Discovering Object-Centric Generalized Value Functions From Pixels

Somyjit Nath ' > Gopeshh Raaj Subbaraj?? Khimya Khetarpal "> Samira Ebrahimi Kahou ' 2>

Abstract

Deep Reinforcement Learning has shown signifi-
cant progress in extracting useful representations
from high-dimensional inputs albeit using hand-
crafted auxiliary tasks and pseudo rewards. Au-
tomatically learning such representations in an
object-centric manner geared towards control and
fast adaptation remains an open research prob-
lem. In this paper, we introduce a method that
tries to discover meaningful features from objects,
translating them to temporally coherent ‘question’
functions and leveraging the subsequent learned
general value functions for control. We com-
pare our approach with state-of-the-art techniques
alongside other ablations and show competitive
performance in both stationary and non-stationary
settings. Finally, we also investigate the discov-
ered general value functions and through quali-
tative analysis show that the learned representa-
tions are not only interpretable but also, centered
around objects that are invariant to changes across
tasks facilitating fast adaptation.

1. Introduction

Learning control from high-dimensional input such as im-
ages is a complex problem relevant to many real world
applications. While researchers have made huge strides in
Deep Reinforcement Learning (RL), decision making from
images remains a challenge due to the difficulty of discov-
ering meaningful features that are invariant across tasks.
Levine et al. (2016); Kalashnikov et al. (2018) demonstrate
how agents can learn a policy from pixels to be used in
real-life applications. One of the standard practices in RL
is to learn a control policy from pixels in an end-to-end
fashion. The end-to-end learning paradigm presents certain
downsides due to the black-box nature of Deep Neural Net-

"Ecole de technologie supérieure *Mila-Quebec Al Insti-
tute *Université de Montréal *“McGill University *CIFAR Al
Chair fnow at DeepMind. Correspondence to: Somjit Nath
<somjit.nath.1 @ens.etsmtl.ca>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

works (DNN). A significant challenge faced during learning
from pixels is the inability to learn a good control policy
from high dimensional visual inputs and limited informa-
tion in a single scalar reward signal. To address this issue,
recent works have shown that the agent performance can
be improved by using auxiliary tasks alongside the main
RL objective. The corresponding auxiliary losses can be
trained using different objectives from supervised (Jader-
berg et al., 2016; Schwarzer et al., 2020; Guo et al., 2020),
self-supervised (Oord et al., 2018; Laskin et al., 2020), or
RL domains (Veeriah et al., 2019).

Designing meaningful auxiliary tasks poses many chal-
lenges; most previous works considered them in order to
learn visual features entirely without rewards. For exam-
ple, Schwarzer et al. (2021) learns visual features entirely
without considering rewards. In contrast, our focus here is
to discover auxiliary tasks that are reward-driven and help
learn useful representations which in turn can facilitate learn-
ing better policies. It is generally easier to define predictive
knowledge of the environment through value functions, thus
learning auxiliary tasks that are driven by such learned re-
ward functions can help to learn many, different, potentially
invariant, properties of the environment in order to be robust
to any non-stationarity. Thus, these reward-driven auxiliary
objectives could specifically serve an important purpose to
learn and retain representations when learning in presence of
non-stationarity. For instance, in Atari, fundamental objects
and corresponding characteristics remain consistent when
an agent transitions to a new unseen level. Discovering
these objects (features) and learning associated properties
(cumulants) could drive generalization and adaptation in
realistic continual learning or multi-task settings.

This idea finds its origins in the Horde architecture (Sutton
et al., 2011) where auxiliary objective constitutes learning
value functions for a multitude of pseudo-rewards termed as
General Value Functions (GVFs). GVFs provide a mecha-
nism to learn value functions by choosing any scalar reward
signal as a cumulant. These value functions can be used
to extract useful predictions based on interactions with the
environment thereby learning a rich representation. These
estimates of environmental knowledge could potentially
act as useful representations for an RL agent in different
settings. In this work, we tackle the problem of learning
General Value Functions in the pixel space, in an end-to-

Discovering Object-Centric Generalized Value Functions From Pixels

end manner by learning useful representations. We design
a framework for pixel-based agents to take advantage of
GVF predictions by treating them as features to ensure a
compact yet rich representation. Our main contributions are
as follows:

* We propose OC-GVFs: an end-to-end approach to
automatically discover object-centric General Value
Functions from pixels. Our method can subsequently
be used as features for learning the downstream control
policy. (Sec 3)

* Instead of learning a huge number of auxiliary tasks
as GVFs and only discovering few relevant ones, we
aim for our method to focus on discovering the key
attributes of the environment. To do this, we consider
the limited GVF regime, i.e. a small number of GVFs
to ensure we get an information-rich representation of
the environment.

* We empirically demonstrate that OC-GVFs can outper-
form the current state-of-the-art algorithms for GVF
discovery in both stationary and non-stationary envi-
ronments. (Sec. 4.4)

* We show that the proposed method can quickly adapt
to new unseen situations with increasing complexity.
(Sec. 4.5)

2. Background & Related Work

2.1. General Value Functions

GVFs are value functions that are suited to represent pre-
dictive knowledge of an agent’s environment, such as “how
far a particular object is in this gridworld” which represent
knowledge about the environment. In Sutton et al. (2011),
in addition to the main task, the Horde architecture consid-
ers many sub-agents called demons which learn different
predictive components of the environment.

GVFs are essentially same as the value functions defined
in a Markov Decision Process, except the rewards are not
obtained from the task specifically. The input to the GVFs
would thus be a policy, a discount factor, and scalar rewards
known as cumulants. These cumulants can be described as
questions to the GVFs. GVF answers then are formalized
as value functions, henceforth referred to as GVFs. In sum-
mary, GVFs are defined as the expected discounted return
over a certain trajectory, where the returns are defined
as the discounted sum of the cumulants of interest. Anal-
ogous to value functions in RL, GVFs can be learned by any
value-based RL algorithm e.g. Temporal Difference (TD)
Learning. In this paper, we use the mean squared TD error,
(MSTDE) (Sutton & Barto, 2018a).

2.2. Auxiliary tasks in RL

The idea of auxiliary tasks in RL was introduced to learn
from signals other than just scalar reward signals especially
when the rewards are sparse, delayed, or noisy. Auxiliary
tasks are learned in parallel to the main RL loss (Shelhamer
et al., 2016; Sutton & Barto, 2018b).

Auxiliary tasks are an umbrella term and could refer to any
task that can aid an RL Agent by predicting observations
from the environment. Some of the common auxiliary task
setups include reward prediction (Jaderberg et al., 2017).
In environments with sparse reward structures, auxiliary
tasks provide instantaneous targets for shaping the repre-
sentation in the absence of reward. Few other works focus
on state prediction in the latent space and use the loss from
this prediction to drive certain aspects like exploration in
RL (Pathak et al., 2017). Paster et al. (2021) focuses on
modeling the inverse dynamics of the environment i.e. pre-
diction of actions from state and next-state representations.
Veeriah et al. (2019) presented a principled meta-gradient
algorithm for the discovery of GVF-based questions to use
as auxiliary tasks in the context of RL.

2.3. Cumulant Discovery

To learn GVFs, we need a cumulant for defining the TD
target. Discovery refers to automatically learning cumulants,
that aid in the primary task, referred as useful cumulants. Re-
call that (Sec. 2.2),Veeriah et al. (2019) develop a framework
to discover GVF questions with a question network and learn
the cumulants (with the main network). This is in contrast to
other auxiliary task methods in RL which use hand-crafted
cumulants for learning in the environment (Jaderberg et al.,
2016). They propose a meta-learning approach to discover
important questions that are useful for learning the main task
in the environment and then estimate answers through GVFs
for these discovered questions. The idea here is to use the
same RL loss driven by the reward from the environment for
the discovery of auxiliary tasks. The core intuition behind
cumulant discovery is that through the availability of a ques-
tion network with meta-learnable parameters, we enable the
agent to discover useful questions directly from experience.
We believe using the value functions learned from these
discovered cumulants as part of the input representation for
the main RL agent is crucial to our method.

More recently, Kearney et al. (2022) augment the agent’s
observations with GVFs for control in RL. Kearney et al.
also integrate the discovery of GVFs and their use in a
single end-to-end framework using a meta gradient descent
approach. In a nutshell, they shape the GVF predictions
based on the control agent’s learning process and use those
predictions directly as features for learning a better control
policy. In contrast, we only focus on cumulant learning, but
we can easily extend our framework to learning ~ and policy

Discovering Object-Centric Generalized Value Functions From Pixels

Question Network

Meta Gradients

%)
b R
k=1
) <= - -
=5 4~
D = (’7) g
o~ —
B o
5 & 5 —c?
= - E
5 B - © —cd
= 4 — Z
<C k=1 - 4
k=1 2 |—c
5 Z 8
=)
N 6 g C5
> 3 AER
o
7] |- - N
&
-
7] L
o
&

Main Network

MSTDE (¢, s,,,)
e <- -
L-- s
GVF Gradients 7 | &) Ry MSTDE (r, S,.,)
po|s c
®© s || 2
—» \/2 O =1
sV 5| 8
o) = ©
sl—v|2|le ——a
6 | ¢ s || S |-
é v _E < Main Network
s, £ | .5 = || 8| Gradients
> S
~ \ O

Figure 1. The Object-Centric GVF Learning Framework: We have two parts a Question Network and a Main Network. The Question
Network takes in a batch of inputs (s; . . . s¢+q) and tries to predict GVF questions (cumulants) from each slot. Each of the cumulants
corresponds to the slot outputs (c*). The Main Network is an RL algorithm with GVF heads each of which is trained by the cumulants
from the Question Network. For training GVFs, we use the Mean Squared TD Error (MSTDE) which depends on the cumulants discovered
by the Question Network (v is the same as defined for the main task). The outputs of the GVFs are projected into the latent space where it
is concatenated with the representation before normalization and action value prediction with respect to the main task.

correction parameters (Kearney et al., 2022).

2.4. Object-Centric Representations

There have been several recent works that tackle challenging
tasks such as object manipulation in presence of multiple ob-
jects (Watters et al., 2019; van Steenkiste et al., 2019; Veer-
apaneni et al., 2020). Much of this work is in a single-task
RL setting for a particular reward signal. In contrast, certain
works have also focused on learning object-centric represen-
tations from images in multi-task RL settings (Pong et al.,
2019; Nair et al., 2018; Ghosh et al., 2019; Warde-Farley
et al., 2018). These methods rely on some assumptions that
the observations can be encoded into a single vector which
makes it harder to learn in environments with multiple ob-
jects. Zadaianchuk et al. proposed learning object-centric
representations which are used for reward shaping. They
claim that this approach leads to solving tasks independently
and then combining these skills during evaluation.

We chose the slot attention mechanism (Locatello et al.,
2020) to learn object centric representations in our ap-
proach. These slot representations are used to learn cu-
mulants (through the cumulant network, See Sec.2.3) which
in turn are used as part of the input representations to learn
a policy. Moreover, there is a one-to-one mapping between
the slot representations and the cumulants. This enables
discovering useful questions from all the captured slots and
ensures that no part of the original image is left unattended.

In this paper, we aim to ask the question: What are these

discovered features learned by these networks and can they
be used as input features? Kearney et al. experimented
with a similar architecture for non-image based domains
where they concatenated the states with learned GVFs. In
our work, we extend this methodology to more realistic
image-based domains which are prevalent in RL. A big part
of question discovery in these papers is driven by the main
RL loss, however, RL loss on its own cannot capture object-
centric representation efficiently. Since RL environments
heavily rely on object semantics, we add another object dis-
covery loss to the discovery network to bind the discovered
cumulants to certain objects discovered by this architecture
as explained in Sec. 5.1.

3. Discovering Object-Centric GVFs

Our proposed architecture consists of two separate networks:
the question network and the main network. This two-
network meta-gradient approach was introduced for GVF
discovery by Veeriah et al. (2019). The primary difference
in our work is that we use an Embedded Self prediction
(ESP) (Lin et al., 2021) type model to embed GVFs as use-
ful features in our training pipeline. In the original ESP
paper, the core intuition was that, if human understandable
features are given to the model, the corresponding GVFs
would capture meaningful properties of the policy. In a sim-
ilar way, we directly adapt these trained GVFs as features
of the agent’s main value function.

We introduce two key modifications to this architecture for

Discovering Object-Centric Generalized Value Functions From Pixels

Algorithm 1 Object-Centric GVFs (OC-GVFs)
Input parameters
Num of Slots N, Num of Training Steps(slot module) M
Observations O, Num of GVFs K, Num of episodes £
Initialize parameters of networks j3, 6,
Initialize learning rate of networks a1, s, ag
function Slot Module Training Phase (N, O, 5, M, ay)
for i < 1to M do
S; « slot_model(O;)
O; « reconstruct(S;)
Bri1 < Br — VgL (Ou Oi)
end for
end function
function GVFs Training Phase(K, F, 0,)
for n < 1to E do

t+0
done < False
971,0 — en
while not done do
t—t+1
{Ch,....CEY « fi(n;{Oy, ..., Opyal)
{@¢} < f2(0;0¢)
Vi, Vi) = f3(0;96{C}, ..., CRY)
{1, sk} < proj(Vi, ..., Vi)
Xt concat({e1, ..., ¥r}; dr)
Qr < fa(w, x¢)
en,t — en,tfl - a2v9n,t,1£R£ (Hn,tfl)
end while
Mn+1 < Mn — a3vn Z;:l LRE (en,j)
9n+1 — Qn,t
end for

end function

adaptation to all possible input spaces and better stability,
namely 1) a key design decision in our approach is to con-
catenate GVFs with the states in the latent space. This is
achieved via linear projection from the outputs of each of
the GVFs into the latent space after which they are concate-
nated with the common representation from the main task.
This modification removes the necessity for the states to be
vectors which was the case for concatenation with directly
the state inputs (Kearney et al., 2022), and 2) addition of
layer normalization (Ba et al., 2016) after the concatenation.
This helps especially in stability when the slots and hence
the cumulants are not learned yet during the early phase of
training. Next, we describe the individual components in
detail.

3.1. Question Network

The question network (Fig. 1 Left) takes in a batch of state
observations (sy . .. S¢+q) Which are unrolled from the re-
play buffer as inputs. These inputs are fed to a slot attention

mechanism (parameterized by) that outputs slots, S; cor-
responding to discovered objects from the images. Each of
these slots can be considered to have some features of the
objects in the images. We learn slot representations through
forward propagation of the question network. These slot
representations are then mapped to each GVF cumulant us-
ing an MLP (parameterized by the meta-parameters 7). The
slots are trained by reconstruction loss as in Locatello et al.
(2020) and the cumulants are trained with the main RL loss
similar to Veeriah et al. (2019). This forces the cumulants
to capture task-specific properties of each object discovered
by each slot. As discussed in the previous section, a GVF
question is specified by a cumulant function, a discount
function, and a policy. In our method, the question net-
work only explicitly parameterizes the cumulants. Though
this is a departure from the architecture used in Veeriah
et al. (2019) which parameterized both the cumulants and
their corresponding ~y, our method similar to Kearney et al.
(2022) parameterizes only the cumulants. This is because
we wanted to capture the properties of objects which would
be relevant to long-horizon settings, but this is definitely
something that can be incorporated very easily into this ar-
chitecture. For our experiments, we use the same ~y of the
main agent for learning the GVFs.

3.2. Main Network

The main network (on the right side in Fig 1), deals with
the training of the GVF answers (parameterized by 6) i.e
computing the appropriate value function for each of the cu-
mulants generated by the question network and also learning
the main action-value function of the main task (parame-
terized by w). Note that the number of GVFs is a hyper-
parameter in this setup. Once these losses are computed,
we do the first backpropagation (blue line) update on the
parameter theta as in regular gradient descent. An important
detail here is that we do another backpropagation (red line)
update on theta while updating the main agent based on the
MSTDE with respect to the main task. The meta-parameters
are updated based on the cumulative loss incurred over the
unrolled data from the buffer. The number of steps of un-
rolled data is again a hyper-parameter that is tuned as part
of the experiments.

Action and State Value GVFs: Before proceeding further,
it is imperative to discuss the utility of both using action
value GVFs and state value GVFs. Action value GVFs
generally contain more information regarding each action
than an expectation over actions in the case of state values.
However, for our architecture, we preferred to use state value
GVFs as they are less prone to divergence from off-policy
Q-learning updates which can often be the case in Veeriah
et al. (2019). However, since the authors of that paper
only use them for learning the representation it does not
affect them as much. More details including some empirical

Discovering Object-Centric Generalized Value Functions From Pixels

performance plots are in Appendix A.3.3.

To summarize, our method uses feature representations that
are output from the slot attention module rather than using
human-designed features. We believe this is a key compo-
nent as we would like the GVFs to automatically discover
useful characteristics in an environment. Since many RL
environments are image-based and certain aspects of the
environment do not change (like objects present in the envi-
ronment), we believe a mechanism like slot attention adds
the most value here. The slot attention module takes in rep-
resentations from convolution layers and produces abstract
representations called slots which bind well to objects in
the visual inputs. We refer the reader to the original slot
attention paper for more details (Locatello et al., 2020).
However, since we have access to an experience replay
buffer which is generally present in most RL algorithms, we
do not require any pre-training for the slot attention. The
data to train slot attention can be directly obtained from the
buffer and thus we obtain an end-to-end training pipeline.

4. Experiments

Next, we discuss the empirical performance of our algo-
rithm across different domains and settings. We address the
following questions: Q1. How does our approach compare
to simple baselines in stationary environments? Can this
approach significantly outperform other baselines in non-
stationary tasks? (Sec. 4.4) Q2. Can learned object-centric
representations adapt quickly to unseen tasks? (Sec. 4.5)
Q3. How much do object-centric representations help in
cumulant learning when compared to other architectures
with similar feature discovery? (Sec. 4.6). To address these
questions, we first describe the domains and settings. In
Sec. 5.1, we explain our choice of using slot attention for
object discovery. In Sec. 5.3, 5.4 we discuss the importance
of layer normalization and leveraging the learned GVFs as
features respectively.

4.1. Domains
Visualization of the domains are in Appendix A.1.

Collect-objects Environment: is a customized version of
the four-room gridworld environment similar to the one
used in Veeriah et al.. The agent is rewarded for collecting
objects of different colors in the right order. The agent
moves deterministically in one of four possible directions.
For each episode, the starting position of the agent is chosen
at the bottom left. The agent receives a reward of +5 for
picking up the red objects and a reward of +10 for picking
up the blue object after the red one. We also explore a non-
stationary version of this domain where the locations of the
objects spawn randomly inside their respective rooms after
every episode. If the agent picks up the green object before

the red one, the agent does not receive any reward.

MiniGrid-Dynamic Obstacles: For the experiments on
non-stationarity, we used the MiniGrid Dynamic Obsta-
cles (Chevalier-Boisvert et al., 2018). In this domain, the
agent is placed in a grid where it has to avoid colliding with
obstacles and reach the goal. The starting position of the
agent and the obstacle positions are all chosen at random.

CoinRun & StarPilot: are a part of procedurally gener-
ated environments called ProcGen (Cobbe et al., 2019). In
CoinRun, the agent is tasked to capture the coin while avoid-
ing obstacles. In StarPilot, the agent must destroy enemies
while avoiding enemy fire and obstacles. We studied the
performance of individual levels in CoinRun. In our task
adaptation experiments, we study performance at a new
unseen level after every episode in a sequential manner.

4.2. Settings

* Learning in the absence of non-stationarity. The
agent has to collect two objects in the gridworld. The
positions of the two objects are fixed across episodes
and unchanged. The agent needs to collect the two
objects in the same order to receive full rewards.

* Learning in the presence of non-stationarity. For
Collect Objects, the objects spawn randomly. This
creates a non-stationarity in the reward function across
these tasks. The task boundaries are not known to the
agent as well and are randomly changed after a fixed
number of episodes.

* Quick Adaptation. To evaluate the agent’s ability
to quickly adapt to novel situations, we introduce the
agent to new unseen levels in the CoinRun and StarPi-
lot domains over time without any prior task informa-
tion.

4.3. Baselines

We consider the following baselines: 1) DDQN, which
serves as the main RL algorithm, 2) Random-GVFs which
uses randomly initialized Question Network, 3) Hand-
Crafted GVFs that uses human-defined cumulants based
on the task,! and 4) Dis-Aux-GVFs (Veeriah et al., 2019),
which is the only? prior work that integrates the discovery
of cumulants in the pixel space. A key motivation for our
method is to ensure that the approach for discovery does not
require a huge amount of data, in lieu of which we compare
to other baselines in the limited GVF regime. We limit the
number of GVFs to be 5 for all the environments, the same
as the number of slots. We include all the relevant hyper-
parameters and implementation details in Appendix A.4 and

"For Collect Objects, one of the cumulants essentially specifies
the location of the red goals.
?To the best of our knowledge.

Discovering Object-Centric Generalized Value Functions From Pixels

Collect Objects

CoinRun (Level 1)

Rewards

ANYT |
[N
//\ / \/F

\/

N /”
WV % N

/

Rewards

Wi

\ (

W/

0 1000 200 3000 4000

0
Episodes

— DDQN —— Random-GVFs —— Hand-Crafted GVFs —— Dis-Aux-GVFs

5000

0 1000 3000 4000 5000

0
Episodes

OC-GVFs

Figure 2. Learning in the absence of non-stationarity shows that our method (OC-GVFs) is more sample efficient than using Random-
GVFs and Dis-Aux-GVFs. All baselines are expected to show similar performance due to the simple nature of both the Collect Objects
and CoinRun stationary domain here. In a simple task, DDQN is marginally better than other methods. However, in CoinRun which is
more challenging OC-GVFs is significantly better than all other approaches. Shaded regions correspond to the standard error across 10

independent runs.

Collect Objects

MiniGrid-Dy

=

Rewards

o N & o ®

) 1000 2000
Episodes

3000 4000 5000

—— DDQN —— Random-GVFs —— Hand-Crafted GVFs —— Dis-Aux-GVFs

) 1000 2000 30
Episodes

00 4000 5000

OC-GVFs

Figure 3. Learning in the presence of non-stationarity shows that our approach is sample efficient and quick to adapt when the goal
locations are dynamically changed after every episode in the CollectObjects environment. We also observe a similar trend in the Minigrid
Dynamic Obstacles environment where the obstacle locations changes across episodes. Baselines such as DDQN cannot adapt to the
non-stationarity induced due to changing goals as quickly as OC-GVFs across both domains. All results reported over 10 seeds with

shaded region showing the standard error.

open-source the code®. Additionally, details of the base-
lines can be found in Appendix A.2 along with methods that
involve GVFs as features.

4.4. Our approach performs competitively in both
stationary and non-stationary settings. (Q1.)

In this section, we show the performance of our algorithm
(Sec. 3) comparing to the baselines described in Sec. 4.3.
We here demonstrate learning in the presence of stationary
and non-stationary settings.

Stationary Domains: We note that for simple environments
like Collect Objects and CoinRun (first level), DDQN per-
forms very well because the task comprises of fixed loca-
tions of objects. As seen in Fig. 2 (a), for Collect Objects all
the baselines perform similarly, with OC-GVF slightly bet-
ter than all the other baselines with GVFs. In Fig. 2 (b), we
notice the best performance for our algorithm with DDQN
also converging within 2000 episodes. Since this task does
not have a lot of auxiliary tasks to discover, Dis-Aux-GVFs

Shttps://github.com/Somjit77/oc_gvEs

are not as fruitful in accelerating performance in the main
task.

Non-Stationary Domains: These experiments highlight the
benefits of using object-centric representations as features.
This is evident in Fig. 3 (a) where our algorithm (OC-GVFs)
is able to converge much faster than all the other baselines.
In the Dynamic Obstacles Environment (Fig. 3 (b)), the
difference is not as noticeable as the task is relatively easier,
however, our method still outperforms other baselines.

4.5. OC-GVFs is amenable to fast adaptation in the
presence of increasing complexity in tasks. (Q2.)

GVFs help in learning predictive knowledge about the en-
vironment. As such learned GVFs can often help in adapt-
ing to a new task because the agent can utilize previously
learned information and quickly adapt to new scenarios.
Most end-to-end GVF learning schemes involve discov-
ering cumulants with the main RL loss (Veeriah et al.,
2019). While this is useful for the main task, the utility
of such GVFs is lost during nonstationarity. On the con-
trary, as we decouple object discovery (via reconstruction

https://github.com/Somjit77/oc_gvfs

Discovering Object-Centric Generalized Value Functions From Pixels

CoinRun (Easy)

CoinRun (Hard)

StarPilot (Easy)

@ o
»

Rewards
IS

Rewards

w

N

Rewards
I
N
&

\e v \'\w”/\
Ny
p
1.25 \J‘ M"\W

F
9

[1000 2000 3000 4000 5000 [1000 2000
Episodes

Episodes

DDQN Random-GVFs

(a)

3000 4000 5000 [1000 2000 3000 4000 5000
Episodes

Dis-Aux-GVFs OC-GVFs

(c)

Figure 4. Adaptation to new tasks: Our approach OC-GVF:s can tackle changing levels better than the baselines. In these experiments,
we sample a new task with different difficulty levels after every episode from the first 50 levels. This sampling is carried out from either
an easy-to-learn distribution or a hard distribution which is slightly more challenging. The baselines cannot adapt as quickly and perform
similarly to DDQN, suggesting no improvement in performance with GVFs. We compare with the baselines mentioned above and report

results over 10 seeds.

loss) and cumulant learning (via main RL loss) in our ap-
proach, Object-Centric GVFs can adapt and generalize to
new situations much faster. During adaptation to a new
task, OC-GVFs need to re-learn the GVFs corresponding to
the new slots, however, most of the pre-existing slots can
be re-utilized when the task complexity increases and the
difficulty changes.

Task adaptation refers to adapting to unseen tasks, namely
with level changes once algorithms have more or less con-
verged then performance is reported on a new level. These
transfer learning experiments are in Appendix A.3.1. We
also test the methods for more challenging adaptation by
presenting the agent with new unseen levels after every
episode. This is much more complex for all the algorithms,
as seen from Fig. 4, where the baselines do not perform as
well including DDQN which was performing well for single
levels and transfers across levels. Although OC-GVFs see
performance drops due to adaptation to unseen levels every
episode, it accumulates a higher average reward across all
the sampled levels compared to the baselines.

Collect Objects

15.0
12.5
10.0
Random-GVFs+
7.5 HC-GVFs+

—— Dis-Aux-GVFs+
5.0 0OC-GVFs

Rewards

2.5

0.0

o 1000 2000 3000 4000 5000
Episodes

Figure 5. Object-centric representations shows the compari-
son of our approach with other baselines while using GVFs as
features(+). This figure singles out the utility of object-centric
representations from slot attention mechanism for discovery.

4.6. Feature Discovery without object driven cumulant
learning (Q3.)

In this section, we aim to highlight the utility of discovering
object-centric cumulants to be used as features. Discover-
ing task-relevant cumulants has proven to be beneficial for
learning representations. However, for using GVFs directly
as features, it is essential that the cumulants discovered are
tethered to some properties of the environment. We com-
pare all the baseline algorithms to investigate whether these
learned GVFs can be useful as features (described in Ap-
pendix. A.2). Although GVFs discovered for representation
learning in Veeriah et al. (2019) were designed for auxiliary
tasks, the discovered GVFs from this approach do not work
well when used as features.Fig. 5 highlights the disparity be-
tween features learned with OC-GVFs and other baselines.
Hand Crafted GVFs can learn features best because it can
exploit human information and results in best performance.

5. Discussion

5.1. Qualitative Analysis: Understanding slots and how
it translates to object properties

One of the crucial components of our approach is the dis-
covery of objects with slot attention. Slot attention is gener-
ally trained with the reconstruction loss whereby each slot
captures different objects present in the images. For most
RL tasks, particularly from pixels, identifying objects can
be a big overhead which we are delegating directly to a
much more robust model. Since this is a vital component
of our framework, it is imperative for slot attention to cap-
ture objects on which our cumulant learning is based. In
environments where it is difficult to determine objects via
slot attention, these methods will not work as well. This
is one major limitation of the current framework, however,
we have found slot attention to generalize well to different
domains with proper architecture changes.

Discovering Object-Centric Generalized Value Functions From Pixels

Image Recon. Slot 1
£
3 ™
=
o
k=]
2
°
(&)
o Recon. Slot 1
5
c 8
2
(Sl
2 2
[ONe]
£
=
Recon. Slot 1
S J
= !
S L '
(&)

Slot 2

Slot 2

Slot 2

Slot 3 Slot 4 Slot 5
L
Slot 3 Slot 4 Slot 5
B |
Slot 3 Slot 4 Slot 5

Figure 6. Slot Attention outputs shows slots captured by the slot attention mechanism on states sampled from domains. The figure also
shows learned state reconstructions for the sampled states across these environments.

GVF (Agent) GVF (Blue Goal)

GVF (Red Goal)

GVF (Blank)

GVF (Background)
T -

wall wall wall

Wall

Figure 7. Visualization of Learned GVFs: We compare the GVFs learned by OC-GVFs in the CollectObjects environment trained with
changing goal positions at every episode. Each of the GVFs is classified based on the slots that are fed as camulants for training the
respective GVFs. For example, the GVF that is learned by the cumulant defined by the slot that captures the Red Goal is GVF (Red
Goal). The heatmaps are plotted based on the locations of the agent in the grid with the Red and Blue goal being constant throughout
the evaluation. GVF(Blue Goal) and GVF (Red Goal) has higher values near the blue and red goal respectively which highlights it has

learned some properties of those objects.

From Fig. 6, we observe how slot attention can segregate
the main objects of the state by assigning each slot to those
objects. Once features of these objects are learned, they
can be used to learn cumulants pertaining to these objects.
Slot attention can generalize easily to different locations of
such objects which is what enables cumulant learning much
faster in comparison to other baseline methods. Another
important characteristic of slot attention is that we can be
really flexible with the number of slots. In Fig. 6, for both
the environments, there is an empty slot that does not con-
tribute to capturing an object, but the relevant objects are
still captured in the other slots.

5.2. Visualization of Learned GVFs

Understanding what each GVF actually learns is a impor-
tant and adds interpretability to our feature design which
was missing from previous works like Veeriah et al. (2019).
However, adding visualizing GVFs learned from images
is tricky because they map images to a scalar value which
is difficult to represent in a plot. However, for the Collect

Objects domain, the location of the agent can find be a good
proxy for the entire observation image provided the other
locations remain constant. This is what we use to design
our visualization in Figure 7. Each square represents an
image with the location of the agent and Red and Blue goal
locations are mentioned by text. Now, we plot the GVFs
learned in the CollectObjects domain with non-stationary
rewards. Each of the GVFs is defined by its own cumulants,
which in turn is dependent on the slots that the slot atten-
tion model captures. In Figure 7, we add the objects that
the slots capture for easy understanding. From the Figure,
it is quite evident that for each corresponding object, the
GVFs have higher values near the vicinity of that object.
This insinuates that the GVFs have learned some form of
a distance metric to these objects which can be thought of
as compact and rich features when concatenated with the
main feature representation. This makes the GVF learning
much more interpretable and helps explain the impressive
performance of OC-GVFs.

Discovering Object-Centric Generalized Value Functions From Pixels

5.3. Importance of Layer Normalization

One of the crucial elements of the proposed architecture is
adding a layer normalization layer to the feature space. This
is particularly important as in the early phase of learning
the slots discovered can be poor leading to absurd cumulant
discovery which would make the learned value functions
erratic and unstable. This problem would not be as evident
for algorithms that only use GVFs for learning representa-
tions as they do not directly affect the main value function.
As affirmed by Fig. 8, adding layer normalization can sig-
nificantly improve the stability of our framework leading to
faster learning.

Collect Objects

with LayerNorm
12,5 without LayerNorm

7.5

Rewards

5.0

25

0.0

0 1000 2000 3000 4000 5000
Episodes

Figure 8. Layer Normalization shows how introducing layer nor-
malization in the architecture creates a way for stable and faster
learning. This is a critical factor that enables learning GVFs as
features.

5.4. Utility of having GVFs as Features

Collect Objects

14 with Features
without Features

Rewards

N & o @

0 1000 2000 3000 4000 5000
Episodes

Figure 9. Utility of GVFs as Features: We compare the perfor-
mance of an RL agent using GVFs for learning representations
versus using GVFs as features. Even though both the GVFs capture
object-centric representations, using the learned GVFs as features
makes the most difference.

Another important aspect of the proposed architecture is
utilizing GVFs as a part of the feature space. This can be
really helpful especially when the learned GVFs contain
predictive knowledge about the environment which can be
directly utilized by the agent. When the cumulants are well-
defined then this approach really shines. Fig. 9 demonstrates
the performance of OC-GVFs with and without features. For
OC-GVFs without features, we have slot attention capture

object properties to be used for representation learning only.

6. Conclusion and Future Work

In this work, we showed the effectiveness of object-centric
representation in discovery of GVFs that are used for the
control in reinforcement learning. Moreover, we also
demonstrated how these learned GVFs capture important
components in visual representations and help in quick adap-
tation to different factors of non-stationarity across tasks.

Limitations: In the current setting, our method relies on
the slot attention mechanism to capture distinct objects in
the environment. This implies that in the scenarios in which
the slot attention mechanism is not able to bind to distinct
objects in the pixel space (due to the size of objects, constant
movement, etc.), our method OC-GVFs would not perform
well without architectural or input representation tweaks.
Slot attention is heavily dependent on separating objects by
colors so in cases, where the colors of the objects are similar
they would always be bound to the same slot which can be
problematic depending on the task.

A promising direction for future work would be interesting
to explore whether GVFs can perform zero-shot transfer
only with the help of previously learned cumulants albeit
in the presence of the environments with similar objects.
In addition, instead of task-specific cumulants, cumulants
can also be trained with task-agnostic losses, which might
generalize even better across tasks.

Acknowledgements

The authors would like to thank the ICML reviewers for
valuable feedback on an earlier draft of the paper. In ad-
dition, we would like to express our sincere gratitude to
Google, CIFAR (the Canadian Institute for Advanced Re-
search), NSERC (the Natural Sciences and Engineering
Research Council of Canada) and Canada Excellence Re-
search Chairs (CERC) program for their invaluable support
and funding. We are also immensely grateful to Compute
Canada for providing the computational resources necessary
to carry out the experiments. In addition, we would like to
extend a special thank you to Alex Kearney for insightful
discussions and feedback during the initial research phase.

References

Ba,J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion, 2016. URL https://arxiv.org/abs/1607.
06450.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for openai gym. https://
github.com/maximecb/gym-minigrid, 2018.

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Discovering Object-Centric Generalized Value Functions From Pixels

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning, 2019. URL https://arxiv.org/abs/
1912.01588.

Ghosh, D., Gupta, A., Fu, J., Reddy, A., Devin, C., Eysen-
bach, B., and Levine, S. Learning to reach goals without
reinforcement learning. 2019.

Guo, D, Pires, B. A., Piot, B., Grill, J.-b., Altché, F., Munos,
R., and Azar, M. G. Bootstrap latent-predictive repre-
sentations for multitask reinforcement learning. arXiv
preprint arXiv:2004.14646, 2020.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks, 2016.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., Fernando, C., and Kavukcuoglu, K.
Population based training of neural networks. CoRR,
abs/1711.09846, 2017. URL http://arxiv.org/
abs/1711.09846.

Kalashnikov, D., Irpan, A., Pastor, P,, Ibarz, J., Herzog, A.,
Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Van-
houcke, V., et al. Scalable deep reinforcement learning
for vision-based robotic manipulation. In Conference on
Robot Learning, pp. 651-673. PMLR, 2018.

Kearney, A., Koop, A., Giinther, J., and Pilarski, P. M. What
should i know? using meta-gradient descent for predictive
feature discovery in a single stream of experience, 2022.
URL https://arxiv.org/abs/2206.06485.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.

In International Conference on Machine Learning, pp.
5639-5650. PMLR, 2020.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334-1373, 2016.

Lin, Z., Lam, K.-H., and Fern, A. Contrastive explanations
for reinforcement learning via embedded self predictions.
In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
1d=Ud3DSz72nYR.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention, 2020. URL
https://arxiv.org/abs/2006.15055.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,

10

Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, L., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529-533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/natureld4236.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine,
S. Visual reinforcement learning with imagined goals.
Advances in neural information processing systems, 31,
2018.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Paster, K., Mcllraith, S. A., and Ba, J. Planning from pixels
using inverse dynamics models. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=V6BjBgku7Ro.

Pathak, D., Agrawal, P.,, Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp- 2778-2787. PMLR, 2017.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised re-
inforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-efficient reinforcement learn-
ing with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D.,
Courville, A., and Bachman, P. Data-efficient reinforce-
ment learning with self-predictive representations. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
1d=uCQfPZwRaUu.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T.
Loss is its own reward: Self-supervision for reinforce-
ment learning. arXiv preprint arXiv:1612.07307, 2016.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA,
2018a. ISBN 0262039249.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018b.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., White, A., and Precup, D. Horde: A scalable
real-time architecture for learning knowledge from unsu-
pervised sensorimotor interaction. In The 10th Interna-
tional Conference on Autonomous Agents and Multiagent

https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/1912.01588
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846
https://arxiv.org/abs/2206.06485
https://openreview.net/forum?id=Ud3DSz72nYR
https://openreview.net/forum?id=Ud3DSz72nYR
https://arxiv.org/abs/2006.15055
http://dx.doi.org/10.1038/nature14236
https://openreview.net/forum?id=V6BjBgku7Ro
https://openreview.net/forum?id=V6BjBgku7Ro
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu

Discovering Object-Centric Generalized Value Functions From Pixels

Systems - Volume 2, AAMAS ’11, pp. 761-768, Rich-
land, SC, 2011. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 0982657161.

van Hasselt, H., Guez, A., and Silver, D. Deep rein-
forcement learning with double g-learning, 2015. URL
https://arxiv.org/abs/1509.06461.

van Steenkiste, S., Greff, K., and Schmidhuber, J. A perspec-
tive on objects and systematic generalization in model-
based rl. arXiv preprint arXiv:1906.01035, 2019.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M.,
Finn, C., Wu, J., Tenenbaum, J., and Levine, S. Entity
abstraction in visual model-based reinforcement learning.
In Conference on Robot Learning, pp. 1439-1456. PMLR,
2020.

Veeriah, V., Hessel, M., Xu, Z., Lewis, R., Rajendran, J., Oh,
J., van Hasselt, H., Silver, D., and Singh, S. Discovery of
useful questions as auxiliary tasks, 2019.

Warde-Farley, D., Van de Wiele, T., Kulkarni, T., lonescu,
C., Hansen, S., and Mnih, V. Unsupervised control
through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Watters, N., Matthey, L., Bosnjak, M., Burgess, C. P,
and Lerchner, A. Cobra: Data-efficient model-based
rl through unsupervised object discovery and curiosity-
driven exploration. arXiv preprint arXiv:1905.09275,
2019.

Zadaianchuk, A., Seitzer, M., and Martius, G. Self-
supervised visual reinforcement learning with object-
centric representations. arXiv preprint arXiv:2011.14381,
2020.

11

A. Appendix
A.1. Domains

Fig. 10 are sample input states of all the domains used in
the experiments.

Collect Objects

MiniGrid Dynamic Obstacles

CoinRun

StarPilot

Figure 10. Domains. This figure illustrates the domains used in the
Experiments. All of the environments require identifying objects
in the input space from pixels.

A.2. Baseline Descriptions

Since we claim to learn object-centric representations in the
pixel space, we use a 3 convolution layer architecture for the
representation layers as in the original DQN implementation
(Mnih et al., 2015). This is the part of the main network that
was earlier explained in Sec. 3.2 and the main RL network
is a DQN agent learning just with the TD loss. In our setup,
the question network is a simple MLP network with one
fully-connected layer and it outputs the cumulants to be
used in the main network as explained in the main paper.
All the baselines used in the paper are explained in detail as
follows.

1. DDQN: For all our experiments, we used Double
DQN (van Hasselt et al., 2015) as our base RL al-
gorithm. This is the extension of the DQN (Mnih et al.,
2015) algorithm with double Q learning to prevent
maximization bias.

2. Random-GVFs: We also compared performance
against using random cumulants for the learned GVFs.
For these experiments, we sampled cumulants from

https://arxiv.org/abs/1509.06461

Discovering Object-Centric Generalized Value Functions From Pixels

Collect Objects

N
o

=
w

—— DDQN

=
o

—— Dis-Aux-GVFs
OC-GVFs

Rewards

w

o

[} 1000 2000 3000 5000

Episodes

(a)

4000 6000

—— Random-GVFs

CoinRun

Rewards

500 1000 1500 2000

Episodes

(b)

2500 3000

Figure 11. Transfer Learning: Our approach OC-GVFs can tackle the scenario of changing tasks better than the baselines with no
appreciable drop in performance. In Collect Objects environment we change tasks by changing goal locations after certain episodes.
Whereas, in Coinrun the different tasks refer to procedurally generated levels varying in task difficulty. Again we compare with the

baselines mentioned above and report results over 10 seeds.

a uniform distribution between [—1,1]. The learned
GVFs only help in learning the representations, and
they are not used as main features.

HandCrafted-GVFs: This is similar to Random GVFs
except we use human knowledge to preselect good cu-
mulants in advance. For the Collect Objects environ-
ments, the five cumulants chosen were +1 for reaching
the red goal and each of the corridors.

Discovery of Useful Questions as Auxiliary Tasks
(Dis-Aux-GVFs): This algorithm is from Veeriah et al.
(2019) which discovers cumulants from the main RL
loss via meta-gradient descent. This is the basic form
of discovery that uses the main RL loss to learn cumu-
lants given inputs.

. GVFs as Features: In all of these methods, the GVFs
are not only used to influence the representation but
are used as features of the main RL network. All
these methods include concatenation in the latent space
by a linear projection of the GVFs followed by layer
normalization. In this category, we have four more
algorithms:

¢ Random GVFs as Features (Random-GVFs+)
¢ Hand Crafted GVFs as Features (HC-GVFs+)

¢ Using Discovered auxiliary tasks as features
(Dis-Aux-GVFs+): This algorithm would be most
similar to Kearney et al. (2022) where the dis-
covery architecture is kept similar to Veeriah
et al. (2019), except we add compatibility with all
forms of input space with the help of projected
concatenation in the latent space and added stabil-
ity with layer normalization.

Using discovered Object-Centric GVFs as Fea-
tures (OC-GVFs): The proposed algorithm falls
under the umbrella of using GVFs as features.

12

Note: Algorithms 2-4 all learn action value functions as
GVFs similar to how it was designed in Veeriah et al. (2019).
All algorithms falling under the umbrella of using GVFs as
features (Alg 5) use state value functions as GVFs. Unstable
or divergent action values can cause catastrophic failure
particularly when they are used as features.

A.3. Additional Experiments
A.3.1. TRANSFER LEARNING EXPERIMENTS

In Fig. 11, we demonstrate settings with increase complexity
in tasks; 1) CollectObjects where the task changes once and
and 2) CoinRun where the level of difficulty changes twice.
In CollectObjects, the new task corresponds to adding one
randomly positioned red goal, while CoinRun includes pro-
cedural generation of Level 0— > 2— > 3. We see in
Fig. 11 that our approach OC-GVFs not only outperforms
the other methods in the initial levels, but also is quick in
few-shot adaptation when faced with new harder levels in
comparison to the other baselines. DDQN performs poorly
in the initial level, but once it is caught up, it remains con-
sistent with the increasing complexity of levels, but suffers
from a higher variance as compared to OC-GVFs. Other
methods including (Veeriah et al., 2019) struggle in all lev-
els of CoinRun. In these settings, the baselines perform
well because we believe this is a much simpler setting as
even after transfer we allow the network to train for 1000
episodes which is enough to learn a good representation.

A.3.2. FEATURE DISCOVERY WITHOUT OBJECT DRIVEN
CUMULANT LEARNING

Fig. 12 shows the performance on Collect Objects with static
and dynamic object locations and MiniGrid Dynamic Ob-
stacles. In Collect Objects, all the algorithms do relatively
well because it is an easy domain, however, we can see the
utility of using object-centric representations as features in
MiniGrid where the difference is more pronounced.

Discovering Object-Centric Generalized Value Functions From Pixels

Collect Objects

N

A
,

() 1000

15.0

12.5
© 10.0 Random-GVFs+
HC-GVFs+
—— Dis-Aux-GVFs+

0OC-GVFs

7.5

Reward:

5.0

2.5

0.0

2000 3000
Episodes

(a)

4000 5000

Collect Objects

15.0
12.5

10.0
Random-GVFs+
HC-GVFs+

—— Dis-Aux-GVFs+
0C-GVFs.

7.5

Rewards

5.0
25

0.0

[1000 2000 3000 2000 500
Episodes
MiniGrid Dynamic Obstacles
0.75
0.50
0.25
o N e A
2 0.00 / Random-GVFs-+
s —— Dis-Aux-GVFs+
g -0.25 / 0C-GVFs
<
-o0.50 /4
—0.75] e M/J/J
-1.00
) 1000 2000 3000 2000 5001
Episodes
(©

Figure 12. Comparison of the baseline architectures on Collect
Objects with stationary(top) & non-stationary rewards (middle)
using GVFs as features (4). Each of the baselines algorithms
has projected concatenation and layer normalization added. In
spite of these additions, the baselines do not perform well. Only
our algorithm OC-GVFs is able to perform close to HandCrafted-
GVFs with predefined knowledge of the environment. This further
highlights the importance of object-centric discovery.

A.3.3. ACTION VERSUS STATE VALUES

Fig. 13 demonstrates the performance of the baselines for
both state and action value functions in the Collect Objects
environment with random object placements. As mentioned
earlier in Sec. 3.2, GVFs can be learned with both state and
action values. Action values are more prone to divergence
because of the off-policy nature of action value functions
and as a result using them as features results in a slightly
worse performance for our algorithm. However, using state
values did not seem to work at all for the other baselines
when used only for training the common representation.
We believe this is due to the less information provided by
state value functions, which provide an expectation over all
possible actions for each state.

A.4. Implementation Details

For the experiments, we optimized the performance of the
main DDQN agent in terms of hyper-parameters and kept
them constant for each of the baselines. The other param-
eters for discovery were kept the same as Veeriah et al.

13

Collect Objects

—— Random-GVFs-State

— Dis-Aux-GVFs-State

—— HC-GVFs-State
0OC-GVFs-State
Random-GVFs-Action
Dis-Aux-GVFs-Action
HC-GVFs-Action
0C-GVFs-Action

Rewards

o 1000 2000 3000

Episodes

4000 5000

Figure 13. State & Action Values: Comparison of baselines algo-
rithms using state v/s action value GVFs. OC-GVFs are robust to
both, however, with state values, the baseline algorithms are not as
good due to the lack of information captured by them for learning
a good representation.

(2019). Most of the slot attention hyper-parameters were
kept the same as Locatello et al. (2020). Some modifica-
tions were made in the encoder and decoders depending
on the resolution of the input images. We used a much
smaller resolution compared to Locatello et al. (2020), as
finding separating them distinctly was not the objective for
our method. This end-to-end pipeline will be undoubtedly
more expensive because of the additional overhead of train-
ing slot attention. However, in our experiments, we resize
the image to a sufficiently small (32x32) resolution which
reduces training time and at the same time discovers slots
that are ‘good enough’ for learning cumulants. For Coin-
Run we used (64x64) images with lesser training steps. The
final set of hyper-parameters are listed in Table 1. All our
experiments were run on a single V100 GPU.

Discovering Object-Centric Generalized Value Functions From Pixels

Table 1. Hyper-Parameters of all experiments

Environment | Algorithm Parameters Encoders and Decoders Slot Attention Parameters
Main CNN:
“train_episodes”™: 5000, ConV2D:ﬁ1ters:.16, kernel=3
“batch. size”: 32 MaxPool2D:strides=2
“ ate t*S‘Ze. 100 Conv2D:filters=32, kernel=3
« argle -perto ‘t. »s. 160000 MaxPool2D:strides=2 “sa_batch_size”: 16,
“re.p ay,capaiz’l v > | Conv2D:filters=64, kernel=3 | “sa_resolution”: 32,
hidden_arch”: [64,32], . « »
. . Slot Attention Encoder: sa_num_slots”: 5,
epsilon_begin’: 1.0, “ . P
“epsilon_end”: 0.01 Conv2D sa_num_iterations™: 3,
CollectObjects “epsiloniste s;" 0 8’ filters=32, kernel=3 “sa_learning_rate”: 0.0004,
. dl'ljscour;t fal(): tolr”'-07 99 filters=32, kernel=3 “sa_num_train_steps”: 200000,
« N filters=64, kernel=3 “sa_warmup_steps”: 10000,
learning_rate”: 0.0001
w - o ’ Slot Attention Decoder: “sa_decay_rate”: 0.5,
eval_episodes”: 100, « »
“evaluate.every™: 50 Conv2DTranspose sa_decay_steps”: 100000
“nv mu vf ,,\f Sy T filters=64, kernel=3, stride=2
« Y ﬁg ts ',,.’1 0 filters=32, kernel=3, stride=2
URrotL_steps - filters=32, kernel=3, stride=1
filters=4, kernel=3, stride=1
Main CNN:
Conv2D:filters=16, kernel=3
“train_episodes”: 5000, MaxPool2D:strides=2
“batch_size”: 32, Conv2D:filters=32, kernel=3
“target_period”: 100, MaxPool2D:strides=2 “sa_batch_size™ 16
“replay_capacity”: 10000, | Conv2D filters=64, kernel=3 “sa;esollition”'. 6 4’
“hidden_arch”: [64,32], Slot Attention Encoder: “sanum slots”" 5 ’
“epsilon_begin”: 1.0, Conv2D “samum;terati.on’s”' 3
. “epsilon_end”: 0.01, filters=32, kernel=5 . . vy
CoinRun .. o sa_learning_rate”: 0.0004,
epsilon_steps™: 0.8, filters=32, kernel=5 ‘s num._train_steps™ 100000
“discount_factor”: 0.99, filters=64, kernel=5 “saiwarnilu sEe sl’)" iOOOO ’
“learning_rate”: 0.0001, Slot Attention Decoder: e p- ,,p . ’
« ; ’ sa_decay_rate”: 0.5,
eval_episodes”: 100, Conv2DTranspose “sa_decav_stens” 100000
“evaluate_every”: 50, filters=64, kernel=5, stride=2 - y-steps -
“num_gvfs: 5, filters=32, kernel=5, stride=2
“unroll_steps”: 10 filters=32, kernel=5, stride=2
filters=32, kernel=3, stride=1
filters=4, kernel=3, stride=1
Main CNN:
“train_episodes™ 5000, Conv2D:ﬁlters='16, kernel=3
“batch_size”™ 32 MaxPool2D:strides=2
« ate t’SIZC. ’ J ’1 00 Conv2D:filters=32, kernel=3
“rzrglz 7pc f;rl(:lc't. 1b0000 MaxPool2D:strides=2 “sa_batch_size”: 16,
» -play-cap ”1y ’ > | Conv2D:filters=64, kernel=3 | “sa_resolution’: 32,
hidden_arch”: [64, 32], . « »
“epsilon.begin™ 1.0 Slot Attention Encoder: sa_num_slots”: 5,
MiniGrid “epsilonienz(gl”' 0 001’ Conv2D “sa_num_iterations”: 3,
Dynamic « P 1 - ¢ . 0 6 ’ filters=32, kernel=3 “sa_learning_rate”: 0.0004,
Obstacles CPSHIONSIEpSs - 1.9, filters=32, kernel=3 “sa_num_train_steps”: 400000,

“discount_factor’”: 0.99,
“learning_rate”: 0.0001,
“eval_episodes”: 100,
“evaluate_every”: 50,
“num_gvfs™: 5,
“unroll_steps”: 10

filters=64, kernel=3
Slot Attention Decoder:
Conv2DTranspose

filters=64, kernel=3, stride=2
filters=32, kernel=3, stride=2

filters=32, kernel=3, stride=1
filters=4, kernel=3, stride=1

“sa_warmup_steps”: 10000,
“sa_decay_rate”: 0.5,
“sa_decay_steps”: 100000

14

