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ABSTRACT

In high-risk domains such as autonomous driving and medical diagnosis, classi-
fier misclassifications pose severe risks. Existing repair approaches fall into three
categories: test-time adaptation (TTA), adversarial perturbation methods such as
PGD and DeepFool, and counterfactual generation (CF). TTA and perturbation
methods lack stability guarantees or irreparability diagnosis, while CF targets
distributional plausibility rather than direct control. We propose Direct Output
Control (DOC), which repairs misclassifications by directly regulating the output
distribution without changing model parameters. DOC defines the Fisher r Rao
distance as a Lyapunov function, pulls back its gradient through the Jacobian pseu-
doinverse, and derives minimum-norm perturbations that monotonically reduce
error. The framework generalizes to other metrics (e.g., L2) and provides both a
theoretical irreparability bound based on Jacobian singular values and inter-class
margins, and an empirical diagnostic using Lyapunov decrease. On ImageNet-1k
with ResNets and Vision Transformers, DOC outperforms TTA and perturbation
methods in repair success while inducing smaller distortions, though at higher
inference cost. Our contributions are: (1) a Lyapunov-control formulation with
monotonic stability, (2) theoretical analysis including irreparability, minimum-
norm, and natural gradient connection, (3) an empirical diagnostic via Lyapunov
decrease, and (4) large-scale validation showing Pareto superiority in success r
distortion trade-offs.
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Figure 1: Overview of Direct Output Control (DOC). When a classifier produces a misclassifica-
tion, a control law based on a Lyapunov function is used to derive a minimum-norm input perturba-
tion δx, guiding the corrected input x+ δx toward the correct classification.
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1 INTRODUCTION

In high-risk domains such as autonomous driving, medical image diagnosis, and industrial inspec-
tion, classifier misclassifications can directly lead to accidents, medical errors, and financial losses.
In such cases, the ability to repair misclassifications at inference time with minimal intervention
can immediately enhance safety and reliability. Minimal intervention is essential for the following
reasons. First, smaller perturbations better preserve the original meaning and structure of the in-
put, ensuring the interpretability and reliability of the repair. Second, limiting modifications to a
local scope contains side effects, guaranteeing operational safety in the field. Third, the perturba-
tion amount can be auditably recorded, facilitating compliance with regulations and accountability
tracking.

Existing related methods can be broadly categorized into three groups. (i) Test-Time Adaptation
(TTA): These methods update weights during inference to handle out-of-distribution shifts but im-
pose a significant burden of modifying and re-validating the production model. (ii) Perturbation
Methods Originating from Attacks (PGD, DeepFool): These methods can alter classifier outputs by
adding perturbations to the input but are originally designed for attacks and lack safety-side guaran-
tees. (iii) Counterfactual Generation (CF): This trend involves synthesizing data that yields correct
classifications by modifying inputs, but its main focus is on verifying generation plausibility and
distribution constraints, making it incomparable to frameworks like adversarial perturbation meth-
ods that ”directly control the output.” This study does not address CF and instead focuses on safe
control design.

In this study, to overcome these challenges, we propose Direct Output Control (DOC), which con-
trols the output distribution itself without modifying the trained model. DOC defines the distance
between the model’s output and a target output as a Lyapunov function and designs the input dis-
placement in a way that guarantees its decrease. This ensures that the error is guaranteed to decrease
at each step of inference, achieving stable repair. Furthermore, we introduce a mechanism to the-
oretically determine whether a repair is possible by calculating a lower bound based on Jacobian
singular values and inter-class margins. This allows us to classify misclassifications into ”repara-
ble” and ”fundamentally irreparable” cases, eliminating the black-box trial-and-error approach of
conventional methods.

Moreover, DOC is structured to naturally derive the minimum-norm perturbation in the input space.
This corresponds to the natural gradient in the output space, possessing optimality from both a
control-theoretic and information-geometric perspective. As a result, the input modification required
to repair a classification is minimized, significantly reducing visual distortions in image recognition
tasks.

As a large-scale experiment, we compared DOC with adversarial perturbation methods on ResNet-
50, ResNet-101(He et al. (2016)), ViT-B, and ViT-L(Dosovitskiy et al. (2021)) on ImageNet-
1k(Deng et al. (2009)). A comparison with TTA is provided in the appendix. The results show
that DOC consistently outperforms perturbation methods like PGD and DeepFool, as well as TTA,
achieving a higher repair success rate while significantly suppressing input perturbations and percep-
tual distortions. Furthermore, we confirmed that the decreasing behavior of the Lyapunov function
and diagnostics based on Jacobian properties can accurately identify irreparable samples.

The contributions of this research are summarized in the following four points:

1. Formulation of a new framework, ”Direct Output Control,” which treats the output distribu-
tion as the control target and guarantees monotonic error decrease via a Lyapunov function.

2. Theoretical analysis of its properties, including (i) a reparability condition based on Jaco-
bian singular values and inter-class margins, (ii) the natural derivation of a minimum-norm
perturbation, and (iii) its correspondence with the natural gradient in the output space.

3. An empirical diagnostic criterion using Lyapunov decrease, which enables practical detec-
tion of irreparability.

4. Large-scale validation on ImageNet-1k , demonstrating Pareto superiority in terms of both
repair success rate and distortion.

Thus, DOC re-positions perturbation from an ”attack” to a form of ”guidance” for inference-time
control, establishing a new paradigm that integrally enables stable repair and irreparability diagnosis.
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The structure of this paper is as follows. §2 organizes the problem setup and notation. §3 formulates
the framework and algorithm for Direct Output Control (DOC). Following §3, §4 provides a theo-
retical analysis of Lyapunov monotonic decrease, minimum-norm property, the relationship with the
natural gradient, and irreparability diagnosis. §5 reviews related work and clarifies the positioning
of our study. Subsequently, §6 validates the proposed method’s repair performance, distortion, and
diagnostic accuracy through large-scale experiments on ImageNet-1k, and §7 presents the experi-
mental results. Finally, §8, §9, and §10 present the discussion, limitations and societal impact, and
conclusion.

2 PROBLEM SETUP AND NOTATION

Let the input space be X → Rd and the output space be the simplex over K classes ∆K−1 = {y ∈
RK

≥0 | 1#y = 1}. For a pre-trained classifier f : X → ∆K−1, we denote the logits as z(x) ∈ RK

and the output as y(x) = softmax(z(x)). Given an input x and a target label y! (usually a one-hot
vector of the correct class), the objective is to bring y(x) closer to y! by applying a small perturbation
δx.

Error Metric The difference between outputs is measured by a distance function D : ∆K−1 ×
∆K−1 → R≥0. We standardly use the Fisher–Rao distance

dFR(y, y
!) = 2 arccos

(
〈√y,

√
y!〉

)

and define the Lyapunov function as V (x) = dFR(y(x), y!)2. (Results for the L2 distance are also
reported in the appendix.)

Tangent Space and Jacobian The tangent space of the simplex is Ty∆K−1 = {v ∈ RK | 1#v =
0}. The classifier’s Jacobian is denoted as J(x) = εy(x)/εx ∈ RK×d, and its regularized pseu-
doinverse is

J†
λ(x) = J(x)#

(
J(x)J(x)# + λI

)−1
, λ > 0

.

Control Objective We aim to design a continuous-time control system ẋ(t) = u(x(t)) that mono-
tonically decreases V (x) while minimizing the magnitude of the perturbation. In a discrete-step
implementation, we ensure a similar property for xt+1 = xt + δxt.

3 DIRECT OUTPUT CONTROL (DOC)

DOC is a method for repairing misclassifications at inference time based on minimum-norm output
guidance. Specifically, it defines the distance between the output distribution and a target distribution
as a Lyapunov function and pulls back its gradient to the input space via the Jacobian pseudoinverse
to compute a minimum-norm perturbation that monotonically decreases the error. This framework
uses the Fisher–Rao distance by default but is applicable to other metrics (e.g., L2) as well.

3.1 LYAPUNOV FUNCTION AND DESCENT DIRECTION

We define the error function as
V (x) = D(y(x), y!) (3.1)

and its output gradient as vy = ∇yV (y; y!). For the Fisher–Rao distance, a closed-form expression
can be obtained.

3.2 CONTROL LAW

DOC chooses the minimum-norm solution to realize −vy in the input space as

ẋ = −J†
λ(x) vy (3.2)

In this case,
V̇ (x) = −〈vy, (JJ†

λ)vy〉 ≤ 0 (3.3)
and the error decreases monotonically.

3
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3.3 TOP-K APPROXIMATION

For computational efficiency, we define an active set S(x) consisting of the top k logit components
and the target class, and approximate as

ẋ = − J#
S

(
JSJ

#
S + λI

)−1
vy,S (3.4)

based on the partial Jacobian JS . When vy is contained in the subspace spanned by JS , V similarly
decreases monotonically.

3.4 FINAL UPDATE RULE

The discrete N -step implementation is given by

xt+1 = xt − αt J
†
λ(xt) vyt , yt = f(xt) (3.5)

where αt is the step size. This iteration can be seen as an explicit Euler discretization of the
continuous-time dynamics

ẋ(t) = −J†
λ(x(t)) vy(t), (3.6)

so that the cumulative displacement over an interval is obtained by integrating the velocity field,

δx =

∫ T

0
ẋ(t) dt = −

∫ T

0
J†
λ(x(t)) vy(t) dt. (3.7)

Hence, the discrete rule equation 3.5 approximates the integral trajectory that moves x along the
pullback of the Lyapunov gradient.

4 THEORY: STABILITY, OPTIMALITY, AND IRREPARABILITY

Detailed proofs of the theorems are provided in Appendix D.

4.1 T1: LYAPUNOV DECREASE

Theorem 4.1 (Lyapunov Decrease). Along the continuous-time system of DOC,

V̇ (y) = −‖PIm J ∇yV (y)‖22 ≤ 0 (4.1)

holds.

Implication. DOC always monotonically decreases the error.

4.2 T2: MINIMUM-NORM CONTROL

Theorem 4.2 (Minimum-Norm Control). Among the inputs that realize ẏ = −PIm J∇yV (y),

uDOC = −J†∇yV (y) (4.2)

is the unique minimum-norm solution.

Implication. DOC performs repairs with minimal intervention. (Proof in Appendix.)

4.3 T3: RELATION TO NATURAL GRADIENT

Theorem 4.3 (Conditional Natural Gradient Equivalence). The dynamics of DOC are

ẏ = −PIm J ∇yV (y), (4.3)

which differs from the general natural gradient flow

ẏ = −F+∇yV (y), F = diag(y)− yy#. (4.4)

However, when Im J = Ty∆K−1 and the Fisher inner product is used, the two provide the same
trajectory up to a time reparameterization.
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Implication. DOC and natural gradient are consistent under local conditions. (Proof in Appendix.)

4.4 T4: IRREPARABILITY DIAGNOSIS (THEORETICAL LOWER BOUND)

Theorem 4.4 (Irreparability Condition). Under the input constraint ‖δx‖ ≤ ε, if

ε <
γ

σmax(J)
(4.5)

holds, then repair is impossible under a first-order approximation.

Implication. This provides a safe-side irreparability diagnosis, but discriminative power is limited.
(Proof in Appendix.)

4.5 T5: DECREASE CONDITION FOR DISCRETIZATION

Theorem 4.5 (Monotonic Decrease in Discrete Steps). For the Euler update

xt+1 = xt − αtJ
†λ(xt)Ptgt, (4.6)

if the step size αt is sufficiently small,

V (xt+1) ≤ V (xt) (4.7)

holds.

Implication. Monotonic decrease can be maintained in discrete implementation with proper step
size. (Proof in Appendix.)

5 RELATED WORK

Test-Time Adaptation (TTA). TTA updates model parameters during inference to handle dis-
tribution shifts. Tent Wang et al. (2021) minimizes output entropy, EATA Niu et al. (2022) adds
confidence-based selection and anti-forgetting, MEMO Zhang et al. (2021) uses augmented views,
SAR Mirza et al. (2023) suppresses sharpness, and TTT Sun et al. (2020) employs self-supervised
tasks. Extensions to vision r language models include WATT Wang et al. (2024b) (weight aver-
aging) and TTPA Mao et al. (2023) (prompt adaptation). These methods are effective but rely on
parameter updates, with computational cost, forgetting risk, and no guarantees of monotonic repair.

Purification- and Optimization-based Perturbation Methods. Another line of work applies
controlled input perturbations to restore or defend predictions. PixelDefend projects adversarial
inputs back toward the data manifold using a generative prior Song et al. (2018). Adversarial Pu-
rification with Score-based Generative Models removes perturbations via score-based energy mod-
els Yoon et al. (2021). DiffPure leverages forward r reverse diffusion to purify inputs Nie et al.
(2022). ScoreOpt performs inference-time optimization guided by learned score priors Zhang et al.
(2023). DiffHammer revisits diffusion-based purification and exposes evaluation weaknesses un-
der stronger attack protocols Wang et al. (2024a). Nearest-neighbor manifold projection offers a
retrieval-based alternative to realign inputs Dubey et al. (2019). Bridge-model purification further
steers diffusion trajectories for reliable recovery Li et al. (2024). While effective at input-space
correction, these methods target defense or denoising and do not provide guarantees of monotonic
repair or irreparability diagnosis.

Output Calibration and Inference Control. Post-hoc approaches that regulate the output dis-
tribution without modifying model parameters have also been studied. Temperature Scaling
(TS) (Guo et al. (2017)) calibrates predicted probabilities with a single temperature parameter, while
Dirichlet Calibration (Kull et al. (2019)) extends calibration to multiclass classification. For ad-
dressing long-tail distributions, Logit Adjustment (Menon et al. (2021)) provides a unified perspec-
tive on post-hoc correction and loss modification. In vision r language models, methods such as
BoostAdapter (Yang et al. (2024)), which enables gradient-free adaptation for CLIP, represent recent
progress in TTA and post-hoc control. While these approaches improve probability calibration and
mitigate bias, they do not provide a framework guaranteeing stable repair or irreparability diagnosis.
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(a) ViT-B: Repair Succeeded (b) ResNet-50: Repair Succeeded

(c) ViT-B: Repair Failed (d) ResNet-50: Repair Failed

Figure 2: Case studies of repair outcomes. Each block shows Input r Displacement r Output.
ViT-B (left) and ResNet-50 (right) exhibit successful repairs with monotonic Lyapunov decrease
(top), and failed repairs with stagnation despite comparable distortions (bottom). The displacements
are contrast-enhanced for visualization; in practice the differences are imperceptibly small.

Position of Our Work. Direct Output Control (DOC) establishes a new paradigm of inference-
time control that addresses the limitations of the above approaches. Like TTA, it performs adaptation
during inference, but without parameter updates; like adversarial perturbation methods, it introduces
minimal input perturbations, but its objective is stable repair rather than attack. Specifically, DOC
defines the Fisher r Rao distance on output distributions as a Lyapunov function, pulls back its
gradient to the input space via the Jacobian pseudoinverse, and thereby guarantees monotonic error
reduction. Furthermore, it derives diagnostic criteria for irreparability based on Jacobian singular
values and inter-class margins, explicitly revealing the ʠlimits of repairʡ absent in prior work.
Consequently, DOC is positioned as the first inference-time control framework that simultaneously
achieves stability, repair, and diagnosis.

6 EXPERIMENTS

6.1 SETUP

In this study, we use the ImageNet-1k validation dataset to evaluate both convolutional models
(ResNet-50, ResNet-101) and transformer-based models (ViT-B, ViT-L). We extracted misclassified
samples from each model and used them as subjects for our repair experiments. The comparison
methods used are DOC, PGD, and DeepFool. The evaluation metrics were Top-1/Top-5 repair suc-
cess rate, distortion metrics (L2, LPIPS), and computational overhead.

6.2 EVALUATION PROTOCOL

We conducted three complementary experiments: (i) Repair Accuracy: direct comparison of suc-
cess rate and distortion across methods; (ii) Diagnosis via ∆V : ROC analysis using the decrease
of the Lyapunov function, evaluating AUC and related metrics; (iii) Lyapunov Decrease: trajectory
analysis over 100 misclassified samples for ResNet-50 and ViT-B, reporting typical success/failure
cases and average curves.

7 EXPERIMENTAL RESULTS

7.1 REPAIR PERFORMANCE ON IMAGENET-1K

Table 1 shows the trade-off between repair accuracy and distortion. For all ResNet and ViT models,
DOC achieved the highest Top-1/Top-5 repair success rates and also had the minimum distortion in
both L2 distance and LPIPS. PGD attained moderate success rates but required large perturbations,
while DeepFool had the lowest computational overhead but achieved substantially lower repair suc-

6
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cess rates. Figure 3 visualizes the Pareto frontier of repair success rate and distortion, showing that
DOC exhibits Pareto superiority over existing methods in both geometric (L1, L2) and perceptual
(LPIPS) aspects.

Table 1: Comparison of DOC, PGD, and DeepFool on ResNet and ViT models. Best values are
shown in bold. The second column shows Clean accuracy (Top-1 / Top-5).

Model Clean Acc
(Top-1/Top-5) Method Top-1

Success
Top-5

Success L2 Dist. LPIPS Overhead (s)

ResNet50 76.1 / 92.9
DOC 0.900 0.924 0.003 < 0.001 0.811
PGD 0.692 0.837 0.842 0.351 0.248

DeepFool 0.230 0.335 0.500 0.208 0.199

ResNet101 77.4 / 93.6
DOC 0.889 0.921 0.003 < 0.001 1.540
PGD 0.684 0.848 0.848 0.351 0.479

DeepFool 0.010 0.024 0.363 0.150 0.399

ViT-B 81.1 / 95.7
DOC 0.859 0.913 0.005 < 0.001 1.089
PGD 0.795 0.961 0.885 0.352 0.278

DeepFool 0.239 0.884 0.885 0.352 0.099

ViT-L 84.4 / 97.2
DOC 0.880 0.926 0.004 < 0.001 2.301
PGD 0.730 0.957 0.868 0.345 0.533

DeepFool 0.207 0.850 0.868 0.345 0.238

7.2 REPAIR SUCCESS/FAILURE CLASSIFICATION USING ∆V

Table 2 shows the ROC-based evaluation. DOC achieved an AUC of 0.92 r 0.97 for all models,
with Precision/Recall/F1 all above 0.95, indicating high discriminative performance. PGD showed
moderate performance, while DeepFool performed significantly worse. Figure 4 shows the ROC
curves and the distribution of ∆V . It is confirmed that DOC clearly separates success and failure,
whereas the boundary is ambiguous for PGD and DeepFool.

7.3 LYAPUNOV FUNCTION DECREASE ANALYSIS

Figure 5 shows the trajectories of the Lyapunov value. In successful cases, DOC showed consistent
monotonic decrease and convergence to the target distribution. PGD decreased but converged slowly,
while DeepFool tended to decrease initially and then stagnate. The average behavior over 100
misclassified samples also confirmed that DOC exhibits the most stable decrease characteristics.

Figure 3: Pareto plot of repair success rate vs. distortion on ImageNet-1k. Left: (a) Top-1
Success vs. L2 Distortion. Right: (b) Top-1 Success vs. LPIPS. DOC shows Pareto superiority over
existing methods in terms of both geometric and perceptual distortion.

7
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Table 2: Repair Success/Failure Classification Results using ∆V (Youdenʟs J statistic). For all
models and metrics, DOC achieved the highest scores. PGD also showed high accuracy, but DOC
surpassed it in all cases.

Model Method AUC Accuracy Precision Recall F1

ResNet-50
DOC 0.97 0.98 0.99 0.99 0.99
PGD 0.94 0.88 0.93 0.89 0.91
DeepFool 0.78 0.73 0.21 0.70 0.32

ResNet-101
DOC 0.97 0.99 0.99 1.00 0.99
PGD 0.93 0.87 0.92 0.89 0.91
DeepFool 0.81 0.75 0.03 0.73 0.06

ViT-B
DOC 0.96 0.97 0.97 0.99 0.98
PGD 0.91 0.82 0.95 0.82 0.88
DeepFool 0.72 0.66 0.38 0.65 0.48

ViT-L
DOC 0.92 0.93 0.95 0.97 0.96
PGD 0.85 0.75 0.93 0.71 0.80
DeepFool 0.60 0.73 0.34 0.31 0.32

Figure 4: Comparison of ROC curves and ∆V distributions for ViT-B and ResNet-50. DOC
consistently achieves higher AUC values than PGD and DeepFool. The violin plots show that for
DOC, failed repairs yield ∆V values concentrated near zero, while successful Top-1 and Top-5
repairs exhibit clearly larger ∆V , indicating strong discriminative power.

Figure 5: Trajectories of Lyapunov values. (Far left) Transition of Lyapunov values for successful
repair cases, (Second from left) Transition of Lyapunov values for failed repair cases, (Second from
right) Average decrease of Lyapunov values for DOC, PGD, and DeepFool on ResNet-50, (Far right)
Average decrease of Lyapunov values for DOC, PGD, and DeepFool on ViT-B.
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8 DISCUSSION

Failure Modes and Diagnosis. Failures may occur when the Jacobian rank collapses, when the
margin γ relative to σmax(J) is too large, or when the Top-k set is insufficient. Theorem 4.4 pro-
vides an absolute lower bound but is costly, while the empirical decrease ∆V is efficient but lacks
guarantees. Using both offers a dual system: theory for safety, ∆V for practicality. In practice,
Theorem 4.4 can act as an absolute but costly safeguard, while 侏 V serves as an efficient proxy.
Their combination balances theoretical guarantees with practical usability.

Practical Use. DOC can be added without retraining. Repair can be triggered and terminated by
monitoring ∆V , with irreparable cases flagged for auditing. Overhead is dominated by pseudoin-
verse approximation but can be reduced with Top-k or randomized methods. Since labels must be
specified, repair requires either human-in-the-loop supervision or auxiliary modules that obtain ex-
ternal information.In practice, further efficiency can be achieved with randomized low-rank solvers
or Hutch++ estimators, making DOC feasible even for large-scale deployment.

Theory r Practice Gap. Safety guarantees are expensive, heuristics are efficient. Approximate
stability criteria (e.g., Lipschitz bounds or trust regions) may make ∆V monitoring more reliable
without full spectral analysis.

Comparison. TTA updates parameters but lacks stability guarantees. Attack-based methods cross
boundaries but lack diagnostics. DOC instead provides inference-time control with monotone de-
crease, minimal intervention, and diagnosability.

9 LIMITATIONS AND SOCIETAL IMPACT

Technical Limitations. Irreparability checks remain sufficient but not necessary. Extreme im-
balance or multi-label settings may break the geometry. Pseudoinverse approximations and active
set choices introduce variability. Non-classification tasks require adapting the Lyapunov definition.
Label specification remains a structural limitation, motivating future work on semi-supervised or
automated repair mechanisms that can infer target labels from auxiliary information.

Reproducibility. Results depend on preprocessing, metrics, seeds, and approximation details.
Publishing code, logs, and definitions of ∆V and stopping rules is essential.

Societal Impact. DOC can improve safety in high-risk domains by repairing errors and flagging
irreparable cases without altering model weights. Risks include misuse for adversarial editing, bias
reinforcement, and higher compute cost. Mitigation requires audit logging, fairness checks, and
clear policies for escalation to human oversight.To further reduce misuse risks, repair logs and 侏
V-based audit trails can be mandated as part of accountability frameworks.

10 CONCLUSION

This paper proposed Direct Output Control, which directly controls the output distribution without
modifying the trained model. By using the distance V as a Lyapunov function and the Jacobian
pseudoinverse, we guaranteed **monotonic decrease** and derived a **minimum-norm** input
perturbation. Furthermore, we provided an **irreparability diagnosis** based on Jacobian proper-
ties and ∆V . On ResNet and ViT models with ImageNet-1k, DOC demonstrated **Pareto superior-
ity** over TTA and PGD/DeepFool in terms of both repair success rate and distortion, and ∆V was
able to distinguish success from failure with a high AUC. DOC represents a framework that shifts
the paradigm from attack optimization to control optimization, serving as a practical foundation that
integrates safe inference-time repair and diagnosis. Future work will proceed towards extending
metrics, integrating CLF r CBF, expanding to multi-modal applications, and learning operational
policies driven by ∆V .Future work will also explore scalable approximations and audit-based de-
ployment frameworks to ensure both efficiency and accountability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REGARDING THE USE OF LLMS

In the preparation of this study, a large language model (LLM) was used for writing assistance,
searching for related research, and as an aid during the initial brainstorming phase of the research.
In writing, it was utilized to refine grammar and clarity of expression. For related research, it was
used to efficiently grasp literature and relevant fields, but the final adoption and citation of sources
were all verified by the authors. Additionally, in the early stages of research, it was used as a
discussion aid to consider alternative formulations and approaches. It should be noted that the final
responsibility for all scientific claims, experiments, and conclusions in the paper rests entirely with
the authors, and the output of the LLM was always verified by a human before adoption.
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