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Abstract001

Large Language Models (LLMs) are effec-002
tive at natural language reasoning but still003
struggle with answering commonsense ques-004
tions that require implicit knowledge of the005
world. LLMs rely on knowledge learned006
through training, which can be limited to spe-007
cific domains and may use inaccurate knowl-008
edge, resulting in hallucinations. To alleviate009
these, recent research integrates external knowl-010
edge sources (e.g., Fine-tuning, Self-revision,011
Retrieval-Augmented Generation (RAG), and012
Chain-of-Thought (CoT)). However, regular013
CoT reasoning merely presents the answering014
process in a specious form, where individual015
steps are challenging to verify. In this pa-016
per, we propose a novel approach called Re-017
visable Chain-of-Thought to address an im-018
portant commonsense question answering task,019
the Winograd Schema Challenge. Inspired020
by the cognitive logic of “rising from the ab-021
stract to the concrete,” Revisable CoT decom-022
poses knowledge into three distinct categories:023
meta-knowledge, transfer knowledge, and in-024
stantiated knowledge, each handled in separate025
steps. This framework emphasizes step-by-step026
verifiability and revisability, ensuring a more027
interpretable and reliable reasoning process.028
Furthermore, we propose online revision by029
teacher models and offline revision with knowl-030
edge base. To enhance the relevance of knowl-031
edge retrieval from the knowledge base, we032
propose an antisense retrieval method to check033
if the newly generated knowledge contradicts034
any existing knowledge in the knowledge base035
to avoid retrieving meta-knowledge irrelevant036
to the problem. The experimental results on037
the Winogrande dataset have corroborated the038
efficacy of our proposed method. We revised039
the meta-knowledge of GPT-3.5 with GPT-4,040
which enhanced the accuracy from 68.11% to041
73.64%, an improvement of 5.53%.042

1 Introduction 043

Large language models (LLMs) (e.g. GPT-4 Ope- 044

nAI (2023)) have demonstrated strong capabili- 045

ties in dealing with natural language reasoning 046

(NLR) Yu et al. (2023); Lin et al. (2023) prob- 047

lems, where reasoning refers to the process of draw- 048

ing logical inferences or conclusions from given 049

information. Commonsense Question Answering 050

(CQA) Zhang et al. (2024); Talmor et al. (2021); 051

Huang et al. (2019) is a subfield of NLR that re- 052

quires the understanding and application of im- 053

plicit world knowledge(e.g., spatial relations, so- 054

cial conventions and scientific facts, etc.) Branco 055

et al. (2021); Zhou et al. (2021) . 056

Effective utilization of knowledge in LLMs is 057

crucial Yin et al. (2023). The knowledge embedded 058

in LLMs is known as parameterised knowledge Luo 059

et al. (2023), acquired through extensive data train- 060

ing within the neural network’s weights. When 061

answering commonsense questions, parameterized 062

knowledge faces the challenge: constrained train- 063

ing corpus leading to domain limitations. These 064

limitations can lead to hallucinations, resulting in 065

the generation of erroneous or fictitious informa- 066

tion without a clear basis. 067

To alleviate hallucinations, recent developments 068

focus on integrating external knowledge sources 069

but are limited in commonsense question answer- 070

ing: (a) Fine-tuning Shen et al. (2023); Fu et al. 071

(2023) improves model performance through addi- 072

tional training on specific datasets, but identifying 073

effective knowledge is still challenging (i.e. incor- 074

rect parameterised knowledge and unseen knowl- 075

edge). (b) Self-revision Madaan et al. (2023); Guo 076

et al. (2023) allows models to self-assess and cor- 077

rect potential errors before output, but it is ineffec- 078

tive when the model is uncertain of the correct 079

answer Huang et al. (2023). (c) Retrieval aug- 080

mentation Asai et al. (2023); Shuster et al. (2021) 081

strengthens models by retrieving from external in- 082
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Question:
Jessica lost to Jennifer at darts at the fair, so
_ won the goldfish in a bag. (A) Jessica (B)
Jennifer
Regular CoT:
To solve this problem, we need to identify who
won the goldfish in a bag based on the outcome
of a darts game between Jessica and Jennifer at
the fair.
1. We are given that Jessica and Jennifer played
darts.
2. The sentence states that Jessica lost to Jen-
nifer.
3. Since Jennifer won the game of darts, she
was the victor.
4. The winner of the darts game won the gold-
fish in a bag.
5. Therefore, since Jennifer won the darts game,
she also won the goldfish.
Based on this chain of thought, the answer is
(B) Jennifer.
Revisable CoT:
• Meta-knowledge:
If X wins against Y, then X gets a reward.
• Transfer knowledge:
X wins against Y, so X gets a reward.
( If P, then Q. → P, so Q. )
• Instantiated knowledge:
X=Jennifer, Y=Jessica, X wins against Y = Y
lost to X, reward = goldfish, _=X=Jennifer

Table 1: Examples of Regular CoT and Revisable
CoT (meta-knowledge, transfer knowledge, instantiated
knowledge)

formation sources. Representing the knowledge083

and its availability to LLM are the key challenges.084

(d) Chain-of-Thought(CoT) Wei et al. (2022); Zhou085

et al. (2023) guides models to generate reasonable086

results through a linear chain pattern of reasoning087

and interpretation. The steps in a regular CoT are088

unstructured textual, which makes it challenging to089

verify and revise them using advanced models or090

trusted systems (see regular CoT in Table 1). Struc-091

turing the CoT and categorising the knowledge it092

contains, in turn, can help to identify and revise093

specific types of knowledge.094

In this paper, we propose a novel approach called095

Revisable Chain-of-Thought (Revisable CoT) for096

enhancing knowledge to address an important com-097

monsense reasoning task, the Winograd Schema098

Challenge (WSC) Levesque et al. (2012). Inspired099

by the cognitive logic of “rising from the abstract 100

to the concrete,” we argue that we need to iden- 101

tify the basic principles or laws of the problem in 102

various scenarios, and then concretise the abstract 103

concepts into context-specific instances. In addi- 104

tion, since LLMs are sensitive to logical forms of 105

knowledge, such as the “curse of reversal”, they 106

also need to deal with the restatement or reversal 107

of basic principles. 108

We emphasize the following research questions: 109

• RQ1. Can we improve the performance of 110

commonsense question answering by revising 111

the knowledge in the CoT? We classify the 112

knowledge in commonsense question answer- 113

ing into meta-knowledge, transfer knowledge 114

and instantiated knowledge, and revise them 115

progressively. Experiments prove that revis- 116

ing meta-knowledge is the most critical. 117

• RQ2. Can LLMs revise themselves with- 118

out external help? We find that model self- 119

revision fails to deliver gains while perfor- 120

mance can be enhanced by using more power- 121

ful models or humans as teacher models. 122

• RQ3. Which is more effective for knowl- 123

edge revision with KB: (a) determine whether 124

newly generated knowledge conflicts with 125

KB (i.e., antonymic retrieval), or (b) retrieve 126

knowledge from KB without new knowledge 127

generation? We find (a) is better than (b) be- 128

cause direct retrieval may introduce irrelevant 129

knowledge. 130

To sum up, our contributions are three-fold: 131

(1) We propose a revisable three-step CoT frame- 132

work for enhancing knowledge on WSC, an im- 133

portant commonsense question answering tasks. 134

We categorise knowledge into meta-knowledge (ab- 135

stract) and instantiated knowledge (concrete), en- 136

hancing knowledge transferability and ease of revi- 137

sion. Transfer knowledge enables flexible applica- 138

tion, reducing sensitivity of LLMs’ logical form. 139

(2) We further propose online revision by teacher 140

models and offline revision with knowledge bases, 141

and our antonymic retrieval outperforms conven- 142

tional retrieval. 143

(3) Experimental results on Winogrande show 144

that our method is effective in correcting common- 145

sense knowledge and improve the accuracy. 146
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2 Related Work147

Chain-of-thought (CoT) reasoning Chu et al.148

(2023) involves models explicitly outputting in-149

termediate reasoning steps before the final answer.150

It enhances LLMs’ performance on complex rea-151

soning tasks and interpretability. We introduce152

constructing, structuring, and enhancing the CoT.153

CoT construction are categorised into three154

main methods: manual, automatic and semi-155

automatic. Manual construction Wei et al. (2022);156

Gao et al. (2023) relies on complete manual anno-157

tation, which yields high-quality results and is par-158

ticularly beneficial for learning with fewer samples159

but faces larger labour costs and cross-task migra-160

tion challenges. In contrast, automatic construction161

eliminates human intervention. It generates infer-162

ence chains via both Zero-shot CoT Kojima et al.163

(2022) and Auto CoT Zhang et al. (2022), which164

reduces labour costs and facilitates cross-task mi-165

gration. Still, its performance may be limited by166

the lack of high-quality annotation and is prone167

to logical or factual errors. The semi-automatic168

construction Shum et al. (2023) method uses a few169

high-quality manually labelled “seed samples” Pitis170

et al. (2023) to generate reasoning chains through171

automatic expansion, balancing human cost and172

reasoning performance.173

CoT structures are varied, with the most prim-174

itive structure being a chain that describes inter-175

mediate reasoning steps in natural language Wei176

et al. (2022). (Gao et al., 2023) uses procedural177

language instead of natural language, while Long178

(2023) introduces a tree structure to tackle complex179

tasks. Graph structures Besta et al. (2023), on the180

other hand, can handle complex tasks efficiently181

due to their complex topology and ring structures.182

CoT enhancement approach is a key strategy183

for addressing LLMs’ hallucinatory. Validation and184

refinement-based approaches (e.g. VerifyCoT Ling185

et al. (2023) and DIVERSE Li et al. (2023b)) en-186

sure consistency through calibration of reasoning187

steps and deductive reasoning while introducing188

knowledge from internal and external sources to189

reinforce factual accuracy. Least-to-Most Zhou190

et al. (2022) and Successive Prompting Dua et al.191

(2022) decompose complex problems into manage-192

able sub-problems. Chain-of-Knowledge Li et al.193

(2023a) introduces exogenous knowledge to pro-194

vide up-to-date information for the model.195

Ours is semi-automatically constructed through196

a three-step revisable CoT framework. It pro-197

gressively specifies the meta-knowledge, transfer 198

knowledge, and instantiated knowledge used in 199

new problems. It also self-revises by introducing a 200

knowledge base that can be either a larger model 201

or a human construct. 202

3 Methodology 203

3.1 Design of Revisable Chain-of-Thought 204

(RCoT) 205

An ideal revisable CoT can be automatically val- 206

idated and revised by either a teacher model or a 207

trusted system. However, task-specific revisable 208

CoT must balance revisability and applicability. 209

For the WSC task, we propose a three-step CoT 210

approach, which sequentially addresses handling 211

meta-knowledge, transfer knowledge and instanti- 212

ated knowledge. 213

3.1.1 Meta-knowledge(MK) and Instantiated 214

knowledge(IK) 215

Meta-Knowledge(MK) is the abstract, simple and 216

correct general knowledge that you need to mas- 217

ter when answering questions, and many ques- 218

tions may be solved by the same Meta-Knowledge. 219

Instantiated Knowledge(IK) is the knowledge 220

that corresponds the abstract elements of meta- 221

knowledge to the concrete content of the problem 222

to solve the concrete problem. 223

We design a Meta-Knowledge pattern in the 224

form of “If P, then Q," where P and Q repre- 225

sent the premise and conclusion, respectively. Ta- 226

ble 2 presents several typical instances of meta- 227

knowledge. Some symbols and concepts within P 228

and Q need to be instantiated, which we refer to as 229

slots. For example, in meta-knowledge “If X wins 230

against Y, then X gets a reward," X and Y could be 231

two individuals, two teams, two companies, or two 232

countries. The term “win" could refer to victory in 233

a game, a sports competition, a business rivalry, or 234

a war, while “reward" could signify a prize, market 235

share, honour, or war spoils, among other things. 236

The evaluation of meta-knowledge includes cor- 237

rectness, relevance and abstractness. Correctness 238

indicates whether the meta-knowledge is correct or 239

not. Relevance indicates whether meta-knowledge 240

is applicable to answering the question that needs 241

to be addressed. Meta-knowledge is of no value if it 242

cannot answer the question. Abstractness indicates 243

whether the meta-knowledge is reasonably abstract, 244

meaning that it can be used to solve similar prob- 245

lems and can also be effectively instantiated for 246
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specific problems.247

3.1.2 Transfer knowledge248

Transfer Knowledge(TK) is used to transform meta-249

knowledge into another form that is more suitable250

for the problem at hand, requiring the use of logical251

knowledge and linguistic expertise. The purpose252

of transforming linguistic knowledge is to better253

adapt to specific problems, thereby more effectively254

mapping the slots in the meta-knowledge to the255

actual issues.256

There are three aspects in which the various257

forms of meta-knowledge differ: first, the sequence258

of the premise P and the conclusion Q in the sen-259

tence. The premise P can precede the conclusion Q260

or the conclusion Q can come before the premise P.261

Second, whether there is a negation in the premise262

P and the conclusion Q, which combines to create263

four possibilities. Third, the sentence components264

that connect the premise P and the conclusion Q.265

Table 3 shows typical examples of transfer knowl-266

edge.267

The evaluation metrics for transfer knowledge268

encompass correctness and applicability. Correct-269

ness pertains to the assessment of whether the trans-270

formation of meta-knowledge maintains equiva-271

lence. For example, given meta-knowledge in the272

form of “If P, then Q”, a correct transformation273

would be “not Q, so not P”, while “not Q, so P”274

would be incorrect. Applicability refers to the275

degree to which the transformed meta-knowledge276

aligns with the syntactic structure of the target prob-277

lem.278

3.2 Knowledge Revision Method279

If Model MT performs significantly better than280

Model M on a Commonsense Question Answering281

task, this paper speculates that MT performs better282

than M on at least one, or all three, of the revisable283

CoT solutions in terms of meta-knowledge, transfer284

knowledge, and instantiated knowledge. The CoT285

of M can be modified with MT , which we call the286

teacher model.287

3.2.1 Online Revision by Teacher Models288

The Online Revision by Teacher Models (RTM)289

method employs a teacher model MT to iteratively290

refine the CoT in model M , specifically targeting291

the knowledge components Meta-Knowledge(MK),292

Transfer Knowledge(TK), and Instantiated knowl-293

edge(IK). The teacher model MT can be a more294

capable language model or even a human. For295

instance, GPT-4 serves as the teacher model for 296

GPT-3.5, while humans act as the teacher model 297

for GPT-4. 298

The teacher model possesses the capability ei- 299

ther to revise the knowledge embedded within the 300

model or to regard the model’s inherent knowledge 301

as accurate, thus not requiring revision. Algorithm 302

1 provides a simplified description of the RTM 303

method, omitting the details of revisions to TK and 304

IK. The revision process for TK and IK is identical. 305

In the algorithm 1, IsCorrect(mk) and 306

IsMatch(q,mk) respectively indicate whether 307

mk is correct and whether mk matches the ques- 308

tion q. These can be determined by the MT model 309

or by a specialized model.

Algorithm 1 Online Revision by Teacher Models

Input:
the question q, model M , teacher model MT .

Output:
The output is the revision sequence S0, S1, S2.

1: S0 : M(q) = (mk, tk, ik, a)
2: if IsCorrect(mk) and IsMatch(q,mk)

then
3: S1 : mk′ = mk
4: else
5: S1 : mk′ = MT (q,mk)
6: end if
7: S2 : M(q,mk′) = (tk′, ik′, a′)
8: Output the sequence S0, S1, S2.

310

3.2.2 Offline Revision with Knowledge Base 311

When the teacher model is not available, or is ex- 312

pensive to use, such as when the teacher model 313

is human, we use a modified method of using the 314

teacher model knowledge offline, which is called 315

Offline Revision with Knowledge Base(RKB) in this 316

paper. 317

As mentioned in Section 3.1, since multiple prob- 318

lems may rely on the same meta-knowledge for res- 319

olution, the meta-knowledge required for a problem 320

might have already been provided by the teacher 321

model when solving similar problems in the past 322

and may exist within the meta-knowledge base. 323

Despite the accuracy of the knowledge in the 324

meta-knowledge base being ensured by the teacher 325

model, finding the appropriate meta-knowledge 326

for new questions from the vast meta-knowledge 327

base is challenging. To reduce errors caused by 328

irrelevant meta-knowledge, we adopt the most con- 329
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Question Options
Jessica lost to Jennifer at darts at the fair, so _ won the goldfish
in a bag.

(A) Jessica (B) Jennifer

Meta-knowledge Slot
If X wins against Y, then X gets a reward. X,Y,win, reward
Transfer knowledge Form
X wins against Y, so X gets a reward. If P, then Q. → P, so Q.
Instantiated knowledge
X=Jennifer, Y=Jessica, X wins against Y = Y lost to X, reward
= goldfish, _=X=Jennifer
Question Options
Michael had a cat but Nelson didn’t have any pets because _
had little allergies.

(A) Michael (B) Nelson

Meta-knowledge Slot
If X is allergic, then X does not have a pet. X,pet
Transfer knowledge Form
X have a pet because X is not allergic. If P, then Q. → not Q because not P.
Instantiated knowledge
X=Michael, pet=cat, _=X=Michael

Table 2: Examples of meta-knowledge, transfer knowledge,and knstantiated knowledge

Category Sentence Form
P Q Because P, so Q. P; therefore, Q. Q, as a result of P.
P not Q P, but not Q. Even though P, not Q. not Q, although P.
not P Q Although not P, Q. Even though not P, Q. Q, even though not p.
not P not Q not Q, because not P. not Q, not P. Since not P, then not Q.

Table 3: Hierarchical Classification of Transfer knowledge. The “Sentence Form” in the table represents an
incomplete list of examples.

servative strategy: if there is meta-knowledge in330

the knowledge base that contradicts the model’s331

meta-knowledge, we can ascertain that the model’s332

meta-knowledge is incorrect, while also ensuring333

relevance. For details, see Algorithm 2.334

In Algorithm 2, NegateP and NegateQ repre-335

sent the negations of the premise and conclusion,336

respectively, of the meta-knowledge. This process337

produces the two antonymous meta-knowledge338

mkn1 and mkn2. The generation and retrieval of339

antonymous meta-knowledge can be accomplished340

by model M itself or by a dedicated model de-341

signed for this purpose.342

4 Experiments343

4.1 Winogrande344

To validate our approach, we conducted relevant345

experiments on the Winogrande Sakaguchi et al.346

(2021). Winogrande takes inspiration from wino-347

grad schemas to create a large-scale dataset of348

Algorithm 2 Offline Revision with Knowledge
Base
Input:

the question q, model M , Meta-Knowledge
Base MKB.

Output:
The output is the revision sequence S0, S1, S2.

1: S0 : M(q) = (mk, tk, ik, a)
2: NegateP (mk) = mkn1, NegateQ(mk) =

mkn2
3: if ∃mkb ∈MKB,mkb ≈ mkn1∨mkb ≈ mkn2

then
4: S1 : mk′ = mkb
5: else
6: S1 : mk′ = mk
7: end if
8: S2 : M(q,mk′) = (tk′, ik′, a′)
9: Output the sequence S0, S1, S2.
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coreference resolution problems requiring both349

physical and social common sense. The Wino-350

grande dataset is divided into training, develop-351

ment, and test sets, containing 9,248, 1,267, and352

1,767 examples. Since the test set does not provide353

answers, we carried out our experiments on the354

development set.355

For examples from the Winogrande dataset, refer356

to the three questions in Table 2.357

4.2 Experimental Settings358

In this paper, we employ GPT-3.5 and GPT-4 as the359

instruction-following models for our study, with360

the model names designated as gpt-3.5-turbo-16k361

and gpt-4-1106-preview, respectively. All other362

parameters are maintained at their default settings.363

Due to the high cost of human experts as a teacher364

model and knowledge base source, we use GPT-4365

to revise the response of GPT-3.5.366

In the experiments on Online Revision by367

Teacher Models(RTM), GPT-4 is utilized as the368

teacher model for GPT-3.5. In the experiments369

on Offline Revision with Knowledge Base(RKB),370

this paper has a subset of instances from the Wino-371

grande training set answered by GPT-4 in an RCoT372

method, from which 5,000 meta-knowledge en-373

tries are extracted to form a database. We test two374

meta-knowledge retrieval models: the all-mpnet-375

base-v2 vectorized retrieval Reimers and Gurevych376

(2019) and the GPT-4 batch retrieval. The all-377

mpnet-base-v2 is a language representation model378

that vectorizes the meta-knowledge of GPT-4 and379

the counter-knowledge of GPT-3.5, and then re-380

trieves them using cosine similarity. We input meta-381

knowledge into GPT-3.5, utilizing instructions and382

eight examples to prompt GPT-3.5 to generate two383

sets of meta-knowledge, one with negation applied384

solely to the premise and the other with negation385

applied solely to the conclusion. We then input386

the two negated forms of meta-knowledge into the387

all-mpnet-base-v2 model for vector retrieval.388

We input meta-knowledge into GPT-3.5 by em-389

ploying directives and eight examples, enabling390

GPT-3.5 to generate two antisense meta-knowledge391

representations: one that negates the premise and392

another that negates the conclusion separately. Sub-393

sequently, we input these two antisense meta-394

knowledge into the all-mpnet-base-v2 model for395

vector-based retrieval.396

We employ a directive approach combined with397

a 4-shot learning method to guide the GPT model to398

respond to queries in accordance with our specified399

Method (Winogrande) Acc C0 C1
GPT-4 86.03 83.57 87.22
GPT-4 [Regular CoT] 86.58 85.02 87.34
GPT-4 [Revisable CoT] 87.21 85.75 87.92
GPT-3.5 68.75 65.70 70.22
GPT-3.5 [Regular CoT] 68.35 64.00 70.46
GPT-3.5 [Revisable CoT] 68.11 62.80 70.70
GPT-3.5 [RTMGPT−4MK

] 73.64 71.74 74.56
GPT-3.5 [RTMGPT−4MK,TK

] 74.59 69.81 76.91
GPT-3.5 [RKBGPT−4]
Retrieval:all-mpnet-base-v2 68.67 64.49 70.70
GPT-3.5 [RKBGPT−4]
Retrieval Model:GPT-4 70.80 67.39 72.45
GPT-4 [RKBGPT−4]
Retrieval Model:GPT-4 86.98 84.78 88.04

Table 4: Results on Winogrande development set evalu-
ated using the 4-shot method

intentions. 400

4.3 Experimental results 401

Table 4 shows the performance of the Enhancing 402

Knowledge through Revisable Chain-of-Thought 403

on the Winogrande development set. 404

The numbers in Table 4 all omit %, indicat- 405

ing the accuracy rate. We employ GPT-4 to eval- 406

uate the meta-knowledge provided by GPT-3.5 407

for problem-solving, determining its correctness 408

and suitability for the current issue. The last two 409

columns, C0 and C1, represent whether the evalu- 410

ated meta-knowledge is inapplicable or applicable, 411

with 414 and 853 instances respectively, accounting 412

for 32.68% and 67.32% of the total. The content 413

within the angle brackets “[]” following the model 414

in the first column indicates the method used. A 415

blank space indicates that no CoT is used. RCoT 416

denotes the use of a revisable CoT, that is, the Re- 417

visable Chain-of-Thought method proposed in this 418

paper. RTMGPT−4MK
and RTMGPT−4MK,TK

rep- 419

resent revising Meta-Knowledge(MK) and Trans- 420

fer Knowledge(TK) in GPT-3.5 with the MK and 421

TK of GPT-4. RKBGPT−4 represents a method 422

for offline revision based on a meta-knowledge 423

database from GPT-4. With and without the use of 424

CoT, GPT-4’s accuracy surpasses that of GPT-3.5 425

by 17.28% to 19.10%, indicating that GPT-4 pos- 426

sesses the fundamental qualifications to serve as a 427

teacher model for GPT-3.5. 428

From the experimental results in Table 4, we can 429

find the following observations and conclusions: 430
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Method (ARC-Challenge) Acc
GPT-4 95.05
GPT-4 [Revisable CoT] 95.22
GPT-3.5 82.00
GPT-3.5 [Revisable CoT] 82.51
GPT-3.5 [RTMGPT−4MK

] 87.46

Table 5: Results on ARC-Challenge test set evaluated
using the 4-shot method

(1) In the role of a teacher model, GPT-4 can431

assess the correctness and applicability of the meta-432

knowledge possessed by GPT-3.5. We approach433

this evaluation as a binary classification task, where434

C1 denotes meta-knowledge that is correct and ap-435

plicable, while C0 indicates otherwise. Examina-436

tion of the data reveals that, across all rows, the437

values for C1 consistently exceed those for C0,438

with a range spanning from 2.32% to 7.9%. This439

discrepancy reflects an inherent imbalance in the440

meta-knowledge of GPT-3.5 and GPT-4 and sug-441

gests a positive correlation between the quality of442

meta-knowledge and the accuracy of responses.443

(2) In the third section of the table, we revised the444

meta-knowledge and transfer knowledge of GPT-445

3.5 with that of GPT-4, resulting in a performance446

improvement of to 5.53% to 6.48% for GPT-3.5.447

This demonstrates the effectiveness of GPT-4 as a448

teacher model for GPT-3.5.449

(3) In addressing the issue of inappropriate meta-450

knowledge discernment by GPT-4, GPT-3.5 of-451

fline revises the meta-knowledge through the meta-452

knowledge base of GPT-4, resulting in a marginal453

improvement of 0.56%. The slight enhancement454

is due to using the most conservative strategy455

for offline revision, which is only to revise meta-456

knowledge when its antonymous meta-knowledge457

exists within the knowledge base. Owing to the458

antonymy of meta-knowledge and the deficiencies459

of the semantic retrieval model, we set the correla-460

tion coefficient to 0.8, leading to only 16% of the461

meta-knowledge being offline revised.462

(4) To verify the coverage capability of the463

knowledge base, we ignore the ability to retrieve464

the model. We directly used GPT-4 as the re-465

trieval model of GPT-4 knowledge base, and the466

results showed that the performance of the model467

improved by 2.69%, which was higher than that of468

the conservative strategy (0.56%) and lower than469

that of the online teacher model (5.53%). It shows470

that the conservative correction strategy needs to be471

improved, and the knowledge base of the teacher 472

model can play a more significant role. The pur- 473

pose of our experiment is to illustrate the impor- 474

tance of retrieval models. If the teacher model 475

is available, online revision is better than offline 476

revision. 477

(5) The last line in Table 4 shows that GPT-4 478

uses its own past unprocessed knowledge base for 479

offline revision without benefit, indicating that the 480

model cannot revise faulty knowledge in the Chain- 481

of-Thought without external help. 482

GPT-3.5’s accuracy improved from 68.11% 483

(GPT-3.5 [Revisable CoT]) to 74.59% (GPT- 484

3.5[RTMGPT−4MK,TK
]). However, it is still sig- 485

nificantly smaller than the 87.21% (GPT-4 [Revis- 486

able CoT]) used directly with GPT-4. We consider 487

the reason lies in the difference in the knowledge 488

representations of language models. Although the 489

accuracy after knowledge revision does not surpass 490

the accuracy of the teacher model, the goal of our 491

study was not to surpass the performance of the 492

teacher model but to explore the potential of knowl- 493

edge revision as a viable approach to improve large 494

models with the help of teacher models like human 495

expertise, in scenarios such as education, health, 496

and law, where the expertise of human profession- 497

als is paramount. In the experiments, GPT-4 plays 498

the role of teacher model to help GPT-3.5, as get- 499

ting human expertise in the experiment is costly. 500

To investigate the generalization capability of re- 501

visable CoT reasoning on commonsense question 502

answering tasks, we designed a CoT on the AI2 503

Reasoning Challenge (ARC) Clark et al. (2018) 504

dataset that allows revisions only to the meta- 505

knowledge, and the results are shown in Table 5. 506

The experimental setup is consistent with that used 507

on Winogrande. GPT-3.5’s accuracy improved 508

from 82.51% (GPT-3.5 [Revisable CoT]) to 87.46% 509

(GPT-3.5[RTMGPT−4MK
]). 510

4.4 Case Study 511

By revising the CoT, we can obtain the correct 512

answer, as shown in Table 6. 513

Block 1 of Table 6 presents an example of Meta- 514

Knowledge of GPT-3.5 revised by GPT-4. In the 515

cognition of GPT-3.5, a good doctor should handle 516

simple cases, whereas in reality, a good doctor 517

needs to take on difficult cases. GPT-4 revises it. 518

This case shows that large models may have meta- 519

knowledge contrary to reality and can be revised 520

by other large models. 521

Block 2 of Table 6 presents an example of a 522

7



Question Options
Sarah was a much better surgeon than Maria so _ always got the easier cases. (A) Sarah (B) Maria
Meta-knowledge of GPT-3.5 Evaluation
If X is a better surgeon than Y, then X always gets the easier cases. Incorrect, Applicable
Online Revision by GPT-4 Evaluation:
If X is a better surgeon than Y, then Y always gets the easier cases. Correct, Applicable
Question Options
Michael had a cat as a pet but Nelson didn’t have any pets
because _ had little allergies in their system. (A) Michael (B) Nelson
Meta-knowledge of GPT-4 Evaluation
If X has allergies, especially to pets,then X is less likely to have pets. Correct, Applicable
Transfer knowledge of GPT-4 Evaluation
If P, then Q. → Q, due to not P. Incorrect, Inapplicable
Online Revision by a human Evaluation
If P, then Q. → not Q because not P. Correct, Applicable
Question Options
Felicia wanted to be pampered by Emily, so _ went to the jewelry store and
bought an expensive ring. (A) Felicia (B) Emily
Meta-knowledge of GPT-3.5 Evaluation
If X wants to be pampered by Y, then X will buy something expensive. Incorrect,Applicable
Offline Revision with Knowledge Base of GPT-4 Evaluation
If X treats Y to something, then X is the one who spends money for it. Correct, Applicable

Table 6: Three examples of Revision chain-of-thought. Text in red indicates errors, while text in blue represents the
revistion made.

Transfer Knowledge of GPT-4 revised by a human.523

In the cognition of GPT-4, it understands that if a524

person is allergic, they will not keep pets. However,525

the question in the table requires the knowledge526

that if a person has a pet, then they are not allergic.527

This necessitates the use of the transfer knowledge528

that the contrapositive of a statement is logically529

equivalent to the original statement in order to trans-530

form the form of the meta-knowledge. However,531

GPT-4 lacks this capability and has to be corrected532

by a human.533

Block 3 of Table 6 presents an example of of-534

fline revision of GPT-3.5 using the knowledge base535

from GPT-4. The meta-knowledge possessed by536

GPT-3.5 is not sufficiently abstract and is some-537

times contrary to the facts. In contrast, the meta-538

knowledge abstracted by GPT-4, when addressing539

similar problems in the past, can be demonstrated540

by its ability to recognize that ‘pamper’ can be541

instantiated as a ‘treat.’542

5 Conclusion543

In this paper, we propose a revisable Chain-of-544

Thought for WSC, an important commonsense545

question answering task. Through the structured546

design of CoT patterns, the revisable CoT approach 547

allows for the revision of steps within the CoT. We 548

introduce two revision methods: 1) online revi- 549

sion by the teacher model, and 2) offline revision 550

using the teacher model’s knowledge base. Our 551

experiments demonstrate the effectiveness of both 552

online and offline revisions in large language mod- 553

els. While the post-revision accuracy does not ex- 554

ceed that of the teacher model, our study aimed 555

to explore knowledge revision as a method to en- 556

hance large models using teacher models, such as 557

human expertise, particularly in fields like educa- 558

tion, health, and law, where human professional 559

expertise is crucial. The design of revisable CoT 560

is task-specific and requires balancing revisability 561

with task applicability, we believe that topics such 562

as the design methodology for revisable CoT in 563

commonsense question answering tasks, the bal- 564

ance between revisability and applicability, and 565

their generalizability are worthy of further explo- 566

ration and research. 567

6 Limitations 568

In this paper, we only conducted experiments 569

on the Winogrande dataset, given its clear and 570

8



straightforward problem patterns, which facilitate571

the demonstration of our proposed revisable chain-572

of-thought method. Although we did not perform573

experiments on other datasets, we expect that the574

underlying principles of our proposed method re-575

main valid.576
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