply the DS
methods.

fit(X, y)

Return the mean accuracy on the given
data and labels.

score(X, y)

Return the class label for
each sample in X. plot=True
for getting the explainability.

predict(X, plot=False)

Return the probabilities for
each sample in X.

predict proba(X)

Infodeslib

Return the mean accuracy of
classifiers in the pool.

get_average_accuracy()

Return the mean and list of
diversity scores between
classifiers in the pool.

get_pool_diversity()

get_region_of_competence(x)

Return the explainability how
the given pool of classifiers
can cover the task on validation
data.

get_coverage_score()

Pool Single instance

estimate_competence(roc)

select(competences)

Return the explainability how the
given test sample is rare on
trainingand validation data.

get_rareness_score(x)

Return k nearest samples of the
given test sample from validation
dataset.

Hyperparameters

k: int - number of neighbors used to estimate the competence of the base classifiers.

DFP: boolean - determines if the dynamic frienemy pruning is applied.

knn_metric: str or callable - distance metric utilized by the k-NN classifier.

dimensionality_reduction: boolean - determines if dimension reduction is applied.

Return all base classifiers that are
competent enough.

Return the competences of each
base classifier on k nearest
samples from RoC.

reduction_technique: str or callable - technique utilized for dimension reduction.

n_components: int - number of components to keep.

cbr_features: list - list of features to show in cased based reasoning XAI.

Figure 2: The overall schema of the software architecture.

Ensemble Selection KNN (DESKNN) technique, on the other
hand, computes each classifier’s accuracy and diversity on
RoC and uses these metrics to assess its competence.

select(competences) method selects the most competent
classifiers from the ensemble to make a prediction. Differ-
ent techniques may use different criteria for determining
the competence of a classifier, such as the number of sam-
ples classified correctly within the region of competence.
For instance, the KNORA-U technique selects a classifier
if it has classified at least one sample within the region
of competence. Once the competent classifiers have been
identified, their competence values are used as weights in
aggregating their predictions. To evaluate a single test in-
stance, our library includes get_rareness_score(x) method,
which provides a detailed description of the instance. The
method evaluates whether there are many similar samples
to the given instance in the training and validation datasets,
allowing users to determine the rarity of the instance. If
the instance is an outlier, the method provides informa-
tion about how far it is from other classes. Furthermore,
get_rareness_score(x) method uses K-means clustering to
provide a potential class for the instance and generates ta-
bles indicating which features of the instance make it similar
to this class. This approach provides valuable insights into
the characteristics of the instance and its potential classifi-
cation, aiding in the development of more accurate models.
Hyperparameters. Optimizing hyperparameters is a criti-
cal step for improving the performance of ensemble learning
models. This can be achieved through various techniques,

[Classifier 1] XGB - Weight: 1.00 [Classifier 2] XGB - Weight: 1.00

Feature 72
Feature 7
Feature 70
Feature 54
Feature 10
Feature 82
Feature 8
Feature 83
Feature 11
Feature 49

Feature 7
Feature 10
Feature 11
Feature 1
Feature 19
Feature 4
Feature 21
Feature 8
Feature 24
Feature 9

0.0 0.2 0.4

Shap values

0.0 0.2 0.4

Shap values

Figure 3: Local feature importance of each selected classifier.

including basic approaches such as grid search and random
search in Sklearn, as well as more advanced techniques like
Genetic algorithms, Bayesian optimization, and others. Our
library is designed to work seamlessly with other Python
packages such as TPOT [28], Scikit-Optimize [29], Optuna
[30], Hyperopt [31], BayesianOptimization [32], GPyOpt
[33], Optunity [34], and similar packages that implement
these advanced optimization techniques. This allows users
to leverage a variety of optimization methods to obtain the
best possible hyperparameters for their ensemble models.

In our library, there are several key hyperparameters that
users can adjust to optimize the performance of ensemble
learning models. We present these key hyperparameters
along with their default values, which have been shown to
produce satisfactory results in the majority of cases. One
of the main hyperparameters is k (default: 7), which rep-
resents the number of neighbors to be considered when
determining the region of competence. Another important
hyperparameter is DFP (default: False), which stands for
dynamic pruning technique and is particularly useful for
imbalanced datasets. In addition, users can also specify the
knn_metric (default: ’minkowski’), which determines the
distance metric used when computing distances between the
test sample and other samples in the validation dataset. Our
library provides several common metrics such as Minkowski,
cosine, Manhattan, and Euclidean, as well as the option for
users to define their own custom metric function. To han-
dle high-dimensional datasets, we also offer a dimension-
ality_reduction (default: False) hyperparameter, which
allows users to reduce the number of dimensions used in
calculating distances between samples. This can be achieved
using either Principal Component Analysis (PCA) or Kernel
PCA, or by specifying a custom dimensionality reduction
technique using the next reduction_technique (default:
’pca’). The n_component (default: 20) hyperparameter
determines the number of components to be retained if a
reduction technique is selected. Lastly, for those interested
in explainability, our library provides the cbr_features (de-
fault: None) hyperparameter, which allows users to specify
a list of important features to be included in similar cases
data for Case-Based Reasoning.

3. Model Explainability
In the current version of our library, we offer three main
XAI techniques: case-based reasoning, deep-based classi-
fier contribution, and local feature importance [20]. The
case-based reasoning technique aims to offer domain ex-
perts an explanation of the model’s prediction process for a
given test sample by presenting them with similar samples
and their corresponding labels found within the region of

0: AD

1: sMCI

2: CN

3: pMCI

x Test sample

Region of
Competence: Φ

0.467

0.190

0.619

0.524

0.524

0.524

Feature 7

0.619

0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.00

0.02

0.00

0.07

0.00

0.00

0.22

0.12

0.12

0.04

0.28

0.12

0.00

Feature 8 Feature 10 Feature 11 Feature 72 Feature 84 Target

0.59

0.64

0.84

0.84

0.78

0.52

0.52

2

2

2

2

1

2

2

0.29

0.23

0.36

0.29

0.29

0.24

0.09

...

...

...

...

...

...

...

...

Samples in the region of competence with selected features and labels

a) Estimating the region of competence (RoC) in validation dataset.

b) Detailed information about the selected sample for RoC.

Figure 4: Estimating a region of competence (RoC) and providing
details about the selected sample for RoC.

competence. This approach closely resembles how domain
experts make decisions in real-world situations, as they fre-
quently compare current cases with historical ones from
their experience. The deep-based classifier contribution
technique enables users to comprehend the contribution of
each selected classifier in the decision-making process for
a given test sample. Finally, the local feature importance
technique is a prevalent explainability method that identi-
fies the most crucial features and their corresponding Shap
values for each selected classifier.

Case-based reasoning. For example, in the case of the
KNORA-U technique, in the selection phase, the nearest
neighbors for each test instance are estimated in the valida-
tion dataset based on their close similarity to the test sample.
The selected samples are used to generate the region of com-
petence for evaluating and selecting classifiers in the pool.
Figure 4 a) illustrates an example in which the given test
sample (light blue x) falls within the area of class 2, and
seven nearest samples are selected, six of which belong to
class 2 (blue dots), while one belongs to class 1 (green dot).
This finding suggests that, for the given test sample, the
chance of it being classified as class 2 is high. Moreover,
these samples can also be leveraged for conducting case-
based reasoning, which may be particularly valuable for
physicians, given that our dataset is in the medical domain.
Figure 4 b) provides comprehensive information about all
nearest samples within the region of competence, enabling
physicians to compare and contrast similar samples and
their corresponding labels or diagnoses.

Deep-based classifiers contributions. After selecting
the group of classifiers for making the final decision, it may
be unclear how each classifier in the pool contributed to the
decision or what their individual predictions were for the
new test sample. In order to provide a more comprehensive
understanding of the decision-making process, an additional

[Classifier 1] XGB

[Classifier 2] XGB

[Classifier 3] MLP

[Classifier 4] SVC

[Classifier 5] XGB

[Classifier 6] KNN

1.00

1.00

0.42

0.71

1.00

1.00

2

2

1

3

2

2

0.99

0.99

0.39

0.22

0.99

1.00

Selected Classifier Prediction Competence Confidence

0.0 0.5 1.0 1.5 2.0

Contribution on decision

Figure 5: The contribution of each selected classifier on the final
decision.

level of explainability can be utilized. This is illustrated in
Figure 5, which provides detailed information about each
classifier in the pool, including their competence level, in-
dividual prediction on the new test sample, and confidence
level. This explanation provides valuable insight for the
development of an ensemble model, as it allows developers
to identify classifiers that may have a negative impact on
decision-making. For instance, as shown in Figure 5, it is
evident that most selected classifiers predict the label of the
given test sample as 2 with high confidence, while the SVC
classifier predicts it as 3. The SVC classifier demonstrates
a higher level of competence in the region of competence,
indicating that it has a more significant influence on the
decision. If this classifier consistently has a negative impact
on many test samples, it may be possible to remove it from
the pool of classifiers.

Local feature importance. In addition to understand-
ing how the classifiers contributed to the decision-making
process, it is also important to identify which features were
particularly influential in making those decisions. For the
example mentioned earlier, we provide local feature impor-
tance for each selected classifier, which can be visualized
through Figure 3.

Furthermore, our proposed ensemble models have the
ability to provide interpretable explanations using two ap-
proaches: surrogate model explainability and post-hoc ex-
plainability methods. The surrogate model approach in-
volves creating a simplified model that roughly represents
the behavior of the original ensemble model and using this
model to explain the ensemble’s decisions. On the other
hand, post-hoc explainability techniques involve analyzing
the ensemble model’s decisions after they have been made
and providing explanations based on the input features that
contributed the most to the decision. Both methods treat
our ensemble model as a black box model.

4. Performance Analysis
Within this section, We compare the performance of the
proposed architecture with the existing approaches. we
provide an overview of the datasets that have been utilized
along with a detailed analysis of our proposed techniques.

4.1. Evaluation Datasets
In this section, we outline the five datasets utilized to com-
pare Infodeslib with existing models.

Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset [35]. The study includes a total of
1,371 subjects, with a male gender representation of
54.5%. Participants have been classified into four distinct
categories based on their clinical diagnosis, including

Cognitive Normal (CN), Stable Mild Cognitive Impairment
(sMCI), Progressive Mild Cognitive Impairment (pMCI), and
Alzheimer’s Disease (AD) [36]. The distribution of these
classes is as follows: 419 CN, 473 sMCI, 140 pMCI, and 339
AD individuals. The dataset has four distinct modalities
or feature groups, which contain demographics, cognitive
scores, assessment tests, and MRI features.

Credit Card Clients dataset. The study includes a vast
participant cohort of 30,000 individuals, with the dataset
sourced from the UC Irvine Machine Learning Repository
[37]. This is a classification problem that involves determin-
ing whether or not a client will make their next payment.
The two distinct classes are labeled as ’no’ and ’yes’, with
23,364 and 6,636 instances, respectively. The dataset has
four distinct modalities of features, including demographics,
financial, and payment history features.

National Alzheimer’s Coordinating Center (NACC)
dataset [38]. In this study, we examined a total of 37,547
patients focusing on the Global Clinical Dementia Rating
(CDRGLOB) as the primary task. CDRGLOB categorizes
patients into five classes based on dementia severity: no
impairment (8,253 patients), mild impairment (15,097 pa-
tients), moderate impairment (8,346 patients), and severe
impairment (5,851 patients). Our analysis included six spe-
cific modalities for investigation: demographics, physical
health, medications, health history, neuropsychiatric inven-
tory questionnaire, and the geriatric depression scale. These
modalities were chosen to comprehensively assess various
aspects related to dementia and overall patient health [39].

Parkinson’s Progression Markers Initiative (PPMI)
dataset [40]. Our study involves 952 patients and fo-
cuses on a binary classification task to differentiate between
healthy individuals and those diagnosed with Parkinson’s
disease (PD). Among these patients, 389 are categorized
as healthy, while 563 have been diagnosed with PD. The
dataset encompasses various information modalities, in-
cluding subject characteristics, biospecimen data, medical
history records, motor function assessments, and non-motor
features. This comprehensive dataset enables a thorough
analysis to identify potential diagnostic markers and factors
associated with PD, facilitating improved understanding
and diagnosis of the disease [41].

Samarkand Neonatal Center dataset. Our study
involved 347 neonates from the intensive care unit at
Samarkand Neonatal Center. The dataset was collected by
our team by collaborating physicians in the hospital for a
binary classification task to predict whether a neonate sur-
vives or passes away. Among these neonates, 303 survived
and 44 died during the study period. The dataset comprises
a comprehensive set of features categorized into multiple
modalities: demographic information, the mother’s medical
history and information, general notes on the neonate’s
condition, results from blood tests, and APGAR scores (a
standardized assessment of a neonate’s health at birth).

4.2. Results
This section contains a comprehensive analysis and compar-
ison of various machine-learning approaches against our
proposed late-fusion dynamic ensemble selection model.
We collect and present the testing results for each of the
considered models. To ensure greater consistency in the
results, we have applied the 10-holdout testing method [42].
The results are presented in the form of (mean ± standard
deviation). As a pool of classifiers, we utilized the following

Table 2
Performance of the different ML approaches using ADNI dataset.

Model Type Model Accuracy Precision Recall F1
XGB 87.11±2.32 87.50±2.63 87.11±2.32 87.03±2.49
LGBM 86.74±1.58 87.34±1.96 86.74±1.58 86.70±1.72

Single
Models

RF 87.11±1.96 87.51±2.22 87.11±1.96 87.08±2.08
Voting 88.08±1.94 88.31±2.07 88.08±1.94 88.05±2.02[Early] Static

Ensemble Stacking 86.87±2.02 87.67±2.11 86.87±2.02 86.80±2.15
DESP 88.61±1.96 88.72±2.15 88.61±1.96 88.55±2.08[Early] Dynamic

Ensemble KNOP 88.71±1.91 88.80±2.09 88.71±1.91 88.66±2.03
Voting 89.29±1.67 89.39±1.81 89.29±1.67 89.24±1.74[Late] Static

Ensemble Stacking 87.65±1.59 88.13±1.64 87.65±1.59 87.60±1.74
KNORAU 89.52±2.01 89.77±2.01 89.52±2.01 89.46±2.10[Late] Dynamic

Ensemble KNORAU-W 89.84±1.83 90.29±2.03 89.81±1.83 89.80±1.91

Table 3
Performance of the different ML approaches on Credit Card
Clients dataset.
Model Type Model Accuracy Precision Recall F1

XGB 81.96±0.84 89.05±0.72 72.87±1.28 80.15±1.02
LGBM 80.43±0.64 86.88±0.66 71.69±0.92 78.56±0.76

Single
Models

RF 79.90±0.78 87.49±0.70 69.76±1.13 77.63±0.95
Voting 83.94±0.74 88.52±0.72 78.01±1.11 82.93±0.84[Early] Static

Ensemble Stacking 82.68±0.69 86.72±0.77 77.17±0.95 81.67±0.77
DESKNN 83.99±0.38 89.34±0.53 77.18±0.60 82.82±0.42[Early] Dynamic

Ensemble KNORAE 84.16±0.66 88.81±0.64 78.17±0.97 83.15±0.75
Voting 85.72±0.44 89.83±0.57 80.56±0.73 84.94±0.49[Late] Static

Ensemble Stacking 85.08±0.47 89.30±0.36 79.71±0.94 84.23±0.57
KNOP 86.65±0.23 91.64±0.28 80.66±0.52 85.80±0.28[Late] Dynamic

Ensemble KNORAU-W 86.73±0.29 91.76±0.33 80.70±0.64 85.87±0.36

heterogeneous baseline algorithms: XGboost (XGB), Light-
GBM (LGBM), Random Forest (RF), Support Vector Classifier
(SVC), Multi-Layer Perceptron (MLP), Decision Tree (DT),
and k-Nearest Neighbors (KNN).

Results based on ADNI dataset. Table 2 and Figure
6 a) show the top-performing results achieved by the in-
dividual models, as well as the static ensemble with early
fusion, the dynamic ensemble with early fusion, the static
ensemble with late fusion, and our proposed technique -
the dynamic ensemble with late fusion setting. From each
group, we selected the best-performed techniques and the
results show that our dynamic ensemble techniques, KNO-
RAU and KNORAU-W outperform all existing approaches
with 89.52% and 89.84% accuracy. In comparison, a static
ensemble with late fusion, voting classifier, achieves an accu-
racy of 89.29%. This performance is close to the performance
of our model and surpasses that of early fusion techniques.
This result supports our claim for the significance of late
fusion in producing accurate ensemble models.

Results based on Credit Card Clients dataset. Table 3
and Figure 6 b) present the results obtained from the analysis
of the Credit Card Clients dataset, following a similar format
to the previous dataset. Our proposed techniques have once
again outperformed the existing approaches in this instance.
Specifically, KNOP and KNORAU-W, utilizing the late fusion
setting, have achieved the highest accuracy scores of 86.65%
and 86.73%, respectively. In comparison, the static ensemble
methods that apply late fusion, specifically the voting and
stacking classifiers, demonstrate accuracies of 85.72% and
85.08%, respectively. In contrast, the ensemble methods
that employ early fusion achieve the highest accuracy of
84.16%, with the dynamic selection technique known as
KNORA-E. These results support our argument regarding
the importance of utilizing late fusion for the purpose of
producing highly accurate ensemble models.

Results based on NACC dataset. Table 4 highlights
the results from the analysis of the National Alzheimer’s
Coordinating Center dataset, structured similarly to the pre-
vious dataset. Among all existing techniques, the dynamic
ensemble models with late fusion demonstrate notably su-

Table 4
Performance of the ML approaches on the NACC dataset.
Model Type Model Accuracy Precision Recall F1

GB 85.70+1.16 85.71+1.16 85.77+1.07 85.56+1.19
XGB 86.30+1.47 86.30+1.47 86.32+1.48 86.18+1.51

Single
Models

RF 86.79+0.74 86.79+0.74 86.76+0.82 86.69+0.76
Voting 87.52+0.90 87.53+0.90 87.42+0.93 87.40+0.90[Early] Static

Ensemble Stacking 87.17+1.29 87.17+1.29 87.20+1.19 87.11+1.26
DESKNN 87.30+1.16 87.61+1.16 87.37+1.06 87.39+1.14[Early] Dynamic

Ensemble KNORAU 88.34+1.44 88.34+1.44 88.34+1.41 88.27+1.45
Voting 89.39+1.34 89.39+1.34 89.43+1.30 89.36+1.33[Late] Static

Ensemble Stacking 89.11+0.89 89.11+0.89 89.15+0.95 89.07+0.91
KNORAU-W 90.20+1.10 90.20+1.10 90.30+1.09 90.20+1.11[Late] Dynamic

Ensemble DESP 91.16+0.93 91.21+0.93 91.14+0.89 91.17+0.92

Table 5
Performance of the ML approaches on the PPMI dataset.
Model Type Model Accuracy Precision Recall F1

RF 92.40±1.00 93.40±0.90 92.10±1.00 92.10±1.00
XGB 93.40±1.50 93.60±1.80 93.10±1.40 93.10±1.40

Single
Models

LGBM 93.90±1.60 93.90±2.00 93.70±1.40 93.70±1.40
Voting 94.20±0.70 94.20±0.80 94.00±0.70 94.00±0.70[Early] Static

Ensemble Stacking 94.10±0.90 94.00±1.10 93.90±0.90 93.90±0.90
KNOP 94.20±1.10 94.30±1.20 93.90±1.20 93.90±1.20[Early] Dynamic

Ensemble KNORAU 94.30±0.90 94.40±1.10 94.00±0.90 94.00±0.90
Voting 94.60±0.90 94.60±1.10 94.30±0.90 94.30±0.90[Late] Static

Ensemble Stacking 94.50±0.80 94.70±0.80 94.20±0.80 94.20±0.80
DESP 95.00±0.90 95.20±0.90 94.70±1.00 94.70±1.00[Late] Dynamic

Ensemble KNOP 95.10±0.60 95.40±0.70 94.70±0.60 94.70±0.60

perior performance. Specifically, the weighted KNORAU
(KNORAU-W) and DESP achieve the highest scores at 90.20%
and 91.16%, respectively. Given the substantial dataset size,
the results are well-balanced across various metrics.

Results based on PPMI dataset. Table 5 presents the re-
sults obtained from the analysis of the Parkinson’s Progres-
sion Markers Initiative dataset, following a format similar
to the previous dataset. Within this dataset, the techniques
DESP and KNOP, utilizing late fusion settings, exhibit the
most robust performance among other algorithms, achiev-
ing accuracies of 95% and 95.1%, respectively. Additionally,
static ensemble models with late fusion settings demonstrate
strong performance at 94.6% accuracy using a voting tech-
nique. These results only marginally exceed those achieved
with LGBM alone, which achieved a performance of 93.9%.

The fact that the LGBM achieved a high accuracy of 93.9%
suggests that the task at hand is not very complex. Improv-
ing accuracy beyond this point becomes more challenging
when a basic technique like LGBM already performs well.
Essentially, reaching significantly higher accuracies with
more advanced methods might be difficult because the task
is relatively straightforward.

Results based on Samarkand Neonatal Center
dataset. Table 6 presents the results obtained from ana-
lyzing the Samarkand Neonatal Center ICU dataset, follow-
ing a similar structure to the previous datasets. Due to the
dataset’s small size, the results may not be consistent or bal-
anced across different metrics. Nonetheless, our proposed
late fusion-based dynamic ensemble models achieve notably
higher performance compared to other techniques, reaching
77.57% accuracy with the KNOP technique.

Across all five datasets analyzed, the importance of late
fusion can be seen in the results. In each dataset, the dy-
namic ensemble models with late fusion settings outper-
form other existing models. Combining late fusion with
dynamic ensemble learning consistently delivers promis-
ing and improved results. This highlights the effectiveness
and reliability of employing late fusion techniques within
dynamic ensemble models across various datasets.

Table 6
Performance of the different ML approaches on Samarkand
Neonatal Center dataset.
Model Type Model Accuracy Precision Recall F1

RF 69.34+4.66 69.34+4.66 73.70+4.20 67.71+5.44
XGB 69.74+7.64 69.74+7.64 74.29+6.31 67.77+9.16

Single
Models

LGBM 70.07+8.58 70.07+8.58 72.65+7.52 68.74+9.62
Voting 73.03+8.03 73.03+8.03 75.50+6.57 72.00+8.95[Early] Static

Ensemble Stacking 71.45+5.11 71.45+5.11 75.70+4.39 70.06+5.87
KNORAU 71.64+6.84 71.64+6.84 75.30+5.37 70.28+7.74[Early] Dynamic

Ensemble DESP 72.45+6.03 75.95+6.03 72.48+5.24 71.48+7.05
Voting 75.07+6.94 75.07+6.94 77.96+5.19 74.12+7.90[Late] Static

Ensemble Stacking 74.21+7.72 74.21+7.72 77.95+5.38 72.84+9.14
KNORAU-W 75.66+7.44 75.66+7.44 78.04+6.09 74.90+8.05[Late] Dynamic

Ensemble KNOP 77.57+5.81 77.57+5.81 80.58+4.21 76.84+6.35

Early fusion Late fusion

a) ADNI dataset.

b) Credit Card Clients dataset.

A
c
c
u

ra
c
y

A
c
c
u

ra
c
y

Figure 6: Contribution of each selected classifier to the final
decision.

5. Library extension
The primary focus of our paper is to introduce a novel ap-
proach to dynamic ensemble selection (DES) that utilizes a
late fusion strategy for effectively fusing multi-modal data
and offers a high degree of explainability for dynamic selec-
tion techniques. Our current library offers implementations
of four dynamic classifier selection and seven dynamic en-
semble selection techniques that use a late fusion strategy.
In addition, the library includes several features and options
that enhance its performance and capability. Furthermore,
the library provides three different types of explainability to
help users gain insights into the decision-making processes
of the models. Finally, the library has been designed to be
compatible with other important libraries, allowing users
to easily integrate it into their existing workflows.

We plan to continue exploring the domain of explainabil-
ity in ensemble learning by proposing additional techniques
for providing comprehensive explanations to domain ex-
perts. Our goal is to enhance our library’s ability to provide
context-based explanations that are tailored to the specific
needs of users. Additionally, we aim to incorporate what-if
explainability features that enable developers to gain deeper
insights into the behavior of their ensemble models. These
features will be included in future versions of our library.

Through our experimental evaluations, we have discov-
ered that selecting an appropriate pool of classifiers with
matching feature groups is a critical aspect of successful

ensemble modeling. However, identifying the ideal combi-
nation of classifiers for the pool remains a challenging task.
In future versions of our library, we plan to address this
issue by developing an automatic optimization process for
the selection of the optimal pool of classifiers. We believe
this to be a crucial task in the field of ensemble learning,
and we are committed to exploring ways to simplify this
process and make it more effective.

6. Conclusion
This paper presents a novel approach to dynamic selection
using a late fusion setting, which is implemented across four
dynamic classifier selection and seven dynamic ensemble
selection techniques. This late fusion-based approach is
particularly well-suited for complex tasks based on multi-
modal datasets containing multiple feature groups, which
are common in real-world scenarios. As a result, the role of
late fusion is crucial in the context of ensemble learning for
ensuring diversity in the pool of classifiers. Furthermore,
we introduce a novel approach to explainability for dynamic
selection techniques. Our proposed approach goes beyond
the traditional methods and provides a more in-depth and
nuanced understanding of the dynamic selection process.
The effectiveness of our proposed techniques is evaluated
through a comprehensive comparison with existing base-
line approaches. The experimental results demonstrate the
superior performance of our proposed techniques over the
existing approaches, highlighting the potential of our ap-
proach to improving the accuracy and reliability of ensemble
learning systems.

Acknowledgments
This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT)(No. 2021R1A2C1011198), (Institute for Infor-
mation & communications Technology Planning & Evalua-
tion) (IITP) grant funded by the Korea government (MSIT)
under the ICT Creative Consilience Program (IITP-2021-
2020-0-01821), and AI Platform to Fully Adapt and Reflect
Privacy-Policy Changes (No.RS-2022-II220688).

References
[1] H. Xiao, Z. Xiao, Y. Wang, Ensemble classification

based on supervised clustering for credit scoring, Ap-
plied Soft Computing 43 (2016) 73–86.

[2] D. Di Nucci, F. Palomba, R. Oliveto, A. De Lucia, Dy-
namic selection of classifiers in bug prediction: An
adaptive method, IEEE Transactions on Emerging
Topics in Computational Intelligence 1 (2017) 202–212.

[3] O. Sagi, L. Rokach, Ensemble learning: A survey, Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery 8 (2018) e1249.

[4] L. I. Kuncheva, A theoretical study on six classifier fu-
sion strategies, IEEE Transactions on pattern analysis
and machine intelligence 24 (2002) 281–286.

[5] M. Fernández-Delgado, E. Cernadas, S. Barro,
D. Amorim, Do we need hundreds of classifiers to
solve real world classification problems?, The journal
of machine learning research 15 (2014) 3133–3181.

[6] A. S. Britto Jr, R. Sabourin, L. E. Oliveira, Dynamic se-
lection of classifiers—a comprehensive review, Pattern
recognition 47 (2014) 3665–3680.

[7] X. Dong, Z. Yu, W. Cao, Y. Shi, Q. Ma, A survey on
ensemble learning, Frontiers of Computer Science 14
(2020) 241–258.

[8] L. Breiman, Bagging predictors, Machine learning 24
(1996) 123–140.

[9] G. Sakkis, I. Androutsopoulos, G. Paliouras,
V. Karkaletsis, C. D. Spyropoulos, P. Stamatopoulos,
Stacking classifiers for anti-spam filtering of e-mail,
arXiv preprint cs/0106040 (2001).

[10] A. H. Ko, R. Sabourin, A. S. Britto Jr, From dynamic
classifier selection to dynamic ensemble selection, Pat-
tern recognition 41 (2008) 1718–1731.

[11] R. M. Cruz, R. Sabourin, G. D. Cavalcanti, Dynamic
classifier selection: Recent advances and perspectives,
Information Fusion 41 (2018) 195–216.

[12] F. Juraev, S. El-Sappagh, E. Abdukhamidov, F. Ali,
T. Abuhmed, Multilayer dynamic ensemble model
for intensive care unit mortality prediction of neonate
patients, Journal of Biomedical Informatics 135 (2022)
104216.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, the Journal of machine Learning
research 12 (2011) 2825–2830.

[14] R. M. Cruz, L. G. Hafemann, R. Sabourin, G. D. Caval-
canti, Deslib: A dynamic ensemble selection library
in python, The Journal of Machine Learning Research
21 (2020) 283–287.

[15] K. Liu, Y. Li, N. Xu, P. Natarajan, Learn to combine
modalities in multimodal deep learning, arXiv preprint
arXiv:1805.11730 (2018).

[16] S. Raschka, Mlxtend: Providing machine learning
and data science utilities and extensions to python’s
scientific computing stack, The Journal of Open Source
Software 3 (2018). URL: https://joss.theoj.org/papers/
10.21105/joss.00638. doi:10.21105/joss.00638.

[17] S. El-Sappagh, F. Ali, T. Abuhmed, J. Singh, J. M.
Alonso, Automatic detection of alzheimer’s disease
progression: An efficient information fusion approach
with heterogeneous ensemble classifiers, Neurocom-
puting 512 (2022) 203–224.

[18] C. G. Snoek, M. Worring, A. W. Smeulders, Early ver-
sus late fusion in semantic video analysis, in: Proceed-
ings of the 13th annual ACM international conference
on Multimedia, 2005, pp. 399–402.

[19] F. Juraev, S. El-Sappagh, T. Abuhmed, Explainable
dynamic ensemble framework for classification based
on the late fusion of heterogeneous multimodal data,
in: Intelligent Systems Conference, Springer, 2023, pp.
555–570.

[20] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M.
Alonso-Moral, R. Confalonieri, R. Guidotti, J. Del Ser,
N. Díaz-Rodríguez, F. Herrera, Explainable artificial
intelligence (xai): What we know and what is left to
attain trustworthy artificial intelligence, Information
Fusion (2023) 101805.

[21] M. Sabourin, A. Mitiche, D. Thomas, G. Nagy, Classi-
fier combination for hand-printed digit recognition, in:
Proceedings of 2nd International Conference on Doc-
ument Analysis and Recognition (ICDAR’93), IEEE,
1993, pp. 163–166.

https://joss.theoj.org/papers/10.21105/joss.00638
https://joss.theoj.org/papers/10.21105/joss.00638
http://dx.doi.org/10.21105/joss.00638

[22] K. Woods, W. P. Kegelmeyer, K. Bowyer, Combination
of multiple classifiers using local accuracy estimates,
IEEE transactions on pattern analysis and machine
intelligence 19 (1997) 405–410.

[23] P. C. Smits, Multiple classifier systems for supervised
remote sensing image classification based on dynamic
classifier selection, IEEE Transactions on Geoscience
and Remote Sensing 40 (2002) 801–813.

[24] R. G. Soares, A. Santana, A. M. Canuto, M. C. P.
de Souto, Using accuracy and diversity to select clas-
sifiers to build ensembles, in: The 2006 IEEE Interna-
tional Joint Conference on Neural Network Proceed-
ings, IEEE, 2006, pp. 1310–1316.

[25] M. C. de Souto, R. G. Soares, A. Santana, A. M. Canuto,
Empirical comparison of dynamic classifier selection
methods based on diversity and accuracy for building
ensembles, in: 2008 IEEE international joint confer-
ence on neural networks (IEEE world congress on com-
putational intelligence), IEEE, 2008, pp. 1480–1487.

[26] T. Woloszynski, M. Kurzynski, P. Podsiadlo, G. W. Sta-
chowiak, A measure of competence based on random
classification for dynamic ensemble selection, Infor-
mation Fusion 13 (2012) 207–213.

[27] P. R. Cavalin, R. Sabourin, C. Y. Suen, Dynamic selec-
tion approaches for multiple classifier systems, Neural
computing and applications 22 (2013) 673–688.

[28] R. S. Olson, J. H. Moore, Tpot: A tree-based pipeline
optimization tool for automating machine learning,
in: Workshop on automatic machine learning, PMLR,
2016, pp. 66–74.

[29] T. Head, M. Kumar, H. Nahrstaedt, G. Louppe,
I. Shcherbatyi, scikit-optimize/scikit-optimize: v0. 8.1,
Zenodo (2020).

[30] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Op-
tuna: A next-generation hyperparameter optimization
framework, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, 2019.

[31] J. Bergstra, D. Yamins, D. Cox, Making a science of
model search: Hyperparameter optimization in hun-
dreds of dimensions for vision architectures, in: Inter-
national conference on machine learning, PMLR, 2013,
pp. 115–123.

[32] F. Nogueira, et al., Bayesian optimization: Open
source constrained global optimization tool for python,
URL https://github. com/fmfn/BayesianOptimization
(2014).

[33] T. G. authors, Gpyopt: A bayesian optimization
framework in python, http://github.com/SheffieldML/
GPyOpt, 2016.

[34] M. Claesen, J. Simm, D. Popovic, Y. Moreau,
B. De Moor, Easy hyperparameter search using optu-
nity, arXiv preprint arXiv:1412.1114 (2014).

[35] S. G. Mueller, M. W. Weiner, L. J. Thal, R. C. Petersen,
C. Jack, W. Jagust, J. Q. Trojanowski, A. W. Toga,
L. Beckett, The alzheimer’s disease neuroimaging
initiative, Neuroimaging Clinics of North America 15
(2005) 869.

[36] N. Rahim, T. Abuhmed, S. Mirjalili, S. El-Sappagh,
K. Muhammad, Time-series visual explainability for
alzheimer’s disease progression detection for smart
healthcare, Alexandria Engineering Journal 82 (2023)
484–502.

[37] A. Asuncion, D. Newman, Uci machine learning repos-
itory, 2007.

[38] D. L. Beekly, E. M. Ramos, W. W. Lee, W. D. Deitrich,
M. E. Jacka, J. Wu, J. L. Hubbard, T. D. Koepsell, J. C.
Morris, W. A. Kukull, et al., The national alzheimer’s
coordinating center (nacc) database: the uniform data
set, Alzheimer Disease & Associated Disorders 21
(2007) 249–258.

[39] N. Rahim, S. El-Sappagh, H. Rizk, O. A. El-serafy,
T. Abuhmed, Information fusion-based bayesian opti-
mized heterogeneous deep ensemble model based on
longitudinal neuroimaging data, Applied Soft Com-
puting 162 (2024) 111749.

[40] K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner,
T. Simuni, C. Coffey, K. Kieburtz, E. Flagg, S. Chowd-
hury, et al., The parkinson progression marker ini-
tiative (ppmi), Progress in neurobiology 95 (2011)
629–635.

[41] M. Junaid, S. Ali, F. Eid, S. El-Sappagh, T. Abuhmed,
Explainable machine learning models based on mul-
timodal time-series data for the early detection of
parkinson’s disease, Computer Methods and Programs
in Biomedicine 234 (2023) 107495.

[42] C. Sammut, G. I. Webb (Eds.), Holdout Evalua-
tion, Springer US, Boston, MA, 2010, pp. 506–507.
URL: https://doi.org/10.1007/978-0-387-30164-8_369.
doi:10.1007/978-0-387-30164-8_369.

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://doi.org/10.1007/978-0-387-30164-8_369
http://dx.doi.org/10.1007/978-0-387-30164-8_369

	1 Late Fusion Dynamic Ensemble Framework
	2 Installation and Usage
	3 Model Explainability
	4 Performance Analysis
	4.1 Evaluation Datasets
	4.2 Results

	5 Library extension
	6 Conclusion

