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Abstract

Large language models have demonstrated re-
markable capabilities in natural language process-
ing tasks requiring multi-step logical reasoning
capabilities, such as automated theorem prov-
ing. However, challenges persist within theo-
rem proving, such as the identification of key
mathematical concepts, understanding their in-
terrelationships, and formalizing proofs correctly
within natural language. We present KG-prover, a
novel framework that leverages knowledge graphs
mined from reputable mathematical texts to aug-
ment general-purpose LLMs to construct and for-
malize mathematical proofs. We also study the
effects of scaling graph-based, test-time compute
using KG-Prover, demonstrating significant per-
formance improvements over baselines across
multiple datasets. General-purpose LLMs im-
prove up to 21% on miniF2F-test when combined
with KG-Prover, with consistent improvements
ranging from 2-11% on the ProofNet, miniF2F-
test, and MUSTARD datasets without additional
scaling. Furthermore, KG-Prover with 04-mini
achieves over 50% miniF2F-test. This work pro-
vides a promising approach for augmenting nat-
ural language proof reasoning with knowledge
graphs without the need for additional finetuning.

1. Introduction

The advent of Large Language Models has revolutionized
natural language processing, enabling machines to per-
form complex reasoning tasks using transformer models
(Vaswani et al., 2023; Peters et al., 2018; Brown et al.,
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2020; Srivastava et al., 2023). Transformer-based mod-
els have shown promise in mathematical problem-solving,
which inherently requires multi-step logical inference and a
precise understanding of abstract concepts (Robinson and
Voronkov, 2001; Guo et al., 2025). Despite these advance-
ments, significant challenges remain in automating the iden-
tification of mathematical concepts, understanding their in-
terrelations, and formalizing proofs within a mathematical
framework (Hendrycks et al., 2021). Work by (Polu and
Sutskever, 2020) introduced training language models to
generate proofs in formal languages and use such models
to address the generation of original mathematical terms
— leading to the introduction of the GPT-f proof assistant
for the Metamath formalization language. Systems such as
InternL.M2.5-StepProver and DeepSeek-Prover-V2 directly
generate proof candidates in the Lean language, achieving
state-of-the-art performance in a wide variety of theorem
proving benchmarks (Wu et al., 2024; Ren et al., 2025).

Recent advances in Al-driven mathematics have targeted
the integration of neurosymbolic architectures with formal
verification frameworks. Systems such as DeepMath and
HOList employ MCTS guided by graph neural networks to
prune combinatorial proof spaces (Bansal et al., 2019; Alemi
etal., 2017). These frameworks combine self-play reinforce-
ment learning with backward-chaining, enabling exploration
of lemma sequences in interactive theorem provers.

A parallel line of research explores the use of natural lan-
guage as an intermediate representation for guiding formal
reasoning. Notably, Jiang et al. (2023) introduced a draft-
sketch-prove pipeline, in which informal proof sketches are
first generated in natural language and then incrementally
translated into formal code. This enables the model to ex-
ploit the flexibility of natural reasoning, though at the cost
of potential errors and ambiguity during the translation into
a formal theorem proving language such as Lean. Theorem-
Llama attempts to bridge the gap between natural language
(NL) reasoning and formal language (FL) proofs using an
NL-FL aligned dataset for training while still integrating
NL text in the proof (Wang et al., 2024).

In this work, we introduce KG-Prover, a novel automated
theorem-proving framework allowing a general purpose
LLM to semantically retrieve and traverse a knowledge
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Figure 1. Whereas many modern proof systems focus on training time improvements, we integrate Node retrieval based on an intercon-
nected knowledge graph into our proof system at inference time. Before generating a proof, we inject the most similar nodes into the
context, then verify the proof using Lean. If the verification is unsuccessful, we grant the model the chance to traverse the graph deeper,
where the knowledge graph allows it to explore other related concepts and theorems, on multiple attempts.

graph derived from ProofWiki.

KG-Prover begins with selecting a starting node via seman-
tic embedding lookup, followed by iteratively and selec-
tively expanding the traversal of covered nodes by a judging
process. The general-purpose LLM then generates an infor-
mal proof which is then autoformalized and verified using
Lean (de Moura and Ullrich, 2021; Zhu et al., 2025). We
show that effective test time compute scaling is achievable
by simply modulating the graph traversal depth.

Unlike previous approaches, our framework does not rely
on large amounts of formal training data or intensive expert
iteration. Instead, we operate with no specialized training,
leveraging the built-in natural language reasoning abilities
of general-purpose LLMs to synthesize graph-retrieved in-
formation before outputting an informal proof.

Our contributions are as follows:

* Develop KG-Prover, an automated theorem proving
framework relying on natural language informal proof
generation combined with an iterative refinement-
based knowledge graph traversal and an LLM as a
judge.

* We build a knowledge graph using ProofWiki of over
60,000 nodes and 300,000 edges that represent math-
ematical concepts and their interrelations, modeling

complex relationships with mathematically similar sub-
jects.

* We introduce an iterative refinement system based on a
heuristic evaluation by a model judge and beam search
for further revisions, improving performance by up to
26.4% over baseline and 21.8% over the non-scaling
KG-Prover.

2. Related Work

Learning-Based Formal Provers Recent advancements
in theorem proving have increasingly focused on integrat-
ing structured knowledge with LLMs. Notably, DeepSeek-
Prover-V1.5 (Xin et al., 2024) combines reinforcement
learning from proof assistant feedback (RLPAF) with
Monte-Carlo tree search. The model, pre-trained on for-
mal mathematical languages like Lean 4, achieves state-
of-the-art results on miniF2F-test and ProofNet. It does
so by dynamically exploring diverse proof paths through
intrinsic-reward-driven search. This builds on earlier work
such as LeanDojo (Yang et al., 2023), which introduced
ReProver, an LLM-based prover enhanced with retrieval
capabilities to efficiently select theorem premises. Simi-
larly, HyperTree Proof Search (Polu and Sutskever, 2020)
demonstrated that structured search algorithms could en-
hance proof generation in formal systems like Metamath.
Furthermore, Wu et al. (2022) showed that LLMs can ef-
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fectively translate informal mathematical statements into
formal logic, targeting Isabelle/HOL, proving that the result-
ing autoformalized specifications are sufficiently accurate
to improve downstream formal provers trained on them,
which shows increasing capabilities with scaling steps such
as stepwise iterative refinement(Zhang et al., 2024).

Sampling and Compute Strategies Additionally, (Hiibotter
et al., 2024) proposes a "compute-optimal” strategy that
dynamically adjusts resources based on task difficulty. This
approach achieves efficiency gains over traditional sampling
and allows smaller models to outperform larger counterparts
in FLOPs-matched evaluations. The strategy is broadly
applicable in various complex reasoning domains, including
automated theorem proving.

Feedback Mechanisms and Self-Improving Agents In im-
proving feedback mechanisms, STP (Dong and Ma, 2025)
uses self-play between conjecturer and prover agents, while
Formal Theorem Proving by Hierarchical Decomposition
(Dong et al., 2024) rewards lemma decomposition via rein-
forcement learning. Finally, the MUSTARD project (John-
son et al., 2020) used an iterative approach where the LLM
generates a problem, constructs an informal proof, con-
verts it into Lean (de Moura et al., 2015) format, and veri-
fies the proof with a Lean interpreter, while its concurrent
framework addresses mathematical language grounding via
structured semantic parsing (Johnson et al., 2020). MUS-
TARD operates in three stages: sampling concepts, using
generative models to create problems and solutions, and
employing proof assistants to validate these solutions. Jiang
et al. (2023) proposed a three-phase framework that first
drafts an informal proof in natural language, then sketches
a rough tactic script in Lean, and finally invokes a formal
prover to complete the remaining subgoals. This approach
illustrates how guidance can yield strong formal results, sup-
porting our use of informal proof generation as a first-class
component.

Graph LMs and Retrieval Mechanisms Graph-based
retrieval-augmented generation techniques have also re-
ceived growing attention for their ability to leverage struc-
tured relationships to enhance downstream tasks such as
question answering and formal proof search. For instance,
GraphRetriever combines a graph-structured knowledge
base with question embeddings to systematically identify
salient nodes for more focused generative reasoning, out-
performing text-only retrieval systems in factual QA tasks
(Wang et al., 2022). Similarly, QAGNN introduces a graph
neural network that encodes question-relevant knowledge
subgraphs, thereby enabling more interpretable and accurate
reasoning within language model generation (Verma et al.,
2023). Beyond question answering, hybrid systems like
GraFormer exploit graph-based encoders to refine contex-
tual embeddings retrieved from large corpora, demonstrat-

ing improved performance in specialized domains (Zhao
et al., 2021). Collectively, these works underscore the capa-
bilities of knowledge graphs with LLMs for reasoning tasks,
providing more effective retrieval.

Lean Provers Recent works in direct Lean proving have
shown promising advances in consistently formalizing cor-
rect and rigorous mathematical proofs. By training and fine-
tuning LMs such as InternL.M2.5-StepProver and DeepSeek-
Prover-V2 to generate directly in Lean’s formal language,
these systems demonstrate state-of-the-art performance in
autoformalization tasks (Wu et al., 2024; Ren et al., 2025).
InternLM 2.5-StepProver applies expert iteration entirely
within Lean, using curriculum learning and self-generated
proofs to continually improve a fine-tuned policy model. In
parallel, DeepSeek-Prover V2 leverages a large language
model to recursively decompose theorems into subgoals,
combining this with reinforcement learning shaped by veri-
fier feedback. Both approaches treat the Lean environment
as an interactive medium and fully disregard natural lan-
guage during inference.

Earlier efforts, such as TheoremLlama (Wang et al., 2024),
demonstrated that even mid-sized open models can reach
strong formal proving performance when trained on boot-
strapped Lean—natural language pairs.

Integrating Graphs and forming proofs in natural lan-
guage Our model extends prior work by integrating a
ProofWiki-derived knowledge graph with large language
models for automated proof generation. Using natural lan-
guage as an intermediate representation allows access to a
much broader corpus of LaTeX-based and informal proofs
than formal codebases like Lean. It also harnesses LLMs’
emergent reasoning abilities and exposes interpretable rea-
soning traces that can reveal novel strategies. The tradeoff
is added error and complexity in the informal-to-formal
translation, especially in semantically precise edge cases.

We address this with a two-agent system for informal
proof generation and formalization, supported by retrieval-
augmented generation over graph-structured knowledge.
This follows trends in autoformalization seen in DeepSeek-
Prover-V1.5, which combines RL and tree search, and The-
oremLlama, which shows gains from natural language inter-
mediaries. Our graph-based retrieval also aligns with work
like GraphRetriever and QAGNN, where structure enables
targeted, interpretable context. Iterative refinement and veri-
fication loops reflect recent advances in dynamic test-time
compute (Hiibotter et al., 2024). Together, these elements
advance scalable, interpretable, modular theorem proving
with LLMs.
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3. Methodology

Our framework automates mathematical proof generation
by integrating LLMs with a knowledge graph constructed
from ProofWiki. We employ a multi-stage approach combin-
ing retrieval-augmented generation with a multi-step LLM
system for proof formalization. The system consists of
four main components: 1) knowledge graph traversal, 2)
informal proof generation, 3) formal proof generation, 4)
verification and refinement. Figure 1 illustrates the overall
KG-Prover workflow.

3.1. Knowledge Graph Construction

We built the underlying KG-Prover knowledge graph by
parsing ProofWiki, an online compendium organized into
distinct namespaces such as "Definition," "Axiom," and
"Proof." By targeting these namespaces, we reliably ex-
tracted the formal components: the precise definition state-
ments, axiom listings, theorem propositions (including lem-
mas and corollaries), and their corresponding proof details
(ProofWiki, 2025). In our pipeline, each node represents a
self-contained mathematical assertion—such as the text of a
definition, the formal proposition of a theorem or lemma, or
a corollary—while the textual proof that follows is stored as a
property or linked entity. Hyperlinks within pages (e.g. ref-
erences to earlier theorems or definitions) become edges in
the graph, capturing higher level dependencies and concep-
tual relationships. We store this graph in a Neo4j (Webber,
2012) graph database, augmenting each node with precom-
puted embedding vectors using OpenAl’s text-embedding-
3-large model. An example entry from our nodes collection
can be found in Appendix E.1. This structure enables ef-
ficient semantic queries: given a problem statement, we
compute its embedding and retrieve the top-k most similar
nodes to provide as a starting point for subsequent graph
traversals. Explicit details on the construction of the knowl-
edge graph can be found in Appendix F.

3.2. KG-Prover

Our KG-Prover framework consists of four main compo-
nents: 1) knowledge graph traversal, 2) informal proof gen-
eration, 3) formal proof generation, 4) verification and re-
finement.

3.2.1. RETRIEVAL

Let G = (V, E) be a knowledge graph, where V' represents
all nodes as mathematical theorems and E represents the
edges between them. Given a proposition P that we are
tasked to prove, we use the below-signified similarity func-
tion that assigns a relevance score to each node based on its
similarity to P.

We opt for cosine similarity by generating an embedding

vector for P, vp, and comparing vp to the other node

embeddings v; € V in the knowledge graph:

. Up - U

S = sim(vp,v;) = T
lopl2lvill2

If P is not solved in the first iteration of generation, we
introduce a depth parameter d that can be incremented up to
an allowed depth D. We iteratively expand the context by
selecting up to k additional nodes that are related concepts
of previously selected nodes.
ki, kg, ... k; = arg pmax S(Va, Va—1)

where V;_1 represents the set of all traversed nodes and V,
represents the set of all 1-hop neighbors of V;_;. Math-
ematically V;_ is defined as the set of v; : 3(a,b) €
E where a € V;_,. For each traversal, we select the top k
1-hop neighbors ranked by our similarity function S.

This expansion continues until either:

e P isresolved by the language model.

* The maximum depth D is reached and the amount of
regenerating tries is expended.

3.2.2. INFORMAL PROOF GENERATION

Informal proof generation integrates retrieved-context into
the language model prompt and uses the LLM to create an
informal, natural language proof based on this enhanced
input. Initially, generating a natural language proof allows
KG-Prover to take advantage of the repository of known
proofs outlined within the knowledge graph. If the proof
fails to pass the verification stage, the framework iteratively
deepens the context by one level in the knowledge graph,
selecting the top-k semantically closest neighboring nodes
to uncover missing key concepts. The updated context is
then used for subsequent proof generation attempts.

All generator models are invoked with a 32k-token
context window (8 k for LLaMA 3 8B). When the problem
statement plus retrieved snippets exceed the window we
(1) keep the full problem, (ii) retain at most the first Ny=4
sentences of each snippet, and (iii) drop the least-similar
node(s) until the prompt fits. This “similarity — sentence
— node” back-off preserves high-ranked information while
guaranteeing admissible length.

3.2.3. FORMAL PROOF GENERATION

The autoformalization LLM ingests the code prefix, propo-
sition, and informal proof before generating the translated
formal proof. The framework for both the Autoformalizer
and the generator models can be found in Appendix E.2.1.
Finally, the autoformalizers’ output is parsed to extract well-
specified Lean 4 code.
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3.2.4. VERIFICATION AND REFINEMENT

To ensure the formal correctness of the proofs generated by
our framework, we adopted the Lean verification method
from DeepSeek-Prover-V1.5 to enhance the formalization
step in our proof generation process, utilizing RLPAF to re-
fine our model’s ability to generate proofs that are verifiable
in Lean (Jiang et al., 2024). By integrating proof-assistant
feedback, our models are more robust in producing proofs
that adhere to the strict syntactic and logical requirements
of Lean.

The formal proofs were verified using Lean 4 to ensure cor-
rectness. The generated proof code was submitted to Lean,
and the results were analyzed. On failure, we extract error
messages and feed them back into the autoformalizer along
with adjusted prompts. This loop repeats until verification
succeeds or we exhaust the allowed attempts r. If the max-
imum depth is not yet reached, we perform another graph
traversal and generation loop.

3.3. Scaling KG-Prover

Self-consistency has proven itself as strongly effective, on
commonly used reasoning as well as mathematical tasks,
making use of the different approaches a language model
might take while sampling multiple responses (Wang et al.,
2023). To utilize this phenomenon and improve robustness
and accuracy under limited graph traversals, we incorporate
test-time scaling, sampling, and search strategies:

3.3.1. BEST-OF-N

For each proof task, we generate n independent informal
proofs, autoformalize, and verify them. A dedicated model
then acts as a judge, evaluating each candidate’s proof across
dimensions of mathematical correctness, clarity, and reason-
ing completeness. The judge assigns scores from 0-10 and
provides justification for each evaluation. Candidates are
then sorted by their scores, with the highest-scoring proof
selected as the "optimal" solution to convert into Lean.

3.3.2. BEAM SEARCH

We organize proof candidates into a beam of width w and
search depth s. At each step, the top-w candidates are ex-
panded by generating refinements based on verifier feedback
(Sun et al., 2023). These refinements are then scored and
ranked, with the top-k candidates retained for subsequent
iterations. The process repeats s times, ultimately return-
ing the "best" proof that is both high-quality in terms of
interpretability and formally verifiable. This balances the
exploration of diverse proof paths with verification-driven
refinement.

4. Experiment Design
4.1. Models

To create semantic representations in the form of embed-
dings, we used OpenAl’s text-embedding-3-large
model (Neelakantan et al., 2022).

For informal proof generation, we utilized GPT-40-mini, as
well as Claude 3.5 Sonnet and a collection of LLAMA
3 models (OpenAl, 2024; Anthropic, 2024; Al, 2024).
We measure performance on the COT-reasoning models
Deepseek-R1, ol-mini, and o4-mini (Team, 2025).

As an Autoformalizer we use DeepSeek-Prover-V1.5 (Jiang
et al., 2024), which is an open-source language model, de-
signed for theorem proving in Lean (de Moura and Ullrich,
2021). We use the model explicitly only for the translation
of the already generated informal proof into Lean format to
validate informal proofs.

4.2. Datasets

To evaluate the effectiveness of our framework, we con-
ducted experiments on multiple benchmarks commonly
used in automated theorem proving: miniF2F!, ProofNet,
and MUSTARDSAUCE (Zheng et al., 2022; Azerbayev
et al., 2023; Huang et al., 2024). MiniF2F is a bench-
mark dataset of formal mathematics problems sourced from
undergraduate-level mathematics competitions. ProofNet
is a large-scale dataset of mathematical proofs and theorem
statements, ranging in difficulty and domain. MUSTARD-
SAUCE is the dataset MUSTARD generated itself using
GPT-4.

Our exact dataset configuration can be found in Appendix
G.

4.3. Baselines

We compare out system to a pure zero-shot chain-of-thought
prompt with three verification retries (r=3) and a naive RAG
approach that adds the top-5 embedding-retrieved snippets
but keeps the same single-completion, single-retry budget.

4.3.1. RETRIEVAL AUGMENTED GENERATION

The RAG rows in our tables correspond to a lightweight re-
trieval baseline that injects a fixed natural-language context
but does not apply any graph traversal or extra test-time
compute.

(i) Dataset and corpus. We retrieve exclusively from the
same ProofWiki dump described in §3.1; no additional cor-
pora are introduced.

"Unless stated otherwise, references to miniF2F denote the
average performance across only the test split.
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Claude 3.5 Deepseek Llama3.1 Llama 3.3 ol
Dataset (1) Method Sonnet R1 SB 70B GPT 40 -mini
Base 2.69% 2.69% 3.76% 2.15% 3.23% 3.76%
ProofNet RAG 3.76% 3.76% 3.76% 3.76% 5.38% 591%
KG-Prover 4.84% 5.38% 4.30% 4.30% 6.45% 6.99 %
Base 22.95% 20.08% 20.49% 25.00% 23.36%  23.77%
miniF2F RAG 28.69% 22.54% 24.59% 24.59% 28.69%  28.28%
KG-Prover 31.15% 28.28% 31.97% 30.74% 30.74%  30.74%
Base 28.00% 20.00% 24.00% 25.60% 28.00% 24.80%
MUSTARD RAG 28.40% 25.00% 28.00% 28.8% 28.00%  26.80%
KG-Prover 30.00% 27.00% 27.60% 32.5% 30.00% 34.00%

Table 1. Results on ProofNet, miniF2F and MUSTARDSAUCE. Base and RAG generate a single completion per Lean retry (up to r=3);
KG-PROVER may additionally apply beam search as detailed in §5.4. Values are the percentage of theorems proved; bold marks the

largest gain over the corresponding Base.

(i) Context selection method. For every problem we en-
code the statement with text_embedding_3_large,
compute cosine similarity against all ProofWiki node em-
beddings, and prepend the titles and statements of the
top—k=>5 nodes to the prompt. We deliberately omit their
proofs and neighbours to keep the context size small.

(iii) Test-time budget. We ask the generator model for
one completion (temperature 0). The completion is auto-
formalised and verified in Lean; on failure we repeat the
same single-completion pipeline up to r=3 times, mirroring
the Base system. No best-of-N, beam search, or deeper
traversal is used, so the token cost is r (T}, + 1}).

This setup isolates the value of injecting a handful of se-
mantically relevant statements, allowing a clean comparison
against the full KG-PROVER which does scale test-time
compute.

4.4. Introduced Scaling Parameters

In our evaluations we vary six parameters:k (top-k nodes
selected by semantic similarity at the current depth),  (at-
tempts allowed per proof), d (maximum traversal depth),
n (candidates generated in a best-of-/V scheme), w (beam
width), and searchgepth (beam-search depth).

5. Results
5.1. Knowledge Graph Performance

As visualized in Table 1, using graphs consistently out-
performs baseline proof systems and over Retrieval Aug-
mented Generation. Performance gains of the KG-Prover

ranged from 2-11% across different models”. Llama 3.1 8B
achieved a 31.97% success rate on miniF2F, compared to a
20.49% baseline.

ProofNet represents the most challenging dataset with the
lowest overall performance (2-7% success rates), attributed
to the difficulty of the problems. They require higher ab-
stract mathematical reasoning and more intricate proof struc-
tures. The miniF2F dataset showed moderate performance
(20-31% success) because it includes more structured math-
ematical problems, intermediate complexity of proofs, and
more predictable reasoning patterns.

MUSTARDSAUCE demonstrated moderate performance as
well (24-34% success).

5.2. Finetuned foundation models

Model minif2f
TheoremLlama (pass@ 128) 35.04%
TheoremLlama + KG-Prover 36.89 %

Table 2. Using finetuned models with knowledge graph traversal
depth = 6, witnesses improved performance over 128 rounds of
generation

As visualized in Table 2, using structured Knowledge of
our KG-Prover with a depth of 6, performs 1.85 percent-
age points better than a finetuned model outperforming the
pass@ 128> on finetuned Lean provers.

2Although top — k = 5 is a fixed parameter, the actual value
can be smaller depending on the number of related nodes available
at the current depth.

3We follow the definition of pass@k defined by Chen et al.
(2021)
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Figure 2. Comparing different depths for the beam search method on a set of parameters that are n = 5, beam width 3, search depth 2.

5.3. Scaling Traversal Depth

To allow the model for failure correction and improvement,
the graph system has multiple consecutive attempts defined
as r. Each attempt allows the model to traverse further in
the graph and explore more nodes.

minif2f ProofNet

Accuracy (%)

ggE-===t==--r-o--

1 2 3 4 5 6 7

T T T T T
40 -

—— LLAMA
ol-mini
- -- LLAMA Base
ol-mini Base

MUSTARDSAUCE

Figure 3. Accuracy increases with greater traversal depth r in the
knowledge graph

As more proofs get injected into the context and the model
gets more tries to correct initial mistakes, the accuracy scales
higher per iterative refinement step. This effect is most
predominant in smaller parameter models, such as Llama
3.1 8b. This behavior is captured in Figure 3. We can see
that with more nodes injected, the performance rises.

5.4. Combined Scaling with Beam Search

As visualized in Figure 2, combining the knowledge graph
with approaches that can sample responses from the context
of the KG-Prover has a positive effect on accuracy across all
benchmarks. Achieving up to 10.75% on ProofNet, 41.34%
on miniF2F and 50.40% on MUSTARDSAUCE, which
equates to improvements of 26.40% in the highest scaling
configuration. Across all three dataset we find the first
three depth increases to be the most effective in scaling the
accuracy. While the leaps in accuracy flatten towards deeper
depths, on harder datasets, we see the higher depths actually
still bring a consistent improvement.

Additionally, we see that even on depth one, the performance
consistently beats the baseline and on average performs on
par? better than the KG-Prover without multiple candidate
proofs.

For the larger context window of o4-mini the same configu-
ration reaches 52.9% on miniF2F and 60.0% on MUSTARD-
SAUCE (Fig. 2), showing that KG-Prover scales favorably
with model context (since it is a reasoning model).

5.5. Individual Cases

Qualitative inspection reveals clear prompt-and-response
evolution across the scaling loop. Appendix I shows a
miniF2F example: the zero-shot baseline fails, RAG re-
trieves a divisibility lemma and succeeds, KG-Prover depth-
1 incorporates modular-arithmetic residues for a cleaner
proof, and depth-3 adds an edge case that allows Lean to
verify in one shot. Appendix J collects three failure cases
(missing lemma, auto-formaliser mistranslation, and Lean
timeout) to illustrate common error modes.

4considering slight deviations of + 1%
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Setting # completions Token budget Cost multiplier
BASE 1 Ty + T 1x
KG-PROVER r r(Tpy +T1) X

sl s s
KG-PROVER + BEAM r(n—i—wal) r(n—l—wtil)(Tp—&—Tr) r(n+ww )><

=0

w—1

Table 3. Language-model usage per problem instance (r traversal attempts, initial beam of n candidates, beam width w, tree depth s).

5.6. Performance Tradeoffs

We isolate the cost that dominates monetary expenditure
in practice: the number of language-model API calls and
the prompt/response tokens for those calls consume. Auto-
formalization and Lean verification are performed on local
hardware and are therefore ignored in this section.

Our general of usage of API calls per used method can be
broken down into:

e Base = 3 calls

RAG = 3 calls
¢ KG-Prover = 3 calls

¢ KG-Prover + Beam (n=5,w=3,s=2 ) = 3x[2+2(3+1)] =
30 calls

TABLE NOTATION

Let T}, be the average prompt length (in tokens) for a single
informal-proof request and 7} the average length of the
LLM’s response. Our methods differ only in how many
times that request—response pair is issued.

IMPLICATIONS

* Retries scale linearly. Each additional attempt multi-
plies total spend by r but yields diminishing accuracy
gains beyond r=3 (Figure 3).

* Beam search is the price driver. The geometric factor
n+ w(w® — 1)/(w — 1) explodes quickly: doubling
the beam width from 3 to 6 would more than triple
token usage while delivering <1 pp extra accuracy on
PROOFNET.

6. Conclusion & Discussion

We present a framework that automates mathematical proof
generation by integrating LLMs with a knowledge graph to
utilize inter-dependencies across mathematical proofs. Our
approach demonstrates the potential of combining multiple
mathematical concepts in an intertwined graph. By doing so,
language models can be effectively guided toward correct

SUnder the standard configuration (r=3,k=5,d=3,n=1)

proof generation, resulting in improved accuracy and en-
hanced abilities in both reasoning through and formalizing
proofs in natural language, whilst adding lean verification
in a separate translation step.

We establish that existing foundation models can achieve
similar or higher performing results as fine-tuned models,
by simple context injections of related concepts during in-
ference time, without requiring any additional pre-training,
expert iteration, or training system of any kind. By doing
this we witness performance increases across datasets of up
to 11% by just using the KG-Prover and up to 26% when
combined with proper scaling techniques.

7. Limitations

Despite the advancements in capturing semantic relation-
ships in text via vectorized embeddings, embeddings can
potentially suffer from issues such as loss of fine-grained
logical structure and difficulties in preserving contextual
dependencies across larger passages. This can lead to chal-
lenges in accurately retrieving relevant mathematical state-
ments, especially in formalized settings where precise defi-
nitions and logical consistency are crucial. While we filter
and discard irrelevant details, signs, and other minutiae,
XML dumps can introduce noise that might disrupt of affect
the semantic search and embeddings.

While our approach successfully formalizes proofs from
structured datasets, its performance on entirely novel or
highly abstract mathematical problems remains uncertain.
Models trained on existing proofs may struggle with cre-
ative problem-solving or unconventional mathematical ap-
proaches.

Large Language Models have finite context windows, mean-
ing lengthy or complex proofs may exceed the model’s
processing capacity. This might result in incomplete rea-
soning, loss of critical details, or forgetting earlier steps in
multi-stage proofs.

Future work may enhance the knowledge graph and improve
the autoformalization process to handle more complex math-
ematical concepts, improve language model translations or
handling longer proofs using different attention mechanisms
or.
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8. Reproducibility Statement

Our experiments were conducted using publicly avail-
able Datasets and Models. GPT-40, 40-mini, ol-mini
and text-embedding-3-large can be accessed via https:
//openai.com/api/. Both Deepseek-R1 and the
LLAMA 3 collection are open-sourced models. Claude
models can be accessed via their respective API endpoints,
under https://www.anthropic.com/api.

ProofNet and miniF2F, and MUSTARDSAUCE are pub-
licly available datasets. Our Code is publicly available on
GitHub; we encourage anyone to validate and extend our
findings. The Neo4j-based graph database can be used under
https://neo4j.comand could potentially be replaced
with alternative graph databases as desired.

9. Ethical Considerations & Risks

Our knowledge base is derived from ProofWiki, an open
database for formal proofs. While the page is moderated,
adversaries could attempt to incorporate harmful content
or incorrect factual information into the extracted pages.
However, we consider this risk to be unlikely.

Although alignment work continues to progress Large Lan-
guage Models can introduce biases towards certain marginal-
ized groups or other minorities. All of our introduced mod-
els are moderated and have content filters that should pre-
vent models from generating harmful content. However
said filters aren’t perfect, models can still be exploited via
sophisticated prompting and other adversarial techniques.
Given our contribution to the framework, we expect no in-
creased risk in any of the given safety evaluation measures
proposed.

9.1. GPU usage
GPU model | Watts | approx. usage Time
Nvidia A40 300 W 700 hours
Nvidia RTX A5000 | 300 W 50 hours

Table 4. Estimated GPU usage for all Evaluations.

The shown GPU usage may only partially reflect an accu-
rate measure of the computational resources required, as
major models are only available through API endpoints. We
estimate the inference time on said APIs to be roughly 170
hours.
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A. Using Lean provers for informal proof
generation

As discussed, our approach utilizes a two step process that
generates an informal proof in natural language that is then
translated and validated in Lean. As visualized in Table 5,
even Lean provers can be enhanced using the KG-Prover
that utilizes natural language.

Theorem  DeepSeek
Method Llama Prover-V1.5
minif2f Base 32.38 35.75
minif2f RAG 34.84 36.48
minif2f KG-Prover 36.89 37.71

Table 5. Lean-based provers show increased performance using
the KG-Prover (traversal depth = 6) even when the Node data is in
natural language.

This phenomenon demonstrates that even Lean-optimized
and fine-tuned systems benefit from structured natural lan-
guage knowledge encompassing related proofs.

B. Structural Improvement

Few-shot learning, even with briefly related examples, has
been shown to improve performance across a variety of
tasks and domains.

Therefore we hypothesize that even only partly related proof
nodes will improve not only the proof understanding but
will also benefit the structured formalization that is required
for the correct interpretation and conversion of informal
natural language into Lean4.

C. Judging the Best of N Tries

Interestingly, the results in Table 6 reveal a non-linear rela-
tionship in more challenging datasets like ProofNet, where
an intermediate value (e.g., N = 6) did not always out-
perform a lower or higher N. This suggests that simply
increasing the number of candidates is not universally bene-
ficial; the quality of each candidate and the effectiveness of
the judging mechanism play critical roles. As such, finding
the right balance in model temperatures is crucial because an
optimal setting enhances the judging process by providing a
diverse pool of high-quality candidates®.

D. Deterministic Evaluations

Unless specified otherwise, we use greedy decoding for all
of our experiments. Additionally, the semantic search in our

®Both best of N and best of N + tree search method evaluations
had LLama 3.1 8B set on a temperature of 0.7
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Dataset ‘ Model ‘ Best of N

‘ N=2 N=6 N=10
ProofNet | Llama 8B | 6.45%  5.38%  8.60%
miniF2F | Llama 8B | 30.33% 30.74% 31.97%
Mustard | Llama 8B | 30.00% 32.80%  33.6%

Table 6. Results by dataset with the graph approach, comparing
“Best of N values between 2 and 10.

Graph knowledge base will yield identical outputs, given
that the input doesn’t change between different runs.

While this behavior can be favorable in some situations,
other evaluations may benefit from slight variations in dif-
ferent seeds. To introduce a slight stochasticity, other evalu-
ations may vary the temperature parameter of the employed
models, and use the introduced method in Appendix D.1 to
introduce randomness into our knowledge graph.

D.1. Knowledge Graph Stochasticity

To mitigate fully repetitive outputs Nodes from the knowl-
edge graph, we propose top-k shuffling, where we retrieve
the k-highest ranked nodes, shuffle them, and select a sub-
set. This method ensures diversity in individual generations.
We favor this implementation over random sampling over
a broader set of candidate nodes, selecting from a pool be-
yond the strict top-k. Due to the potentially less relevant
knowledge, trading off precision for increased coverage.

The level of stochasticity can be tuned dynamically based
on confidence scores or response variance metrics

E. Examples
E.1. Node example

¢ from_id: The ID of the current node.

e to_id: The ID of the linked node (found using the
title-name-to-ID mapping).

« type: There are 6 different relationship categories:

USES_DEFINITION,
RELATED _DEFINITION,
USES_AXIOM,
SIMILAR_PROOF,
PROOF_DEPENDENCY,
PROOF_TECHNIQUE.
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E.2. Prompt Examples
E.2.1. PROMPT EXAMPLE 1

The model was provided with the informal proof and a code
template, and it generated the corresponding formal proof
in Lean 4. Each element was processed to extract the title,
namespace, and content.

You are a Lean 4 code generator.
We have:

HEADER:

{header}

INFORMAL PROOF:
{informal_proof}

PREFIX:
{informal_prefix}

STATEMENT :
{formal_statement}

GOAL (optional):
{goal}

INSTRUCTIONS:
1. Output exactly one triple-backtick

code block containing valid Lean 4 code.

2. Do not include any text or
explanations outside the code block.
3. Make sure it compiles in Lean 4.

Required Format:
# Start
‘YYlean4
<Lean code here>

AN URY

# End

E.2.2. PROMPT EXAMPLE 2

You are a mathematics expert focused on
generating clear informal proofs.

Given the following mathematical
problem and context, generate a clear
and detailed informal proof in
natural language.

Context: [Retrieved context]

Problem: [Problem statement]

Informal Proof:
[Your proof here]

F. Graph Dataset

We parsed an XML dump of ProofWiki, where each
<page> element was processed. Irrelevant sections were
filtered, and the wikitext was cleaned to obtain structured
content.

F.1. Node structure

We represented each mathematical concept as a node in the
knowledge graph, storing attributes such as:

¢ id: Unique identifier.

* type: Content type (e.g., definition, theorem).
* title: Page title.

* name: Extracted from the title.

 content: Theorems in algebraic notation.

G. Benchmarks

All datasets present their samples with natural language and
a formal statement in Lean, which we use as ground truth to
compare against.

By utilizing miniF2F, ProofNet, and MUSTARDSAUCE,
we assess our framework’s ability to generate and formalize
proofs across diverse mathematical problems. The datasets
provided a standardized evaluation setting, allowing us to
compare our results uniformly with existing approaches
and to analyze the strengths and limitations of our Method.
However, it is possible that our setup deviates from the ones
introduced in the respective papers of the dataset, which
explains the varied performance across tasks, which is es-
pecially apparent on MUSTARDSAUCE. To set up a com-
parable evaluation, we compute the baseline of our setup as
well, rather than taking the previous State-of-the-Art.

G.1. Used splits

We ran 186 problems from the test split of ProofNet, 244
problems from the test split of miniF2F, and randomly se-
lected 250 theorem-proving problems from MUSTARD-
SAUCE.

H. Search Strategies within the Knowledge
Graph

To optimize the process of automated proof generation, we

Provide your proof in the following formatexplored different methods for navigating the constructed
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knowledge graph. Specifically, we implemented two pri-
mary search strategies: Breadth-First Search (BFS) and
semantic search using vector embeddings. This section elab-
orates on these methodologies, their implementation in our
framework, and analyzes their respective advantages and
disadvantages in our scenario.

H.1. Breadth-First Search (BFS)

Breadth-First Search is a classic graph traversal algorithm
that systematically explores the vertices of a graph in layers,
starting from a given root node and expanding outward to
neighboring nodes at increasing depths. In our framework,
BFS was utilized as follows:

1. Zero-Shot Prompting: We initially present the prob-
lem statement directly to the GPT model without any
additional context, requesting a proof in a zero-shot
setting.

First-Level Traversal: If the zero-shot attempt is un-
successful, we perform a BFS to explore the immedi-
ate neighboring nodes of the problem statement node.
Specifically, we retrieve up to the nearest 50 nodes
connected directly to the root node.

Contextual Prompting: We then prompt the GPT
model again, providing the problem statement along
with the content from the retrieved neighboring nodes
to supply additional context for proof generation.

Iterative Expansion: If the proof remains incomplete
or incorrect, we extend the BFS to the next level by
including nodes that are two edges away from the root,
effectively expanding the context window before re-
prompting the GPT model.

The advantage of BFS is that it allows for a systematic ex-
ploration of the knowledge graph, ensuring that all nodes
within a certain depth are considered, which may uncover
relevant but non-obvious connections. By incrementally
increasing the depth of traversal, we can control the amount
of additional information provided to the GPT model, po-
tentially improving the quality of the generated proof.

However, BFS can be computationally expensive, especially
in densely connected graphs, as the number of nodes grows
exponentially with each additional level of depth. Including
a broad set of neighboring nodes may introduce irrelevant
or redundant information, which could overwhelm the GPT
model and hinder its ability to generate a coherent proof.

H.2. Semantic Search Using Embeddings

Semantic search leverages vector embeddings to identify
nodes that are semantically similar to a given query (Nee-
lakantan et al., 2022). Each node in our knowledge graph
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is associated with a high-dimensional embedding vector,
enabling similarity computations.

Hierarchical Prompting: Similar to the BFS approach, we
begin with a zero-shot prompt. If unsuccessful, we incre-
mentally include the most similar nodes into the context
when re-prompting the GPT model, effectively performing
one-shot, two-shot prompting, and so on.

Semantic search is computationally less intensive than BFS,
as it avoids exhaustive traversal and focuses only on nodes
with high semantic relevance. By prioritizing nodes that are
semantically similar to the problem statement, we provide
the GPT model with highly pertinent information, poten-
tially improving proof generation quality. The disadvan-
tages are that the effectiveness of semantic search is con-
tingent upon the embedding model’s ability to accurately
capture mathematical semantics, which may be challenging
for complex or abstract concepts. Important nodes that are
not semantically similar based on the embedding (e.g., foun-
dational axioms or lemmas) may be overlooked, potentially
omitting crucial information required for the proof.

Regardless of the search method used, we adopted an itera-
tive prompting strategy with the GPT model. This approach
allows us to manage the amount of information provided to
the GPT model, aiming to strike a balance between context
richness and the model’s capacity to process and utilize the
information effectively.

I. Prompt / completion examples

MiniF2F example (“Prove that 23 + 6z is divisible by
3”). (a) No retrieval. Problem statement (17 tokens) +
system header (68 tokens) — model says “... we note that
2% + 62 = z(x2 + 6). Because either x or z? is divisible
by 3, their product is. J” — rejected by Lean (missing
modular-arithmetic lemma).

(b) RAG (k=5). Adds 357 context tokens (definitions of
“divides”, “mod”, etc.); same model now supplies a Lean-
ready informal proof that auto-formalizes successfully.

(c) KG-Prover depth 3. Context grows to 1612 tokens (path
via “Cubic residues mod 3”). First attempt fails, second
attempt (after an error-aware re-prompt) passes Lean in 14
s wall-clock. Full prompt and intermediate completions are
in our public repo.

J. Failure Scenarios

Although we see strong performance across multiple proof
benchmarks, there are certain scenarios in which models &
techniques fail to function optimally. Across multiple runs,
we found the following possible errors:

* The informal proof is correct, but the conversion into a
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formal proof fails.

* The required knowledge is not in the graph, and other
topics are too briefly related to be extrapolated.

In our manual analysis, we found that approximately 35% of
the failures occur when the formal proof is incorrect despite
the informal proof being largely valid. This suggests that
the challenge often lies not in the mathematical reasoning
itself, but in bridging the gap between informal and formal
representations. Informal proofs frequently rely on high-
level abstractions, implicit assumptions, or natural language
shortcuts (e.g., “it follows that,” “by symmetry”) that do not
always translate cleanly into Lean 4, which demands preci-
sion and fully explicit logic. Typical issues include omitted
hypotheses, ambiguous theorem references, or imperfect
formalization of induction and algebraic steps.

It is rare that traversal doesn’t gather relevant information
or that the knowledge is not available and only apparent on
particularly hard questions. However, for difficult questions,
such as those proposed by the International Math Olympiad,
the graph cannot find the most relevant nodes.
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