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Abstract

Auditory attention detection (AAD) aims to decode listeners’ focus in complex
auditory environments from electroencephalography (EEG) recordings, which is
crucial for developing neuro-steered hearing devices. Despite recent advancements,
EEG-based AAD remains hindered by the absence of synergistic frameworks that
can fully leverage complementary EEG features under energy-efficiency constraints.
We propose S2M-Former, a novel spiking symmetric mixing framework to address
this limitation through two key innovations: i) Presenting a spike-driven symmetric
architecture composed of parallel spatial and frequency branches with mirrored
modular design, leveraging biologically plausible token-channel mixers to enhance
complementary learning across branches; ii) Introducing lightweight 1D token se-
quences to replace conventional 3D operations, reducing parameters by 14.7×. The
brain-inspired spiking architecture further reduces power consumption, achieving a
5.8× energy reduction compared to recent ANN methods, while also surpassing
existing SNN baselines in terms of parameter efficiency and performance. Compre-
hensive experiments on three AAD benchmarks (KUL, DTU and AV-GC-AAD)
across three settings (within-trial, cross-trial and cross-subject) demonstrate that
S2M-Former achieves comparable state-of-the-art (SOTA) decoding accuracy, mak-
ing it a promising low-power, high-performance solution for AAD tasks. Code is
available at https://github.com/JackieWang9811/S2M-Former.

1 Introduction

The “cocktail party effect” refers to the remarkable ability of the human auditory system to isolate
and focus on a specific speaker’s speech in a competitive background and noise environment [1, 2].
This capacity, realized through dynamic neural processing in the auditory cortex and top-down
attentional modulation [3], has profound implications for understanding human auditory cognition
and developing neuroengineering applications. Auditory attention detection (AAD) investigates
the brain’s selective hearing ability by detecting which sound stream a listener is focusing on,
based on neural recordings, as illustrated in Figure. 1. It aims to address a critical challenge in
neural rehabilitation: How to restore natural auditory scene analysis for individuals with hearing
impairments.

Recent advances [4, 5, 6, 7] in non-invasive electroencephalography (EEG)-based approaches have
demonstrated remarkable success in reconstructing attentional selection patterns from cortical re-
sponses. On the one hand, AAD enables hearing aids to dynamically amplify the speech stream that
the user is focusing on, providing more natural and adaptive listening. On the other hand, integrating
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AAD into brain-computer interface (BCI) systems allows real-time feedback between the brain
and auditory devices, mimicking thalamocortical feedback pathways observed in natural auditory
processing [8]. As AAD is increasingly integrated into wearable systems such as hearing aids [9, 10]
and low-power BCIs [11], the need for models that are both accurate and energy-efficient becomes
critical, due to strict constraints on battery life, latency, and computational resources. These practical
demands highlight the importance of lightweight AAD models for real-world deployment.
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Figure 1: EEG-based AAD Paradigm.

Feature extraction techniques such as common spatial
pattern (CSP) [12, 13] and differential entropy (DE)
[14, 15] have demonstrated effectiveness in capturing
discriminative characteristics from auditory-evoked
EEG signals. Despite recent progress, AAD remains
hindered by the absence of synergistic frameworks
that can fully leverage complementary EEG features
under energy-efficiency constraints. This limitation is
particularly critical for real-world AAD applications,
which require lightweight, low-power solutions for
high-performance, closed-loop systems in hearing
aids. Although recent dual-branch networks [6, 7] that incorporate multiple EEG features have shown
improved performance over single-branch models, they still face several challenges. First, most of
these methods adopt an isolated learning paradigm, combining features via simple concatenation or
summation, neglecting the potential hypothesis that the complementary learning among EEG features
can benefit performance [16, 17, 18]. Second, their designs introduce substantial computational
overhead, especially when modeling specific EEG properties (e.g., topological structures) using
resource-intensive operations such as 3D convolutions, thereby limiting deployability.

To tackle the above challenges, we introduce S2M-Former, a spike-driven symmetric model that is
naturally endowed with low power consumption by replacing energy-intensive multiply-accumulate
(MAC) operations with sparse, spike-based accumulate (AC) communication, while retaining the
precise temporal dynamics essential for modeling auditory attention. Specifically, the proposed
S2M-Former brings several key advantages. Firstly, the symmetric design enables parallel extraction
of spatial and frequency-domain representations using mirrored modular structures. This design
encourages complementary learning across branches by facilitating the synergistic fusion of domain-
specific representations, thereby replacing isolated learning. Within each branch, multi-level modules
capture hierarchical contextual dependencies, enabling expressive and informative representations
without the need for complex customizations. Secondly, to address the high parameter count and
computational complexity associated with dual-branch bringing, S2M-Former embraces a lightweight,
efficient architecture. By replacing power-hungry 3D operations with streamlined 1D token repre-
sentations, we drastically cut down on computational overhead, achieving superior computational
efficiency while preserving high performance. The above makes S2M-Former particularly suited for
energy-efficient neuromorphic neuro-steered devices.

We validate our model on three public AAD datasets: two uni-stimuli (audio-only) benchmarks,
KUL [19] and DTU [20], and one multi-stimuli (audio-visual) benchmark, AV-GC-AAD [21], under
within-trial, cross-trial and cross-subject settings. Compared to recent dual-branch models [6, 7],
S2M-Former reduces the parameter count by 14.7 times and power consumption by 5.8 times, all
while achieving competitive SOTA performance. In comparison to the latest single-branch SOTA
models [5, 15], S2M-Former not only maintains fewer parameters but also roundly surpasses them.
Furthermore, it achieves superior performance against recent influential SNN backbones. These
results collectively underscore the effectiveness and efficiency of our proposed S2M-Former in
tackling the challenges posed by AAD tasks. Our contributions can be summarized as follows:

1) We propose S2M-Former, the first spiking symmetric mixing framework for auditory attention de-
coding tasks, which enables effective hierarchical integration of contextual representations within each
branch. By leveraging biologically plausible mixers, our design naturally promotes complementary
learning across EEG feature branches, thereby notably improving performance.

2) S2M-Former reduces the parameter count by up to 14.7× and energy consumption by 5.8×
compared to recent dual-branch models, without requiring any complex customization. Its spike-
driven architecture fully delivers higher decoding accuracy than both its ANN counterpart and existing
SNN baselines, highlighting a compelling trade-off between efficiency and performance.
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3) We validate S2M-Former across three AAD datasets and multiple evaluation settings, where it
achieves competitive state-of-the-art performance. These results demonstrate its strong generalization,
offering a new perspective in low-power brain-computer interfaces for AAD tasks.

2 Related Works

Brain Auditory Attention Detection. In early development, CSP-CNN [12] combined CSP with
CNNs to enhance the non-linear modeling capacity, demonstrating the potential for robust AAD.
Following this, SSF-CNN [14] focused on the topographic distribution of alpha-band EEG power
and introduced a spectro-spatial DE extraction strategy to decode auditory attention. MBSSFCC [15]
extended the framework by incorporating multi-band frequency analysis, extracting DE features, and
applying a ConvLSTM module for spectro-spatial-temporal learning. Recently, DBPNet [6] proposes
a dual-branch network for AAD, which consists of a temporal attentive branch and a frequency 3D
convolutional residual branch, and fuses the temporal-frequency domain features by concatenating
the outputs from branches into a fusion vector. M-DBPNet [7] is an upgraded version of DBPNet.
This framework introduces Mamba-based [22] methods in the temporal branch, aiming to better
extract temporal features from sequential embeddings, with a few additional parameters. DARNet
[5] is a dual attention refinement network designed to capture spatio-temporal representations and
long-range dependencies in the CSP feature patterns, achieving near dual-branch performance.

Spiking Neural Networks. Recognized as the third generation of neural networks [23], spiking
neural networks (SNNs) effectively mimic the dynamics of biological neurons with sparse and
asynchronous spikes [24]. This approach enables SNNs to achieve high computational performance
with low energy consumption, making them a viable energy-efficient alternative to artificial neural
networks (ANNs) [25]. Despite these advancements, recent SNN methods for AAD [26, 27, 28]
still showcase weaker performance compared to recent SOTA ANN models, primarily due to their
sparse feature representation and relatively simple network architectures, and face challenges such as
closed-source implementations and limited reproducibility, making direct comparisons difficult.

3 S2M-Former

As illustrated in Figure. 2, S2M-Former is an SNN model that leverages membrane potential-based
transmission [29] with shortcut connections to maintain spike-driven dynamics across layers. Given an
EEG series E, we first extract spatial-temporal features (ES ∈ RC×T , with C denoting channels and
T time points) using CSP and frequency-spectral features (EF ∈ R5×H×W , where H×W is the map
size) via DE, as detailed in Appendix A.1. These embeddings are then expanded along the temporal
dimension over TS steps and encoded by branch-specific spiking encoders. The representations
are further refined through a series of spike-driven modules within the spiking symmetric mixing
(S2M) block, effectively capturing complementary spatial-frequency patterns. Finally, the fused
D-dimensional embeddings are passed through a classification head to produce the prediction Ŷ .

3.1 Spiking Neuron

Spiking neurons serve as bio-plausible abstractions of neural activity [30, 31]. We adopt the Leaky
Integrate-and-Fire (LIF) [32] neuron for intra-module communication, whose discrete-time dynamics
are defined in Eq. (20), Eq. (21) and Eq. (22). To enhance membrane potential awareness across
inter-module connections within the S2M-Former, we propose a novel neuron variant: the channel-
wise parametric LIF (CPLIF) neuron. It builds upon the parametric LIF neuron—a variant of LIF
with a learnable membrane time constant that enables adaptive temporal control [33]—by assigning
an individual time constant to each channel. This design enables channel-wise adaptive modeling of
temporal dynamics, allowing more expressive and finer-grained spiking activation across time steps.
We denote the CPLIF as SN head in subsequent sections. Its membrane potential update is given by:

H[t, c, n] = V [t−1, c, n] +
1

τl[c]
(X[t, c, n]− (V [t−1, c, n]− Vreset)) + β[c], (1)

where τl, β ∈ RC are learnable vectors for the channel-wise membrane time constants and bias,
respectively. c indexes the channel dimension and n denotes the token index within each channel. The
CPLIF shares the same firing and reset equations as the LIF, with details provided in Appendix A.2.
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(a) S2M-Former
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Figure 2: S2M-Former: A dual-branch mirrored architecture comprising branch-specific spiking
encoders for diverse domain features, leveraging spike-driven symmetric modules for contextual
representation learning and enabling effective complementary interactions across parallel branches.

3.2 Branch-specific Spiking Encoders

Spatial Branch Encoder (SBE). To effectively capture spatio-temporal EEG dynamics [5], we
design a spike-driven SBE that jointly models temporal dependencies and spatial correlations across
electrodes. The SBE comprises two key components: (1) biologically plausible spiking neuron
dynamics to enable spike-driven representation learning; and (2) a multi-stage mechanism that
integrates progressive condensation with refined integration. Given the input feature map ES ∈
RTS×C×T , we first apply a cascade of temporal convolution layers (TConv2d) with increasing
kernel sizes (e.g., k = 8) to progressively extract temporal dependencies. Each temporal layer is
followed by batch normalization (BN ) and a spiking neuron SN (·). The operations are formally
described as:

E′
S = SN (BN(TConv2d(1×k)(ES))) ∈ RTS×2D×C×T , (2)

E′′
S = SN (BN(TConv2d(1×2k)(E

′
S))) ∈ RTS×4D×C×T . (3)

Next, we introduce a dual-path spatial convolution module (SConv2d), each path employing a
full-channel spatial filter with kernel size (C × 1), which aggregates cross-channel interactions. The
outputs of both spatial paths are then refined via residual addition to enhance the spatial representation:

Eout
S = SN (BN(SConv2d(C×1)(E

′′
S))) + SN (BN(SConv2d(C×1)(E

′′
S))) ∈ RTS×D×T . (4)

Frequency Branch Encoder (FBE). Recent spiking patch splitting modules [34, 35] are primarily
designed for visual inputs. To effectively extract frequency-spectral-spatial representations from
EEG 2D brain topography, we propose a novel FBE, which addresses both the frequency-specific
information and region-specific activation patterns inherent in multi-band EEG topographic data.
FBE begins by applying three successive spiking convolutional operations:

E′
F = SN (BN(Conv2d(EFl

))) ∈ RTS×Dl×H×W , l ∈ {1, . . . , L}, (5)
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where EFl
∈ RTS×Dl×H×W is the input at the l-th block (L = 3), and each 3×3 convolution employs

a dilation rate of 2 to expand the receptive field. This enables the model to capture spatially dispersed
yet salient edge-region activations more effectively [36]. In addition, the channel dimensions are
progressively transformed via D → 4D → 2D → D, followed by a max-pooling layer for spatial
compression. To further refine the representation, we apply a 1× 1 spiking convolutional layer with
a residual connection, enhancing representation stability and robustness.

3.3 S2M Module

After processing through the spatial (SBE) and frequency (FBE) encoders, EEG embeddings are
unified as 1D tokens X ∈ RTS×N×D, where TS denotes the number of time steps, N is the number
of tokens, and D is the feature dimension. As shown in Figure. 2 (a), the S2M block hierarchically
refines these representations through a series of mirrored spike-driven modules: the SCSA module
first captures long-range intra-branch dependencies, followed by SGCM and MPTM for cross-branch
fusion across channel and token dimensions. SMSC then extracts local fine-grained details, and a
second combination of SGCM and MPTM further reinforces symmetric complementary integration.

3.3.1 Spiking Channel-wise Self Attention (SCSA)

Recent spiking attention mechanisms have made considerable progress, with spiking self-attention
(SSA) being one of the most widely applied methods [34]. In our implementation, we modify the SSA
mechanism by adopting a channel-wise protocol to enhance interpretability, where the spatial branch
reveals electrode correlations, and the frequency branch uncovers multi-band relationships. Moreover,
this adjustment reduces the spiking attention score matrix from N ×N to D ×D [37], leading to
a lower computational complexity from O(N2D) to O(ND2) for greater efficiency. As illustrated
in Figure. 2 (c), we define this module as SCSA. Specifically, given an input EEG embedding
X ∈ RTS×N×D, the computation proceeds as follows:

XS = SN I(WI(SN head(X))) ∈ RTS×N×D, (6)
QS = SNQ(WQ(XS)), KS = SNK(WK(XS)), VS = SN V (WV (XS)), (7)

U = SN
(
(KT

S VS)QS ∗ α
)
∈ RTS×N×D, (8)

Xout = SNO(WO(U)) ∈ RTS×N×D, (9)
where QS , KS , and VS are the spiking query, key, and value vectors, each of size RTS×N×D, α
denotes a scale factor. Each learnable projection matrix W is implemented as a 3 kernel size of 1D
depth-wise convolution, allowing spatially local parameter-efficient feature transformation.

3.3.2 Spiking Multi-scale Separable Convolution (SMSC)

We propose the SMSC module, which leverages multiple depth-wise convolutions with different
receptive fields to enrich multi-scale patterns in EEG embeddings. As shown in Figure. 2(d),
the module comprises three parallel depthwise convolutional paths with different receptive fields,
followed by a channel shuffle operation to promote cross-scale and cross-channel information
integration. Given the input spiking feature X ∈ RTS×N×D, we first apply a CPLIF neuron SN head,
followed by pointwise convolution (PWConv1d) and batch normalization:

X ′ = BN(PWConv1d(SN head(X))) ∈ RTS×N×3D. (10)
Here, PWConv expands the channel dimension for later multi-scale processing. The feature X ′ is
evenly split into three parts along the channel dimension. Each part is then processed by a depthwise
convolution (DWConv1dki

), where a distinct kernel size ki ∈ {1, 3, 5} is assigned to extract
localized patterns at different temporal scales:

X ′′
i = BNi(DWConv1dki

(SN i(Split(X ′, 3)))) ∈ RTS×N×D; i ∈ {1, 2, 3}. (11)
Unlike standard convolutions that aggregate information across channels, depthwise convolution
processes each channel independently, thereby reducing computation but limiting inter-channel
interaction. To compensate for this, we adopt a parameter-free channel shuffle operation [38] after
summing the three branches:

X ′′′ = Shuffle(X ′′
1 +X ′′

2 +X ′′
3 ). (12)

This operation rearranges the channel dimensions by grouping and permuting features to facilitate
cross-group feature integration, thereby enhancing representation diversity without adding complexity.

5



3.3.3 Spiking Gated Channel Mixer (SGCM)

The SGCM module is designed to adaptively fuse multi-channel spatial and frequency represen-
tations. Firstly, XS and XF are concatenated which can form as X ′ = Concat(XS , XF ) ∈
RTS×(NS+NF )×D, where NS and NF are the number of brach-specific tokens, respectively, and D
is the feature dimension. The concatenated features X ′ are fed into a spiking neuron followed by a
linear transformation, whose channel dimensions are projected from D → 2D, then passed through a
convolution stem to refine the representations:

X ′′ = BN(Conv1d(SN (Linear(SN head(X
′))))) ∈ RTS×(NS+NF )×2D. (13)

As presented in Figure. 2 (e), the core of the SGCM integrates a spiking gating mechanism, modulating
the flow of information across channels. Specifically, the X ′′ is split into two components,

XQ, XK = SN q2,k2
(BNq,k(DWConvq,k(SN q1,k1

(Split(X ′′, 2))))) ∈ RTS×(NS+NF )×D, (14)

where XQ and XK sever as the query and key value [39], respectively, and the calculation process of
the gating mechanism can be formulated as: Ac = SN (

∑D
i=0 XQi,j

) ∈ RTS×(NS+NF )×1, where Ac

is the channel attention vector, which models the importance of different channels. Then the channel-
wise mask is adopted by X′′′ = Ac ⊙XK . Finally, the attention-modulated gated embeddings are
calculated to generate the final output:

Xfusion = Linear(SN out(BN(Conv1d(X′′′)))) ∈ RTS×(NS+NF )×D. (15)

3.3.4 Membrane Potential-aware Token Mixer (MPTM)

As illustrated in Figure. 2 (f), the MPTM is primarily structured as two parallel operations: the fusion
branch from SGCM modulates the frequency and spatial branches, respectively. For clarity, we detail
the interaction between the fusion branch Xfusion and a generic branch XG ∈ RTS×N×D, which
denotes either the spatial or frequency branch, and decompose the MPTM into three functional stages.

Core Representation. We implement a global average pooling (GAP) as an Aggregator over the
token dimension to encode global information across all tokens and thereby capture long-range
dependencies [40]. This operation condenses the spiking membrane potentials into a compact global
summary that serves as the core representation for cross-branch fusion, formulated as:

X ′
G = GAP (SN (XG)) ∈ RTS×1×D, X ′

fusion = GAP (SN head(Xfusion)) ∈ RTS×1×D. (16)

Representation Refinement and Fusion. To facilitate fine-grained potential-aware modulation using
the core representation, we construct a refined guidance representation, denoted as R ∈ RTS×N×D,
by proportionally combining the global summaries from two branches. Specifically, we divide the
total number of tokens N into two parts: NG = ⌊αN⌋ represents the number of tokens filled from
the generic branch, and Nfusion = N −NG tokens are filled by repeating from the fusion branch,
where we set α = 0.5. We then repeat and concatenate them, which can be written as:

R = Concat(Repeat(X ′
G, NG),Repeat(X ′

fusion, Nfusion)) ∈ RTS×N×D. (17)

The final fused output is denoted as F , which integrates the refined guidance R and the original
primary features through a spiking element-wise modulation with residual connection, formulated as:

F = SN (XG)⊙R+XG ∈ RTS×N×D. (18)

Output Generation. The final output is generated by concatenating the fused representation with the
compressed original input XG, where max pooling is applied with a kernel size of 3 and a stride of 2.

Xout = Concat(F,MaxPool(XG)) ∈ RTS× 3
2N×D. (19)

4 Experiments

Datasets and Processing. We evaluate the performance of S2M-Former across three publicly
available AAD datasets: KUL and DTU, which focus on auditory-only stimuli, and AV-GC-AAD,
which includes audio-visual stimuli. A summary of the datasets is provided in Table 1. Each
dataset is preprocessed using pipelines aligned with prior AAD studies to ensure consistency across
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Table 1: Comprehensive statistics and details for the three AAD datasets.

Dataset Subjects Scene Language Trials Duration per trial
(seconds)

Duration per subject
(minutes)

Total duration
(hours)

KUL [19] 16 audio-only Dutch 8 360 48 12.8
DTU [20] 18 audio-only Danish 60 50 50 15.0

AV-GC [21] 11 audio-visual Dutch 8 600 80 14.7

methods: The KUL dataset [19] is re-referenced to the central electrode, bandpass filtered (0.1-50 Hz),
downsampled to 128 Hz, and trimmed to the same trial length. The DTU dataset [20] is high-pass
filtered at 0.1 Hz, downsampled to 128 Hz, and denoised at 50 Hz. Eye artifacts are corrected via
joint decorrelation, followed by re-referencing to the channel average. The AV-GC dataset [21] is
bandpass filtered (1-40 Hz), re-referenced to the average of all channels, and downsampled to 128 Hz
[41]. To avoid contaminating preprocessing signatures that could affect CSP filters [21], no z-scoring
or time normalization is applied to any of the datasets. More implementation details are provided in
Appendix A.3 and A.4.

Evaluation Methods. The subjects in the three public AAD datasets were instructed to focus on one
of two simultaneous speakers, with the directions being left and right, formulating it as a classification
task with the binary labels. We evaluate model performance using the average accuracy and standard
deviation (SD) across all subjects for each experiment and decision window. We reproduce and
compare five publicly available baseline models (details in Section 2): SSF-CNN [14], MBSSFCC
[15], DARNet [5], DBPNet [6], and M-DBPNet [7] under two subject-dependent evaluations and a
subject-independent evaluation:

• Within-trial [5, 6, 15]: EEG data from a single trial are split into 8:1:1 train, validation and test
sets. The final train/validation/test sets are obtained by concatenating data across all trials.

• Cross-trial [7, 42, 43]: To prevent overfitting to specific EEG segments, all trials are randomly
split into 8:1:1 for training, validation, and testing. For trials with fewer than 10 samples, two with
different labels are randomly chosen for testing, and the rest are proportionally divided.

• Cross-subject [43]: We follow a leave-one-subject-out (LOSO), where leaving out one subject’s
data as the test set while training on the remaining subjects, iteratively performing cross-validation.

To address real-time response needs and ensure fair benchmarking, all models are evaluated under
short decision windows of 0.1s, 1s, and 2s. All methods (including baselines) adopt the same
preprocessing pipeline, followed by EEG segmentation using a sliding window with 50% overlap, in
line with standard practice in prior AAD works. Feature extraction is performed separately per set to
prevent information leakage.

Table 2: Within-trial results under three datasets. Color shading: Highest, Second, Third.

Datasets Models Architecture Params (M) Accuracy (%) ± SD

2-second 1-second 0.1-second

KUL

SSF-CNN [14]
Single

4.21 79.64 ± 9.64 76.63 ± 10.28 77.73 ± 9.60
MBSSFCC [15] 16.81 93.71 ± 6.46 92.65 ± 7.48 84.02 ± 9.39

DARNet [5] 0.08 92.81 ± 9.45 92.04 ± 9.75 87.66 ± 10.79

DBPNet [6]
Dual

0.88 93.66 ± 7.88 93.25 ± 7.33 85.70 ± 9.75
M-DBPNet [7] 1.32 / 1.00 / 0.88 93.75 ± 6.34 93.19 ± 7.28 86.16 ± 9.94

S2M-Former (ours) 0.06 93.71 ± 8.14 92.27 ± 8.66 83.39 ± 12.80

DTU

SSF-CNN [14]
Single

4.21 70.65 ± 6.18 67.63 ± 4.35 65.44 ± 4.72
MBSSFCC [15] 16.81 80.20 ± 7.62 76.64 ± 7.97 69.43 ± 5.59

DARNet [5] 0.08 81.30 ± 5.76 79.89 ± 7.88 76.04 ± 6.60

DBPNet [6]
Dual

0.88 83.93 ± 5.17 80.69 ± 6.54 77.06 ± 5.08
M-DBPNet [7] 1.32 / 1.00 / 0.88 82.56 ± 8.01 81.12 ± 6.82 74.06 ± 5.68

S2M-Former (ours) 0.06 85.28 ± 6.01 82.87 ± 6.92 75.84 ± 5.46

AV-GC

SSF-CNN [14]
Single

4.21 79.50 ± 8.45 76.40 ± 7.96 66.67 ± 5.37
MBSSFCC [15] 16.81 89.13 ± 7.21 87.90 ± 6.98 72.17 ± 5.77

DARNet [5] 0.08 89.17 ± 6.94 88.31 ± 6.87 79.45 ± 7.70

DBPNet [6]
Dual

0.88 90.78 ± 4.91 89.04 ± 5.15 73.37 ± 6.13
M-DBPNet [7] 1.32 / 1.00 / 0.88 87.04 ± 7.76 86.26 ± 7.35 72.88 ± 6.73

S2M-Former (ours) 0.06 91.83 ± 6.66 89.24 ± 7.59 74.42 ± 7.79
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Table 3: Cross-trial results under three datasets with color shading: Highest, Second, Third.

Datasets Models Architecture Params (M) Accuracy (%) ± SD

2-second 1-second 0.1-second

KUL

SSF-CNN [14]
Single

4.21 60.32 ± 19.25 58.59 ± 17.27 61.93 ± 15.88
MBSSFCC [15] 16.81 73.56 ± 23.98 71.01 ± 22.50 65.12 ± 20.63

DARNet [5] 0.08 68.92 ± 24.06 68.43 ± 24.18 68.01 ± 22.63

DBPNet [6]
Dual

0.88 72.95 ± 24.36 70.89 ± 25.01 65.67 ± 21.84
M-DBPNet [7] 1.32 / 1.00 / 0.88 74.27 ± 21.37 70.64 ± 23.82 66.97 ± 21.87

S2M-Former (ours) 0.06 72.39 ± 25.21 71.22 ± 25.97 66.49 ± 21.03

DTU

SSF-CNN [14]
Single

4.21 69.50 ± 7.28 67.25 ± 7.44 65.21 ± 9.63
MBSSFCC [15] 16.81 76.53 ± 8.84 75.55 ± 8.86 70.08 ± 8.36

DARNet [5] 0.08 72.41 ± 9.73 71.98 ± 10.03 69.11 ± 8.67

DBPNet [6]
Dual

0.88 76.40 ± 9.53 74.25 ± 10.03 66.54 ± 6.92
M-DBPNet [7] 1.32 / 1.00 / 0.88 76.18 ± 9.18 74.86 ± 9.50 67.57 ± 8.12

S2M-Former (ours) 0.06 76.74 ± 9.96 75.75 ± 9.96 70.36 ± 7.31

AV-GC

SSF-CNN [14]
Single

4.21 64.42 ± 11.14 63.45 ± 9.87 59.62 ± 7.79
MBSSFCC [15] 16.81 63.67 ± 16.48 60.82 ± 13.82 60.19 ± 10.04

DARNet [5] 0.08 64.99 ± 13.67 64.15 ± 13.50 63.47 ± 12.34

DBPNet [6]
Dual

0.88 64.77 ± 17.00 64.37 ± 16.28 60.92 ± 8.82
M-DBPNet [7] 1.32 / 1.00 / 0.88 68.90 ± 17.72 64.88 ± 15.33 61.03 ± 9.53

S2M-Former (ours) 0.06 70.64 ± 18.65 65.77 ± 15.58 65.49 ± 13.74
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Figure 3: Comparison across all sub-
jects on two datasets under cross-trial.

We present a comprehensive evaluation of S2M-Former
with five AAD methods across three datasets (KUL, DTU,
AV-GC) in terms of architecture, size, and decoding accu-
racy under within-trial and cross-trial settings, as shown in
Table 2 and Table 3. Our S2M-Former achieves the highest
decoding accuracy in 11 out of 18 conditions, surpassing
dual-branch counterparts DBPNet [6] (2/18, 11.1%), M-
DBPNet [7] (2/18, 11.1%) and the single-branch SOTA
DARNet [5] (3/18, 16.7%), while securing 83.33% Top-
3 coverage (15/18), exceeding DBPNet (12/18, 72.2%)
and M-DBPNet (11/18, 61.1%), and DARNet (9/18, 50%).
Overall, the performance of dual-branch models tends to
outperform single-branch models. Especially, S2M-Former
excels in cross-trial performance, achieving SOTA results
on the DTU dataset (e.g., 76.74% ± 9.96 for 2s) and AV-GC
dataset (e.g., 70.64% ± 18.65 for 2s), demonstrating its
robust generalization ability on unseen EEG data compared
to recent methods. Notably, these results are achieved with
only 0.06M parameters, using a fixed model size across
all window lengths, unlike M-DBPNet, whose size varies
by window (e.g., 1.32M for 2s, 1.00M for 1s and 0.88M
for 0.1s). In comparison, S2M-Former is 14.7× smaller
than DBPNet (0.88M) and 22× smaller than M-DBPNet
(1.32M), yet consistently outperforms them. DBPNet and
DARNet also have fixed sizes but with substantially more
parameters than S2M-Former. Furthermore, decoding accu-
racy improves with larger decision windows, as extended
context allows for more detailed attention estimation, con-
sistent with prior research [14, 15].

Although our model exhibits robust performance across all benchmarks under the cross-trial setting,
as presented in Table 3, a notable performance gap remains when compared to the within-trial
scenario. This disparity is especially pronounced on the KUL and AV-GC datasets, where elevated
standard deviations reflect the increased difficulty of cross-trial generalization. Such challenges are
largely attributed to greater intra-subject variability in EEG signals across trials and the inherent
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Table 4: Ablation study and compare with recent SNN models on DTU dataset.
Within-trial Cross-trial

Methods Feature
Embeddings

Param
(M)

Time
Steps 2s 1s 2s 1s

S2M-Former (proposed) CSP+DE 0.06 4 85.28 ± 6.01 82.87 ± 6.92 76.74 ± 9.96 75.75 ± 9.96
SM-Former (ANN) CSP+DE 0.06 — 80.94 ± 5.66 80.30 ± 6.77 73.49 ± 8.09 73.48 ± 7.98

CPLIF → LIF CSP+DE 0.06 4 84.13 ± 5.96 81.66 ± 6.66 75.67 ± 9.77 74.67 ± 9.82
w/o SGCM & MPTM CSP+DE 0.05 4 82.98 ± 6.25 80.96 ± 7.23 74.81 ± 9.93 74.12 ± 9.52

Spatial Branch CSP 0.04 4 82.28 ± 7.13 80.05 ± 6.69 73.58 ± 10.21 73.19 ± 9.71
Frequency Branch DE 0.01 4 70.48 ± 7.78 69.07 ± 6.78 70.11 ± 11.57 68.98 ± 8.00

QKFormer [39] DE 0.29 4 69.54 ± 8.80 68.84 ± 7.46 69.67 ± 9.84 67.83 ± 8.85
Spike-driven Transformer [35] DE 0.37 4 69.44 ± 8.11 68.70 ± 7.30 68.29 ± 8.71 68.06 ± 8.74

Spikformer [34] DE 0.37 4 67.28 ± 7.93 67.15 ± 6.52 69.27 ± 8.41 65.31 ± 9.03

challenge of generalizing to unseen data (zero-shot conditions [44]). To assess model robustness,
we conducted a visualization analysis covering three decision windows and all subjects. While
prior studies [7, 42] typically focused on a single decision window for their models, we extend the
evaluation across multiple models and temporal ranges. As illustrated in Figure. 3, box plots show
that subject-level performance is more dispersed in the cross-trial scenario, with several subjects
falling below chance level (CL = 50%) [45] across all methods. Based on interquartile range (IQR)
and the count of below-CL outliers, S2M-Former exhibits more consistent behavior across datasets
and decision windows, suggesting favorable robustness under zero-shot settings. More detailed
statistics and analysis are provided in Appendix A.6.

We further conducted an ablation study to analyze our proposed model from two perspectives, as
shown in Table 4. First, we replaced the spike-driven components in S2M-Former with a pure ANN
structure, termed SM-Former (see Appendix A.5 for detailed conversion steps). This modification
led to a notable drop in decoding accuracy across all settings and time windows. Specifically, in
the within-trial setting with the 2-second time window, accuracy dropped by 4.34%, from 85.28%
(SD: 6.01) to 80.94% (SD: 5.96), highlighting the effectiveness of our SNN-friendly components in
learning representations through spike-driven dynamics. From another perspective, we first validated
the effect of the CPLIF neurons by replacing them with standard LIF neurons. This further degraded
performance, with accuracy dropping from 76.25% (SD: 9.79) to 75.30% (SD: 9.77) for 2-second
decision windows, and 75.75% (SD: 9.96) to 74.67% (SD: 9.82) for 1-second under the cross-trial
setting. We then removed SGCM and MPTM entirely, as SGCM’s output serves as the input for
MPTM, and retained only the concatenation for fusion. The removal of this combination led to
further degradation in decoding accuracy and an increase in standard deviation. This empirical
outcome substantiates our initial hypothesis that the integration of complementary learning modules
can enhance model performance. Finally, we compared the performance of the individual branches
(Spatial- and Frequency-Branch) with the S2M-Former. The individual branches performed both
worse, with the spatial branch performing better than the frequency branch. Notably, under the same
time step TS = 4, the frequency branch surpasses three transformer-based SNN models, QKFormer
[39] (0.29M), Spike-driven Transformer (SDT) [35] (0.37M), and Spikformer [34] (0.37M). See
Appendix A.6 for more results. The above impression can be attributed to two main factors: (1) the
spike-driven hierarchical architecture within each branch helps capture both long-range dependencies
and fine-grained details efficiently; (2) the symmetric structure encourages complementary learning
between the spatial and frequency domains, enabled by biologically plausible token-channel mixers.

Table 5: Estimation of sizes and operational counts across single-
branch and dual-branch models under cross-trial setting.
Model SNN Params (M) ↓ FLOPs (G) ↓ SOPs (G) ↓ Energy (mJ) ↓
DARNet ✗ 0.08 0.0054 — 0.0247
QKFormer ✓ 0.29 0.0015 0.0160 0.0212
SDT ✓ 0.37 0.0015 0.0227 0.0272
Spikformer ✓ 0.37 0.0015 0.0065 0.0126
DBPNet ✗ 0.88 0.0984 — 0.4526
M-DBPNet ✗ 1.32 0.1068 — 0.4913
SM-Former ✗ 0.06 0.0243 — 0.1116
S2M-Former ✓ 0.06 0.0112 0.0293 0.0779

Table 5 analyzes the efficiency
advantages with detailed theo-
retical energy consumption pro-
vided in Appendix A.7. Under
2-second windows, S2M-Former
achieves exceptional efficiency in
dual-branch setups: 93% smaller
size compared to DBPNet (0.06M
vs. 0.88M, 14.7× reduction),
82.8% lower energy than DBPNet
(0.0779 mJ vs. 0.4526 mJ, 5.8× re-
duction), benefiting from its efficient lightweight architecture and spike-driven mechanism. Compared
to its ANN counterpart, 53.9% fewer FLOPs than SM-Former (0.0112 G vs. 0.0243 G). Although
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S2M-Former’s energy consumption (0.0779 mJ) is higher than that of single-branch SNNs, this is
due to the additional FLOPs from the dual-branch input embeddings. When considering synaptic
operations (SOPs), our model generates comparable SOPs to other single-branch SNNs (0.0293 G vs.
0.0227 G, 0.0160 G, and 0.0065 G), indicating the effectiveness of our module design. Although
DARNet shows energy efficiency, it still substantially lags behind S2M-Former in performance level.

Table 6: Leave-one-subject-out cross-validation experiments.

KUL DTU
Model 2-second 1-second 2-second 1-second

DARNet 74.65 ± 15.77 73.72 ± 15.09 59.12 ± 4.43 58.48 ± 4.67
DBPNet 74.82 ± 13.40 71.77 ± 14.07 56.83 ± 5.00 54.76 ± 4.38

M-DBPNet 72.83 ± 12.49 71.72 ± 13.35 54.48 ± 5.57 53.56 ± 6.16
S2M-Former 75.75 ± 13.43 74.37 ± 12.57 59.75 ± 5.25 57.70 ± 4.21

We further conduct cross-subject
(LOSO) validation on the KUL
and DTU datasets to evaluate the
model’s robustness across subjects,
consistent with previous methods
[5, 43]. This setting presents a more
challenging and realistic evaluation
scenario, as the model must gener-
alize to entirely unseen subjects. As
summarized in Table 6, our proposed S2M-Former consistently outperforms all competing methods
across both 1-second and 2-second decision windows. Notably, it achieves the highest accuracy of
75.75% on KUL and 59.75% on DTU under the 2-second window, while maintaining competitive
performance even in the more context-constrained 1-second window. These results underscore
the strong generalization ability of S2M-Former across broad experimental settings, validating its
effectiveness in real-world AAD scenarios where inter-subject differences are prominent.

6 Conclusion

In this work, we introduce S2M-Former, an efficient spiking symmetric mixing network designed
to address key challenges in AAD tasks. By integrating spike-driven hierarchical modeling with
spatial-frequency complementary learning, our model achieves high accuracy while maintaining
computational efficiency. S2M-Former not only delivers competitive state-of-the-art performance,
but also demonstrates robust generalization across diverse evaluation settings, including unseen data
and subjects. Furthermore, it outperforms recent dual-branch models with fewer parameters and
lower energy consumption, while avoiding isolated learning paradigms. These advantages make
S2M-Former a promising neuromorphic solution for energy-efficient auditory attention decoding.
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A Technical Appendices

A.1 EEG Feature Embedding

We segment the evoked EEG into decision windows employing the sliding window method. Each
decision window E is represented as an C × T matrix, which is formed as E = [e1, e2, ..., et] ∈
RC×T , where T denotes the length of the window, and C represents the number of EEG channels.
Each column ei corresponds to the EEG signal across all channels at a specific time sample t.

As shown in Figure. 2, our proposed S2M-Former adopts a dual-branch architecture to process two
types of feature embeddings derived from evoked EEG data E. For clarity, we refer to them as the
spatial branch and the frequency branch, and elaborate on the corresponding input embeddings ES

and EF in the following sections.

For the spatial branch, the CSP algorithm is adopted [12], which has demonstrated the effectiveness
of extracting primary spatial features for AAD tasks. Specifically, CSP finds the optimal spatial filters
using covariance matrices [13]. The processing can be formed as ES = CSP (E) ∈ Rdn×T , where
dn is the number of components to decompose EEG signals. Similar to the DARNet [5], we select the
dn = C = 64. It is worth noting that some previous works [5, 6, 7], have regarded the CSP-extracted
branch as the temporal branch. Although ES retains the sampling points T , we prefer to define it as
the spatial-(temporal) branch.

For the frequency branch, we firstly decompose the EEG signals into five frequency bands (from
δ band to γ band), considering the power spectrum of different frequencies, we further extract
the differential entropy (DE) feature from each frequency band and then project them onto a size
of H × W 2D topological maps to utilize their topological patterns [14, 15]. Specifically, in the
implementation, H = W = 32. Taking a specific frequency band as an example, the spectral feature
can be formed as EFi = DE(Ei) ∈ R1×H×W , where i denotes the ith frequency band. Finally, we
concatenate five maps into a EF = [EF1, EF2, ..., EF5] ∈ R5×H×W .

A.2 Spiking Neuron

To achieve intra-module communication, we employ the Leaky Integrate-and-Fire (LIF) as the spiking
neuron. The following discrete-time equations govern the dynamics of an LIF neuron:

H[t] = V [t− 1]− 1

τ
((V [t− 1]− Vreset)) +X[t], (20)

S[t] = Θ (H[t]− Vth) , (21)

V [t] = H[t] (1− S[t]) + VresetS[t], (22)

where τ is the membrane time constant, X[t] is the input current at time step t, Vreset is the reset
potential, and Vth is the firing threshold. Eq. (20) describes the membrane potential update, while Eq.
(21) models spike generation, where Θ(v) is the Heaviside step function: if H[t] ≥ V th, Θ(v) = 1,
indicating a spike; otherwise, Θ(v) = 0. S[t] represents whether the neuron fires a spike at time step
t. Eq. (22) defines the reset of the membrane potential, where H[t] and V [t] denote the membrane
potential before and after spike generation at time step t, respectively.

To enhance membrane potential awareness across inter-module connections within the S2M-Former,
we propose the CPLIF neuron. The membrane potential update rule for CPLIF can refer to Eq. (1),
which extends the standard PLIF by assigning a learnable membrane time constant to each individual
channel. This design enables finer control over temporal dynamics at each discrete time, allowing
more expressive and adaptive modeling. Here, τl[c] is the softmax activation function to perceive
channel interaction, and also ensures that 1

τl[c]
∈ (1,∞). The firing and reset equations of the CPLIF

neuron are the same as the Eq. (21) and Eq. (22) of the standard LIF neuron.

A.3 Datasets

1) KUL [19, 46]: The dataset consists of 64-channel EEG recordings from 16 normal-hearing
subjects, collected using a BioSemi ActiveTwo system at a sampling rate of 8192 Hz. Each subject
was instructed to focus on one of two simultaneous speakers. The auditory stimuli, consisting of four
Dutch short stories narrated by three male Flemish speakers, were presented under two conditions:
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Table 7: Implementation details for KUL, DTU, and AV-GC datasets.

Datasets KUL DTU AV-GC

Training Epochs 300
Batch Size 32 (Subject-dependent setting) / 128 (Subject-independent setting)
Optimizer Adam
Learning Rate (Within-trial) 1e-3 5e-4 5e-4
Learning Rate (Cross-trial) 2e-4
Learning Rate (Cross-subject) 2e-3
Weight Decay 1e-2
Spiking Neuron LIF (τ=2.0, Vthreshold=1.0), CPLIF (τ=2.0, Vthreshold=1.0)
Time Steps 4
Surrogate Function Atan (α=5.0)
LR Scheduler Cosine Annealing WarmRestarts
Seed 200
GPUs RTX 4090

dichotic (dry) presentation, with one speaker per ear, and head-related transfer function (HRTF)
filtered presentation simulating speech from 90◦ to the left or right. The stimuli were delivered
through in-ear headphones, filtered at 4 kHz, and presented at 60 dB. Each subject participated in 8
trials, each lasting 6 minutes, for a total of 12.8 hours of EEG data.

2) DTU [20, 47]: The dataset contains 64-channel EEG recordings from 18 normal-hearing subjects,
collected using a BioSemi ActiveTwo system at a sampling rate of 512 Hz. Each subject was
instructed to focus on one of two simultaneous speakers, who narrated Danish audiobooks through
ER-2 earphones set at 60 dB. The audiobooks, narrated by three male and three female speakers,
were presented at a 60◦ angle relative to the subject’s frontal position. The auditory stimuli were
presented in a mixed speech format with varying reverberation levels. Each subject completed 60
trials, each lasting 50 seconds, resulting in a total of 15 hours of EEG data.

3) AV-GC-AAD [21, 41, 48]: The audiovisual, gaze-controlled auditory attention dataset consists
of EEG recordings from 16 normal-hearing subjects who focused on one of two competing talkers
located at ± 90° relative to the subject. EEG data were recorded using a 64-channel BioSemi
ActiveTwo system. The auditory stimuli, consisting of Dutch science podcasts, were presented
through insert earphones using HRTF to simulate spatial separation. The experiment involved 4
conditions—no visuals, static video, moving video, and moving target noise—each with 2 trials
lasting 10 minutes. Detailed information on each condition is available in Rotaru et al [21]. The
visual setups varied to explore the effect of gaze on auditory attention, with the to-be-attended speaker
switching sides after 5 minutes to simulate a spatial attention shift. EEG data from subjects #2,
#5, and #6 were excluded due to a lack of consent for public sharing. Subjects #1 and #3 were
further excluded due to missing condition 4 recordings, leaving 11 subjects for analysis. For the
cross-trial setting, a controlled paradigm with four conditions is used: conditions 1 (auditory-only)
and 2-3 (audio-visually static/moving videos) for training, and condition 4 (incongruent moving-
target noise) for testing. This setting evaluates model robustness against cross-modal conflicts by
examining domain shifts between audiovisual-related (training) and mismatched (testing) conditions,
and analyzing how audiovisual congruency impacts generalization in AAD models.

A.4 Experimental Setup

We use the Adam optimizer with a learning rate to minimize the cross-entropy loss, setting the batch
size to 32 (or 128 for subject-independent setting) and training for 300 epochs, more details are
shown in the Table 7. The hidden dimension D in S2M-Former is set to 8. An early stopping criterion
is applied if no significant improvement in the loss function is observed over 25 consecutive epochs,
automatically halting training. The best model is saved based on both validation loss and accuracy, and
the model with the best performance is loaded for final evaluation. To ensure fairness, our proposed
model and all reproducible baselines are trained following their originally reported optimization
strategies, including the specific choice of optimizer, learning rate, and related hyperparameters.
In addition, the same random seed is applied across all experiments to ensure reproducibility and
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Figure 4: Visualization comparison across all subjects on three datasets under within-trial settings.

fairness. All models are constructed and implemented using the PyTorch and SpikingJelly [30]
frameworks, and all experiments are conducted on an NVIDIA GeForce RTX 4090 GPU.

A.5 Conversion Steps from S2M-Former to SM-Former

To enable a fair and controlled comparison between spiking and non-spiking models, we construct
a matched ANN counterpart to our proposed S2M-Former, termed SM-Former. SM-Former
retains the overall architectural structure, layer depth, and parameter budget of S2M-Former, while
systematically replacing all spike-driven components with their standard ANN analogues. The
conversion steps are detailed below:

• CPLIF Neuron Removal: All channel-wise parametric PLIF (CPLIF) neurons are removed,
eliminating inter-module temporal spiking dynamics.

• Branch Encoder Conversion: In both the spatial (SBE) and frequency (FBE) branches, all spiking
neuron layers (e.g., LIF-Conv-BN) are replaced by ANN layers (e.g., Conv-BN-ReLU).

• SCSA Replacement: The Spiking Channel Self-Attention (SCSA) module is replaced with a
standard ANN-based channel-wise attention, employing QKV projections and softmax operations.

• SMSC Conversion: All spiking preprocessing blocks in the Spiking Multi-Scale Convolution
(SMSC) module are replaced with conventional convolutional layers, such as DWConv-BN-ReLU.

• SGCM Conversion: In the Spiking Gated Channel Mixer (SGCM), blocks like LIF-Conv-BN and
LIF-DWConv-BN-LIF are replaced with Conv-BN-ReLU and DWConv-BN-ReLU, respectively.

• MPTM Simplification: The Membrane Potential-aware Token Mixer (MPTM) retains its structure
but eliminates all spiking operations, replacing spike-gating and temporal fusion mechanisms with
standard ANN counterparts.

This conversion preserves the representational capacity and computational structure, ensuring that the
performance differences between S2M-Former and SM-Former arise from the use of spike-driven
versus non-spiking operations, rather than from architectural or parameter count differences.

A.6 Comprehensive Results

Figure. 5 presents a comparative statistics of model performances under within-trial and cross-
trial settings. An overarching trend emerges from both settings: dual-branch architectures (e.g.,
DBPNet, M-DBPNet, and S2M-Former) consistently outperform single-branch models (e.g.,
MBSSFCC and DARNet), highlighting the strength of leveraging multiple feature representa-
tions in AAD tasks. In the within-trial scenario (Figure. 5a), S2M-Former achieves the high-
est decoding accuracy in 4 out of 9 conditions, outperforming DBPNet [6] and DARNet [5],
which each lead in only 2 conditions, indicating its superior performance on subject-seen data
across all datasets. Moreover, in the more challenging cross-trial setting (Figure. 5b), S2M-
Former exhibits clear superiority, attaining top-1 accuracy in 7 out of 9 conditions, 3.5 times
as many as all competing models combined, highlighting its strong generalization across subjects.
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Table 8: Ablation study and compare with recent SNN models on KUL dataset.
Within-trial Cross-trial

Methods Feature
Embeddings

Param
(M)

Time
Steps 2s 1s 2s 1s

S2M-Former (proposed) CSP+DE 0.06 4 93.71 ± 8.14 92.27 ± 8.66 72.39 ± 25.21 71.22 ± 25.97
SM-Former (ANN) CSP+DE 0.06 — 91.38 ± 9.71 90.65 ± 10.80 69.46 ± 23.75 66.69 ± 23.52

CPLIF → LIF CSP+DE 0.06 4 92.77 ± 9.01 91.60 ± 9.47 71.23 ± 24.37 69.50 ± 25.24
w/o SGCM & MPTM CSP+DE 0.05 4 91.99 ± 10.27 90.67 ± 10.36 70.55 ± 25.88 69.04 ± 25.89

Spatial Branch CSP 0.04 4 90.91 ± 9.22 89.68 ± 10.01 69.87 ± 24.20 67.79 ± 25.06
Frequency Branch DE 0.01 4 89.15 ± 10.54 88.90 ± 10.03 70.18 ± 22.09 68.09 ± 21.42

QKFormer [39] DE 0.29 4 85.42 ± 11.36 84.87 ± 12.82 65.96 ± 20.97 65.24 ± 23.36
Spike-driven Transformer [35] DE 0.37 4 86.24 ± 11.20 84.81 ± 13.51 64.94 ± 22.78 64.83 ± 21.17

Spikformer [34] DE 0.37 4 83.16 ± 12.36 82.90 ± 13.46 64.11 ± 22.00 63.06 ± 22.79

Table 9: Ablation study and compare with recent SNN models on AV-GC dataset.
Within-trial Cross-trial

Methods Feature
Embeddings

Param
(M)

Time
Steps 2s 1s 2s 1s

S2M-Former (proposed) CSP+DE 0.06 6/4 91.83 ± 6.66 89.24 ± 7.59 70.64 ± 18.65 65.77 ± 15.58
SM-Former (ANN) CSP+DE 0.06 — 90.66 ± 6.84 88.07 ± 7.10 68.83 ± 17.50 66.52 ± 13.75

CPLIF → LIF CSP+DE 0.06 6/4 91.23 ± 6.78 88.68 ± 7.57 69.54 ± 18.38 65.19 ± 16.03
w/o SGCM & MPTM CSP+DE 0.05 6/4 90.72 ± 6.63 88.03 ± 7.45 68.84 ± 16.24 64.51 ± 15.90

Spatial Branch CSP 0.04 6/4 89.12 ± 7.31 87.33 ± 7.41 68.02 ± 15.00 63.85 ± 14.55
Frequency Branch DE 0.01 6/4 80.42 ± 8.15 78.21 ± 8.24 63.26 ± 15.08 62.25 ± 15.41

QKFormer [39] DE 0.29 6/4 77.87 ± 6.42 76.90 ± 8.81 63.54 ± 13.39 60.20 ± 13.02
Spike-driven Transformer [35] DE 0.37 6/4 80.15 ± 7.60 78.49 ± 7.85 62.53 ± 15.34 59.48 ± 11.98

Spikformer [34] DE 0.37 6/4 75.05 ± 7.66 73.09 ± 6.91 64.16 ± 14.69 63.32 ± 14.23
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Figure 5: Performance statistics across all
models under within- and cross-trial.

Remarkably, S2M-Former achieves this with only 0.06M
parameters, significantly outperforming larger mod-
els, such as MBSSFCC [15] (16.81M) and DBPNet
(0.88M), thereby demonstrating exceptional parameter
efficiency. These results collectively reinforce the ef-
fectiveness of S2M-Former in delivering robust and ef-
ficient AAD solutions. Moreover, while DBPNet’s top-1
count drops from 2 (within-trial) to 0 (cross-trial), M-
DBPNet [7] maintains stable performance and outper-
forms DBPNet under cross-trial evaluation, corroborat-
ing prior findings on its stronger generalization ability.

We further provide the visualization analysis across all
subjects on three datasets under within-trial settings, as
shown in Figure. 4. In terms of this setting, we found
that the distributions of decoding accuracies across all
models and datasets are relatively concentrated, so we
adopt the conventional 1.5 IQR rule which can effec-
tively distinguish true variability from extreme outliers
without excessively compressing the distribution range,
thereby preserving the subtle differences among meth-
ods while avoiding misleading impressions of over-
stability. Consistent with findings under the cross-trial
setting, our S2M-Former exhibits the fewest outliers,
particularly demonstrating its advantage under the 1-second and 2-second decision windows and
DTU dataset. We further supplement the results with a comparison across all subjects on the DTU
dataset under the cross-trial setting, as shown in Figure. 6. For the vast majority of methods, the
decoding accuracy of all subjects exceeds the chance level. Notably, consistent with the observations
in Figure. 3, our method exhibits fewer outliers compared to other baselines, demonstrating superior
robustness and generalization capability. A phenomenon worth discussing is that the performance
degradation from within-trial to cross-trial on the DTU dataset is less severe compared to that ob-
served on the KUL and AV-GC datasets. We attribute this to the larger number of trials per subject
in the DTU dataset, which significantly enhances training stability and improves testing robustness
under the zero-shot condition. In contrast, datasets with fewer trials per subject are more prone to
poor generalization, potentially resulting in below-chance performance on the test set.
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Figure 8: Visualization of the accuracy and firing rate change with the number of time steps TS ,
where the blue line is the accuracy and the red line is the firing rate.
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Figure 6: Comparison across all subjects
on the DTU dataset under cross-trial.

We conducted comprehensive ablation studies on the
KUL dataset, as shown in Table 8. The proposed S2M-
Former consistently outperforms its ANN counterpart
(SM-Former) across all settings, demonstrating the ad-
vantage of our spike-driven design. For example, under
the 2-second within-trial condition, S2M-Former achieves
93.71% (SD: 8.14), surpassing SM-Former’s 91.38% (SD:
9.71). Replacing the CPLIF neurons with standard LIF
leads to consistent performance drops, validating the ben-
efit of channel-wise adaptive time constants (e.g., 71.22%
→ 69.50% under 1s cross-trial). Removing SGCM and
MPTM further degrades results, highlighting their com-
plementary roles in biologically plausible token-wise and
channel-wise modeling. Branch-level ablations show that
the Spatial branch performs better in within-trial settings
(e.g., 90.91% vs. 89.15%), while the Frequency branch
is more effective in cross-trial scenarios (e.g., 70.18% vs.
69.87%). Notably, despite having only 0.01M parameters, the Frequency-branch alone matches
or exceeds recent SNN models such as QKFormer [39], Spike-driven Transformer [35], and Spik-
former [34] (e.g., 89.15% vs. 85.52%, 86.24% and 83.16%), with more than 29 × fewer parameters
(0.01 vs. 0.29M). Ablation results on the AV-GC dataset (Table 9) show generally consistent trends.
Two exceptions are observed: (1) SM-Former slightly outperforms S2M-Former under the 1-second
cross-trial condition; and (2) the Spatial-branch consistently outperforms the Frequency-branch across
all settings, aligning with observations from the DTU dataset. The above analyses further support the
robustness of S2M-Former and the generalizability of its key components across datasets.
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Figure 7: Ablation studies on SCSA and
SMSC modules on DTU dataset under
within-trial.

We evaluated the effect of time steps on model per-
formance under the cross-trial setup with a 2-second
decision window. Figure. 8 shows the classification
accuracy and corresponding average firing rate across
all subjects for three datasets, with time steps extend-
ing from 1 to 8. Specifically, S2M-Former achieves
the highest accuracy of 72.39% with a firing rate of
4.8% on the KUL dataset, 76.25% with 1.3% on DTU,
and 70.64% with 1.4% on AV-GC. With the initial in-
crease in time steps, the accuracy generally improves
(e.g., from 3 to 4 time steps on KUL, 1 to 4 time steps
on DTU, and 1 to 4 time steps on AV-GC). However,
beyond 4 time steps, the performance gain becomes
marginal, while the cumulative firing rate continues
to rise, which is particularly evident on the KUL and
AV-GC datasets. This observation suggests that fur-
ther increasing the temporal resolution yields limited
improvements in accuracy but incurs additional com-
putational cost. Therefore, we choose 4 time steps as a trade-off, striking a favorable balance between
performance and energy efficiency.
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Figure. 7 presents the ablation results of the hierarchical representation learning modules in S2M
block, consisting of SCSA for modeling long-range global dependencies and SMSC for capturing
local fine-grained patterns. Even when either module is removed, the subsequent SGCM and MPTM
layers are retained to ensure meaningful cross-branch complementary fusion learning. Under the
shortest time window (0.1s), SCSA (60.79 ± 4.23) outperforms SMSC (60.19 ± 4.60). However,
the combination of SCSA and SMSC significantly boosts accuracy to 75.84 ± 5.46, yielding a
15.05% improvement over SCSA alone, highlighting the comprehensive strengths of global and local
representations. At the 1s window, SMSC slightly outperforms SCSA (78.51 ± 6.64 vs. 78.01 ±
6.93), suggesting that as temporal context extends, modeling local dynamics becomes increasingly
important. Their integration further boosts performance to 82.87 ± 6.92. At the 2s window, SMSC
shows advantage over SCSA (81.54 ± 6.66 vs. 80.44 ± 5.47). Combining both modules achieves the
highest accuracy of 85.28 ± 5.61, improving by 3.74% over SMSC and 4.84% over SCSA, validating
the effectiveness of our S2M-Former architecture.
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Figure 9: Firing rate analysis of S2M-Former
across all datasets.

To further assess the energy efficiency and dynamic
characteristics of S2M-Former, we analyze the av-
erage spike firing rates within its spatial branch,
frequency branch, and fusion module (SGCM &
MPTM) under cross-trial settings on three datasets
(Figure. 9). All components exhibit low firing rates
(<0.08), confirming the model operates with the
sparse nature of spiking activations, which mini-
mizes computation and improves overall efficiency.
Among the branches, the spatial branch generally
exhibits the highest firing rates, consistent with ab-
lation results (Table 4, 8, and 9), where spatial cues
contribute more substantially to performance in
most conditions. Interestingly, on the KUL dataset
with a 2s window, the frequency branch surpasses
the spatial branch in firing activity. This corresponds with its performance under this setting and
suggests that S2M-Former can adapt the firing behavior of its branches in response to the informative-
ness of spatial or frequency cues in the input dynamically. As decision windows extend, firing rates
rise due to increased input information, yet sparsity is still preserved. Notably, the fusion module
consistently shows the lowest firing rates yet remains crucial for performance (per ablation studies).
This phenomenon suggests that the fusion module can effectively coordinate and integrate abstracted
representations from branches with minimal spiking activity. Such a mechanism might mimic the
sparsely active characteristics observed in integration layers [49] of biological neural systems.

A.7 Theoretical Calculation of Energy Consumption

For ANNs, the theoretical energy consumption is calculated by multiplying the total number of
multiply-accumulate (MAC) operations by the energy per MAC operation on specified hardware.
Using the fvcore library [50] to compute floating-point operations (FLOPs), the energy consumption
can be expressed as:

EANN = EMAC ×
L∑

l=1

FLOP l (23)

where FLOP denotes the number of MAC operations in layer l, and EMAC = 4.6pJ represents the
energy cost per MAC operation on 45nm hardware [51].

For SNNs, energy consumption involves both MAC operations and spike-driven accumulate (AC)
operations [31, 52]. The number of synaptic operations (SOPs) is calculated as:

SOP l = frl−1 × FLOP l, (24)

where frl−1 is the firing rate of spiking neuron layer l − 1, which can be computed as:

frl−1 =
1

T ×N

T∑
t=1

N∑
i=1

sl−1
i (t), (25)
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where T is the total number of time steps, N is the number of neurons in layer l − 1, and sl−1
i (t)

denotes the spike output (0 or 1) of the i-th neuron at time step t. FLOP l refers to the equivalent
MAC operations of layer l, and SOP l is the number of spike-based AC operations (SOPs). Assuming
the MAC and AC operations are performed on the 45nm hardware [51], the consumption of the
spiking transformer can be calculated as follows:

E = EMAC ×
(
FLOP 1

Conv

)
+ EAC ×

 N∑
i=2

SOP i
Conv +

M∑
j=1

SOP j
SSA

 , (26)

where SOPConv represents the SOPs of a convolution or linear layer, and SOPSSA represents the
SOPs of an SSA module, FLOP 1

Conv represents the FLOPs of the first layer before encoding input
frames into spikes. N is the total number of convolution layers and linear layers, and M is the
number of SSA modules. During model inference, several cascaded linear operation layers such as
convolution, linear, and BN layers, can be folded into one single linear operation layer [39], still
enjoying the AC-type operations with a spike-form input tensor.

The energy consumption calculation for our S2M-Former also follows Eq.(26). Specifically, the
MAC operations are primarily generated by the first convolution layer of the branch-specific spiking
encoders SBE and FBE, while the remaining parts involve SOP calculations.

A.8 Future Work and Limitation

Our proposed S2M-Former is a lightweight and low-power spiking neural network to tackle AAD
tasks, which has demonstrated its effectiveness through comprehensive experiments. Notably, it
utilizes only 0.06M parameters, significantly outperforming recent network models in terms of
parameter efficiency. In future research, we aim to further unlock the full potential and scalability of
S2M-Former. Additionally, SNNs are known for their spatial-temporal dynamics. In our solution,
S2M-Former achieves SOTA feature-oriented representation inter-mixing, but the utilization of CSP
and DE features inevitably disrupts the inherent temporal dynamics. In future work, we are committed
to exploring how to model the temporal dynamics inherent in EEG data.

Moreover, SNNs are particularly appealing for their compatibility with neuromorphic hardware due
to their sparse and event-driven nature. In line with recent influential SNN studies in other realms
(e.g., CV, NLP and Speech), we have reported the theoretical energy consumption of S2M-Former
and compared it against other SNN-based approaches. This analysis further validates the energy
efficiency of our model. To bridge algorithm and hardware co-design, we are currently conducting
hardware simulations of S2M-Former on brain-inspired neuromorphic platforms. This line of work
will help validate the real-world deployment potential of our model on dedicated low-power chips.
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