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ABSTRACT

In online marketing, the advertisers’ goal is balancing between achieving high
volumes and high profitability. The companies business units address this tradeoff
by maximizing the volumes while guaranteeing a minimum Return On Investment
(ROI) level. Technically speaking, such a task can be naturally modeled as a
combinatorial optimization problem subject to ROI and budget constraints that
can be solved online. In this picture, the learner’s uncertainty over the constraints’
parameters plays a crucial role since the algorithms’ exploration choices might lead
to their violation during the entire learning process. Such violations represent a
major obstacle to adopting online techniques in real-world applications. Thus, con-
trolling the algorithms’ exploration during learning is paramount to making humans
trust online learning tools. This paper studies the nature of both optimization and
learning problems. In particular, we show that the learning problem is inapprox-
imable within any factor (unless P = NP) and provide a pseudo-polynomial-time
algorithm to solve its discretized version. Subsequently, we prove that no online
learning algorithm can violate the (ROI or budget) constraints a sublinear number
of times during the learning process while guaranteeing a sublinear regret. We
provide the GCB algorithm that guarantees sublinear regret at the cost of a linear
number of constraint violations, and GCBsafe that guarantees w.h.p. a constant
upper bound on the number of constraints violations at the cost of a linear regret.
Moreover, we designed GCBsafe(ψ, ϕ), which guarantees both sublinear regret
and safety w.h.p. at the cost of accepting tolerances ψ and ϕ in the satisfaction
of the ROI and budget constraints, respectively. Finally, we provide experimental
results to compare the regret and constraint violations of GCB and GCBsafe.

1 INTRODUCTION

Nowadays, Internet advertising is de facto the leading advertising medium. Notably, while the
expenditure on physical ads, radio, and television has been stable for a decade, that on Internet
advertising is increasing with a ratio of ≈ 20% per year, reaching the considerable amount of 189
billion USD in 2021 only in the US IAB (2021). Internet advertising has two main advantages over
traditional channels: it provides precise ad targeting and allows an accurate, real-time evaluation
of investment performance. On the other hand, the amount of data the platforms provide and the
plethora of parameters to be set make its optimization impractical without using artificial intelligence.

The advertisers’ goal is usually to set bids in the attempt to balance the tradeoff between achieving high
volumes, corresponding to maximizing the sales of the products to advertise, and high profitability,
corresponding to maximizing Return On Investment (ROI). The companies’ business units need
simple ways to address this tradeoff, and customarily, they maximize the volumes while constraining
ROI to be above a given threshold. The importance of ROI constraints, in addition to standard budget
constraints (i.e., spent per day for advertising), is remarked in several empirical studies. We mention,
e.g., the data analysis on the auctions performed on Google’s AdX by Golrezaei et al. (2021), showing
that many advertisers take into account ROI constraints, particularly in hotel booking. However,
no platform provides features to force the satisfaction of ROI constraints, and some platforms (e.g.,
TripAdvisor, and Trivago) do not even allow the setting of daily budget constraints. Thus, the
problem of satisfying those constraints is a challenge that advertisers must address by designing
suitable bidding strategies. In this picture, uncertainty plays a crucial role as the revenue and cost
of the advertising campaigns are unknown beforehand and need to be estimated online by learning
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algorithms during the sequential arrival of data. As a result, the constraints are subject to uncertainty,
and wrong parameter estimations can make the ROI and budget constraints arbitrarily violated
when using an uncontrolled exploration like that used by classical online learning algorithms. Such
violations represent today the major obstacles to adopting AI tools in real-world applications, as
advertisers often are unwilling to accept such risks. Remarkably, this issue is particularly crucial in
the early stages of the learning process as adopting algorithms with an uncontrolled exploration when
a small amount of data is available can make the advertising campaigns’ performance oscillate by
a large magnitude, which advertisers negatively perceive. Therefore, to make humans trust online
artificial intelligence algorithms, controlling their exploration accurately to mitigate risks and provide
safety guarantees during the entire learning process is paramount.1

Original Contributions As customary in the online advertising literature, see, e.g., Devanur &
Kakade (2009), we assume stochastic (i.e., non-adversarial) clicks, and we adopt Gaussian Processes
(GPs) to model the problem. Let us remark that the assumption that clicks are generated stochastically
is reasonable in practice as the advertising platforms can limit manipulation due to malicious bidders.
For instance, Google Ads can identify invalid clicks and exclude them from the advertisers’ spending.
In this paper, we study the nature of both the optimization and learning problems. Initially, we
focus on studying our optimization problem without uncertainty, showing that no approximation
within any strictly positive factor is possible with ROI and budget constraints unless P = NP,
even in simple, realistic instances. However, when dealing with a discretized space of the bids as
it happens in practice, the problem admits an exact pseudo-polynomial time algorithm based on
dynamic programming. Most importantly, when the problem is with uncertainty, we show that no
online learning algorithm can violate the ROI and/or budget constraints a sublinear number of times
while guaranteeing a sublinear pseudo-regret. We provide an online learning algorithm, namely GCB,
providing pseudo-regret sublinear in the time horizon T at the cost of a linear number of violations of
the constraints. We also provide its safe version, namely GCBsafe, guaranteeing w.h.p. a constant
upper bound on the number of constraints’ violations at the cost of a regret linear in T . Inspired by the
two previous algorithms, we design a new algorithm, namely GCBsafe(ψ, ϕ), guaranteeing both the
violation w.h.p. of the constraints for a constant number of times and a pseudo-regret sublinear both in
T and the maximum information gain of the GP when accepting tolerances ψ and ϕ in the satisfaction
of the ROI and budget constraints, respectively. Finally, we performed an empirical study of our
algorithms in terms of pseudo-regret/number of constraint violations tradeoff in simulated settings,
showing the importance of adopting safety constraints and the effectiveness of our algorithms.

2 OPTIMIZATION PROBLEM

We are given an advertising campaign C = {C1, . . . , CN}, with N ∈ N and where Cj is the j-th
subcampaign and a finite time horizon of T ∈ N rounds (each corresponding to one day in our
application). In this work, as common in the literature on ad allocation optimization, we refer to a
subcampaign as a single ad or a group of homogeneous ads requiring setting the same bid. For every
round t ∈ {1, . . . , T} and every subcampaign Cj , an advertiser needs to specify the bid xj,t ∈ Xj ,
where Xj ⊂ R+ is a finite set of values that can be set for subcampaign Cj . For every round
t ∈ {1, . . . , T}, the goal is to find the values of bids maximizing the overall cumulative expected
revenue while keeping the ROI above a fixed value λ ∈ R+ and the budget below a daily value
β ∈ R+. Formally, the resulting constrained optimization problem at round t is as follows:

max
(x1,t,...,xN,t)∈X1×...×XN

N∑
j=1

vj nj(xj,t) (1a)

s.t.

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

≥ λ, (1b)

N∑
j=1

cj(xj,t) ≤ β, (1c)

where nj(xj,t) and cj(xj,t) are the expected number of clicks and the expected cost given the bid
xj,t for subcampaign Cj , respectively, and vj is the value per click for subcampaign Cj . We remark

1A discussion on the literature related to the topic of advertising with ROI and budget constraints is deferred
to Appendix A due to space reasons.
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that Constraint (1b) is the ROI constraint, forcing the revenue to be at least λ times the costs, and
Constraint (1c) keeps the daily spend under a predefined overall budget β.

At first, we show that, even if all the values of the parameters of the optimization problem are known,
the optimal solution cannot be approximated in polynomial time within any strictly positive factor
(even depending on the size of the instance) unless P = NP.

Theorem 1 (Inapproximability). For any ρ ∈ (0, 1], there is no polynomial-time algorithm returning
a ρ-approximation to the problem in Equations (1a)-(1c), unless P = NP.

The proof follows from a reduction of our problem from SUBSET-SUM that is an NP-hard prob-
lem.2,3 It is well known that SUBSET-SUM is a weakly NP-hard problem, admitting an exact
algorithm whose running time is polynomial in the size of the problem and the magnitude of the
data involved rather than the base-two logarithm of their magnitude. The same can be shown for our
problem. Indeed, we can design a pseudo-polynomial-time algorithm to find the optimal solution in
polynomial time w.r.t. the number of possible values of revenues and costs. In real-world settings, the
values of revenue and cost are in limited ranges and rounded to the nearest cent, allowing the problem
to be solved in a reasonable time. Therefore, in what follows, we assume to be given a discretization
of the daily costs and revenue value ranges.

3 ONLINE LEARNING PROBLEM FORMULATION

We focus on the case in which nj(·) and cj(·) in Equations (1a)-(1c) are unknown functions whose
values need to be estimated online. This goal is achieved using their noisy realizations ñj,h(xj,t)
and c̃j,h(xj,t) obtained setting the bid xj,t on the j-th subcampaign at time h. Our problem can be
naturally modeled as a multi-armed bandit where the available arms are the different values of the bid
xj,t ∈ Xj satisfying the combinatorial constraints of the optimization problem.4 More specifically,
our goal is to design a learning policy U returning, at every round t, a super-arm {x̂j,t}Nj=1, i.e., an
arm profile specifying one bid per subcampaign.5 Since the policy U can only use estimates of the
unknown number-of-click and cost functions built using past realizations ñj,h(xj,t) and c̃j,h(xj,t)
with h < t, the solutions returned by policy U may not be optimal and/or violate Constraints (1b)
and (1c) when evaluated with the true values. Therefore, we must design U so that the violations
occur only for a limited number of rounds over the time horizon T .

We are interested in evaluating learning policies U in terms of revenue losses (a.k.a. pseudo-regret)
and safety regarding ROI and budget constraints violations.

Definition 1 (Learning policy pseudo-regret). Given a learning policy U, the pseudo-regret is:

RT (U) := T G∗ − E

 T∑
t=1

N∑
j=1

vj nj(x̂j,t)

 ,
where G∗ :=

∑N
j=1 vj nj(x

∗
j ) is the expected revenue provided by a clairvoyant algorithm, the set

of bids
{
x∗j
}N
j=1

is the optimal clairvoyant solution to the problem in Equations (1a)-(1c), and the
expectation E[ · ] is taken w.r.t. the stochasticity of the learning policy U.

Definition 2 (η-safe learning policy). Given η ∈ (0, T ], a learning policy U generating an allocation
{x̂j,t}Nj=1 is η-safe if the expected number of times it violates at least one of the Constraints (1b)
and (1c) from t = 1 to t = T is less than η or, formally:

T∑
t=1

P

∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< λ ∨
N∑
j=1

cj(x̂j,t) > β

 ≤ η.

2Given a set S of integers ui ∈ N+ and an integer z ∈ N+, SUBSET-SUM requires to decide whether there
is a set S∗ ⊆ S with

∑
i∈S∗ ui = z.

3For space reasons, the proofs are deferred to the Supplementary Material.
4Here, we assume that the value per click vj is known. Refer to Nuara et al. (2018) if it is unknown.
5Even if this setting is closely related to the one studied by Badanidiyuru et al. (2013), the non-matroidal

nature of the constraints does not allow to cast the bid allocation problem above into the bandit-with-knapsack
framework.
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Algorithm 1 GCB and GCBsafe pseudo-code

Input: sets of bid values X1, . . . , XN , ROI threshold λ, daily budget β
1: Initialize the GPs for the number of clicks and costs
2: for t ∈ {1, . . . , T} do
3: for j ∈ {1, . . . , N} do
4: for x ∈ Xj do
5: Compute n̂j,t−1(x) and σ̂nj,t−1(x) according to Eq. equation 2 and equation 3, respec-

tively
6: Compute ĉj,t−1(x) and σ̂cj,t−1(x) according to Eq. equation 4 and equation 5, respec-

tively
7: Compute µ according to Eq. equation 6 or equation 7
8: Call the optimization subroutine Opt(µ, λ) to get a solution {x̂j,t}Nj=1

9: Set the prescribed allocation {x̂j,t}Nj=1 during round t

10: Get revenue
∑N
j=1 vj ñj(x̂j,t) and pay costs

∑N
j=1 c̃j(x̂j,t)

11: Update the GPs using the new information ñj,t(x̂j,t) and c̃j,t(x̂j,t)

In principle, we would design no-regret algorithms, i.e., whose pseudo-regret RT (U) increases
sub-linearly w.r.t. T , and, at the same time, that are η-safe, with η sublinearly increasing in (or is
independent of) T . However, the following theorem shows that no online learning algorithm can
provide a sublinear pseudo-regret while guaranteeing safety.

Theorem 2 (Pseudo-regret/safety tradeoff). For every ϵ > 0 and time horizon T , there is no algorithm
with pseudo-regret smaller than (1/2− ϵ)T and that violates (in expectation) the constraints less
than (1/2− ϵ)T times.

This impossibility result is crucial in practice, showing that no online learning algorithm can theo-
retically guarantee both a sublinear regret and a sublinear number of violations of the constraints.
Therefore, advertisers must accept a tradeoff between the two requirements in real-world applications.

4 PROPOSED ALGORITHMS

Even if the above-defined problem is closely related to the Combinatorial MAB formulation provided
by Chen et al. (2013), designing algorithms for this setting requires dealing with an additional
challenge. Indeed, in the classical Combinatorial MAB framework, the set of arms can be chosen
from a fixed and known set of arms. Instead, in the framework we defined, the set of constraints
influences the set of arms that are feasible according to the constraints. In the following, we propose
two algorithms that carefully define the feasible set of arms at each round to deal with this issue.

We provide the pseudo-code of our algorithms, namely GCB and GCBsafe, in Algorithm 1, which
solves the problem in Equations (1a)-(1c) online while guaranteeing sublinear regret or η-safety,
respectively. Algorithm 1 is divided into an estimation phase (Lines 3-7) based on Gaussian Processes
(GPs) (Rasmussen & Williams, 2006) to model the parameters whose values are unknown, and an
optimization subroutine to solve the optimization problem once given the estimates (Line 8). Finally,
in the last phase, the newly acquired data are used to improve the GP estimates that will be used in
the following round (Lines 10-11).

Estimation Phase In Algorithm 1, GPs are used to model functions nj(·) and cj(·), describing
the expected number of clicks and the costs, respectively. The employment of GPs to model
these functions provides several advantages w.r.t. other regression techniques, such as a probability
distribution over the possible values of the functions for every bid value x ∈ Xj relying on a finite
set of samples. GPs use the noisy realization of the actual number of clicks ñj,h(x̂j,h) collected
from each subcampaign Cj for every previous round h ∈ {1, . . . , t− 1} to generate, for every bid
x ∈ Xj , the estimates for the expected value n̂j,t−1(x) and the standard deviation of the number
of clicks σ̂nj,t−1(x). Analogously, using the noisy realizations of the actual cost c̃j,h(x̂j,h), with
h ∈ {1, . . . , t−1}, GPs generate, for every bid x ∈ Xj , the estimates for the expected value ĉj,t−1(x)
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and the standard deviation of the cost σ̂cj,t−1(x). Formally, the above values are computed as follows:
n̂j,t−1(x) := kj,t−1(x)

⊤[Kj,t−1 + σ2I]−1kj,t−1(x), (2)

σ̂nj,t−1(x) := kj(x, x)− k⊤
j,t−1(x)[Kj,t−1 + σ2I]−1kj,t−1(x), (3)

ĉj,t−1(x) := h⊤
j,t−1(x)[Hj,t−1 + σ2I]−1hj,t−1(x), (4)

σ̂cj,t−1(x) := hj(x, x)− h⊤
j,t−1(x)[Hj,t−1 + σ2I]−1hj,t−1(x), (5)

where kj(·, ·) and hj(·, ·) are the kernels for the GPs over the number of clicks and costs, respectively,
Kj,t−1 and Hj,t−1 are the Gram matrix over the bids selected during the rounds {1, . . . t− 1} for the
two GPs, σ2 is the variance of the noise of the GPs, kj,t−1(x) and hj,t−1 are vectors built computing
the kernel between the training bids and the current bid x, and I is the identity matrix of order t− 1.
For further details on using GPs, we point an interested reader to Rasmussen & Williams (2006).

The estimation subroutine returns the vector µ of parameters characterizing the specific instance of
the optimization problem. More specifically, it is composed as follows:

µ := (w̄1, . . . , w̄N ,w1, . . . ,wN ,−c̄1, . . . ,−c̄N ),
where w̄j = (w̄j(x1), . . . , w̄j(x|Xj |)) and wj = (wj(x1), . . . , wj(x|Xj |)), respectively, wj(xj) :=
vj nj(xj) and wj(xj) := vj nj(xj) denote different estimates for the revenue of a subcampaign Cj ,
and c̄j = (c̄j(x1), . . . , c̄j(x|Xj |)) is the vector characterizing the costs for subcampaign Cj . In the
optimization subroutine, wj(xj) and wj(xj) will be used to compute the value of Equation (1a)
and Equation (1b), respectively, and cj(xj) to compute the value of Equations (1b)-(1c). We use h
and h to denote potentially different estimated values of a generic function h used by the learning
algorithms in the next sections. The proposed algorithms are derived from two procedures to compute
µ. Formally, we have that the elements of µ are defined as follows:

GCB :

{
wj(x)=wj(x):= vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
,

cj(x) := ĉj,t−1(x)−
√
bt−1σ̂

c
j,t−1(x),

(6)

GCBsafe :


wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
,

wj(x) := vj
[
n̂j,t−1(x)−

√
bt−1σ̂

n
j,t−1(x)

]
,

cj(x) := ĉj,t−1(x) +
√
bt−1σ̂

c
j,t−1(x).

(7)

where bt is an uncertainty term that is appropriately set in Section 5.

The GCB and GCBsafe algorithm relies on the idea that the elements in the µ vector represent
the statistical upper/lower bounds to the expected values of the number of clicks and costs. This
follows a common choice in the bandit literature to incentivize exploration for uncertain quantities
(a.k.a. optimism in the face of uncertainty principle).

We remark that Accabi et al. (2018) propose the GCB algorithm to face general combinatorial bandit
problems where the arms are partitioned in subsets and the payoffs of the arms belonging to the same
subset are modeled with a GP. To obtain theoretical sublinear guarantees on the regret for our online
learning problem, we use a specific definition of µ vector, making Algorithm 1 be an extension of
GCB when the payoffs and constraints are functions whose parameters are modeled by multiple
independent GPs. With a slight abuse of terminology, we refer to this extension as GCB.

Optimization Subroutine The pseudo-code of the Opt(µ, λ) subroutine, solving the problem in
Equations (1a)-(1c) with a dynamic programming approach, is provided in Algorithm 2. It takes as
input the set of the possible bid valuesXj for each subcampaign Cj , the set of the possible cumulative
cost values Y such that maxy∈Y y = β, the set of the possible revenue values R, an ROI threshold
λ, and a vector µ characterizing the optimization problem. In particular, if the functions are known
beforehand, it holds h = h = h for both h = wj and h = cj . For the sake of clarity, wj(x) is used
in the objective function, while wj(x) and cj(x) are used in the constraints. At first, the subroutine
initializes a matrix M in which it stores the optimal solution for each combination of values y ∈ Y
and r ∈ R, and it initializes the vectors xy,r = xy,rnext = [ ], ∀ y ∈ Y, ∀ r ∈ R (Lines 1 and 2,
respectively). Then, the subroutine generates the set S(y, r) of the bids for subcampaign C1 (Line 3).
More precisely, the set S(y, r) contains only the bids x that induce the overall costs to be lower than
or equal to y and the overall revenue to be higher than or equal to r. The bid in S(y, r) that maximizes
the revenue calculated with parameters wj is included in the vector xy,r, while the corresponding
revenue is stored in the matrix M (Lines 4–5). Then, the subroutine iterates over each subcampaign
Cj , with j ∈ {2, . . . , N}, all the values y ∈ Y , and all the values r ∈ R (Lines 9–11). At each
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Algorithm 2 Opt(µ, λ) subroutine

Input: sets of bid values X1, . . . , XN , set of cumulative cost values Y , set of revenue values R,
vector µ, ROI threshold λ

1: Initialize M empty matrix with dimension |Y | × |R|
2: Initialize xy,r = xy,rnext = [ ], ∀y ∈ Y, r ∈ R
3: S(y, r) =

⋃
{x ∈ X1| c1(x) ≤ y ∧ w1(x) ≥ r} ∀y ∈ Y, r ∈ R

4: xy,r = argmaxx∈S(y,r) w1(x) ∀y ∈ Y, r ∈ R
5: M(y, r) = maxx∈S(y,r) w1(x) ∀y ∈ Y, r ∈ R
6: for j ∈ {2, . . . , N} do
7: for y ∈ Y do
8: for r ∈ R do
9: Update S(y, r) according to Equation equation 8

10: xy,rnext = argmaxs∈S(y,r)
∑j
i=1 wi(si)

11: M(y, r) = maxs∈S(y,r)
∑j
i=1 wi(si)

12: xy,r = xy,rnext

13: Choose (y∗, r∗) according to Equation (9)
14: Output: xy

∗,r∗

iteration, for every pair (y, r), the subroutine stores in xy,r the optimal set of bids for subcampaigns
C1, . . . , Cj that maximizes the objective function and stores the corresponding optimum value in
M(y, r). At every j-th iteration, the computation of the optimal bids is performed by evaluating a set
of candidate solutions S(y, r), computed as follows:⋃{

s = [xy
′,r′ , x] s.t. y′ + cj(x) ≤ y ∧ r′ + wj(x) ≥ r ∧ x ∈ Xj ∧ y′ ∈ Y ∧ r′ ∈ R

}
. (8)

This set is built by combining the optimal bids xy
′,r′ computed at the (j − 1)-th iteration with one of

the bids x ∈ Xj available for the j-th subcampaign, such that these combinations satisfy the ROI and
budget constraints. Then, the subroutine assigns the element of S(y, r) that maximizes the revenue to
xy,rnext and the corresponding revenue to M(y, r). At the end, the subroutine computes the optimal pair
(y∗, r∗) as follows:

(y∗, r∗) =
{
y ∈ Y, r ∈ R s.t.

r

y
≥ λ ∧M(y, r) ≥M(y′, r′), ∀y′ ∈ Y,∀r′ ∈ R

}
, (9)

and the corresponding set of bids xy
∗,r∗ , one bid per subcampaign.6 The following property holds:

Theorem 3 (Optimality). The Opt(µ, λ) subroutine returns the optimal solution to the problem in
Equations (1a)-(1c) when wj(x) = wj(x) = vj nj(x) and cj(x) = cj(x) for each j ∈ {1, . . . , N}
and the values of revenues and costs are in R and Y , respectively.

5 THEORETICAL GUARANTEES

In what follows, we provide the theoretical guarantees of the GCB and GCBsafe algorithms in terms
of pseudo-regret and η-safety. Moreover, we will show how to have sublinear guarantee on both of
them by allowing small violations of the constraints. Let us first define the maximum information
gain γj,t of the GP modeling the number of clicks of subcampaign Cj at round t, formally defined as:

γj,t :=
1

2
max

(xj,1,...,xj,t),xj,h∈Xj

∣∣∣∣It + Φ(xj,1, . . . , xj,t)

σ2

∣∣∣∣ ,
where It is the identity matrix of order t, Φ(xj,1, . . . , xj,t) is the Gram matrix of the GP computed
on the vector (xj,1, . . . , xj,t), and σ ∈ R+ is the noise standard deviation.

5.1 GUARANTEEING SUBLINEAR PSEUDO-REGRET: GCB

The GCB algorithm, which is based on the optimist in the face of uncertainty principle, provides the
following pseudo-regret bound:

6An analysis of the running time of Algorithm 1 is provided in Appendix C.
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Theorem 4 (GCB pesudo-regret). Given δ ∈ (0, 1), GCB applied to the problem in Equations (1a)-
(1c), with probability at least 1− δ, suffers from a pseudo-regret of:

RT (GCB ) ≤

√√√√8Tv2maxN
3bT

ln(1 + σ2)

N∑
j=1

γj,T ,

where bt := 2 ln
(
π2NQTt2

3δ

)
is an uncertainty term used to guarantee the confidence level required

by GCB, vmax := maxj∈{1,...,N} vj is the maximum value per click over all subcampaigns, and
Q := maxj∈{1,...,N} |Xj | is the number of bids in a subcampaign.

We remark that the upper bound provided in the above theorem is expressed in terms of the maximum
information gain γj,T of the GPs over the number of clicks. The problem of bounding γj,T for
a generic GP has already been addressed by Srinivas et al. (2010), where the authors present the
bounds for the squared exponential kernel γj,T = O((lnT )2) for 1-dimensional GPs. Notice that,
thanks to the previous result, the GCB algorithm using squared exponential kernels suffers from a
sublinear pseudo-regret since the terms γj,T is bounded by O((lnT )2), and the bound in Theorems 4
is O(N3/2(lnT )5/2)

√
T ). However, the GCB algorithm violates (in expectation) the constraints a

linear number of times in T .
Theorem 5 (GCB safety). Given δ ∈ (0, 1), GCB applied to the problem in Equations (1a)-(1c)

with bt := 2 ln
(
π2NQTt2

3δ

)
is η-safe where η ≥ T − δ

2NQT and, therefore, the number of constraints
violations is linear in T .

This result states that if we apply the GCB algorithm, we expect to have a large revenue over the
time horizon T at the cost of violating the ROI and/or the budget constraints most of the time over
the learning period. Therefore, in practical cases, such an algorithm might perform poorly regarding
ROI over the entire time horizon T . As highlighted before, this behaviour might lead to a premature
stop of the algorithm from the business unit. In what follows, we overcome this issue by being more
conservative in estimating the constraint satisfaction.

5.2 GUARANTEEING SAFETY: GCBsafe

The GCBsafe algorithm uses different bounds than GCB to evaluate the constraints and have stronger
guarantees about their satisfaction. In particular, while the estimates for the revenue of the algorithm
(Equation (1a)) are estimated using upper bounds, for the constraints (Equation (1b)-(1c)), we used
statistical lower bounds to guarantee they are satisfied at every round with high probability. This
choice comes at the cost of a linear worst-case performance in terms of pseudo-regret:

Theorem 6 (GCBsafe pseudo-regret). Given δ ∈ (0, 1), GCBsafe with bt := 2 ln
(
π2NQTt2

3δ

)
,

applied to the problem in Equations (1a)-(1c) suffers from a pseudo-regret Rt(GCBsafe) = Θ(T ).

However, GCBsafe violates the ROI and budget constraints only a constant number of times w.r.t. T .

Theorem 7 (GCBsafe safety). Given δ ∈ (0, 1), GCBsafe with bt := 2 ln
(
π2NQTt2

3δ

)
, applied to

the problem in Equations (1a)-(1c) is δ-safe and the number of constraints violations is constant in T .

In the experimental section, we will see that in practical cases, the loss due to the safety requirement
does not impact the performance in terms of regret too much. Conversely, in what follows, we show
that when a tolerance in the violation of the constraints is accepted, an adaptation of GCBsafe can be
exploited to obtain a sublinear pseudo-regret.

5.3 GUARANTEEING SUBLINEAR PSEUDO-REGRET AND SAFETY WITH TOLERANCE:
GCBsafe(ψ, ϕ)

Given an instance of the problem in Equations (1a)-(1c) that we call original problem, we build
an auxiliary problem in which we slightly relax the ROI and budget constraints. Formally, the
GCBsafe(ψ, ϕ) is the GCBsafe applied to the auxiliary problem in which the parameters λ and β
have been substituted with λ − ψ and β + ϕ, respectively.7 Thanks to the results in Section 5.2,

7A formal definition of the auxiliary problem is provided in Appendix B.4.
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GCBsafe(ψ, ϕ), w.h.p., does not violate the ROI constraint of the original problem by more than the
tolerance ψ and the budget constraint of the original problem by more than the tolerance ϕ.
Theorem 8 (GCBsafe(ψ, ϕ) pseudo-regret and safety with tolerance). Setting

ψ = 2
βopt + nmax

β2
opt

σ

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
and ϕ = 2Nσ

√
2 ln

(
π2NQT 3

3δ′

)
,

where δ′ ≤ δ, GCBsafe(ψ, ϕ) provides a pseudo-regret w.r.t. the optimal solution to the original

problem of O
(√

T
∑N
j=1 γj,T

)
with probability at least 1− δ − δ′

QT 2 , while being δ-safe w.r.t. the

constraints of the auxiliary problem.

The above result states that if we allow a violation of at most ψ of the ROI constraint and of ϕ of the
budget one, the result provided in Theorem 1 can be circumvented.8

Notice that the magnitude of the violation ψ increases linearly in the maximum number of clicks
nmax and

∑N
j=1 vj , that, in turn, increases linearly in the number of sub-campaigns N . This suggests

that in large instances, this value may be large. However, in practice, the maximum number of
clicks of a sub-campaign nmax is a sublinear function in the optimal budget βopt, and usually, it
goes to a constant as the budget spent goes to infinity. Moreover, the number of sub-campaigns N
usually depends on the budget, i.e., the budget planned by the business units is linear in the number
of sub-campaigns. As a result, βopt is of the same order of

∑N
j=1 vj , and therefore, since nmax is

sublinear in βopt and
∑N
j=1 vj is of the order of βopt, the final expression of ψ is sub-linear in βopt.

This means that the lower bound to ψ to satisfy the assumption needed by Theorem 8 goes to zero as
βopt increases.

Conversely, the most relevant dependence on the magnitude of ϕ is the number of campaigns N .
This is reasonable since the more the subcampaigns, the more we have potential variance over the
costs, which should be balanced with a larger violation of the constraint. This suggests that the
GCBsafe(ψ, ϕ) will not be effective for large instances of the analysed optimization problem.

6 EXPERIMENTAL EVALUATION

We experimentally evaluate our algorithms in terms of pseudo-regret and safety in synthetic settings.
The adoption of synthetic settings allows us to evaluate our algorithms in realistic scenarios and, at the
same time, to have an optimal clairvoyant solution necessary to measure the algorithms’ pseudo-regret
and safety. In the following experiment, we show that GCB suffers from significant violations of
both ROI and budget constraints even in simple settings, while GCBsafe does not.9

Setting We simulate N = 5 subcampaigns, with |Xj | = 201 bid values evenly spaced in [0, 2],
|Y | = 101 cost values evenly spaced in [0, 100], and |R| = 151 revenue values evenly spaced in
[0, 1200]. For a generic subcampaign Cj , at every t, the daily number of clicks is returned by the
function ñj(x) := θj(1−e−x/δj )+ξnj and the daily cost by the function c̃j(x) = αj(1−e−x/γj )+ξcj ,
where θj ∈ R+ and αj ∈ R+ represent the maximum achievable number of clicks and cost for
subcampaign Cj in a single day, δj ∈ R+ and γj ∈ R+ characterize how fast the two functions reach
a saturation point, and ξnj and ξcj are noise terms drawn from a N (0, 1) Gaussian distribution (these
functions are customarily used in the advertising literature, e.g., by Kong et al. (2018)). We assume a
unitary value for each click, i.e., vj = 1 for each j ∈ {1, . . . , N}. The values of the parameters of
cost and revenue functions of the subcampaigns are specified in Table 2 reported in Appendix D.5.
We set a daily budget β = 100, λ = 10 in the ROI constraint, and a time horizon T = 60. Notice that
in this setting at the optimal solution, the budget constraint is active, while the ROI constraint is not.

For both GCB and GCBsafe, the kernels for the number of clicks GPs k(x, x′) and for the costs
GPs hj(x, x′) are squared exponential kernels of the form σ2

f exp
{
− (x−x′)2

l

}
for every x, x′ ∈ Xj ,

8Theoretical results in settings in which we have a priori information on the looseness of either one of the
constraints and we allow a violation of either one of the constraints are provided in Appendix B.4.

9Additional experiments and details useful for the complete reproducibility of our results are provided in
Appendix D. Code available at https://github.com/oi-tech/safe_bid_opt.
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Figure 1: Daily revenue (a), ROI (b), and spend (c) obtained by GCB and GCBsafe. Dashed lines
correspond to the optimal values for the revenue and ROI, while dash-dotted lines correspond to the
values of the ROI and budget constraints.

where the parameters σf ∈ R+ and l ∈ R+ are estimated from data, as suggested by Rasmussen
& Williams (2006). The confidence for the algorithms is δ = 0.2. We evaluate the algorithms in

terms of daily revenue Pt(U) :=
∑N
j=1 vjnj(x̂j,t), daily ROI: ROIt(U) :=

∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

, and

daily spend: St(U) :=
∑N
j=1 cj(x̂j,t). We perform 100 independent runs for each algorithm.

Results In Figure 1, for the daily revenue, ROI, and spend achieved by GCB and GCBsafe at every
t, we show the 50th percentile (i.e., the median) with solid lines and the 90th and 10th percentiles
with dashed lines surrounding the semi-transparent area. While GCB achieves a larger revenue than
GCBsafe, it violates the budget constraint over the entire time horizon and the ROI constraint in the
first 7 days in more than 50% of the runs. This happens because, in the optimal solution, the ROI
constraint is not active, while the budget constraint is. Conversely, GCBsafe satisfies the budget and
ROI constraints over the time horizon for more than 90% of the runs and has a slower convergence to
the optimal revenue. If we focus on the median revenue, GCBsafe has a similar behaviour to that of
GCB for t > 15. This makes GCBsafe a good choice, even in terms of overall revenue. However, it
is worth noticing that, in the 10% of the runs, GCBsafe does not converge to the optimal solution
before the end of the learning period. These results confirm our theoretical analysis showing that
limiting the exploration to safe regions might lead the algorithm to get a large regret. Furthermore,
let us remark that the learning dynamics of GCBsafe are much smoother than those of GCB, which
present, instead, oscillations.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a novel framework for Internet advertising campaigns. While previous
works available in the literature focus only on the maximization of the revenue provided by the
campaign, we introduce the concept of safety for the algorithms choosing the bid allocation each
day. More specifically, we want that the bidding satisfies, with high probability, some daily ROI and
budget constraints fixed by the business units of the companies. Our goal is to maximize the revenue
satisfying w.h.p. the uncertain constraints (a.k.a. safety). We model this setting as a combinatorial
optimization problem, proving that such a problem is inapproximable within any strictly positive
factor unless P = NP, but it admits an exact pseudo-polynomial-time algorithm. Most interestingly,
we prove that no online learning algorithm can provide sublinear pseudo-regret while guaranteeing a
sublinear number of violations of the uncertain constraints. We show that the GCB algorithm suffers
from a sublinear pseudo-regret, but it may violate the constraints a linear number of times. Thus,
we design GCBsafe, a novel algorithm that guarantees safety at the cost of a linear pseudo-regret.
Remarkably, a simple adaptation of GCBsafe, namely GCBsafe(ψ, ϕ), guarantees a sublinear pseudo-
regret and safety at the cost of tolerances ψ and ϕ on the ROI and budget constraints, respectively.
Finally, we evaluate the empirical performance of our algorithms with synthetically advertising
problems that confirmed the theoretical results provided before.

An interesting open research direction is the design of an algorithm that adopts constraints changing
during the learning process, i.e., that identifies the active constraint and relaxes those that are not
active. Moreover, understanding the relationship between the relaxation of one of the constraints and
the increase in revenue constitutes an interesting line of research.
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Supplementary Material for Paper ID: 5352

A RELATED WORKS

Many works study Internet advertising, both from the publisher perspective (e.g., Vazirani et al.
(2007) design auctions for ads allocation and pricing) and from the advertiser perspective (e.g.,
Feldman et al. (2007) study the budget optimization problem in search advertising). Only a few works
deal with ROI constraints, and, to the best of our knowledge, they focus on the design of auction
mechanisms. In particular, Szymanski & Lee (2006) and Borgs et al. (2007) show that ROI-based
bidding heuristics can lead to cyclic behavior and reduce the allocation’s efficiency, while Golrezaei
et al. (2021) propose more efficient auctions with ROI constraints. The learning algorithms for daily
bid optimization available in the literature address only budget constraints in the restricted case in
which the platform allows the advertisers to set a daily budget limit (notice that some platforms, such
as TripAdvisor and Trivago, do not even allow the setting of the daily budget limit). For instance,
Zhang et al. (2012) provide an offline algorithm that exploits accurate models of the campaigns’
performance based on low-level data rarely available to the advertisers. Feng et al. (2023) propose an
online auto-bidding algorithm for a single advertiser maximizing value under the Return-on-Spend
constraint. However, the constraint violation is evaluated on the cumulated value of the violation over
the entire time horizon (which is a condition much weaker than ours). Nuara et al. (2018) propose an
online learning algorithm that combines combinatorial multi-armed bandit techniques (Chen et al.,
2013) with regression by Gaussian Processes (Rasmussen & Williams, 2006). This work provides no
guarantees on ROI. More recent works also present pseudo-regret bounds (Nuara et al., 2022) and
study subcampaigns interdependencies offline (Nuara et al., 2019). Thomaidou et al. (2014) provide
a genetic algorithm for budget optimization of advertising campaigns. Ding et al. (2013) and Trovò
et al. (2016) address the bid optimization problem in a single subcampaign scenario when the budget
constraint is cumulative over time.

A research field strictly related to our work is learning with safe exploration and constraints subject
to uncertainty. The goal is to guarantee w.h.p. the constraints satisfaction during the entire learning
process. The only known results on safe exploration in multi-armed bandits address the case with
continuous, convex arm spaces and convex constraints. The learner can converge to the optimal
solution in these settings without violating the constraints (Moradipari et al., 2020; Amani et al.,
2020). Conversely, the case with discrete and/or non-convex arm spaces or non-convex constraints,
such as ours, is unexplored in the literature. We remark that some bandit algorithms address uncertain
constraints where the goal is their satisfaction on average (Mannor et al., 2009; Cao & Liu, 2019).
However, the per-round violation can be arbitrarily large (particularly in the early stages of the
learning process), not fitting with our setting as humans could be alarmed and, thus, give up on
adopting the algorithm. Moreover, several works in reinforcement learning (Hans et al., 2008; Pirotta
et al., 2013; Garcia & Fernández, 2012) and multi-armed bandit (Galichet et al., 2013; Sui et al., 2015)
investigate safe exploration, providing safety guarantees on the revenue provided by the algorithm,
but not on the satisfaction w.h.p. of uncertain constraints.

Finally, another line of research dealing with bandits with constraints is the one related to Com-
binatorial MAB with knapsack constraints, e.g., the works by Sankararaman & Slivkins (2018);
Badanidiyuru et al. (2018). However, they cannot be applied to our setting for two main reasons.
First, they provide theoretical guarantees in the case the decision sets are matroidal-shaped. How-
ever, the set of arms in our setting is non-matroidal. More specifically, all the feasible actions
St = (xi,t, . . . , xN,t) have exactly N elements (one per subcampaign), and removing one element
from a feasible superarm generates a new superarm S′

t = (xi,t, . . . , xi−1,t, xi+1,t, . . . , xN,t) that is
not an acceptable allocation of the campaign. Second, they guarantee the satisfaction of the budget
constraints over a given time horizon. That is, the bandit algorithm cannot spend more than a given
threshold within the given time horizon. Conversely, in our work, we bound, with high probability,
the violation of the constraint in every single round.
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B OMITTED PROOFS

B.1 PROOFS OMITTED FROM SECTION 2

Theorem 1 (Inapproximability). For any ρ ∈ (0, 1], there is no polynomial-time algorithm returning
a ρ-approximation to the problem in Equations (1a)-(1c), unless P = NP.

Proof. We restrict to the instances of SUBSET-SUM such that z ≤
∑
j∈S uj . Solving these instances

is trivially NP-hard, as any instance with z >
∑
j∈S uj is not satisfiable, and we can decide it in

polynomial time. Given an instance of SUBSET-SUM, let ℓ =
∑

j∈S uj+1

ρ . Let us notice that, the
lower the degree of approximation we aim, the larger the value of ℓ. For instance, when study the
problem of computing an exact solution, we set ρ = 1 and therefore ℓ =

∑
j∈S uj + 1, whereas,

when we require a 1/2-approximation, we set ρ = 1/2 and therefore ℓ = 2(
∑
j∈S ui + 1). We have

|S| + 1 subcampaigns, each denoted with Cj . The available bid values belong to {0, 1} for every
subcampaign Cj . The parameters of the subcampaigns are set as follows.

• Subcampaign C0: we set v0 = 1, and

c0(x) =

{
2ℓ+ z if x = 1

0 otherwise
, n0(x) =

{
ℓ if x = 1

0 otherwise
.

• Subcampaign Cj for every j ∈ S: we set vj = 1, and

cj(x) =

{
ujℓ+ z if x = 1

0 otherwise
, nj(x) =

{
uj if x = 1

0 otherwise
.

We set the daily budget β = 2(z + ℓ) and the ROI limit λ = 1
2 .10

We show that if a SUBSET-SUM instance is satisfiable, then the corresponding instance of our
problem admits a solution with revenue larger than ℓ, while if a SUBSET-SUM instance is not
satisfiable, the maximum revenue in the corresponding instance of our problem is at most ρ ℓ− 1.
Thus, the application of any polynomial-time ρ-approximation algorithm to instances of our problem
generated from instances of SUBSET-SUM as described above would return a solution whose value
is not smaller than ρ ℓ when the SUBSET-SUM instance is satisfiable, and it is not larger than ρ ℓ− 1
when the SUBSET-SUM instance is not satisfiable. As a result, whenever such an algorithm returns a
solution with a value that is not smaller than ρ ℓ, we can decide that the corresponding SUBSET-SUM
instance is satisfiable. Analogously, whenever such an algorithm returns a solution with a value that
is in the range [ρ(ρ ℓ− 1), ρ ℓ− 1], we can decide that the corresponding SUBSET-SUM instance is
not satisfiable. Let us notice that the range [ρ(ρ ℓ− 1), ρ ℓ− 1] is well defined for every ρ ∈ (0, 1],
as, by construction, ρ ℓ =

∑
j∈S uj + 1 ≥ 1 and therefore ρ ℓ − 1 ≥ ρ(ρ ℓ − 1). Hence, such an

algorithm would decide in polynomial time whether or not a SUBSET-SUM instance is satisfiable,
but this is not possible unless P = NP. Since this holds for every ρ ∈ (0, 1], then no ρ-approximation
to our problem is allowed in polynomial time unless P = NP.

If. Suppose that SUBSET-SUM is satisfied by the set S∗ ⊆ S and that its solution assigns xj = 1 if
j ∈ S∗ and xj = 0 otherwise, and it assigns x0 = 1. The total revenue is ℓ+z ≥ ℓ and the constraints
are satisfied. In particular, the sum of the costs is 2ℓ+ z + z = 2(ℓ+ z), while ROI = ℓ+z

2ℓ+2z = 1
2 .

Only if. Assume by contradiction that the instance of our problem admits a solution with a revenue
strictly larger than ρ ℓ− 1 and that SUBSET-SUM is not satisfiable. Then, it is easy to see that we
need x0 = 1 for campaign C0 as the maximum achievable revenue is

∑
j∈S uj = ρ ℓ − 1 when

x0 = 0. Thus, since x0 = 1, the budget constraint forces
∑
j∈S:xj=1 ci(xj) ≤ z, thus implying∑

j∈S:xj=1 uj ≤ z. By the satisfaction of the ROI constraint, i.e.,
∑

j∈S:xj=1 uj+l∑
j∈S:xj=1 uj+2l+z ≥ 1

2 , it must

10For the sake of clarity, the proof uses simple instances. Adopting these instances is crucial to identify the
most basic settings in which the problem is hard, and it is customarily done in the literature. Let us notice that it
is possible to prove the theorem using more realistic instances. For example, we can build a reduction in which
the costs are smaller than the values, i.e., cj(x) < nj(x)vj . In particular, the reduction holds even if we set
c0(1) = ϵ(2l + z), cj(1) = ϵuj , β = 2ϵ(z + l), and λ = 1/(2ϵ) for an arbitrary small ϵ.
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hold
∑
i∈S:xi=1 ui ≥ z. Therefore, the set S∗ = {i ∈ S : xi = 1} is a solution to SUBSET-SUM,

thus reaching a contradiction. This concludes the proof.

B.2 PROOFS OMITTED FROM SECTION 3

Theorem 2 (Pseudo-regret/safety tradeoff). For every ϵ > 0 and time horizon T , there is no algorithm
with pseudo-regret smaller than (1/2− ϵ)T and that violates (in expectation) the constraints less
than (1/2− ϵ)T times.

Proof. In what follows, we provide an impossibility result for the optimization problem in Equa-
tions (1a)-(1c). For the sake of simplicity, our proof is based on the violation of (budget) Con-
straint (1c), but its extension to the violation of (ROI) Constraint (1b) is direct. Initially, we show that
an algorithm satisfying the two conditions of the theorem can be used to distinguish between N (1, 1)
and N (1 + δ, 1) with an arbitrarily large probability using a number of samples independent from
δ.11 Consider two instances of the bid optimization problem defined as follows. Both instances have
a single subcampaign with x ∈ {0, 1}, c(0) = 0, r(0) = 0, r(1) = 1, β = 1, and λ = 0. The first
instance has cost c1(1) = N (1, 1), while the second one has cost c2(1) = N (1 + δ, 1). With the first
instance, the algorithm must choose x = 1 at least T (1/2 + ϵ) times in expectation otherwise, the
pseudo-regret would be strictly greater than T (1/2−ϵ), while with the second instance, the algorithm
must choose x = 1 at most than T (1/2− ϵ) times in expectation. Otherwise, the constraint on the
budget would be violated strictly more than T (1/2− ϵ) times. Standard concentration inequalities im-
ply that, for each γ > 0, there exists a n(ϵ, γ) such that, given n(ϵ, γ) runs of the learning algorithm,
with the first instance the algorithm plays x = 1 strictly more than Tn(ϵ, γ)/2 times with probability
at least 1− γ, while with the second instance, it is played strictly less than Tn(ϵ, γ)/2 times with
probability at least 1−γ. This entails that the learning algorithm can distinguish with arbitrarily large
success probability (independent of δ) between the two instances using (at most) n(ϵ, γ)T samples
from one of the normal distributions. However, the Kullback-Leibler divergence (Kullback & Leibler,
1951) between the two normal distributions is KL(N (1, 1),N (1+ δ, 1)) = δ2/2 and each algorithm
needs at least Ω(1/δ2) samples to distinguish between the two distributions with arbitrarily large
probability. Since δ can be arbitrarily small, we have a contradiction. Thus, such an algorithm cannot
exist. This concludes the proof.12

B.3 PROOFS OMITTED FROM SECTION 4

Theorem 3 (Optimality). The Opt(µ, λ) subroutine returns the optimal solution to the problem in
Equations (1a)-(1c) when wj(x) = wj(x) = vj nj(x) and cj(x) = cj(x) for each j ∈ {1, . . . , N}
and the values of revenues and costs are in R and Y , respectively.

Proof. Since all the possible values for the revenues and costs are taken into account in the subroutine,
the elements in S(y, r) satisfy the two inequalities in Equation (8) with the equal sign. Therefore,
all the elements in S(y, r) would contribute to the computation of the final value of the ROI and
budget constraints, i.e., the ones after evaluating all the N subcampaigns, with the same values for
revenue and costs, being their overall revenue equal to r and their overall cost equal to y. Notice
that Constraint (1c) is satisfied as long as it holds max(Y ) = β. The maximum operator in Line 11
excludes only solutions with the same costs and lower revenue, and, therefore, the subroutine excludes
only solutions that would never be optimal (and, for this reason, said dominated). The same reasoning
also holds for the subcampaign C1 analysed by the algorithm. Finally, after all the dominated
allocations have been discarded, the solution is selected by Equation (9), i.e., among all the solutions
satisfying the ROI constraints, the one with the largest revenue is selected.

11With N (a, b) we denote the Gaussian distribution with mean a and variance b.
12Notice that the theorem can be modified to hold even with instances that satisfy real-world assumptions,

e.g., with costs much smaller than the budget. Indeed, we can apply the same reduction in which the costs
are arbitrary, e.g., c(0) = c(1) = q with an arbitrary small q and β = 1, while the utilities are r(0) = 0,
r(1) = N (1, 1) or r(1) = N (1− δ, 1), and the ROI limit is λ = 1/q.
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B.4 OMITTED PROOFS FROM SECTION 5

Theorem 4 (GCB pesudo-regret). Given δ ∈ (0, 1), GCB applied to the problem in Equations (1a)-
(1c), with probability at least 1− δ, suffers from a pseudo-regret of:

RT (GCB ) ≤

√√√√8Tv2maxN
3bT

ln(1 + σ2)

N∑
j=1

γj,T ,

where bt := 2 ln
(
π2NQTt2

3δ

)
is an uncertainty term used to guarantee the confidence level required

by GCB, vmax := maxj∈{1,...,N} vj is the maximum value per click over all subcampaigns, and
Q := maxj∈{1,...,N} |Xj | is the number of bids in a subcampaign.

Proof. This proof extends the proof provided by Accabi et al. (2018) to the case in which multiple
independent GPs are present in the optimization problem.

Let us define rµ(x) as the expected reward provided by a specific allocation x = (x1, . . . , xN ) under
the assumption that the parameter vector of the optimization problem is µ. Moreover, let

η :=
[
w1(x1), . . . , wN (x|XN |), w1(x1), . . . , wN (x|XN |),−c1(x1), . . . ,−cN (x|XN |)

]
,

be the vector characterizing the optimization problem in Equations (1a)-(1c), xt be the allocation
chosen by the GCB algorithm at round t, x∗

η the optimal allocation—i.e., the one solving the
discrete version of the optimization problem in Equations (1a)-(1c) with parameter η—, and r∗η the
corresponding expected reward.

To guarantee that GCB provides a sublinear pseudo-regret, we need a few assumptions to be satisfied.
More specifically, we need a monotonicity property, stating that the value of the objective function
increases as the values of the elements in µ increase and a Lipschitz continuity assumption between
the parameter vector µ and the value returned by the objective function in Equation (1a). Formally:

Assumption 1 (Monotonicity). The expected reward rµ(S) :=
∑N
j=1 vj nj(xj,t), where S is the

bid allocation, is monotonically non decreasing in µ, i.e., given µ, η s.t. µi ≤ ηi for each i, we have
rµ(S) ≤ rη(S) for each S.

Assumption 2 (Lipschitz continuity). The expected reward rµ(S) is Lipschitz continuous in the
infinite norm w.r.t. the expected payoff vector µ, with Lipschitz constant Λ > 0. Formally, for
each µ,η we have |rµ(S) − rη(S)| ≤ Λ||µ − η||∞, where the infinite norm of a payoff vector is
||µ||∞ := maxi |µi|.

Our problem satisfies both of the above assumptions. Indeed, we have that the Lipschitz continuity
holds with constant Λ = vmaxN . Instead, the monotonicity property holds by definition of µ, as the
increase of a value of wj(x) would increase the value of the objective function, and the increase of
the values of wj(x) or cj(x) would enlarge the feasibility region of the problem, thus not excluding
optimal solutions.

Let us now focus on the per-step expected regret, defined as:
regt := r∗η − rη(xt).

Let us recall a property of the Gaussian distribution which will be useful in what follows. Be
r ∼ N (0, 1) and c ∈ R+, we have:

P[r > c] =
1√
2π
e−

c2

2

∫ ∞

c

e−
(r−c)2

2 −c(r−c) dr

≤ e−
c2

2 P[r > 0] =
1

2
e−

c2

2 ,

since e−c(r−c) ≤ 1 for r ≥ c. For the symmetry of the Gaussian distribution, we have:

P[|r| > c] ≤ e−
c2

2 . (10)

Let us focus on the GP modeling the number of clicks. Following Lemma 5 in the work by Srinivas
et al. (2010), we have that conditioned on the number of clicks (ñj,1(xj,1), . . . , ñj,t(xj,t)), the
selected bids (xj,1, . . . , xj,1), with xj,h ∈ Xj , are deterministic and the estimated number of clicks
follows:

nj,t(x) ∼ N (n̂j,t(x), (σ̂
n
j,t(x))

2),
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for all x ∈ Xj . Thus, substituting r = n̂j,t(x)−nj,t(x)
σ̂n
j,t(x)

and c =
√
bt in Equation (10), we obtain:

P
[
|n̂j,t(x)− nj,t(x)| >

√
btσ̂

n
j,t(x)

]
≤ e−

bt
2 . (11)

Recall that, after n rounds, each arm can be chosen a number of times from 1 to n. Applying the
union bound over the rounds (h ∈ {1, . . . , T}), the sub-campaigns Cj (Cj with j ∈ {1, . . . , N}), the
number of times the arms in Cj are chosen (t ∈ {1, . . . , n}), and the available arms in Cj (x ∈ Xj),
and exploiting Equation (11), we obtain:

P

 ⋃
h,j,t,x

(
|n̂j,t(x)− nj,t(x)| >

√
btσ̂

n
j,t(x)

) (12)

≤
T∑
h=1

N∑
j=1

n∑
t=1

|Xj |e−
bt
2 . (13)

Thus, choosing bt = 2 ln
(
π2NQTt2

3δ

)
, we obtain:

T∑
h=1

N∑
j=1

n∑
t=1

|Xj |e−
bt
2 ≤

T∑
h=1

N∑
j=1

n∑
t=1

Q
3δ

π2NQTt2

∞∑
n=1

2δ

π2t2
=
δ

2
,

where we used the fact that Q ≥ |Xj | for each j ∈ {1, . . . N}.

Using the same proof on the GP defined over the costs leads to:

P

 ⋃
h,j,t,x

(
|ĉj,t(x)− cj,t(x)| >

√
btσ̂

c
j,t(x)

) ≤ δ

2
.

The above proof implies that the union of the event that all the bounds used in the GCB algorithm
holds with probability at least 1− δ. Formally, for each t ≥ 1, we know that with probability at least
1− δ the following holds for all xj ∈ Xj , j ∈ {1, . . . N}, and number of times the the arm xj has
been pulled over t rounds:

|n̂j(xj)− nj(xj)| ≤
√
btσ̂

n
j,t(xj), (14)

|ĉj(xj)− cj(xj)| ≤
√
btσ̂

c
j,t(xj). (15)

From now on, let us assume we are in the clean event that the previous bounds hold.

Let us focus on the term rµ(xt). The following holds:
rµ(xt) ≥ r∗µ ≥ rµ(x

∗
µ) ≥ rη(x

∗
µ) = r∗η, (16)

where we use the definition of r∗µ, and the monotonicity property of the expected reward (Assump-
tion 1), being (µ)i ≥ (η)i ,∀i. Using Equation (16), the instantaneous expected pseudo-regret regt
at round t satisfies the following inequality:

regt = r∗η − rη(xt) ≤ rµ(xt)− rη(xt) = (17)

≤ rµ(xt)− rµ̂(xt)︸ ︷︷ ︸
ra

+ rµ̂(xt)− rη(xt)︸ ︷︷ ︸
rb

, (18)

where
µ̂ :=

[
ŵ1,t−1(x1), . . . , ŵN,t−1(x|XN |),ŵ1,t−1(x1), . . . , ŵN,t−1(x|XN |), (19)

− ĉ1,t−1(x1), . . . ,−ĉN,t−1(x|XN |)
]
,

is the vector composed of the estimated average payoffs for each arm x ∈ Xj and each campaign Cj ,
where ŵj,t−1(x) := vj n̂j,t−1(x).

We use the Lipschitz property of the expected reward function (see Assumption 2) to bound the terms
in Equation (18) as follows:

ra ≤ Λ||µ− µ̂||∞ = Λ max
j∈{1,...,N}

(
vmax

√
bt max
x∈Xj

σ̂nj,t(x)

)
(20)

≤ Nvmax

√
bt max
j∈{1,...,N}

(
max
x∈Xj

σ̂nj,t(x)

)
(21)
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≤ Nvmax

√
bt

N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)
, (22)

rb ≤ Λ||µ̂− η||∞

≤ Nvmax

√
bt

N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)
, (23)

where Equation (20) holds by the definition of µ, Equation (22) holds since the maximum over a set
is not greater than the sum of the elements of the set, if they are all non-negative, and Equation (23)
directly follows from Equation (14). Plugging Equations (22) and (23) into Equation (18), we obtain:

regt ≤ 2Nvmax

√
bt

N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)
. (24)

We need now to upper bound σ̂nj,t(x). Consider a realization nj(·) of a GP over Xj and recall that,
thanks to Lemma 5.3 in (Srinivas et al., 2010), under the Gaussian assumption we can express the
information gain IGj,t provided by (ñj(x̂j,1), . . . , ñj(x̂j,|Xj |)) corresponding to the sequence of
arms (x̂j,1, . . . , x̂j,|Xj |) as:

IGj,t =
1

2

t∑
h=1

log
(
1 + σ−2 (σ̂nj,t(x̂j,h))

2
)
. (25)

We have that:

(σ̂nj,t(x̂j,h))
2 = σ2

[
σ−2(σ̂nj,t(x̂j,h))

2
]
≤

log
[
1 + σ−2(σ̂nj,t(x̂j,h))

2
]

log (1 + σ−2)
, (26)

since s2 ≤ σ−2 log (1+s2)
log(1+σ−2) for all s ∈ [0, σ−1], and σ−2(σ̂nj,t(x̂j,h))

2 ≤ σ−2 k(x̂j,h, x̂j,h) ≤ σ−2,
where k(·, ·) is the kernel of the GP. Since Equation (26) holds for any x ∈ Xj and for any
j ∈ {1, . . . N}, then it also holds for the arm x̂max maximizing the variance (σ̂nj,t(x̂j,h))

2 over Xj .

Thus, setting c̄ = 8N2

log(1+σ−2) and exploiting the Cauchy-Schwarz inequality, we obtain:

R2
T (GCB) ≤ T

T∑
t=1

reg2t

≤ T

T∑
t=1

4N2v2maxbt

 N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)2

≤ 4N2v2maxTbT

T∑
t=1

N N∑
j=1

max
x∈Xj

(σ̂nj,t(x))
2


≤ c̄Nv2maxTbT

N∑
j=1

1

2

T∑
t=1

max
x∈Xj

log
(
1 + σ−2 (σ̂nj,t(x̂j,h))

2
)

≤ c̄Nv2maxTbT

N∑
j=1

γj,T .

We conclude the proof by taking the square root on both the r.h.s. and the l.h.s. of the last inequality.

Theorem 5 (GCB safety). Given δ ∈ (0, 1), GCB applied to the problem in Equations (1a)-(1c)

with bt := 2 ln
(
π2NQTt2

3δ

)
is η-safe where η ≥ T − δ

2NQT and, therefore, the number of constraints
violations is linear in T .

Proof. Let us focus on a specific day t. Consider the case in which Constraints (1b) and (1c) are
active, and, therefore, the left side equals the right side:

∑N
j=1 wj(xj,t)− λ

∑N
j=1 cj(xj,t) = 0 and∑N

j=1 cj(xj,t) = β. For the sake of simplicity, we focus on the costs cj(xj,t), but similar arguments
also apply to the revenues wj(xj,t). A necessary condition for which the two constraints are valid
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also for the actual (non-estimated) revenues and costs is that for at least one of the costs it holds
cj(xj,t) ≤ cj(xj,t). Indeed, if the opposite holds, i.e., cj(xj,t) < cj(xj,t) for each j ∈ {1, . . . , N}
and xj,t ∈ Xj , the budget constraint would be violated by the allocation since

∑N
j=1 cj(xj,t) >∑N

j=1 cj(xj,t) = β. Since the event cj(xj,t) ≤ cj(xj,t) occurs with probability at most 3δ
π2NQTt2 ,

over the t ∈ N, formally:

P

∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< λ ∨
N∑
j=1

cj(x̂j,t) > β

 ≥ 1− 3δ

π2NQTt2
.

Finally, summing over the time horizon T the probability that the constraints are not violated is at
most δ

2NQT , formally:
T∑
t=1

P

∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< λ ∨
N∑
j=1

cj(x̂j,t) > β

 ≥ T − δ

2NQT
.

This concludes the proof.

Theorem 9 (GCB cumulated violation). The cumulated violation of the two constraints provided by
the GCB algorithm satisfies:

•
∑T
t=1

∑N
j=1 cj(xj,t)− T β ≤ O

(√
T
∑N
j=1 γ

c
j,T

)
,

• Tλ−
∑T
t=1

∑N
j=1 vjnj(xj,t)∑N
j=1 cj(xj,t)

≤ O
(√

T
∑N
j=1(γj,t + γcj,t)

)
,

where γcj,t is the maximum information gain of the GPs modeling the costs of j-th subcampaign after
t samples.

Proof. We analyse the violation of the ROI constraint vrt at a specific day t and the one of the budget
constraint vbt.

Focusing on the budget constraint, we have:

vbt =

N∑
j=1

cj(xj,t)− y ≤
N∑
j=1

(ĉj(xj,t) +
√
bt−1σ̂

c
j,t−1(xj,t))− β (27)

=

N∑
j=1

(ĉj(xj,t)−
√
bt−1σ̂

c
j,t−1(xj,t))− β︸ ︷︷ ︸

≤0

+2

N∑
j=1

√
bt−1σ̂

c
j,t−1(xj,t) (28)

≤ 2

N∑
j=1

√
bt−1σ̂

c
j,t−1(xj,t), (29)

where the inequality in Equation (28) holds from the fact that the solution selected by GCB has to
satisfy the budget constraint. Define nj(xj,t) := n̂j(xj,t)+

√
bt−1σ̂

n
j (xj,t). Notice that the previous

bound holds w.p. at least 1− δ since this is the probability for which the bounds on the number of
clicks and the costs hold.

Since we have λ ≤
∑N

j=1 vjnj(xj,t)∑N
j=1 cj(xj,t)

:

vrt = λ−
∑N
j=1 vjnj(xj,t)∑N
j=1 cj(xj,t)

≤
∑N
j=1 vjnj(xj,t)∑N
j=1 cj(xj,t)

−
∑N
j=1 vjnj(xj,t)∑N
j=1 cj(xj,t)

(30)

≤
∑N
j=1 cj(xj,t)

∑N
j=1 vjnj(xj,t)−

∑N
j=1 cj(xj,t)

∑N
j=1 vjnj(xj,t)∑N

j=1 cj(xj,t)
∑N
j=1 cj(xj,t)

(31)

≤ 1

N2cmin(cmin −
√
bTσ)

 N∑
j=1

cj(xj,t)

N∑
j=1

vjnj(xj,t)−
N∑
j=1

cj(xj,t)

N∑
j=1

vjnj(xj,t)
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+

N∑
j=1

cj(xj,t)

N∑
j=1

vjnj(xj,t)−
N∑
j=1

cj(xj,t)

N∑
j=1

vjnj(xj,t)

 (32)

≤ 1

N2cmin(cmin −
√
bTσ)

 N∑
j=1

cj(xj,t)

 N∑
j=1

vjnj(xj,t)−
N∑
j=1

vjnj(xj,t)


+

N∑
j=1

vjnj(xj,t)

 N∑
j=1

cj(xj,t)−
N∑
j=1

cj(xj,t)

 (33)

≤
Ncmaxvmax2

∑N
j=1

√
bt−1σ̂

n
j (xj,t) +Nnmaxvmax2

∑N
j=1

√
bt−1σ̂

c
j(xj,t)

N2cmin(cmin −
√
bTσ)

(34)

=
2cmaxvmax

∑N
j=1

√
bt−1σ̂

n
j (xj,t) + 2nmaxvmax

∑N
j=1

√
bt−1σ̂

c
j(xj,t)

Ncmin(cmin −
√
bTσ)

, (35)

where
∑N
j=1 vj n̂j(xj,t) ≥

∑N
j=1 vjnj(x

∗
j ) by definition of the GCB selection rule, vmax :=

maxNj=1 vj , and we assume that cmin −
√
bTσ > 0.

Using arguments similar to what has been used to bound the instantaneous regret rt in Srinivas et al.
(2010) and Accabi et al. (2018), and summing over the time horizon T , provides the final statement
of the theorem.

Theorem 6 (GCBsafe pseudo-regret). Given δ ∈ (0, 1), GCBsafe with bt := 2 ln
(
π2NQTt2

3δ

)
,

applied to the problem in Equations (1a)-(1c) suffers from a pseudo-regret Rt(GCBsafe) = Θ(T ).

Proof. At the optimal solution, at least one of the constraints is active, i.e., it has the left-hand side
equal to the right-hand side. Assume that the optimal clairvoyant solution

{
x∗j
}N
j=1

to the optimization
problem has a value of the ROI λopt equal to λ. We showed in the proof of Theorem 7 that for any

allocation, with probability at least 1 − 3δ
π2NQTt2 , it holds that

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

>
∑N

j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

.

This is true also for the optimal clairvoyant solution
{
x∗j
}N
j=1

, for which λ =
∑N

j=1 vj nj(x
∗)∑N

j=1 cj(x∗)
>∑N

j=1 vj nj(x
∗)∑N

j=1 cj(x∗)
, implying that the values used in the ROI constraint make this allocation not feasible

for the Opt(µ, λ) procedure. As shown before, this happens with probability at least 1− 3δ
π2NQTt2 at

day t, and 1− δ over the time horizon T . To conclude, with probability 1− δ, not depending on the
time horizon T , we will not choose the optimal arm during the time horizon and, therefore, the regret
of the algorithm cannot be sublinear. Notice that the same line of proof is also holding in the case the
budget constraint is active, therefore, the previous result holds for each instance of the problem in
Equations (1a)-(1c).

Theorem 7 (GCBsafe safety). Given δ ∈ (0, 1), GCBsafe with bt := 2 ln
(
π2NQTt2

3δ

)
, applied to

the problem in Equations (1a)-(1c) is δ-safe and the number of constraints violations is constant in T .

Proof. Let us focus on a specific day t. Constraints (1b) and (1c) are satisfied by the solution
of Opt(µ, λ) for the properties of the optimization procedure. Define nj(xj,t) := n̂j(xj,t) −√
bt−1σ̂

n
j (xj,t). Thanks to the specific construction of the upper bounds, we have that cj(xj,t) ≤

cj(xj,t) and nj(xj,t) ≥ nj(xj,t), each holding with probability at least 1− 3δ
π2NQTt2 . Therefore, we

have: ∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

>

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

≥ λ

and
N∑
j=1

cj(xj,t) <

N∑
j=1

cj(xj,t) ≤ β.
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Using a union bound over:

• the two GPs (number of clicks and costs);

• the time horizon T ;

• the number of times each bid is chosen in a subcampaign (at most t);

• the number of arms present in each subcampaign (|Xj |);

• the number of subcampaigns (N );

we have:
T∑
t=1

P

∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< λ ∨
N∑
j=1

cj(x̂j,t) > β

 ≤ 2

N∑
j=1

|Xj |∑
k=1

T∑
h=1

t∑
l=1

3δ

π2NQTl2
(36)

≤ 2

N∑
j=1

Q∑
k=1

T∑
h=1

+∞∑
l=1

3δ

π2NQTl2
= δ. (37)

This concludes the proof.

The definition of the auxiliary problem that GCBsafe(ψ, ϕ) algorithm is solving is the following:

max
(x1,t,...,xN,t)∈X1×...×XN

N∑
j=1

vj nj(xj,t) (38a)

s.t.

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

≥ λ− ψ, (38b)

N∑
j=1

cj(xj,t) ≤ β + ϕ. (38c)

Theorem 10 (GCBsafe(ψ, 0) pseudo-regret and safety with tolerance). When:

ψ ≥ 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
σ and βopt < β

∑N
j=1 vj

N βoptψ
βopt+nmax

+
∑N
j=1 vj

,

where δ′ ≤ δ, βopt is the spend at the optimal solution of the original problem, and nmax :=
maxj,x nj(x) is the maximum over the sub-campaigns and the admissible bids of the expected
number of clicks, GCBsafe(ψ, 0) provides a pseudo-regret w.r.t. the optimal solution to the original

problem of O
(√

T
∑N
j=1 γj,T

)
with probability at least 1− δ − δ′

QT 2 , while being δ-safe w.r.t. the

constraints of the auxiliary problem.

Proof. In what follows, we show that, at a specific day t, since the optimal solution of the original
problem

{
x∗j
}N
j=1

is included in the set of feasible ones, we are in a setting analogous to the one
of GCB, in which the regret is sublinear. Let us assume that the upper bounds on all the quantities
(number of clicks and costs) holds. This has been shown before to occur with overall probability δ over
the whole time horizon T . Moreover, notice that combining the properties of the budget of the optimal

solution of the original problem βopt and using ψ = 2
βopt+nmax

β2
opt

∑N
j=1 vj

√
2 ln

(
π2NQT 3

3δ′

)
σ, we

have:

βopt < β

∑N
j=1 vj

N βoptψ
βopt+nmax

+
∑N
j=1 vj

(39) N βoptψ

βopt + nmax
+

N∑
j=1

vj

βopt < β

N∑
j=1

vj (40)

20



Under review as a conference paper at ICLR 2024

2N

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
σ +

N∑
j=1

vjβopt < β

N∑
j=1

vj (41)

β > βopt + 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ. (42)

First, let us evaluate the probability that the optimal solution is not feasible. This occurs if its bounds
are either violating the ROI or budget constraints. First, we show that analysing the budget constraint,
the optimal solution of the original problem is feasible with high probability. Formally, it is not
feasible with probability:

P

 N∑
j=1

cj(x
∗
j ) > β

 ≤ P

 N∑
j=1

cj(x
∗
j ) > βopt + 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ

 (43)

= P

 N∑
j=1

cj(x
∗
j ) >

N∑
j=1

cj(x
∗
j ) + 2N

√
2 ln

π2NQT 3

3δ′
σ

 (44)

≤
N∑
j=1

P

(
cj(x

∗
j ) > cj(x

∗
j ) + 2

√
2 ln

π2NQT 3

3δ′
σ

)
(45)

=

N∑
j=1

P

(
ĉj,t−1(x

∗
j )− cj(x

∗
j ) > −

√
btσ̂

c
j,t−1(x

∗
j ) + 2

√
2 ln

π2NQT 3

3δ′
σ

)
(46)

≤
N∑
j=1

P

(
ĉj,t−1(x

∗
j )− cj(x

∗
j ) >

√
2 ln

π2NQT 3

3δ′
σ̂cj,t−1(x

∗
j )

)
(47)

≤
N∑
j=1

P

(
ĉj,t−1(x

∗
j )− cj(x

∗
j )

σ̂cj,t−1(x
∗
j )

>

√
2 ln

π2NQT 3

3δ′

)
(48)

≤
N∑
j=1

3δ′

π2NQT 3
=

3δ′

π2QT 3
, (49)

where, in the inequality in Equation (43) we used Equation (42), in Equation (48) we used the fact that
π2NQt2T

3δ ≤ π2NQT 3

3δ′ for each t ∈ {1, . . . , T}, σ̂cj,t−1(x
∗
j ) ≤ σ for each j and t, and the inequality

in Equation (49) is from Srinivas et al. (2010). Summing over the time horizon T , we get that the
optimal solution of the original problem

{
x∗j
}N
j=1

is excluded from the set of the feasible ones with

probability at most 3δ′

π2QT 2 .

Second, we derive a bound over the probability that the optimal solution of the original problem is
feasible due to the newly defined ROI constraint. Let us notice that since the ROI constraint is active
we have λ = λopt. The probability that

{
x∗j
}N
j=1

is not feasible due to the ROI constraint is:

P

(∑N
j=1 vj nj(x

∗
j )∑N

j=1 cj(x
∗
j )

< λ− ψ

)
(50)

≤ P

∑N
j=1 vj nj(x

∗
j )∑N

j=1 cj(x
∗
j )

< λopt − 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ

 (51)

= P

∑N
j=1 vj nj(x

∗
j )∑N

j=1 cj(x
∗
j )

<

∑N
j=1 vj nj(x

∗
j )∑N

j=1 cj(x
∗
j )

− 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ

 (52)

= P

 N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j ) <

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )
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−2
βopt + nmax
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N∑
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∗
j )
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+
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=
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+

N∑
j=1

P

(
ĉj,t−1(x

∗
j )− cj(x

∗
j )

σ̂cj,t−1(x
∗
j )

>

√
2 ln

π2NQT 3

3δ′

)
(59)

≤ 2

N∑
j=1

3δ′

π2NQT 3
=

6δ′

π2QT 3
, (60)

where in Equation (58) we used the fact that π2NQt2T
3δ ≤ π2NQT 3

3δ′ for each t ∈ {1, . . . , T},
σ̂nj,t−1(x

∗
j ) ≤ σ for each j and t, and the inequality in Equation (60) is from Srinivas et al. (2010).

Summing over the time horizon T ensures that the optimal solution of the original problem
{
x∗j
}N
j=1

is excluded from the feasible solutions at most with probability 6δ′

π2QT 2 . Finally, using a union bound,
we have that the optimal solution can be chosen over the time horizon with probability at least
1− 3δ′

π2QT 2 − 6δ′

π2QT 2 ≤ 1− δ′

QT 2 .

Notice that here we want to compute the regret of the GCBsafe algorithm w.r.t.
{
x∗j
}N
j=1

, which is
not optimal for the analysed relaxed problem. Nonetheless, the proof on the pseudo-regret provided
in Theorem 4 is also valid for suboptimal solutions in the case it is feasible with high probability.
This can be trivially shown using the fact that the regret w.r.t. a generic solution cannot be larger than
the one computed w.r.t. the optimal one. Thanks to that, using a union bound over the probability that
the bounds hold and that

{
x∗j
}N
j=1

is feasible, we conclude that with probability at least 1− δ − δ′

QT 2

the regret GCBsafe is of the order of O
(√

T
∑N
j=1 γj,T

)
. Finally, thanks to the property of the

GCBsafe algorithm shown in Theorem 7, the learning policy is δ-safe for the relaxed problem.

Theorem 11 (GCBsafe(0, ϕ) pseudo-regret and safety with tolerance). When:

ϕ ≥ 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ

and

λopt > λ+
(β + nmax)ϕ

∑N
j=1 vj

Nβ2
,

where δ′ ≤ δ, and nmax := maxj,x nj(x) is maximum expected number of clicks, GCBsafe(0, ϕ)

provides a pseudo-regret w.r.t. the optimal solution to the original problem of O
(√

T
∑N
j=1 γj,T

)
with probability at least 1 − δ − 6δ′

π2QT 2 , while being δ-safe w.r.t. the constraints of the auxiliary
problem.

Proof. We show that at a specific day t since the optimal solution of the original problem
{
x∗j
}N
j=1

is
included in the set of feasible ones, we are in a setting analogous to the one of GCB, in which the
regret is sublinear. Let us assume that the upper bounds to all the quantities (number of clicks and
costs) holds. This has been shown before to occur with overall probability δ over the whole time
horizon T .

First, let us evaluate the probability that the optimal solution is not feasible. This occurs if its bounds
are either violating the ROI or budget constraints. From the fact that the ROI of the optimal solution

satisfies λopt > λ+
(β+nmax)ϕ

∑N
j=1 vj

Nβ2 , we have:
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 (63)
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≤ 3δ′

π2QT 3
, (64)

where the derivation uses arguments similar to the ones applied in the proof for the ROI constraint
in Theorem 10. Summing over the time horizon T ensures that the optimal solution of the original
problem

{
x∗j
}N
j=1

is excluded from the feasible solutions at most with probability 3δ′

π2QT 2 .

Second, let us evaluate the probability for which the optimal solution of the original problem
{
x∗j
}N
j=1

is excluded due to the budget constraint, formally:
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ĉj,t−1(x

∗
j )− cj(x

∗
j )

σ̂cj,t−1(x
∗
j )

≥
√

2 ln
π2NQT 3

3δ′

)
(71)

≤
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π2NQT 3
=

3δ′

π2QT 3
, (72)

where we use the fact that β = βopt, and the derivation uses arguments similar to the ones applied in
the proof for the budget constraint in Theorem 10. Summing over the time horizon T , we get that
the optimal solution of the original problem

{
x∗j
}N
j=1

is excluded from the set of the feasible ones

with probability at most π
2δ′

6T 2 . Finally, using a union bound, we have that the optimal solution can be
chosen over the time horizon with probability at least 1− 3δ′

π2QT 2 .

Notice that here we want to compute the regret of the GCBsafe algorithm w.r.t.
{
x∗j
}N
j=1

which is not
optimal for the analysed relaxed problem. Nonetheless, the proof on the pseudo-regret provided in
Theorem 4 is valid also for suboptimal solutions in the case it is feasible with high probability. This
can be trivially shown using the fact that the regret w.r.t. a generic solution cannot be larger than the
one computed on the optimal one. Thanks to that, using a union bound over the probability that the
bounds hold and that

{
x∗j
}N
j=1

is feasible, we conclude that with probability at least 1− δ − 6δ′

π2QT 2

the regret GCBsafe is of the order of O
(√

T
∑N
j=1 γj,T

)
. Finally, thanks to the property of the

GCBsafe algorithm shown in Theorem 7, the learning policy is δ-safe for the relaxed problem.

Theorem 8 (GCBsafe(ψ, ϕ) pseudo-regret and safety with tolerance). Setting

ψ = 2
βopt + nmax

β2
opt

σ

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
and ϕ = 2Nσ

√
2 ln

(
π2NQT 3

3δ′

)
,
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where δ′ ≤ δ, GCBsafe(ψ, ϕ) provides a pseudo-regret w.r.t. the optimal solution to the original

problem of O
(√

T
∑N
j=1 γj,T

)
with probability at least 1− δ − δ′

QT 2 , while being δ-safe w.r.t. the

constraints of the auxiliary problem.

Proof. The proof follows from combining the arguments about the ROI constraint used in Theorem 10
and those about the budget constraint used in Theorem 11.

C RUNNING TIME

The asymptotic running time of the GCB and GCBsafe algorithms is given by the summation of the
running time of the estimation and optimization subroutine.

The asymptotic running time of the estimation procedure, whose main component is the estimation
of the quantities in Equations (2)-(5) is Θ(

∑N
j=1 |Xj | t2), where t is the number of samples (corre-

sponding to the rounds), and the asymptotic space complexity is Θ(Nt2), i.e., the space required
to store the Gram matrix. A better (linear) dependence on the number of days t can be obtained by
using the recursive formula for the GP mean and variance computation (see Chowdhury & Gopalan
(2017) for details).

The asymptotic running time of the Opt procedure is Θ
(∑N

j=1 |Xj | |Y |2 |R|2
)

, where |Xj | is the
cardinality of the set of bids Xj , since it cycles over all the subcampaigns and, for each one of them,
finds the maximum bids and compute the values in the matrix S(y, r). Moreover, the asymptotic
space complexity of the Opt procedure is Θ

(
maxj={1,...,N} |Xj | |Y | |R|

)
since it stores the values

in the matrix S(y, r) and finds the maximum over the possible bids x ∈ Xj .

D ADDITIONAL EXPERIMENTS AND EXPERIMENTAL SETTINGS DETAILS

D.1 EXPERIMENT #2: EVALUATING GCBsafe(ψ, 0) WHEN THE BUDGET CONSTRAINT IS
ACTIVE

In real-world scenarios, the business goals in terms of volumes-profitability tradeoff are often blurred,
and sometimes it can be desirable to slightly violate the constraints (usually, the ROI constraint)
in favor of a significant volume increase. However, analyzing and acquiring information about
these tradeoff curves requires exploring volumes of opportunities by relaxing the constraints. In this
experiment, we show how our approach can be adjusted to address this problem in practice.
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Figure 2: Results of Experiment #2: Median values of the daily revenue (a), ROI (b) and spend (c)
obtained by GCBsafe(ψ, 0) with different values of ψ.

Setting We use the same setting of Experiment #1, except that we evaluate GCBsafe and
GCBsafe(ψ, ϕ) algorithms. More precisely, we relax the ROI constraint by a tolerance ψ ∈
{0, 0.05, 0.1, 0.15} (while keeping ϕ = 0). Notice that GCBsafe(0, 0) corresponds to the use
of GCBsafe in the original problem. As a result, except for the case ϕ = 0, we allow GCBsafe(ψ, ϕ)
to violate the ROI constraint, but, with high probability, the violation is bounded by at most 0.5%, 1%,
1.5% of λ, respectively. Instead, we do not introduce any tolerance for the daily budget constraint β.
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Figure 3: Results of Experiment #3: Median values of the daily revenue (a), ROI (b) and spend (c) of
GCB, GCBsafe, and GCBsafe(0.05, 0).

Results In Figures 2, we show the median values, on 100 independent runs, of the performance in
terms of daily revenue, ROI, and spend of GCBsafe(ψ, 0) for every value of ψ. The 10% and 90%
quantiles are reported in Figure 4, 5, 6, and 7 in Appendix D.6. The results show that by allowing a
small tolerance in the ROI constraint violation, we can improve the exploration and, therefore, lead to
faster convergence. We note that if we set a value of ψ ≥ 0.05, we achieve better performance in
the first learning steps (t < 20), still maintaining a robust behavior in terms of constraint violations.
Most importantly, the ROI constraint is always satisfied by the median and also by the 10% and 90%
quantiles. Furthermore, a few violations are present only in the early stages of the learning process.

D.2 EXPERIMENT #3: COMPARING GCB, GCBsafe, AND GCBsafe(ψ, 0) WHEN THE ROI
CONSTRAINT IS ACTIVE

We study a setting in which the ROI constraint is active at the optimal solution, i.e., λ = λopt, while
the budget constraint is not. This means that, at the optimal solution, the advertiser would have an
extra budget to spend. However, if such a budget is not spent, the ROI constraint would be violated
otherwise.

Setting The experimental setting is the same as Experiment #1, except that we set the budget
constraint as β = 300. The optimal daily spend is βopt = 161.

Results In Figure 3, we show the median values of the daily revenue, the ROI, and the spend of
GCB, GCBsafe, GCBsafe(0.05, 0) obtained with 100 independent runs. The 10% and 90% of the
quantities provided by GCB, GCBsafe, and GCBsafe(0.05, 0) are reported in Figures 8, 9, and 10
in D.7. We notice that, even in this setting, GCB violates the ROI constraint for the entire time horizon,
and the budget constraint in t = 6 and t = 7. However, it achieves a revenue larger than that of the
optimal constrained solution. On the other side, GCBsafe and always satisfies both the constraints,
but it does not perform enough exploration to quickly converge to the optimal solution. We observe
that it is sufficient to allow a tolerance in the ROI constraint violation by slightly perturbing the
input value λ (ψ = 0.05, corresponding to a violation of the constraint by at most 0.5%) to make
GCBsafe(ψ, ϕ) capable of approaching the optimal solution while satisfying both constraints for
every t ∈ {0, . . . , T}. This suggests that, in real-world applications, GCBsafe(ψ, ϕ) with a small
tolerance represents an effective solution, providing guarantees on the violation of the constraints
while returning high values of revenue.

D.3 EXPERIMENT #4: COMPARING GCB, GCBsafe, AND GCBsafe(ψ, ϕ) WITH MULTIPLE,
HETEROGENEOUS SETTINGS

In this experiment, we extend the experimental activity we conduct in Experiments #1 and #3 to other
multiple, heterogeneous settings.

Setting We simulate N = 5 subcampaigns with a daily budget β = 100, with |Xj | = 201 bid
values evenly spaced in [0, 2], |Y | = 101 cost values evenly spaced in [0, 100], being the daily
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Table 1: Results of Experiment #4.

WT WT/2 σT σT/2 MT MT/2 UT UT/2 LT LT/2 VROI VB
Se

tti
ng

#
1 GCB 57481 30767 556 376 57497 30811 58081 31239 56758 30288 1.00 0.62

GCBsafe 44419 21549 4766 2474 45348 21972 46783 23163 42287 20324 0.02 0.00
GCBsafe(0.05, 0) 48028 23524 4902 2487 48626 23831 50388 24827 46307 22506 0.21 0.00
GCBsafe(0.10, 0) 52327 25859 829 611 52338 25887 53324 26605 51316 25104 0.94 0.00

Se
tti

ng
#
2 GCB 63664 35566 1049 679 63701 35573 64984 36524 62249 34675 1.00 0.14

GCBsafe 34675 16290 8541 4448 37028 17647 39594 19473 27748 11141 0.03 0.00
GCBsafe(0.05, 0) 40962 19564 6013 3122 41823 20152 44468 21698 38640 17645 0.04 0.00
GCBsafe(0.10, 0) 46694 22099 6382 3112 47749 22433 51564 24776 44099 19929 0.72 0.00

Se
tti

ng
#
3 GCB 54845 30213 757 478 54816 30177 55734 30885 54006 29638 1.00 0.25

GCBsafe 35726 16577 8239 4361 38302 18114 40746 19882 27279 8791 0.03 0.00
GCBsafe(0.05, 0) 38757 18370 8492 4594 41422 19808 43337 21092 30413 12678 0.07 0.00
GCBsafe(0.10, 0) 42184 19993 9652 5056 44820 21574 47659 23118 36570 14450 0.75 0.00

Se
tti

ng
#
4 GCB 71404 37383 351 262 71399 37387 71877 37732 70930 37021 0.98 0.98

GCBsafe 29101 13817 7052 3646 30992 14680 35602 17256 20509 9562 0.00 0.00
GCBsafe(0.05, 0) 39802 18270 10232 4955 38296 17994 53375 24962 25197 11341 0.01 0.00
GCBsafe(0.10, 0) 51515 24095 11094 5639 56621 24902 61992 30020 35642 16198 0.56 0.00

Se
tti

ng
#
5 GCB 74638 39523 642 392 74693 39529 75405 40049 73756 39063 0.98 0.31

GCBsafe 48956 23230 6715 3486 50021 23838 53644 26266 42946 19287 0.00 0.00
GCBsafe(0.05, 0) 56205 27003 2578 1742 56554 27211 58839 28802 53278 24987 0.00 0.00
GCBsafe(0.10, 0) 63411 30207 5636 2916 64364 30665 66764 32212 60519 28260 0.59 0.00

Se
tti

ng
#
6 GCB 67118 35775 327 260 67130 35795 67536 36111 66726 35424 0.98 0.98

GCBsafe 14448 7707 6006 3065 15019 8075 18581 9800 6781 3926 0.02 0.00
GCBsafe(0.05, 0) 14968 7710 6174 2974 15161 8157 20548 10351 7954 3860 0.02 0.00
GCBsafe(0.10, 0) 34716 15507 16133 7280 37409 16601 55236 25366 9895 5188 0.19 0.00

Se
tti

ng
#
7 GCB 63038 35330 873 401 63088 35367 64226 35793 61754 34823 1.00 0.41

GCBsafe 31662 14806 5651 3090 33009 15570 35004 16922 28296 11338 0.04 0.00
GCBsafe(0.05, 0) 37744 17606 4173 2619 38321 18161 41184 19805 33914 15276 0.03 0.00
GCBsafe(0.10, 0) 42528 20046 7497 3624 43765 20683 47187 22301 38988 18314 0.70 0.00

Se
tti

ng
#
8 GCB 79571 42322 476 375 79581 42317 80073 42743 78969 41913 1.00 0.98

GCBsafe 48046 22478 11779 6000 52094 24180 57321 28024 30655 13338 0.02 0.00
GCBsafe(0.05, 0) 58450 27477 10296 5605 61404 28845 66902 32883 41196 18222 0.02 0.00
GCBsafe(0.10, 0) 68252 33255 3436 2417 68886 33857 70758 35377 65394 30696 0.07 0.00

Se
tti

ng
#
9 GCB 70280 37363 672 347 70275 37352 71123 37811 69379 36942 1.00 0.34

GCBsafe 40116 18895 5522 3047 40673 19357 43850 21161 37310 17222 0.03 0.00
GCBsafe(0.05, 0) 51138 23683 3110 2036 50984 23375 54545 26174 47465 21385 0.03 0.00
GCBsafe(0.10, 0) 63574 29675 3810 3323 64011 30112 66658 32559 60970 27280 0.80 0.00

Se
tti

ng
#
10 GCB 80570 41973 435 344 80568 42019 81127 42388 80023 41496 1.00 0.98

GCBsafe 58965 28785 3097 1465 60033 28917 62353 30535 54590 26931 0.02 0.00
GCBsafe(0.05, 0) 63685 31004 3787 1876 65273 31550 67364 33105 57860 28349 0.02 0.00
GCBsafe(0.10, 0) 68480 33358 4224 2181 70388 33998 72730 35838 61971 30317 0.65 0.00

budget β = 100, and |R| evenly spaced revenue values depending on the setting. We generate
10 scenarios that differ in the parameters defining the cost and revenue functions and in the ROI
parameter λ. Recall that the number-of-click functions coincide with the revenue functions since
vj = 1 for each j ∈ {1, . . . , N}. Parameters αj ∈ N+ and θj ∈ N+ are sampled from discrete
uniform distributions U{50, 100} and U{400, 700}, respectively. Parameters γj and δj are sampled
from the continuous uniform distributions U [0.2, 1.1). Finally, parameters λ are chosen such that the
ROI constraint is active at the optimal solution. Table 3 in D.8 specifies the values of such parameters.

Results We compare the GCB, GCBsafe, GCBsafe(0.05, 0), and GCBsafe(0.10, 0) algorithms in
terms of:

• Wt :=
∑t
h=1 Pt(U): average (over 100 runs) cumulative revenue at round t (and the

corresponding standard deviation σt);

• Mt: median (over 100 runs) of the cumulative revenue at round t;

• Ut: 90-th percentile (over 100 runs) of the cumulative revenue at round t;

• Lt: 10-th percentile (over 100 runs) of the cumulative revenue at round t;

• VROI : the fraction of days in which the ROI constraint is violated;

• VB : the fraction of days in which the budget constraint is violated.
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Table 2: Parameters of the synthetic settings used in Experiment #1.

C1 C2 C3 C4 C5

θj 60 77 75 65 70
δj 0.41 0.48 0.43 0.47 0.40
αj 497 565 573 503 536
γj 0.65 0.62 0.67 0.68 0.69
σf GP revenue 0.669 0.499 0.761 0.619 0.582
l GP revenue 0.425 0.469 0.471 0.483 0.386
σf GP cost 0.311 0.443 0.316 0.349 0.418
l GP cost 0.76 0.719 0.562 0.722 0.727

Table 1 reports the algorithms’ performances at ⌈T/2⌉ = 28 and at the end of the learning process
t = T = 57. As already observed in the previous experiments, GCB violates the ROI constraint
at every round, run, and setting. More surprisingly, GCB violates the budget constraint most of
the time (60% on average) even if that constraint is not active at the optimal solution. Interestingly,
GCBsafe(ψ, 0) never violates the budget constraints (for every ψ). As expected, the violation of the
ROI constraint is close to zero with GCBsafe, while it increases as ψ increases. In terms of average
cumulative revenue, at T , we observe that GCBsafe gets about 56% of the revenue provided by GCB,
while the ratio related to GCBsafe(0.05, 0) is about 66% and that related to GCBsafe(0.10, 0) is
about 78%. At T/2, we the ratios are about 52% for GCB, 61% for GCBsafe(0.05, 0), and 73% for
GCBsafe(0.10, 0), showing that those ratios increase as T increases. The rationale is that in the early
stages of the learning process, safe algorithms learn more slowly than non-safe algorithms. Similar
performances can be observed when focusing on the other indices. Summarily, the above results
show that our algorithms provide advertisers with a wide spectrum of effective tools to address the
revenue/safety tradeoff. A small value of ψ (and ϕ) represents a good tradeoff. The choice of the
specific configuration to adopt in practice depends on the advertiser’s aversion to the violation of the
constraints.

D.4 ADDITIONAL INFORMATION FOR REPRODUCIBILITY

In this section, we provide additional information for the full reproducibility of the experiments
provided in the main paper.

The code has been run on an Intel(R) Core(TM) i7− 4710MQ CPU with 16 GiB of system memory.
The operating system was Ubuntu 18.04.5 LTS, and the experiments have been run on Python 3.7.6.
The libraries used in the experiments, with the corresponding versions, were:

• matplotlib==3.1.3

• gpflow==2.0.5

• tikzplotlib==0.9.4

• tf_nightly==2.2.0.dev20200308

• numpy==1.18.1

• tensorflow_probability==0.10.0

• scikit_learn==0.23.2

• tensorflow==2.3.0

On this architecture, the average execution time of each algorithm takes an average of ≈ 30 sec for
each day t of execution.

D.5 PARAMETERS AND SETTING OF EXPERIMENT #1 (MAIN PAPER)

Table 2 specifies the values of the parameters of cost and number-of-click functions of the subcam-
paigns used in Experiment #1.
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D.6 ADDITIONAL RESULTS OF EXPERIMENT #2

In Figures 4, 5, 6, and 7 we report the 90% and 10% of the quantities related to Experiment #2
provided by the GCBsafe, GCBsafe(0, 0.05), GCBsafe(0, 0.10), and GCBsafe(0, 0.15), respectively.
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Figure 4: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by GCBsafe.
The dash-dotted lines correspond to the optimum values for the revenue and ROI, while the dashed
lines correspond to the values of the ROI and budget constraints.
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Figure 5: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by and
GCBsafe(0, 0.05). The dash-dotted lines correspond to the optimum values for the revenue and ROI,
while the dashed lines correspond to the values of the ROI and budget constraints.
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Figure 6: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by and
GCBsafe(0, 0.10). The dash-dotted lines correspond to the optimum values for the revenue and ROI,
while the dashed lines correspond to the values of the ROI and budget constraints.
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Figure 7: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by and
GCBsafe(0, 0.15). The dash-dotted lines correspond to the optimum values for the revenue and ROI,
while the dashed lines correspond to the values of the ROI and budget constraints.

D.7 ADDITIONAL RESULTS OF EXPERIMENT #3

In Figures 8, 9, and 10 we report the 90% and 10% of the quantities analysed in the experimental
section for Experiment #3 provided by the GCB, GCBsafe, and GCBsafe(0.05, 0), respectively.
These results show that the constraints are satisfied by GCBsafe, and GCBsafe(0.05, 0) also with
high probability. While for GCBsafe this is expected due to the theoretical results we provided, the
fact that also GCBsafe(0.05, 0) guarantees safety w.r.t. the original optimization problem suggests
that in some specific setting GCBsafe is too conservative. This is reflected in a lower cumulative
revenue, which might be negative from a business point of view.
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Figure 8: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by GCB. The
dash-dotted lines correspond to the optimum values for the revenue and ROI, while the dashed lines
correspond to the values of the ROI and budget constraints.

D.8 PARAMETERS OF SETTINGS OF EXPERIMENT #4

We report in Table 3 the values of the parameters of cost and number-of-click functions of the
subcampaigns used in Experiment #4.
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Table 3: Values of the parameters used in the 10 different settings of Experiment #4.

C1 C2 C3 C4 C5 λ

Setting 1 θj 530 417 548 571 550 10.0
δj 0.356 0.689 0.299 0.570 0.245
αj 83 97 72 100 96
γj 0.939 0.856 0.484 0.661 0.246

Setting 2 θj 597 682 698 456 444 14.0
δj 0.202 0.520 0.367 0.393 0.689
αj 83 98 56 60 51
γj 0.224 0.849 0.726 0.559 0.783

Setting 3 θj 570 514 426 469 548 10.5
δj 0.217 0.638 0.694 0.391 0.345
αj 97 78 53 80 82
γj 0.225 0.680 1.051 0.412 0.918

Setting 4 θj 487 494 467 684 494 12.0
δj 0.348 0.424 0.326 0.722 0.265
αj 62 79 76 69 99
γj 0.460 1.021 0.515 0.894 1.056

Setting 5 θj 525 643 455 440 600 14.0
δj 0.258 0.607 0.390 0.740 0.388
αj 52 87 68 99 94
γj 0.723 0.834 1.054 1.071 0.943

Setting 6 θj 617 518 547 567 576 11.0
δj 0.844 0.677 0.866 0.252 0.247
αj 71 53 87 98 59
γj 0.875 0.841 1.070 0.631 0.288

Setting 7 θj 409 592 628 613 513 11.5
δj 0.507 0.230 0.571 0.359 0.307
αj 77 78 91 50 71
γj 0.810 0.246 0.774 0.516 0.379

Setting 8 θj 602 605 618 505 588 13.0
δj 0.326 0.265 0.201 0.219 0.291
αj 67 80 99 77 99
γj 0.671 0.775 0.440 0.310 0.405

Setting 9 θj 486 684 547 419 453 13.0
δj 0.418 0.330 0.529 0.729 0.679
αj 53 82 58 96 100
γj 0.618 0.863 0.669 0.866 0.831

Setting 10 θj 617 520 422 559 457 14.0
δj 0.205 0.539 0.217 0.490 0.224
αj 51 86 93 61 84
γj 1.0493 0.779 0.233 0.578 0.562
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Figure 9: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by GCBsafe.
The dash-dotted lines correspond to the optimum values for the revenue and ROI, while the dashed
lines correspond to the values of the ROI and budget constraints.
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Figure 10: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by
GCBsafe(0.05, 0). The dash-dotted lines correspond to the optimum values for the revenue and ROI,
while the dashed lines correspond to the values of the ROI and budget constraints.
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